1,273 research outputs found

    Model-based sensor supervision inland navigation networks: Cuinchy-Fontinettes case study

    Get PDF
    In recent years, inland navigation networks benefit from the innovation of the instrumentation and SCADA systems. These data acquisition and control systems lead to the improvement of the manage- ment of these networks. Moreover, they allow the implementation of more accurate automatic control to guarantee the navigation requirements. However, sensors and actuators are subject to faults due to the strong effects of the environment, aging, etc. Thus, before implementing automatic control strate- gies that rely on the fault-free mode, it is necessary to design a fault diagnosis scheme. This fault diagnosis scheme has to detect and isolate possible faults in the system to guarantee fault-free data and the efficiency of the automatic control algorithms. Moreover, the proposed supervision scheme could predict future incipient faults that are necessary to perform predictive maintenance of the equipment. In this paper, a general architecture of sensor fault detection and isolation using model-based approaches will be proposed for inland navigation networks. The proposed approach will be particularized for the Cuinchy-Fontinettes reach located in the north of France. The preliminary results show the effectiveness of the proposed fault diagnosis methodologies using a realistic simulator and fault scenarios.In recent years, inland navigation networks bene¿t from the innovation of the instrumentation and SCADA systems. These data acquisition and control systems lead to the improvement of the management of these networks. Moreover, they allow the implementation of more accurate automatic control to guarantee the navigation requirements. However, sensors and actuators are subject to faults due to the strong effects of the environment, aging, etc. Thus, before implementing automatic control strategies that rely on the fault-free mode, it is necessary to design a fault diagnosis scheme. This fault diagnosis scheme has to detect and isolate possible faults in the system to guarantee fault-free data and the efficiency of the automatic control algorithms. Moreover, the proposed supervision scheme could predict future incipient faults that are necessary to perform predictive maintenance of the equipment. In this paper, a general architecture of sensor fault detection and isolation using model-based approaches will be proposed for inland navigation networks. The proposed approach will be particularized for the Cuinchy-Fontinettes reach located in the north of France. The preliminary results show the effectiveness of the proposed fault diagnosis methodologies using a realistic simulator and fault scenarios.Peer ReviewedPostprint (author's final draft

    Fuzziness and Funds Allocation in Portfolio Optimization

    Full text link
    Each individual investor is different, with different financial goals, different levels of risk tolerance and different personal preferences. From the point of view of investment management, these characteristics are often defined as objectives and constraints. Objectives can be the type of return being sought, while constraints include factors such as time horizon, how liquid the investor is, any personal tax situation and how risk is handled. It's really a balancing act between risk and return with each investor having unique requirements, as well as a unique financial outlook - essentially a constrained utility maximization objective. To analyze how well a customer fits into a particular investor class, one investment house has even designed a structured questionnaire with about two-dozen questions that each has to be answered with values from 1 to 5. The questions range from personal background (age, marital state, number of children, job type, education type, etc.) to what the customer expects from an investment (capital protection, tax shelter, liquid assets, etc.). A fuzzy logic system has been designed for the evaluation of the answers to the above questions. We have investigated the notion of fuzziness with respect to funds allocation.Comment: 21 page

    Robust synchronization for 2-D discrete-time coupled dynamical networks

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEIn this paper, a new synchronization problem is addressed for an array of 2-D coupled dynamical networks. The class of systems under investigation is described by the 2-D nonlinear state space model which is oriented from the well-known Fornasini–Marchesini second model. For such a new 2-D complex network model, both the network dynamics and the couplings evolve in two independent directions. A new synchronization concept is put forward to account for the phenomenon that the propagations of all 2-D dynamical networks are synchronized in two directions with influence from the coupling strength. The purpose of the problem addressed is to first derive sufficient conditions ensuring the global synchronization and then extend the obtained results to more general cases where the system matrices contain either the norm-bounded or the polytopic parameter uncertainties. An energy-like quadratic function is developed, together with the intensive use of the Kronecker product, to establish the easy-to-verify conditions under which the addressed 2-D complex network model achieves global synchronization. Finally, a numerical example is given to illustrate the theoretical results and the effectiveness of the proposed synchronization scheme.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008 and 61174136, the International Science and Technology Cooperation Project of China under Grant No. 2009DFA32050, the Natural Science Foundation of Jiangsu Province of China under Grant BK2011598, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    A general framework of multi-population methods with clustering in undetectable dynamic environments

