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Abstract

Temporal knowledge representation and reasoning is a major research field in Artificial
Intelligence, in Database Systems, and in Web and Semantic Web research. The ability to
model and process time and calendar data is essential for many applications like appoint-
ment scheduling, planning, Web services, temporal and active database systems, adaptive
Web applications, and mobile computing applications. This article aims at three comple-
mentary goals. First, to provide with a general background in temporal data modeling
and reasoning approaches. Second, to serve as an orientation guide for further specific
reading. Third, to point to new application fields and research perspectives on temporal
knowledge representation and reasoning in the Web and Semantic Web.

1 Introduction

Temporal knowledge representation and reasoning is a major research field in Artificial In-
telligence, in Database Systems, and in Web and Semantic Web research. The ability to
model and process time and calendar data is essential for many applications like appointment
scheduling, planning, Web services, temporal and active database systems, adaptive Web
applications, and mobile computing applications.
An exhaustive overview of all the approaches, results, and applications on temporal and
calendric knowledge representation and reasoning would probably require an entire book by
itself. This article has three less ambitious goals. First, it aims at providing with a general
background in temporal data modeling and reasoning approaches. Second, it aims at serving
as an orientation guide for further specific reading. Third, it points to new application fields
and research perspectives on temporal knowledge representation and reasoning in the Web
and Semantic Web.
This article emphasizes the practical impact of time and calendar modeling and reasoning for
various applications, addressing important application scenarios.
This article is structured as follows. First, this article addresses important application fields
on the Web and the Semantic Web for temporal and calendric data modeling and reasoning.
Second, it surveys well-known and (at least to some extend) established time models. Third,
this article reviews some application fields of such time models, in particular, constraint-based
temporal and calendric reasoning.

2 Motivating Applications: Temporal Reasoning on the Web

So-called “Web adaptation” is receiving increasing attention in Web circles. Adaptation ba-
sically means delivering and/or rendering data in a context-dependent manner. One distin-
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guishes between “semantical adaptation” adapting the data themselves, and “representational
adaptation”, adapting how data are rendered. For example, a web-based e-commerce catalog
might adapt offers to former purchases of a user and/or render Web pages using font sizes
specified by the user and/or the rendering device (desktop, cellular phone, or handheld com-
puter) used. Temporal information on the Web mostly refers to semantical adaptation, and in
modeling “contexts”, temporal data often play an essential role. In fact, time is an essential
aspect of semantical adaptation on the Web: for example, phone conferences are nowadays
supported by some Web applications. Scheduling an appointment for a further phone confer-
ence involving persons from France, Tunisia, and Japan would be much easier to handle, if the
underlying Web system provides with semantical adaption to time and calendars: everyone’s
calendar data should be better expressed in the calendar (e.g. Gregorian months in France
and Japan, but Islamic months in Tunisia) and time zone (e.g. Central European Time in
France but Japan Standard Time in Japan) the person is used to. In the following, three
scenarios of advanced Web applications that make use of calendric and temporal data are
described: appointment scheduling, event planning, and budgeting.

2.1 Web-based Appointment Scheduling

Appointment scheduling is a problem faced daily by many people at work. In general, schedul-
ing an appointment among a number of people requires considering several time constraints
(such as “John does not accept a meeting on a Monday before 9:30 am”) as well as the already
scheduled appointments registered in the calendars of the persons concerned. An appointment
scheduler tries to find a match (or a best match) between the given constraints. Advanced
systems might determine priorities on appointments. Appointment scheduling often requires
advanced temporal and calendric reasoning capabilites for processing planning requests such
as “Mary plays tennis for one hour in the morning every second week during working time”,
for scheduling activities spread over two consecutive days, or for scheduling activities of dif-
ferent calendric types like what is the latest possible working day in February for a Valentine
Day present delivered in due time (i.e. before 14th February).
It is desirable that a web-based appointment scheduler provides some form of calendar-based
semantical adaptation for appointments expressed in terms of the calendar in use in the
country (or countries) where one works and lives in. These calendars present more differences
than one might think at first. For example Christmas Day means 7th January in Russia
and some (but not all) Slavic countries but 25th December in other European Countries.
Also, years are numbered differently in Japan and China than in western countries (and
not in the same way in Japan, continental China, and Taiwan). Many more such examples
could be given. Thus, for being usable world-wide, an appointment scheduler must refer to
various calendar systems. Moreover, it should provide with adaptation to the calendar system
preferred to each user making it possible to communicate with each other without having to
take care of the different calendars in use. In fact, multi-calendar temporal reasoning is
an essential, still rather neglected aspect of the so-called internationalization the developers
of the Web strive for (http://www.w3.org/International). Beside various calendars and for
obvious reasons, time zones and the various daylight saving times also have to be supported
by modern, web-based appointment schedulers.
The following scenario illustrates the temporal notions and temporal reasoning concerns an
appointment scheduler calls for.
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Example 2.1 Three business men plan a trip to London. This trip should be arranged within
the next three months. They estimate the time to spend on the trip to two and a half days
and specify a time interval during which the trip should take place. After having defined
these temporal constraints on the agenda of each business man, the appointment scheduler
queries the electronic calendars of the participants for their personal time constraints within
the considered time interval. The appointment scheduler reasons over the temporal constraints
and returns the (consistent!) answers to the problem, if any. In doing this, various calendars,
time zones, as well as calendric expressions such as “legal holiday” and “working day” might
be involved.

An appointment as considered in Example 2.1 is a convex time interval represented by its
ending points, and it has a duration. Other examples similar to 2.1 demonstrate the need
for non-convex time intervals. For example the answer to the question “When are Anna,
Bob, and Cindy all staying in New York?” might be a non-convex interval. Furthermore, an
appointment scheduler might refer to conjunctions and disjunctions of temporal constraints
expressed in terms of the above-mentioned basic temporal notions. Each of these basic tem-
poral notions can, in turn, be expressed with calendric types, i.e. units such as hour, day,
week, month, trimester, and semester. Note that some of these notions might have different
interpretations depending on the used calendar. For example, months are differently defined
in the Islamic, Gregorian, Iranian, and Coptic calendars, for citing a few still widely used.

2.2 Web-based Event Planning

The events considered in this section are social events (like concerts or theater performances),
or professional events (like venues of conventions and conferences). An event planning system
is a software aiming at assisting people planning and/or managing a large number of events
subject to possibly complex constraints. For example, planning the concerts of a large city
might have to ensure a regular distribution over the time if those concerts aim at similar
audiences. Event planning is concerned with inter-related time-dependent events. The events
to be considered might be already finalized, i.e. certain, or instead potential, i.e. subject to
cancellation. In contrast to appointment scheduling, event planning is in general a continuous,
or at least a long lasting process: while scheduling an appointment can be seen and realized
as a punctual task, scheduling events often requires long lasting, intertwined tasks. Thus, the
temporal reasoning system subjacent to an event planning system must be able to manage
an ongoing planning process. The following scenario illustrates the temporal notions and
temporal reasoning aspects that an event planning system in general needs.

Example 2.2 Mary is responsible for planning, managing, and surveying the cultural events
of a large city. For some event, the following might have to be planned: Renting a service (e.g.
a catering service) could involve calling a catering service in due time, scheduling appointments
with a responsible person, conclude a contract, provide with access to premises and facilities
at some point of time, oversee the service provided in due time, etc. Indeed, consistency with
planned events and their sub-tasks must be checked. For example, two subcontractors cannot
necessarily use the same resources, for example rooms.

Thus, an event planning system might recall to work-flow management systems. An essential
difference is that, in contrast to a standard work-flow management system, an event planning
system will have to support common-sense or real life calendar expressions like “hour”, “day”,
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“week” or “month”. An event planning system perfectly fitting the needs of Mary from
Example 2.2 will also have to support various calendars and time zones (e.g. for many artists
that come from abroad). Furthermore, the city is likely to have different cultural communities
the celebrations of which have to be taken into account in planning cultural events.
One probably will have to distinguish between “fully specified events” and “incompletely
specified events”. The former refer to specific time and date occurrence and some event’s
sub-tasks having fully specified temporal constraints. The latter refers to sub-tasks which are
already committed but not yet fully scheduled. Most likely, an event planning system will have
to support partially ordered activities (or tasks, or sub-tasks), incomplete information, and
it will have to verify the consistency of temporal constraints between (inter-related) events.

