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Abstract 
 
In recent years, inland navigation networks benefit from the innovation of the 
instrumentation and SCADA systems. These data acquisition and control systems lead 
to the improvement of the management of these networks. Moreover, they allow the 
implementation of more accurate automatic control to guarantee the navigation 
requirements. However, sensors and actuators are subject to faults due to the strong 
effects of the environment, aging, etc. Thus, before implementing automatic control 
strategies that rely on the fault-free mode it is necessary to design a fault diagnosis 
scheme. This fault diagnosis scheme has to detect and isolate possible faults in the 
system to guarantee fault-free data and the efficiency of the automatic control 
algorithms. Moreover, the proposed supervision scheme could predict future incipient 
faults that are necessary to perform predictive maintenance of the equipment. In this 
paper, a general architecture of sensor fault detection and isolation using model-based 
approaches will be proposed for inland navigation networks. It will be particularized 
for the Cuinchy-Fontinettes reach located in the north of France in order to show the 
effectiveness of the proposed fault diagnosis scheme. The preliminary results show the 
effectiveness of the proposed fault diagnosis methodologies using a realistic simulator 
and fault scenarios. 
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1. INTRODUCTION 
 
 
The main management objective of the inland navigation networks is to guarantee the 
navigation in each reach (Blesa et al., 2012), i.e. the Normal Navigation Level (NNL). 
These levels are principally disturbed by the navigation and the lock operations. During 
lock operations, large volume of water is withdrawn from the upstream reach and 
supplied to the downstream reach causing a wave travelling in both directions; upstream 
to downstream, and downstream to upstream after reflection. To reduce the effect of 
wave and to maintain the NNL, it is necessary to control the gates which are generally 
located beside the locks.  Another possibility is to control the discharges from natural 
rivers. The water levels are controlled by gates and measured by tele-operating sensors. 
To achieve these aims, an adaptive and predictive control architecture has been 
proposed in (Duviella et al., 2013) as depicted in Figure 1. This architecture is based on 
a SCADA system allowing the tele-control of the navigation network. A Human 
Machine Interface (HMI) is dedicated to the supervision of the inland navigation 
network by a supervisor. The management constraints and rules are gathered in the 
Management Objectives and Constraints Generation module (MOCG). To perform the 
management of the inland navigation network, a Hybrid Control Accommodation 
module (HCA) allows the determination of set-points (Management Strategies block) 
according to the current state (Supervision block) and the forecasting of the future state 
(Prognosis block) of the network. These strategies can be adapted or improved 
according to the Decision Support module (DS).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 1- Inland navigation network adaptive and predictive 
control architecture. 

 

 
 
In this work, we will focus on the part of the supervision block that determines if a 
sensor fault is present in the system (detection) and identifies what sensor is affected by 
the fault (isolation). 
In particular, model-based fault diagnosis techniques will be used for the 
implementation of the sensor supervision block.  
 
 
2. MODEL-BASED FAULT DETECTION AND ISOLATION 
 
 
The principle of model-based fault detection is to test whether the measured input and 
output from the system lie within the behavior described by a model of the faultless 
system. If the measurements are inconsistent with the model of the faultless system, the 
existence of a fault is proved. In general, two different types of models can be 
distinguished: qualitative and quantitative models. Quantitative models are used in the 
Systems Dynamics and Control Engineering community (Gertler, 1998; Iserman, 2006; 
Blanke et al., 2006; Ding, 2008) known as FDI (Fault Detection Isolation) community. 
Quantitative models are mathematical models that can be described in time or frequency 
domains and most of the fault detection techniques based on this kind of models uses a 
residual that describes the consistency check between the predicted,  obtained by the 
model, and the real behaviour, y(k) measured by the sensors. This fault detection 
approach is known as based on analytical redundancy.  
 
 
 
2.1 ROBUST FAULT DETECTION 



 
Ideally, in quantitative model-based fault detection methods residuals should only be 
affected by the faults. However, the presence of disturbances, noise and modelling 
errors causes residuals to become nonzero in the absence of faults and thus interferes 
with the detection of faults. Therefore, the fault detection procedure must be robust 
against these undesired effects (Chen and Patton, 1999) . 
 