    Get PDF
    Copyright @ 2011 IEEETo solve dynamic optimization problems, multiple population methods are used to enhance the population diversity for an algorithm with the aim of maintaining multiple populations in different sub-areas in the fitness landscape. Many experimental studies have shown that locating and tracking multiple relatively good optima rather than a single global optimum is an effective idea in dynamic environments. However, several challenges need to be addressed when multi-population methods are applied, e.g., how to create multiple populations, how to maintain them in different sub-areas, and how to deal with the situation where changes can not be detected or predicted. To address these issues, this paper investigates a hierarchical clustering method to locate and track multiple optima for dynamic optimization problems. To deal with undetectable dynamic environments, this paper applies the random immigrants method without change detection based on a mechanism that can automatically reduce redundant individuals in the search space throughout the run. These methods are implemented into several research areas, including particle swarm optimization, genetic algorithm, and differential evolution. An experimental study is conducted based on the moving peaks benchmark to test the performance with several other algorithms from the literature. The experimental results show the efficiency of the clustering method for locating and tracking multiple optima in comparison with other algorithms based on multi-population methods on the moving peaks benchmark

    Model-based sensor supervision in inland navigation networks: Cuinchy-Fontinettes case study

    Get PDF
    Trabajo presentado a la 6th International Conference on Maritime Transport (MT'14) celebrada en Barcelona del 25 al 27 de junio de 2014.In recent years, inland navigation networks benefit from the innovation of the instrumentation and SCADA systems. These data acquisition and control systems lead to the improvement of the management of these networks. Moreover, they allow the implementation of more accurate automatic control to guarantee the navigation requirements. However, sensors and actuators are subject to faults due to the strong effects of the environment, aging, etc. Thus, before implementing automatic control strategies that rely on the fault-free mode it is necessary to design a fault diagnosis scheme. This fault diagnosis scheme has to detect and isolate possible faults in the system to guarantee fault-free data and the efficiency of the automatic control algorithms. Moreover, the proposed supervision scheme could predict future incipient faults that are necessary to perform predictive maintenance of the equipment. In this paper, a general architecture of sensor fault detection and isolation using model-based approaches will be proposed for inland navigation networks. It will be particularized for the Cuinchy-Fontinettes reach located in the north of France in order to show the effectiveness of the proposed fault diagnosis scheme. The preliminary results show the effectiveness of the proposed fault diagnosis methodologies using a realistic simulator and fault scenarios.This work has been partially funded by grants CICYT SHERECS DPI-2011-26243 of Spanish Ministry of Education and by GEPET’Eau project which is granted by the French ministery MEDDE-GICC, the French institution ORNERC and the DGITM.Peer Reviewe

    Model-based sensor supervision in inland navigation networks: Cuinchy-Fontinettes case study

    Get PDF
    In recent years, inland navigation networks benefit from the innovation of the instrumentation and SCADA systems. These data acquisition and control systems lead to the improvement of the management of these networks. Moreover, they allow the implementation of more accurate automatic control to guarantee the navigation requirements. However, sensors and actuators are subject to faults due to the strong effects of the environment, aging, etc. Thus, before implementing automatic control strategies that rely on the fault-free mode it is necessary to design a fault diagnosis scheme. This fault diagnosis scheme has to detect and isolate possible faults in the system to guarantee fault-free data and the efficiency of the automatic control algorithms. Moreover, the proposed supervision scheme could predict future incipient faults that are necessary to perform predictive maintenance of the equipment. In this paper, a general architecture of sensor fault detection and isolation using model-based approaches will be proposed for inland navigation networks. It will be particularized for the Cuinchy-Fontinettes reach located in the north of France in order to show the effectiveness of the proposed fault diagnosis scheme. The preliminary results show the effectiveness of the proposed fault diagnosis methodologies using a realistic simulator and fault scenarios.Peer ReviewedPostprint (author’s final draft

    Full Issue

    Get PDF

    An Extended TODIM Method for Group Decision Making with the Interval Intuitionistic Fuzzy Sets

    Get PDF
    For a multiple-attribute group decision-making problem with interval intuitionistic fuzzy sets, a method based on extended TODIM is proposed. First, the concepts of interval intuitionistic fuzzy set and its algorithms are defined, and then the entropy method to determine the weights is put forward. Then, based on the Hamming distance and the Euclidean distance of the interval intuitionistic fuzzy set, both of which have been defined, function mapping is given for the attribute. Finally, to solve multiple-attribute group decision-making problems using interval intuitionistic fuzzy sets, a method based on extended TODIM is put forward, and a case that deals with the site selection of airport terminals is given to prove the method
    corecore