2.3 Web-based Budgeting

A budgeting system might be seen as a temporal planning system tuned to financial con-
trol. Budgeting systems take into account both, when and in which order budgeting tasks
occur. They also take into account a task’s evolution for this is often critical for a correct
determination of future budgets and their related budgeting plans. Let us consider a scenario.

Example 2.3 A budgeting system for public schools guides the school’s financial analyst
through the process of creating a budget that can be easily managed, consulted, balanced, and
compared with previous budgets of the school, with the budgeting plan, and with the current
year’s budget. The budgeting system computes (and stores) the budgets of all budget sec-
tions together with some constraints. It also computes monthly reports including absolute and
relative deviations from the running year’s budget and extrapolation for the future based on
previous year’s balance-sheets. Further reports give the budget for each term of references
separately as well as the currently available resources.

Thus, a budgeting system refers to several temporal notions and constraints. Budgeting refers
to different time domains because it uses both histories (past data) and extrapolations (future
data).

It is worth stressing that the Web provides an infrastructure making it possible for an ap-
pointment scheduler, event planner, and budgeting system to refer to the calendars of several
persons at different places and possibly moving from place to place. Web applications like
those mentioned above suggest that what one might call “multi-calendar temporal data mod-
eling and reasoning” is likely to become much more important in the future than it has been
in the past.

3 Time Models

Knowledge is the symbolic representation of aspects of some discourse universe such as time
and calendars. An example for temporal knowledge represented in natural language is “John
plays tennis every Saturday between 10 a.m. and 11 a.m.”. Modeling formalisms and reason-
ing mechanisms to manipulate the knowledge of some discourse universe, to create solutions,
and to formulate new problems have been developed. Such formalisms have been proposed
as tools to define knowledge in terms of symbols that may be manipulated by computer
programs.
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In principle, symbolic representation of temporal knowledge allows for describing changes of
the reality modeled in some system, for example a database. A computer program that allows
for manipulating such knowledge usually provides with inference strategies to reason about
time-dependent objects such as schedules, plans, actions, and changes. These and further
considerations have given birth to a large field of research that can be summarized as the
development of time models. Essentially two different approaches to represent time exist:
implicit time models and explicit time models. The computation mechanisms to manipulate
temporal knowledge that is defined in such time models are often called temporal reasoning
methods.
Usually, knowledge about time (and calendars) is obtained by extending a language with
means to represent temporal data and to define a temporal reasoning system, i.e. a technique
for reasoning about assertions formulated in the extended language. Such assertions usually
depend on some intended application (e.g. scheduling, planning, changes and actions), deter-
mining which reasoning technique(s) might be applied. A temporal reasoner is usually part
of a more general reasoning system.
Following approaches to temporal data modeling and reasoning are surveyed in this section.
First, implicit time models which focus on time-dependent entities indicating that a change
in time has occurred. Second, explicit time models which consider time itself independent of
anything that could happen in it. Third, explicit time models including approaches to model
different calendar units in terms of so-called time granularities.

3.1 Implicit Time Models

In principle, implicit time models consider time dependent entities like events and actions
indicating that a change has occurred in the modeled world, for example a database of facts.
With such systems, time is not made explicit. Instead, time is implicitly specified in terms of
the changes that have occurred in the past or that might occur in the future.
Implicit time models are particularly used to model events and actions that result in changes
in the context of some application. Implicit time models are used to specify the effects of
actions and to acknowledge and to react on changes in such systems.
These implicit time formalisms provide a simplistic notion of time, however useful for simple
problem-solving tasks: a state describes the world at an instantaneous time, i.e. at a time
point. Actions are modeled as functions over states. Well-known implicit time models are
the Situation Calculus [MH87] and the Event Calculus [KS86, Kow92]. In the field of pro-
gram verification1, Dynamic Logic [Pra76, Har79, Har84, Moo85] is a well-known implicit
time formalism which is also applied to problems in temporal knowledge representation and
reasoning. Implicit time models are widespreadly applied to active database systems, and
recently, to model and process changes and actions in active Web and Semantic Web systems.

3.1.1 Situation Calculus

The Situation Calculus has been introduced by McCarthy and Hayes in 1969 [MH87]. This
calculus has long been a foundation for temporal representation and reasoning in Artificial
Intelligence. The Situation Calculus has been modified and/or extended with several different
means [SG88, Web90, LS95, Ram00, McC02, MPP02]. In addition to research in knowledge

1Note that research on program verification is not considered in this survey. The reason is that it is
inherently different.
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representation and reasoning on actions and changes [GLR91, Lif91], the Situation Calculus is
particularly used for practical work in planning [FN71, FHN72, L9́6, GLL97], active database
systems [Rei92, Rei95, BAF98], and in agent programming and robotics [BCF+98, LLR99,
BRST00, MSZ01, ABH+02].
In the Situation Calculus, temporal knowledge is represented as a sequence of so-called situ-
ations, each being a description of the world at a time point. The Situation Calculus models
a changing world in terms of a totally ordered and discrete sequence of situations isomor-
phic to the integers. The changing world is formalized by a many-sorted predicate calculus
with some reserved predicate and function symbols. The sorts of this calculus are situations,
actions, and objects. Fluents are specific relations and functions defined over the sort of situ-
ations. Fluents are used to describe the world in each situation. Action performances, action
preconditions, and histories are non-decomposable functions from one situation to another.
The Situation Calculus is feasible only in domains where merely one event can occur at a
time; in particular, no concept of an event taking time is supported. The Situation Calculus
does not provide a notion of persistence: an event that is true at one situation needs to be
explicitly verified at any succeeding situation.
Various axiomatizations of the Situation Calculus in some first-order language [Bak91, PR93,
Rei93, LPR98, Rei01] as well as some formalizations of the Situation Calculus in terms of
logic programs [KS94, BDD95] are proposed.

3.1.2 Event Calculus

The Event Calculus has been introduced by Kowalski and Sergot in 1986 [KS86, Kow92].
Various modifications and/or extensions of this calculus exist [Sha90, CMP93, CCM95, Sha95,
SK95]. The most notable variation is the so-called Simplified Event Calculus [Kow92] that
has addressed some of the problems appearing with the original calculus. Those problems
are discussed in [Mis91, DMB92]. This simplified calculus has been applied to problems in
planning [DMB92, YS02] and in active database systems [Kow92, FWP97].
The Event Calculus is a formalism to reason about events. It is based on a many-sorted first-
order predicate calculus or the Horn clause subset of such a calculus. In most formalizations of
the Event Calculus, a linear, point-based time line is assumed. Events initiate and terminate
time intervals over which fluents hold. Fluents are properties that can have different values
which are manipulated by the occurrences of events at different time points.
Various axiomatizations of the Event Calculus and of the Simplified Event Calculus are pro-
posed [Esh88, Sha89, Sha90, Mis91, Kow92, SK95, MS99].

3.1.3 Dynamic Logic

Dynamic Logic is based on classical logics, in particular, propositional and predicate logics
and modal logics which are combined with an algebra of regular events. Dynamic Logic
enables verification of imperative programs and program specifications. It has been proposed
by Pratt [Pra76] (with an emphasis on the modal nature of program interactions), Harel
[Har79, Har84], and Moore [Moo85].
The basic idea of Dynamic Logic is to model programs by modal operations. Such programs
change the values of variables causing changes of the truth values of some formula. Among
the numerous formalisms for (formal) program reasoning, Dynamic Logic enjoys the singular
advantage being strongly related to classical logics. Therefore, Dynamic Logics gains from
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the advantages of classical logics compared to (often more complex) logics frequently applied
to reason about programs.
Although Dynamic Logic has been initially introduced as a formalism for program verification,
it has been turned out to be a formalism for reasoning about some actions of (natural or
artifical) systems. In Artificial Intelligence, Dynamic Logic has been adapted for tasks such as
the description of actions in some common-sense world and for specifying particular reasoning
systems [SWM95, SGdMM96, Mey99].