In case parametric uncertainties are taken into account, the healthy system model should 
include a vector of uncertain parameters bounded by sets that contain all possible 
parameter values when the system operates normally.  
 
One of the most developed families of approaches, called active, is based on generating 
residuals which are insensitive to uncertainty, while at the same time sensitive to faults. 
This approach has been extensively developed by several researchers using different 
techniques: unknown input observers, robust parity equations, etc. In the book of Chen 
and Patton (1999), there is an excellent survey of this active approach. On the other 
hand, there is a second family of approaches, called passive (Puig et al., 2008), which 
enhances the robustness of the fault detection system at the decision-making stage. 
 
 
2.2 INTERVAL MODEL 
 
Let us assume that the system to be monitored can be modeled using a model which is 
linear in the parameters that can be expressed in discrete time regressor form, Moving 
Average (MA) model as follows: 

ˆ( ) ( , ) ( ) ( ) ( )y k k e k y k e k= τ + = +φ θ                                             (1) 

where 

- ( , )k τφ  is the regressor vector of dimension 1 nθ×  which can contain any function of 

inputs ( )ku  and output ( )y k . 

- τ is the transport delay that is unknown but belong to a set of natural numbers:  

{ }0 0 0, 1,τ τ ττ τ λ τ λ τ λ∈ − − + +  with  0 , ττ λ ∈  and 0
ττ λ>  

- ∈θ Θ  is the parameter vector of dimension 1nθ × .  

- Θ  is the set that bounds parameter values. In particular, for interval models, the set of 
uncertain parameters is bounded by an interval box centered in the nominal parameter 
values: 
   1 1, ,n nθ θ

  θ θ × × θ θ   Θ    
where: 
            0

i i iθ θ −λ
; 0

i i iθ θ + λ
 i=1,…, nθ , being 0

iθ  the nominal parameter values; 
- ( )e k is the additive error bounded by a constant ( )e k ≤ σ . 

 
The parameter set Θ  and additive error bound σ  are calibrated using fault-free data 
from the system (rich enough regarding the identification point of view) and in such a 
way that all measured data in a fault-free scenario will be covered by the interval 
predicted output produced by using model (1), that is 
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One of the key points in model based fault detection is how models are built and their 
uncertainty is estimated. The structure of the model, determined by ( , )k τφ  and θ , 
nominal parameters  0θ  and  nominal transport delay 0τ  can be obtained by the physical 
knowledge of the system or by conventional identification techniques (Ljung, 1999). 
The additive error bound σ  can be computed by a noise study. The delay uncertainty  
τλ  can be determined considering that the input process signal is white noise and 

carrying out the study of the independence between the input and output process signals 
using confidence intervals (usually, 99% or 95%). On the other hand, given N 
measurements of outputs and inputs from a scenario free of faults and rich enough from 
the identifiability point of view, the uncertainty in parameters ( iλ  i=1,…, nθ ) can by 
computed by solving an optimization problem (Blesa et al, 2010). 
     
                                                
2.3 FAULT DETECTION 
 

Once model (1) has been calibrated in a non-faulty scenario, it can be used for fault 
detection checking if  

( ) ( )y k k∉ϒ                                                              (4) 

where ( )kϒ  is the direct image of the uncertain model defined as 

{ }{ }0 0 0ˆ ˆ( ) ( ) | ( ) ( , ) , , , , 1,

ˆ ˆ        ( ) , ( )

k y k e y k k e

y k y k

τ τ τ τϒ = + = ∈ ≤ σ τ∈ τ −λ τ −λ + τ + λ =

 = −σ + σ 

φ θ θ Θ 

                   (5) 

In case that (4) is proved, a fault can be indicated, otherwise no fault can be indicated. 
Equivalently, the fault detection test (4) can be formulated in terms of the residual 
defined as 

ˆ( ) ( ) ( ) ( ) ( ) ( , ) ( )r k y k y k e k y k k e kτ= − − = − −φ θ                                (6) 