3.2 Explicit Time Models

Explicit time models consider time itself, independently of any event or action that might
occur. The flow of time is explicitly represented, defining a time model that specifies one
(or more) time lines of time primitives, in particular, points and/or intervals. Some time
models specify more than one time line which are related either in parallel or vertically. The
former leads to hierarchical time models, in particular used to define calendar units like “day”,
“week”, or “working year” and cultural calendars like the Gregorian and Hebrew calendars or
professional calendars, for example of some university. The latter leads to multi-dimensional
time models, in particular used to define temporal histories, for example of transactions of
objects and/or validities of some properties of those objects stored in a system like a database.
Explicit time models are either point-based [Bru72, KG77, McD82, Sho87] or interval-based
[Ham72, Dow79, NS80, All83, HA89]. Some proposals have been made to combine point-based
and interval-based time models [Vil82, Boc90, Gal90, VS96]. Those models combining points
and intervals, however, yield in rather artifical time models, raising several problems [Spr06].
Furthermore, time models for generalized intervals (i.e. intervals which are not necessarily
convex) have been proposed [LMF86, Lad87, DC91, NS92, Lig98].
Explicit time models have been widely applied in temporal reasoning [Vil82, All83, vBC90,
VKvB90, KL91, DMP91, Kou92, Mei96], temporal database systems [ÖS95, Sno95, Gan99],
planning and scheduling [RS90, All91, BRS05], and ontology design for Web and Semantic
Web applications and Web services [DAR02, PH04].

3.2.1 Point-based Models

Points are modeled as duration-less portions of time with identical beginning and ending
times. Point-based time models have been influenced by physics [New36] where it is common
to model time as an unbounded, ordered continuum of (partially) ordered points isomorphic
to the real numbers. In Artifical Intelligence, research in this tradition can be found in
[Bru72, KG77, McD82, Sho87].
A point-based time model is defined on a structure (P,<P ), where P denotes a set of points
and <p an ordering of P .
A point-based model defines at least a partial (i.e. irreflexive, antisymmetric, and transitive)
order on points. Let p, q, r, s, t ∈ P points.
An ordering over (P,<P ) can be defined as follows:

(irreflexivity) ¬(p <P p)
(antisymmetry) ((p <P q) ∧ (q <P p)) ⇒ (p = q)
(transitivity) ((p <P q) ∧ (q <P r)) ⇒ (p <P r)
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Additionally, it may have (some of) the following properties:

� left-linearity or linearity:

(left-linearity) ((q <P p) ∧ (r <P p)) ⇒ ((q <P r) ∨ (q = r) ∨ (r <P q))
(linearity) (p <P q) ∨ (p = q) ∨ (q <P p)

� boundness or unboundness:

(right-boundness) ∀p∃q.(q <P p)
(left-boundness) ∀p∃q.(p <P q)

� discreteness or density:

(discreteness) ∀p, q.(p <P q) ⇒ ∃r.((p <P r) ∧ ¬∃s(p <P s <P r))
∀p, q.(p <P q) ⇒ ∃r.((r <P q) ∧ ¬∃s(r <P s <P q))

(density) ∀p, q.(p <P q) ⇒ ∃r.(p <P r <P q)

The properties introduced above are sufficient to achieve a certain level of completeness. Two
theories are known to be syntactically complete [vB91]: the unbounded dense linear theory
and the unbounded discrete linear theory.
Dense and continuous point-based models provide a means to model continuous changes
such that any extend of time can always be partitioned into subintervals; necessary, e.g. to
model planning problems where tasks are frequently decomposed into subtasks. In dense
and continuous models it is not possible to refer to some next (resp. previous) time. This is
however possible in discrete models. Any finite strict partial order (i.e. if p and q are points,
then p < q or q < p) is automatically discrete. Including a (metric) duration, i.e. specific
amounts of time with a given length but without begin and end points into a point-based time
model, a distinction between continuous and discrete time becomes important: if the time
line is continuous, a point has no duration, but in discrete time, it always has some duration.
Point-based models provide with a simplified concept useful in simple problem solving tasks
such as maintaining different states of a system like a database. Points describe the modeled
world at an instantaneous time where events are represented by dates. Actions are modeled in
such systems as functions mapping between points. For example, if dates are represented by
integers, then the temporal order between two dates could be simply computed using numer-
ical applications. Point-based time models are particularly applied in temporal information
systems and temporal databases [ÖS95, Sno95, Gan99].

3.2.2 Intervals-Based Models

In several applications, events simply cannot be assigned to a precise date, e.g. to model
the fact that two events cannot happen at the same time. Recall that points cannot be
decomposed. Although some events appear to be instantaneous, e.g. one might argue that
“step inside the house” is instantaneous, it also appears that such events might be either
decomposed or have a duration when varying the “precision” (e.g. from minute to second) of
this event. Thus, point-based time models are not expressive enough for many applications.
Starting from a point-based time model, intervals might be implemented into this approach.
In a time model of totally ordered points, an interval can be represented by an ordered pair
of points with the first point less than the second. To ensure that such intervals can meet
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(e.g. “the light was on” and the “the light is off”), i.e. only having one endpoint in common,
the endpoints of the intervals must be less, i.e. for an interval i with endpoints i− and i+

i− < i+. This can be achieved when the intervals are closed in their starting points and
open on their ending points (or vice versa). However, this requirement points out that a time
model based on points does not correspond with our intuitive notion of time. The modeling
of temporal knowledge is significantly complicated, because both, points and intervals have
to be considered. Furthermore, having e.g. an event e holding sometime during an interval i
which in turn is during an interval i′, then e holds during i′, as well. Thus, relations between
intervals and events may be “carried forward” such that reasoning can be kept local. It is
not clear to maintain those properties when considering intervals modeled by endpoints in a
point-based time model.
To overcome the problems of point-based time models, purely intervals-based time models
have been introduced [Ham72, Dow79, NS80, All83, HA89]. An interval-based time modeled
well-known and widely applied in Artificial Intelligence, Knowledge Representation, and In-
formation Systems is Allen’s interval calculus [All83], exclusively based on intervals and the
13 basic relations between pairs of them. The 13 basic interval relations are illustrated in
Figure 1.
Allen [All83] initially takes a structure (I,R) where I denotes a set of intervals and and R
the set of the 13 relations between pairs of elements of I. R is informally specified by the
following axiom schemas:

1. For all i ∈ I, there exists an interval j ∈ I, i �= j with R(i, j) for R ∈ R.

2. The relationships in R are mutually exclusive:
∀i, j ∈ I,R ∈ R.∀R′ ∈ R.R(i, j) ⇒ ¬R′(i, j)

3. The relationships have a transitivity behavior. E.g. if i before j and j meets k, then
i before k. The transitivities between all pairs of the 13 basic relations are given in a
transitivity table in [All83].

The relationships between intervals have also been studied by other researchers: van Benthem
[vB91] has introduced two basic relations, precedes and contained-in which are consistent with
the structure of intervals over the rational numbers. Ladkin [Lad87] has defined each of the
13 basic interval relations in terms of the relation precedes. Allen and Hayes [HA89] have re-
defined the interval calculus in terms of the relation meet. Characteristics, axiomatizations,
comparisons, and expressiveness of those three interval calculi have been investigated by
Ladkin in [Lad87].

3.2.3 Combined and Generalized Models

In addition to purely point-based and purely interval-based time models, models integrating
points and intervals [Vil82, Boc90, Gal90, VS96] as well as models to represent intervals which
are not necessarily convex, referred to as generalized intervals [LMF86, Lad87, DC91, NS92,
Lig98], have been proposed for different purposes.

3.2.3.1 Points and Intervals Combined. Differentiating between events which are in-
stantaneous, i.e. duration-less events and events which have a temporal extend, i.e. continuous
events has been motivated by accomplishing events like “to close the door” and continuous

9



i equals j:
i

j

i before j (j after i):
i

j

i meets j (j met by i):
i

j

i starts j (j started by i):
i

j

i finishes j (j finished by i):
i

j

i during j (j contains i):
i

j

i overlaps j (j overlapped by i):
i

j

Figure 1: The 13 basic relations between two intervals i and j.
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changes like a “100-meter sprint”. Although this argumentation is not accepted in unison,
time models integrating points and intervals have been proposed [Vil82, Boc90, Gal90, VS96].
The pioneer work in this tradition by Vilain [Vil82] has combined Allen’s interval calculus
[All83] with points and (primitive) relations between points and between points and intervals,
yielding in 26 basic relations holding between points and/or intervals. Vila and Schwalb
[VS96], whose work has been inspired by the works of Bochman [Boc90] and Galton [Gal90],
have defined points from intervals such that an interval is defined by an ordered pair of
ending points. A many-sorted first-order axiomatization is proposed for this calculus [VS96]
with sorts for points and intervals and three primitive relations “<” (less) over intervals and
“begin” and “end” over intervals and points. Dense and discrete time is differentiated by
adding the denseness axiom over points.

3.2.3.2 Generalized Intervals. Motivated by planning problems [LMF86, NS92, TC95,
KM99, Ter00] that require an abstraction from the number of times an event repeats, or from
the number of times an event occurs in a temporal relation, e.g. to schedule one’s office hours,
time models for not necessarily convex intervals, so-called generalized intervals have been
proposed [LMF86, Lad87, DC91, NS92, AK94, Lig98]. Generalized intervals are intended to
represent (i) periodic events such as “John has breakfast every morning”, (ii) interrupted
events such as “John interrupts his breakfast to answer the phone”, and (iii) events that
consist of several related sub-events such as activities related to a planned event.
Since generalized time intervals are nothing more than mere collections of (possibly infinite
many) intervals, the proposed models [LMF86, Lad87, DC91, NS92, AK94, Lig98] generalize
Allen’s interval algebra [All83] by defining specific relations between such interval collections.
The proposals differ in the description of the generalized intervals as well as in the basic
relations defined between pairs of them: Ladkin [Lad87] has proposed a general taxonomy
of the set of all relations between any pair of generalized time intervals in terms of specific
relationships between generalized time intervals. The suggested relations are derived from
applications for task descriptions and management and process and action algebras. Ligozat
[Lig98] has further extend this work. Khatib’s [AK94] framework bases on matrices that
represent binary relations between sequences of time intervals. Those matrices contain the
time interval relations between any pair of convex components of the considered generalized
time intervals.

3.3 Time Granularities Systems

The importance of data modeling and reasoning with data referring to different calendar units
like “day”, “week”, or “teaching term” such as the widespread Gregorian times and dates has
been widely recognized in the research areas of Artificial Intelligence and Database Systems.
E.g. a person being in Munich from Tuesday to Thursday and in London from Friday to
Sunday will meet another person in London on Friday at 8 p.m. One might question how
to merge the apparently contradictory information: to relate the temporal conditions of the
first person to those of the second person, the informations concerning the first person have
to be precised in terms of hours. That means, days and hours cannot be compared by some
computer application without having any informations on how to convert days to hours and
vice versa. If the reasoner has some additional information about the temporal extend of the
trip from Munich to London, one might reason about the time the first person have to leave
Munich at the latest to be in London in time.
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In the research areas of Artificial Intelligence and Database Systems one of the most promising
approaches handling such problems has been the introduction of the concept of time granu-
larity [Mon96, Je98, BJW00, Euz01]. Time granularities may be used to specify either the
occurrence time of different classes of events (modeled for example by points or intervals)
with time granularities or the temporal relations such as Allen’s interval relations between
such events. For example, the temporal event of a flight departure may be given in the time
granularity “minute”, and the temporal event of a student’s examination in that of “day”,
or the temporal relation “during” may be given in the time granularity of “day”, describing
the stay of some person in London. Thus, time granularities can be used to specify both
quantitative and qualitative temporal reasoning frameworks. To apply time granularities in
such frameworks, not only the granularities themselves, but also meaningful relations between
them are needed: if in some application events are expressed in different time granularities,
the system must “compare” them in a meaningful manner to reason on relations formulated
over such “differently grained” events.
With a common understanding [Mon96, Je98, BJW00, Euz01], time granularities are dis-
cretizations of a totally ordered (continuous) time line isomorphic to the real numbers. A
time granularity is a (partial) partition2 of such a time line into a (infinite) countable set
of aggregates of points (of such a time line), so-called granules, isomorphic to the integers.
Examples of granules are “02.01.2005” of time granularity day and “the first week in the year
2005” of time granularity week. The granules of each time granularity are non-overlapping,
and they preserve the order of the underlying time line. Granules may be considered either
as points or as intervals.
Numerous different formalizations of the concept of time granularity, various relationships
between them, and several temporal operations on them have been proposed. The formal-
izations follow set-theoretic, logic-based, automata-based, and programming language-based
approaches. Well-known approaches in each of those traditions are surveyed in the following.

3.3.1 Set-theoretic Time Granularity Systems

A lot of work on set-theoretic approaches to time granularities has been done in Artificial
Intelligence [MMCR92, Fre92, CEMP93, Euz93, Her94, GPP95, BCDE00] and in Database
Systems [And83, CR87, WJL91, WJS95, Wan95, Sno95, BJW00, NWJ02].
In Artificial Intelligence, proposals for quantitative time granularities based on a hierarchy
of strictly constrained time granularities with upward and downward conversions on points
and intervals have been made [MMCR92, CEMP93]. In [Euz93], a less-constrained quanti-
tative formalization has been proposed. Qualitative time granularities have been proposed
in [Fre92, Her94, GPP95]. In this approach, a separate set of relationships is defined at any
granularity level. A qualitative, interval-based framework that uses the same representation
formalism at each granularity level is proposed in [Euz93]. In [Euz93], conversions between
time granularities are defined on the relations rather than on objects between those relations
might hold. Note that these qualitative proposals can only reason in homogeneous networks
where all relations are given in the same time granularity. The network can be then converted
only as a whole. A qualitative formalization for time granularities where (point-based) objects
are converted is proposed in [BCDE00].
In Database Systems, a large amount of work on time granularities exists. This approach to
time granularities is inherently point-based and quantitative: conversions which introduce the

2in the mathematical sense of a partition of a set
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(unsolved) problem of indeterminacy when converting to a finer time granularity is performed
on point-based objects, i.e. granules are considered as points with time granularity. This
approach suffers from some not only theoretically but also practically relevant problems such
as the equivalence problem of time granularities. Furthermore, it only partially works out
the problem of time granularity conversions. This problem of the quantitative, point-based
approach is discussed in [FM01]. A comprehensive presentation of this quantitative, point-
based approach to time granularities is given in [BJW00].
Initially in [And83], the need to support different time granularities in temporal databases has
been addressed. Based on Anderson’s work [And83], Clifford and Rao [CR87] have proposed
a theoretical model of time granularities underlying a total order which introduces most
of the features of the set-theoretic approach. They introduce granularity conversions along
a finer than relation on this total order (e.g. hours are finer than days), defining a time
granularity in terms of its next finer time granularity. Wiederhold, Jajodia, and Litwin
[WJL91] have advanced this model by adding some specific semantics. These semantics allow
for temporal comparisons regarding to the complete ordering of time granularities. Their
model allows for handling mixed time granularities (i.e. temporal aspects stated in more
than one time granularity). In sequencing papers, Wang and others [WJS95, Wan95] have
generalized this totally ordered set of time granularities to a partially ordered one allowing for
finer and coarser relations between the time granularities comprised in a particular finite set of
partially ordered time granularities. In addition to this finer than relationship, several further
relationships between time granularities have been thoroughly investigated. A collection
of such relations is given in [BJW00]. Furthermore, a calendar algebra [NWJ02] has been
proposed to symbolically represent time granularities as expressions form other (previously
defined time granularities) using algebraic operators.