Residual (6) corresponds to a MA parity equation (Gertler, 1998). Ideally, when 
modeling errors and noise are neglected, residual (6) should be zero in a fault-free 
scenario and different from zero, otherwise. However, because of modeling errors and 
noise, residuals can be different from zero in a non-faulty scenario. In order to take into 
account uncertainty in parameters and additive noise, the effects of these uncertainties 
will be propagated to the residuals defining the region of admissible residuals. A fault 
will be detected when zero does not belong to this set. Thus, the fault detection test is 
equivalent to check the following condition  

0 ( )k∉Γ                                                                (7) 

where ( )kΓ  is the interval of possible residuals defined as follows  



{ }{ }0 0 0( ) ( ) | ( ) ( ) ( , ) , ,  , , 1,k r k r k y k k e eτ τ τ τΓ = = − − ∈ ≤ σ τ∈ τ −λ τ −λ + τ + λφ θ θ Θ         (8) 

This test based on the direct evaluation of the residual is known as the direct test (Blesa 
et al., 2011). 
 
 
2.4 FAULT ISOLATION 
 
Fault isolation consists in identifying the faults affecting the system once a fault has 
been detected. Fault isolation could be carried out, as classically proposed in FDI books 
(Gertler, 1998 and Isermann, 2006, among others). Given a set of nr residuals 
{ }1( ), , ( )

rnr k r k  at time k,  the fault detection tests (4) or (7) applied component-wise to 
each single residual 

0 if ( ) is consistent
( )

1 if ( ) is not consistent
i

i
i

r k
k

r k


φ = 


                                               (9) 

produces the observed fault signature ( )kφ : 

 ( )1 2( ) ( ), ( ), , ( )
rnk k k k= φ φ φφ                                             (10)  

The observed fault signature is, then, supplied to the fault isolation module that has the 
knowledge about the binary relation between the considered fault hypothesis set  

{ }1 2( ) ( ), ( ), , ( )
fnk f k f k f k= f                                            (11) 

and the fault signal set ( )kφ . This relation is stored in the called theoretical binary fault 
signature matrix (FSM) of dimension r fn n× . Thereby, an element FSMi,j of this matrix 
is equal to 1 if the fault hypothesis fj(k) is expected to affect the residual ri(k) such that 
the related fault signal fi(k) is equal to 1 when this fault is affecting the monitored 
system. Otherwise, the element FSMi,j is zero-valued. 
 

Considering single faults, a general approach of carrying out the isolation is comparing 
the observed fault signature ( )kφ  with the theoretical one related to every fault 
hypotheses that can be calculated as the distance between both vectors: ( )kφ and the jth-
column of matrix FSM for the hypothesis fj, e.g. using the Hamming distance 
measurement. As a result of this comparison, a distance measurement disj(k) is obtained 
for every fault hypothesis fj, being dis(k) the vector of all the computed distances at 
time instant k: ( )1( ) ( ), , ( ), , ( )j nfk dis k dis k dis k=  dis . If the Hamming distance approach is 
applied, then 

( ) ( )( ),
1

( ) FSM XOR ( )
rn

j i j i
i

dis k k
=

= φ∑                                          (12) 

       

where XOR is the XOR logic operator. Then, the fault hypotheses with the shortest 
distance regarding the current observed fault signature ( )kφ  are considered as the fault 
isolation result:  

{ }1, ,
:  if ( ) min ( )j j nf

f dis k dis kνν∈

 = ∈ = 
 

DGN


f     (13) 



 

where DGN is the set of fault hypothesis fj which are consistent with the observed fault 
signals. 
 
 
3. INLAND NAVIGATION MODEL 
 
 

Figure 2-Piece of Inland navigation network of the north of France 
and its Scheme 

 
 
 
 
 
The real behaviour of every reach NR i   of the network, can be described by the Saint-
Venant (SV) equations (Chow, 1959) are partial-differential equations that describe 
accurately the dynamics in a one-dimensional free surface flow. These equations 
express the conservation of mass and momentum principles in a one-dimensional free 
surface flow: 
 

0Q S
x t

∂ ∂
+ =

∂ ∂
                                                                     .            

( )
2

0Q Q hgS gS I J
t x S x

 ∂ ∂ ∂
+ + − − = 

∂ ∂ ∂ 
                                (14) 



where ( , )Q Q x t=  is the flow (in m3/s), ( , )S S x t=  is the cross-sectional area (in m2), t is 
the time variable (in s), x is the spatial variable (in m), measured in the direction of the 
movement, h is the spatial variable corresponding to the water elevation (in m), g is the 
gravity (in m/s2), I  is the bottom slope and J  is the friction slope.  