3.3.1.1 Time Granularities. According to the temporal structure proposed for time
granularities in [CR87] which has been generalized in [BJW00], a time granularity G is a
function from an index set into the power set over a linear (dense or discrete) time line.
This function is order preserving and to conserving. The elements of a time granularity do
not overlap. The origin of a time granularity is the smallest element according to the order
relation and it is index by 0. The image of a time granularity is the union of its granules,
and the extend of a time granularity is the smallest interval of the underlying time line that
contains the time granularity’s image.
For time granularities G and H, Clifford and Rao [CR87] have introduced a finer than relation
as follows: a time granularity G is finer than a time granularity H iff ∀i ∈ Z∃j ∈ Z such that
G(i) is a subset of H(j), denoted G 	 H. In [BJW00], several additional relations between
time granularities have been suggested:

G � H iff ∀j∃S H(j) =
⋃

i∈S G(i) groups into
G 
 H iff ∀i∃j such that G(i) = H(i) sub-granularity of

G � H and G 	 H partitions
G � H iff the image of G is contained in the image of H covered by

G � H and their exists a periodic repetition of the
grouping pattern of granules of G into granules of H groups periodically into

G ↔ H iff ∃k∀i such that G(i) = H(i + k) shift-equivalent

Apart from the relation for shift-equivalence, all those relations define time granularities in a
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way such that G is a “more precise” time granularity than H. Calendars are defined in this
framework as sets of time granularities that contain a time granularity G such that each of
the time granularities groups into the time granularity G [BJW00].
In [BJW00], specific sets of time granularities are defined within which the granules of one time
granularity can be converted into granules of another time granularity. In this framework,
however, conversions are not always defined: in particular, a conversion from a granule into
a granule of a coarser time granularity is only defined, if the corresponding time granularities
are related according to the “finer than” relationship [CR87]. A conversion from a granule into
granules of a finer time granularity is only defined, if the corresponding time granularities are
related according to the “group into” relationship [BJW00]. Thus, a universally valid solution
to the problem of time granularity conversion is not provided in the framework of [BJW00].
The problem of time granularity conversion in the quantitative, point-based approach to
time granularities is discussed in [FM01]. Less restricted time granularity systems have been
considered for example in [Sno95].
In [NWJ02], a formal algebra to always define coarser time granularities from finer ones is
proposed. The suggested algebraic operators directly refer to and relay on the afore men-
tioned relations between time granularities. The afore mentioned problem of time granularity
conversion also appears within this calendar algebra.

3.3.1.2 Qualitative Time Granularity. Time granularity operators for qualitative time
representation have been first proposed in [Euz93, Euz95]. Those time granularity operators
are defined in the context of relational algebras, applicable to both point and interval algebras.
In principle, a qualitative algebra [All83, VKvB90] is initially augmented with a neighborhood
structure [Fre92]. Subsequently, an interval algebra with qualitative granularity in terms of
conversions of the relations according to some coarser and/or finer granularity is constructed
[Hir96]. In [Euz93, Euz95], the author provides with a framework where situations are de-
scribed by a set of possible relationships holding between time points or time intervals. In
particular, each layer of the qualitative and relational language represents a situation in the
unalternated language (of the chosen) relational algebra. The qualitative time granularities
are defined by a set of operators. The operators are used to convert the representation of
a (whole) situation into a finer or coarser representation of the same situation (as a whole).
The operators apply to the relationships that might hold between the temporal primitives (in
some situation). The operators transform each of the relationships that hold in a situation
into a coarser (using some upward conversion) or a finer (using some downward conversion)
time granularity.
One of the important aspects of the work by Euzenat [Euz01] is the definition of a set of
(generic) constraints which should be satisfied by any system of granularity conversion oper-
ators:

r ∈→ r self-conversion
∀r,∀r′, r′′,∃r1, . . . rn : neighborhood compatibility
r1 = r′, rn = r′′ and ∀i ∈ {1, .., n − 1}N(ri, ri+1)
→ r−1 = (→ r)−1 conversion reciprocity distributivity
r ∈ ⋂

r′∈↑r ↓ r and r ∈ ⋂
r′∈↓r ↑ r inverse compatibility

↑↑ r =↑ r and ↓↓ r =↓ r idempotence
→ r =⇐→⇒ r and → r =⇒→⇐ r representation independence
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where ↑ denotes upward conversion, ↓ denotes downward conversion, → denotes a neutral
operator (if a time granularity change between two layers is addressed, but it is not necessary
to know which one is the coarser), ⇐ and ⇒ denotes an interval relational space, x and y de-
note time primitives, and r denotes a relation between time primitives. Self-conversion means
that, independed of the conversion, a relationship must belong to its own conversion. Neigh-
borhood compatibility contains the conversion of a relation to form a conceptual neighborhood.
Conversion reciprocity distributivity denotes symmetry. It states that the conversion of the
relation between a first object and a second object must be the reciprocal of the conversion
of the relation between the second one and the first one. Inverse compatibility states that
the conversion operators are consistent with each other. Finally, representation independence
states that the conversion must not dependent on the representation of the temporal primi-
tive, i.e. whether a relation between points or intervals is converted. From these constraints,
the possible conversion operators for a particular relational algebra for points and/or intervals
such as the algebras proposed in [Vil82, All83, VKvB90] can be generated. Examples of such
relational algebras with conversion operators can be found in [Euz01].

3.3.2 Logic-based Time Granularity Systems

Hobbs [Hob85] has introduced a very general logic-based concept of granularity. He has
considered predicates extracted from a global theory (given in some logic formalism) which
are relevant to some present situation described at a specific granularity. Extracting relevant
predicates leads to an indistinguishability relation: variables are indistinguishable to the
situation at hand if no relevant predicates distinguishes between them. In this concept of
granularity, a granularity is characterized after some theory has been defined. This work has
been enhanced by Greer and McCalla [GM89].
Different frameworks to deal with time granularities in Linear Temporal Logics (LTL) has
been suggested: for example, in [FM94], Fiadeiro and Maibaum represent each granularity
in the same (classical) temporal logic. Conversions are defined between these different repre-
sentations. Representations with mixed time granularities are not possible in this framework.
Combi, Franceschet and Peron [CFP04] have defined time granularities as models of LTL for-
mulas using appropriate propositional symbols to mark endpoints of granules. Demri [Dem04]
has generalized the framework of Combi et al. and the automata-based approach (cf. Section
3.3.3) of Montanari and Dal Lago [LM01] to a first-order language. This language allows for
defining time granularities by means of periodic constraints specified in a first-order logic.
In [CEMP93, Mon96], Montanari and others have proposed a quantitative temporal logic
with granularities. The authors of this work show how to extend syntax and semantics of
temporal logics to cope with quantitative temporal properties possibly expressed at different
time granularity. This work results in a quantitative and layered temporal logic [Mon96].
This layered logic is based on the idea of a logic of positions, i.e. a topological or metric logic
[RG68, RU71]. Such a metric logic is then generalized to a many-layered metric temporal logic,
embedding the notion of time granularity. The main features of the logic proposed in [Mon96]
are three different operators: a contextual operator (to associate different granularities with
different formulas), a displacement operator (to move within a given granularity), and a
projection operator (to move across granularities).
Alternative temporal logics with time granularities are proposed in [Mon96, MP96, MPP99].
The logics introduced in those works define various theories of time granularity as extensions
of monadic second-order theories. They provide with suitable restrictions to such languages
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for time granularities to get decidable temporal logics with time granularities.
Yet another alternative has been proposed in [OG98]. The authors of this work have integrated
set-theoretic operators for defining time granularities in terms of predicates into a modal first-
order language with modality operators like “next” with time granularity.