 
 

Since there is no known analytical solution for equations (14) in real geometry, they 
have to be solved numerically. Then, the hydraulic behavior of this canal system can be 
studied through numerical methods. Because of the complexity and the computational 
load of this complete distributed model several simplified models have been deduced 
from the SV equations with different simplifications (Bolea et al., 2014), for example 
the IDZ model (Litrico and Fromion, 2004). The IDZ model is based on the 
linearisation of the SV equations around a set-point (in this case given by the NNL), the 
canal reach is divided into two parts: an upstream (uniform flow) part and a downstream 
(backwater) part. The relation between the level and the flow in these two parts is given 
by the following transfer function  

1 11 21 1

2 12 22 2

( ) ( )
( ) ( )

y s G G q s
y s G G q s

    
=    

    
                                           (15)                                                                                         

where: y1 and y2 for levels and q1, and, q2 for flows denote upstream/downstream 

deviations from stationary values,  11
11

1

1
( )

p sG s
A s
+

= , 
21

12
21

1
( )

sp eG s
A s

τ−−
= , 

12
21

12
2

( )
sp eG s

A s

τ−+
=  

and 22
22

2

1
( )

p sG s
A s

−
= . Discretizing (15) using a sample time Ts, the following MA models 

can be obtained 
1 1 1 1

1 1 1,1 1 1,2 1 2,1 2 21 2,2 2 21 1

2 2 2 2
2 2 1,1 1 12 1,2 1 12 2,1 2 2,2 2 2

( ) ( 1) ( ) ( 1) ( ) ( 1) ( )

( ) ( 1) ( ) ( 1) ( ) ( 1) ( )

y k y k b q k b q k b q k b q k e k

y k y k b q k b q k b q k b q k e k

τ τ

τ τ

= − + + − + − + − − +

= − + − + − − + + − +
             (16) 

 
In inland navigation reaches, there can exist intermediate measurement levels and 
intermediate points were extra flows can be injected/extracted. Then, in a general case a 
reach with yn  measurement level points and with qn  input/output flow points, the 
following model can be   
 

( ),1 , ,2 ,
1

( ) ( 1) ( ) ( 1) ( )
qn

i i
i i j j j i j j j i i

j
y k y k b q k b q k e kτ τ

=

= − + − + − − +∑    1, , yi n=                 (17) 

that can be rewritten as  
( ) ( , ) ( )i i i i iy k k e k= +φ θτ                              1, , yi n=                        (18) 

  
with 
 

( )1 1, 1 1, ,( , ) ( 1), ( ), ( 1), , ( 1)
q qi i i i i n n ik y k q k q k q k= − − τ − τ − − τ −φ τ                     (19) 

( )1,1 1,2 ,21, , , ,
q

Ti i i
i nb b b=θ                                                          (20) 

 
 
Since the IDZ is a physical-based model with a given structure, determined by ( , )i ikφ τ  
and iθ  1, , yi n=   in (18),  nominal parameters 0

iθ  and  nominal delays 0
iτ  are given by 



the physical knowledge of the system (Litrico and Fromion, 2004). Finally, given 
input/output data from a scenario free of faults and rich enough from the identifiability 
point of view, the uncertainty in parameters and time delays around their nominal 
values can be estimated. 
 
 
4. FAULT DETECTION AND ISOLATION SCHEME 
 
Considering a navigation reach, described by (17),  with yn  measurement level points and  

qn  input/output flow points, yn  different sensor faults can be defined 
( ) ( ) ( )nf

i i iy k y k f k= +         1, , yi n=                                 (20) 
where ( )nf

iy k  is the real value of the level i and  and ( )if k the additive error fault that 
affects to level sensor i. 
 
Thus, yn primary residuals can be obtained as follows  

( ) ( , ) ( )i i i i i ir y k k e k= − −φ θτ      1, , yi n=                                 (21) 
Once the interval model has been calibrated, consistency test (7) can be applied to every 
residual (21). 
 