3.3.3 Automata-based Time Granularity Systems

Wijsen [Wij00] has proposed a string-based approach to represent time granularities, in par-
ticular, to represent infinite periodic time granularities like days or weeks. Such time gran-
ularities are modeled as (infinite) words over an alphabet that consists of three symbols: �
(fillers), � (gaps), and � (separators). A granule is constructed form fillers and gaps and
delimited by a separator. A finite set of granules is used to describe the repeating pattern
of a time granularity. Periodic time granularities can be identified with ultimately periodic
strings, and they can be finitely represented by specifying a (empty) finite prefix and a finite
repeating pattern in terms of granules modeled by combination of the three symbols �, �,and
�.
This string-based approach has been further extended by Montanari and Dal Lago [LM01]
to an automata-based approach: a specific subclass of Büchi automata has been introduced
that recognizes languages only consisting of periodic words (described by the afore mentioned
symbols of Wijsen’s string-based approach).

3.3.4 A Programming Language Approach to Time Granularities

Bry, Rieß, and Spranger [BRS05] have proposed a programming language approach to mod-
eling temporal and calendric data using time granularities and calendars specified as types:
types complement data with machine readable and processable semantics, thus, enabling
(meaningful) annotation of data. Such features become evident when considering the follow-
ing example. An appointment scheduler inferring an appointment for a phone conference of
two persons (where one is in Munich and the other in Tel Aviv) refers not only to several
time constraints formulated by the conference attendees but also to various temporal and
calendric data of different types (possibly interpreted w.r.t. different calendars). Types give
such data their intended semantics, e.g. that some data refer to days or that some weekend
refer to Saturdays and Sundays and some other weekend to Fridays and Saturdays, as it
would be the case in Israel. Essentially, the calendric data involved in such applications are
most often rather complex, sometimes involving different calendars (e.g. cultural calendars
like the Gregorian and the Islamic and professional calendars) with various regulations and
lots of irregularities (e.g. leap years). Furthermore, calendar data such as dates are probably
more than any other data domain a subject to user interpretation: e.g. the date “12/02/2005”
is interpreted in France as 12th February 2005 while it is interpreted as 2nd December 2005
in the US. The programming language approach to time granularities proposed in [BRS05]
provides with declarative language constructs to model both regulations and irregularities
and various date formats for such data.
The basic principle of the programming language approach to model calendric data is predicate
subtyping. Predicate subtyping with predicate types is a stronger form of typing and subtyping
enabling to encode more information in types, because the elements of a predicate type are
described by a predicate set. Predicate sets are used to declaratively define (possibly infinite)
sets. Predicate types have been widely investigated in type theory, logics, proof assistents,
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and theorem proving [ROS98]. The typing approach to time granularities and calendars uses
predicate types in a different manner and not for theoretical, but instead practical purposes:
predicate types are used to define time granularities like “month”, “working day”, “teaching
term”, or “exam week” as calendric types. Furthermore, the definition of predicate types
is restricted to aggregations and inclusions of time by providing type constructors which
are limited to aggregations and inclusions always define subsets isomorphic to the integers.3

Finally, predicate types are used as a means to define conversions between any pair of calendric
types. Thus, the approach of [BRS05] essentially provides a solution to the problem of time
granularity conversion that has been addressed in [FM01].
The type language CaTTS [BRS05] is a realization of this programming language approach.
CaTTS is a generic modeling language for data modeling and reasoning with calendars.
CaTTS consists of two languages, a type definition language, CaTTS-DL, and a constraint
language, CaTTS-CL, of a (common) parser for both languages, and of a language processor
for each language. CaTTS-DL provides with CaTTS-TDL (for type definition language), a
tool to define calendars and CaTTS-FDL (for format definition language), a tool to define
calendar data, in particular dates to give calendar data well-defined meanings. CaTTS-CL
provides a means to express a wide range of temporal constraints over calendar data referring
to the types defined in calendar(s) specified in CaTTS-DL.
In CaTTS-DL, one can specify in a rather simple manner more or less complex, cultural
and professional calendars. Irregularities like leap seconds or Hebrew leap months can be
easily expressed in CaTTS-DL. In particular, CaTTS-DL provide a means to define time
granularities as calendric types by means of predicate types. E.g. the Gregorian calendar can
be modeled in CaTTS-DL as follows:

calendar Gregorian =
cal

type second ;
type minute = aggregate 60 second @ second ( 1 ) ;
type hour = aggregate 60 minute @ minute ( 1 ) ;
type day = aggregate 24 hour @ hour ( 1 ) ;
type week = aggregate 7 day @ day ( 1 ) ;
type month = aggregate

31 day named january ,
alternate month ( i )
| ( i div 12) mod 4 == 0 &&

( ( i div 12) mod 100 != 0 | | ( i div 12) mod 400 == 0) −> 29 day
| otherwise −> 28 day

end named february ,
31 day name march ,
30 day named ap r i l ,
31 day named may ,
30 day named june ,
31 day named ju ly ,
31 day named august ,
30 day named september ,
31 day named october ,
30 day named november ,
31 day named december

@ day ( 1 ) ;
type year = aggregate 12 month @ month ( 1 ) ;
type weekend day = se lect day ( i ) where

3Note that the elements of each calendric type can be conveniently represented by integer sets.
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relative i in week >= 6 && relative i in week <= 7 ;
type working day = day\weekend day ;

end

The above calendar specification binds a calendar (between the keywords cal and end) to the
identifier Gregorian. This CaTTS-DL calendar specification consists of a set of type defini-
tions (each identified by the keyword type followed by an identifier). The first type defined
is second. It has no further properties. The type minute is defined from the type second by
specifying a predicate. The CaTTS language processor interprets this recursive type definition
as an aggregation subtype of the type second such that each of its elements comprises 60 sec-
onds4 (denoted aggregate 60 second) and that the minute that has index 1, i.e. minute(1)
comprises all seconds between second(1) in second(60) (denoted @ second(1)). Any fur-
ther type definition follows the same pattern. The definitions are straightforward following
the rules of the Gregorian calendar [DR01]. Since Gregorian months have different lengths,
a CaTTS type month is defined with a repeating pattern of the twelve months. The months
February, which is one day longer in each Gregorian leap year is defined by an additional
pattern which specifies the leap year rule for the Gregorian calendar using the CaTTS lan-
guage construct alternate...end. The type definition of the type weekend day is derived
from that of the type day. The CaTTS language processor interprets this type definition
as an inclusion subtype of the type day such that each of its elements must be relatively to
a week either the 6th or the 7th day (denoted relative i in week >= 6 && relative i
in week <= 7). The type working day is also and inclusion subtype of day, selecting those
days which are not weekend days (denoted day\weekend day).
The above exemplified CaTTS-DL calendar specification defines a calendar as a “type” that
can be used, in principle, in any language (e.g. SQL, XQuery, XSLT, XML Schema, OWL),
using calendar data enriched with type annotations after this CaTTS-DL calendar. CaTTS’
type checker is used to check the calendar data typed after a CaTTS-DL calendar in such
programs or specifications, thus, providing a means to interpret such data.
Note further that particularities like time zones can be easily expressed in a CaTTS-DL
calendar definition. Calendar definitions of other cultural calendars in CaTTS-DL, in partic-
ular the Islamic and Hebrew calendars and variations of the Gregorian calendar like the
Japanese calendar as well as date format specifications using CaTTS-FDL are given in
[BRS05, BS04, BHRS05, Spr06].

4 Temporal Constraint Satisfaction

In the following, formalisms for Temporal Constraint Satisfaction Problems (TCSPs) based
upon relating points and/or intervals are surveyed. For all representations in this section,
time is assumed being linear, dense, and unbounded which is common with most proposals.
Two principle temporal constraint formalisms have been introduced in the literature:

1. qualitative temporal constraints, in particular in Allen’s interval calculus [All83, vBC90,
VKvB90, KL91, Mei96], and

2. quantitative temporal constraints, mainly based on disjunctive linear relations between
time points [KL91, DMP91, Kou92, Mei96] to manipulate dates and durations.

4In CaTTS-DL, it is possible to define a type minute that considers leap seconds, as well.
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Combined (qualitative and/or quantitative) formalisms, based on points and/or intervals, and
binary relations between them are proposed in [Vil82, Mei96].

Recall that a Constraint Satisfaction Problem (CSP) is defined by a finite sequence of vari-
ables X := X1, . . . ,Xn where n > 0, with respective domains D := D1, . . . ,Dn, i.e. variable
Xi ranges of the domain Di together with a finite set C of constraints, each defined on a sub-
sequence of X . A constraint C on X is a subset of D1 × . . .×Dn. If C equals D1 × . . .×Dn,
then C is solved. A CSP is solved, if all its constraints are solved and no domain of it is
empty, and failed, if it either contains the false constraint, usually denoted ⊥, or some of its
domains are empty. In a TCSP, variables represent points and/or intervals and constraints
represent temporal relations between them.
A solution to a CSP is a sequence of legal values (d1, . . . , dn) ∈ D1 × . . . × Dn if for every
constraint C ∈ C on the variables Xi1 , . . . ,Xim , (di1 , . . . , dim) ∈ C, i.e. if for all variables
of the CSP all constraints are satisfied. If a CSP has a solution, it is consistent, otherwise
inconsistent.
Most approaches to TSCPs have focused on satisfiability problems, i.e. consistency, the prob-
lem of deciding whether a set of temporal formula (modeled by a set of constraints) has a
model or not. In the context of Allen’s calculus, the problem of entailed relations is also
considered.
Consider the following temporal reasoning problem.

Example 4.1 John, Mary, and Tom work in the same bank, but in different affiliations.
They plan a phone conference. They have decided to phone in the morning before the bank’s
affiliations open at 9:00. John leaves home between 7:50 and 8:00. It takes him 15 to 20
minutes to reach the office. When he arrives, he can wait 30 to 40 minutes. Mary can phone
John 5 to 10 minutes after she arrives at the office or between 8:40 and 8:45. Tom arrives
before the bank’s affiliation opens.

Reasoning about such information is the principal task of temporal reasoning systems. One
wants to answer queries like “is the contained temporal information consistent” (i.e. if there
is no conflict between the temporal information modeled), or “what is the earliest/latest pos-
sible time for the phone conference to take place”.

Properly analyze of such problems leeds to an abstract analyze of events (i.e. activities that
take time) like being present at work, walking to the office, receiving a phone call, etc. Such
events can be identified with (different) time primitives: points, e.g. 8:20, the time when
Tom is soonest at the office, or the time, Mary leaves home, and (generalized) intervals,
[7:50,8:00] the time when John leaves home, the time it takes John between leaving his
home and arriving at the office, or the time Mary is able to phone John.
Such events may be either related by quantitative constraints or by qualitative constraints.
Quantitative (time) constraints are dates and durations between two events, placing absolute
bounds on events, for example 9:00, the time the bank opens according to Example 4.1. Qual-
itative (time) constraints are relative positions of events, for example John’s presence at the
office overlaps with Mary’s presence at the office or Tom is at the office before the affiliation
opens according to Example 4.1.
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Note: Quantitative and qualitative constraints serve to model inherently different temporal
reasoning problems. To solve quantitative and qualitative temporal reasoning problems, dif-
ferent constraint programming techniques are applied. In particular, quantitative constraints
can be modeled by disjunctive linear relations, solved using backtracking (and bounds/arc
consistency) techniques [Apt03] while qualitative constraints are modeled by the (transitivity
property of) temporal relations themselves, solved using path consistency techniques [Apt03].

4.1 Quantitative Temporal Constraints

In the simplest case, temporal information is available in terms of dates, durations, or other
precise numeric form. In this case, quantitative temporal constraints can be formulated, refer-
ring to absolute distances between points. Temporal information can be therefore represented
numerically such that it may be easily computed, merely subtracting numeric values. Such
temporal information can be modeled in so-called acyclic directed graphs. In such a graph,
(temporal) events are represented by nodes, and the distances between these events are rep-
resented by the graph’s edges, obtaining a partial order on temporal events. A known event
occurrence may then be represented by a constraint. Such an event constraint is represented
by a pair of its earliest and latest appearance in time. Those times are computed by adding
up distances between the known event and some other (known) event. If the graph contains
different possible paths between (unknown) events, its earliest (resp. latest) appearance are
modeled by minimal (resp. maximal) path distances.
In the common (more complex) case, the precise numeric information is not available and/or
information about distances is not precise, but expressed as a range of possible distances.
These distances may be either precise distances or completely qualitative distances like ranges.

Dechter, Meiri, and Pearl [DMP91] have applied the technique of CSPs to model quantitative
temporal information, aiming at a TCSP where each variable represents a point in time. Two
types of constraints are introduced:

� unary constraints to represent point to date information, i.e. a point t is represented by
a finite domain {i1, ..., in} with n ≥ 1 and t ∈ i1 ∨ ... ∨ t ∈ in, and

� binary constraints to represent point to point information, i.e. the distance between
two points t1, t2 is represented by a finite domain {i1, ..., in} with n ≥ 1 and t2 − t1 ∈
i1 ∨ ... ∨ t2 − t1 ∈ in.

Turning attention back to the introducing Example 4.1, the temporal event that John leaves
home between 7:50 and 8:00 may be formulated by an unary constraint t:

t ∈ {(50, 60)}

where 7:00 is chosen as relative origin in time and minute is the chosen time unit.
The temporal event ‘Mary has time to phone John’ may be specified by a binary temporal
constraint t2 − t1:

t2 − t1 ∈ {(65, 70), (100, 105)}
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where 7:00 is chosen as relative origin in time expressed in the time unit minute, as well.

Let t and s be two quantitative constraints with finite domains i and j. Then two operations
over the set of quantitative temporal constraints are defined as follows:

� Intersection: The intersection of two quantitative temporal constraints t and s, denoted
t
⊕

s, is the set-theoretic intersection of their domains:

t
⊕

s = {x|x ∈ i ∧ x ∈ j}

� Composition: The composition of two quantitative temporal constraints t and s, denoted
t
⊗

s, is defined as distance addition on their domains:

t
⊗

s = {z|∃x ∈ i,∃y ∈ j.x + y = z}

Most of the algorithms proposed to manipulate quantitative temporal constraints are based on
Disjunctive Linear Relations (DLRs), and in particular, most tractable quantitative temporal
formalisms [KL91, DMP91, Kou92] are subsumed by the Horn DLR constraint framework
[Apt03].
Known tractable formalisms for quantitative temporal constraints to express statements such
as “an event e happens 5 time units before event e” which are neither expressible in Allen’s
(qualitative) interval calculus [All83] nor subsumed by the Horn DLR framework are discussed
in [Mei96, DJ97].
In [BJW00] a framework and a constraint solver for simple, i.e. point-based quantitative
temporal constraints based on DLR Horn clauses with time granularities has been proposed.
In this framework, each variable (i.e. each time point) is additionally associated with a time
granularity. To propagate a temporal constraint on such time points with different time
granularities, a conversion between time granularities has been introduced. In Bettini’s and
others framework, this conversion is only defined, if the corresponding time granularities are
related according to the “group into” relationship.

4.2 Qualitative Temporal Constraints

Given two temporal primitives, i.e. points and/or intervals p and q, a qualitative temporal
constraint (p, q) : R says that p and q are supposed to stand in one of the relations R ∈ R,
where R is a finite set of basic temporal relations that may hold between the two temporal
primitives p and q. The set R of basic temporal relations between points and/or intervals is
given in the following:

� basic point to point relations [McD82, Vil82] possibly holding between two points, illus-
trated in Table 1,

� basic interval to interval relations [All83] possibly holding between two intervals, illus-
trated in Table 2, and

� basic point to interval and interval to point relations [Vil82, Mei96] possibly holding
between a point and an interval, illustrated in Table 3.
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Relation Inverse Relation on Endpoints
t before s s after t t < s
t equals s t = s

Table 1: The basic binary relations between two points t and s.

Relation Inverse Relation on Endpoints
i equals j i− = j−, i+ = j+

i before j j after i i+ < j−

i during j j contains i j− < i−, i+ < j+

i starts j j started by i i− = j−, i+ < j+

i finishes j j finished by i j− < i−, i+ = j+

i meets j j met by i i+ = j−

i overlaps j j overlapped by i i− < j− < i+ < j+

Table 2: The basic binary relations between two intervals i = [i−, i+] and j = [j−, j+].

Relation Inverse Relation on Endpoints
t before i i after t t < i−

t after i i before t t > i−

t during i i contains t i− < t < i+

t starts i i started by t t = i−

t finishes i i finished by t t = i+

Table 3: The basic binary relations between a point t and an intervals i = [i−, i+].
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Let us turn attention back to the introducing Example 4.1. Let further p and q be two
temporal primitives. An example of a qualitative temporal constraint between p and q,
describing the temporal relation of the fact when Mary and John arrive at the office is:

(p, q) : {before,meets, overlaps}

This qualitative temporal constraint means p before q or p meets q or p overlaps q, i.e. a qual-
itative temporal constraint describes a disjunction of the possible basic temporal relations
between a pair of temporal primitives.

In the point algebra, 23 subsets of possible combinations of basic temporal relations (i.e. qual-
itative temporal constraints) exist, in the interval algebra, 213, and in the point-interval and
interval-point algebra 25, each, qualitative temporal constraints exist. Two binary operations
are defined over the set of these qualitative temporal constraints:

� Intersection: the intersection of two qualitative temporal constraints R1 and R2, de-
noted R1

⊕
R2, is the set-theoretic intersection R1

⋂
R2.

� Composition: the composition of two qualitative temporal constraints R1 and R2, de-
noted R1

⊗
R2, is defined by a transitivity table [All83], i.e. the 3-elemental transitivity:

from (p, q) : R′ and (q, r) : R′′, R′ ⊗R′′ is the least restrictive relation between p and r.

Since the constraint propagation algorithm for computing the closure of a set of propositions
(i.e. to check for consistency) in the interval algebra is sound but not complete, time intervals
are represented by their ending points in many qualitative temporal reasoning applications,
in particular when points and intervals are “first-class citizens” of the respective time model,
benefiting from the computational advantages of the point algebra [Mei96].
Note that only a part of Allen’s interval algebra [All83], that of convex intervals, may be
expressed in the point algebra, using the three point relations before, equals, and after. A
complete classification of the computational complexity of Allen’s interval calculus and its
tractable subclasses (in particular those subclasses of the interval algebra which are subsets of
the ORD-Horn algebra) is presented in [KJJ03]. Note further that integrating point-to-point,
interval-to-point, and point-to-interval relations into tractable subclasses of Allen’s interval
calculus does not change its computational complexity [Mei96] in a qualitative temporal
reasoning framework.

4.2.1 Quantitative and Qualitative Constraints Combined

The two kinds of temporal constraints, qualitative and quantitative, have been combined into
a single representation scheme accepting both kinds of temporal information. Mainly two
different approaches exist:

1. The qualitative and quantitative temporal constraints are kept and processed separately.
Subsequently the individual parts are composed to a global solution. This approach has
been followed by Kautz and Ladkin [KL91].

2. The qualitative and quantitative temporal constraints are integrated into a single gen-
eral temporal network where temporal variables represent points (resp. intervals) along
with a set of unary and binary constraints which may be qualitative or quantitative.
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Algorithms solving such temporal networks involve different constraint satisfaction tech-
niques [Apt03], in particular path consistency and backtracking. This approach has been
followed by Meiri [Mei96].

Different algorithms for TCSPs in which the relationships among temporal constraints can be
modeled by directed graphs have been developed. Algorithms that operate over such so-called
constraint networks are for example question answering and consistency checking. In those
algorithms, constraint propagation is performed on a network of intervals and/or points. The
nodes represent intervals and/or points, and the arcs are labeled with sets of binary relations
(cf. Table 1, Table 2 and Table 3) on intervals and/or points. The labels represent constraints
on the relations among the nodes. A good survey on constraint propagation algorithms for
TCSPs is given in [FGV05].

4.3 Multi-Calendar Temporal Constraints

As already mentioned, in [BJW00] an approach to simple, i.e. point-based metric temporal
reasoning with time granularities have been proposed. This framework allows for modeling
and reasoning with simple temporal constraints on points (with time granularity) and dis-
tances between points (with time granularity) in a DLR Horn framework. In this framework,
one can express constraints like “at time t (in time granularity g), person A is in London”,
but neither “an event e (in time granularity g) happens during a task t (in time granularity
h)” nor “an event e (in time granularity g) happens 5 time units (in granularity h) before
an event e′ (in time granularity k”. To model and solve such metric temporal constraints, a
more expressive framework is required; in particular, one must not only refer to time points
but also to time intervals. Starting from the point-based model of [BJW00], interval can be
represented by an ordered pair of points with the first point less than the second. To ensure
that such intervals can meet, i.e. only having one endpoint in common, the endpoints of the
intervals must be less, i.e. for an interval i with endpoints i− and i+ i− < i+. This can be
achieved when the intervals are closed in their starting points and open on their ending points
(or vice versa). However, this requirement points out that a time model based on points does
not correspond with our intuitive notion of time. The modeling of temporal knowledge is
significantly complicated, because both, points and intervals have to be considered. Further-
more, having e.g. an event e holding sometime during an interval i which in turn is during an
interval i′, then e holds during i′, as well. Thus, relations between intervals and events may
be “carried forward” such that reasoning can be kept local. It is not clear to maintain those
properties when considering intervals modeled by endpoints in a point-based time model.
Alternatively, to overcome the problems of point-based time models, an approach to model
and solve Multi-Calendar Constraint Satisfaction Problems, Multi-Calendar CSPs for short,
that is based purely on intervals is proposed in [Spr06]. This approach is realized using
the calendar modeling language CaTTS [BRS05]. Representing time intervals using finite
domains with domains typed after some calendric type, one may also handle quantifications
such as “an event e (in time granularity g) happens 5 time units (in granularity h) before
an event e′ (in time granularity k”. Furthermore, this interval-based approach opens us with
the possibility to additionally incorporate generalized (i.e. finite, non-convex) and (infinite)
periodic intervals, as well.
To solve Multi-Calendar CSPs, in [Spr06], a coercion semantics for subtyping that compiles
away subtyping during type checking a CaTTS-CL program against a CaTTS-DL calendar
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specification has been defined. In particular, this coercion semantics translates a CaTTS-
CL program into an equivalent program in the constraint system typedFD. The constraint
system typedFD is an extension of the constraint system Finite Domains [FA03] with (1)
typed calendar domains and (2) the conversion constraint: ∀α, β ∈ C. α ≤ β, Xα � Y β. α, β
are calendric types defined in a CaTTS-DL calendar specification C.5 Using this constraint
system typedFD, Multi-Calendar CSPs with finite domain variables can be solved. This
extension takes advantage of existing local consistency algorithms approximating a solution
to such problems which are known to be NP-hard. To solve Multi-Calendar CSPs, bounds
consistency [vHSD92] is used, because the calendar domains are represented by a set of interval
domains (i.e. one for the starting time and one for the duration).
Note that in contrast to temporal reasoning with time granularities in [BJW00], in a Multi-
Calendar CSP, conversion between any pair of calendric types (time granularities) defined in
CaTTS-DL is always possible.

5 Conclusion

This article has surveyed various approach to temporal knowledge representation and reason-
ing from Artificial Intelligence, Database Systems, and Web and Semantic Web research. The
considered approaches are classified first, according to their modeling facilities and second,
according to their reasoning facilities. Although most of the reviewed time models are rather
theoretic, the article has motivated the practical impact of time and calendar modeling and
reasoning by Web applications. One of the reviewed approaches, the calendar modeling lan-
guage CaTTS together with its constraint reasoner for Multi-Calendar CSPs points out to be
rather practical, and thus, applicable in such Web and Semantic Web applications.
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