Regarding the fault isolation, considering the yn residuals affected by the possible 

yn faults, the Fault Signature Matrix defined in Table 1 can be obtained. 
 

Table 1- Fault Signature Matrix of residuals system (21) 
 1f  2f  

   1nyf −  nyf  

1r  1 0 0 0 0 
2r  0 1 0 0 0 
   0 0 

   0 0 
1nyr −  0 0 0 1  

nyr  0 0 0 0 1 
 

The problem of using model (17) in (21) for generating residuals, that allow sensor fault 
detection, is that it behaves as a dead-beat observer which can only indicate a fault for a 
minimum time period given by the system order. This implies that after a number of 
samples (related to the order of the system) once the fault has appeared, the residual 
tends to be small even the fault still is present (Ding, 2008). In order to deal with this 
problem, when an inconsistency is detected in residual ir  at instant fk  a new residual 

_ 2ir  is activated for fk k>  

_ 2
ˆ( ) ( ) ( )i i ir k y k y k= −      1, , yi n=                                            (21) 

with  ˆ ( )iy k  obtained by the following mass-balance average simulation model 
1ˆ ˆ( ) ( 1) ( )i i iy k y k Q k
A

= − +                                                       (22) 

where A is the longitudinal area of the reach and the input average flow ( )iQ k  is computed as 
1

,
1 H

( ) ( )
qn k

i l l i
l j k

Q k q j
−

= = −

= − τ∑ ∑                                                     (23) 

 



and the initial condition of the simulation model is given by 
1

H

ˆ ( ) ( )
j kf

i f i
j kf

y k y j
= −

= −

= ∑                                                        (24) 

Then, the fault signature component  ( )i kφ  will be activated while the residual _ 2 ( )ir k  will be 
bigger or equal a threshold _ 2iσ , i.e., 

_ 2 _ 2

_ 2 _ 2

0  if ( )
( )

1  if ( )

i i

i

i i

r k
k

r k

σ

σ

 ≤φ = 
>

                                                         (25) 

where _ 2iσ   1, , yi n=   are the detection threshold calibrated in a fault-free scenario. 
 
 
5. CUINCHY FONTINETTES REACH 
 
The Cuinchy-Fontinettes Reach (CFR) has a crucial importance due to its localization, 
between two major catchment areas and its size (more than 40 km long). The main use 
of the CFR is for navigation purposes. However, it can be used to stock water volumes 
during wet periods in order to avoid or to limit floods in the two catchment areas, and 
during dry period to supply water to these two areas.  
 
The CFR is located between the upstream lock of Cuinchy at the East of the town 
Bethune and, at the Southwest of the town Saint-Omer, the downstream lock of 
Fontinettes (see Figure 3). The first part of the channel corresponds to the 28.7 km from 
Cuinchy to Aire-sur-la-Lys. The second part of the channel corresponds to 13.6 km from 
Aire-sur-la-Lys to Fontinettes. The channel is entirely artificial and has no significant 
slope. Considering the navigation flow, the water runs off from Cuinchy to Fontinettes. 
There are 3 measurement points in Cuinchy, Aire-sur-la-Lys and Fontinettes. The 
input/output flow points are located in: 
 

• Cuinchy: where the flow can be injected by the lock operation (activated by 
navigation rules) and a submerged gate that can supply a controlled flow. 

• Aire: where the flow can be injected/extracted by a controlled gate. 
• Fontinettes: where the flow can be extracted by the lock operation (activated by 

navigation rules). 
 



Figure 3- Scheme of the Cuinchy-Fontinettes navigation reach 
 

 
 

Then, considering the discrete-time IDZ model, the system can be modelled by  
 

( ) ( , ) ( )i i i i iy k k e k= +φ θτ                                     1, 2,3i =                       (17) 
 with 

( )1 1, 1 1, 2 2, 2 2, 3 3, 3,( , ) ( 1), ( ), ( 1), ( 1), ( 1), ( 1), ( 1)
qi i i i i i i i n ik y k q k q k q k q k q k q k= − − τ − τ − − τ − − τ − − τ − − τ −φ τ   (18) 

( )1,1 1,2 2,1 2,2 3,1 3,21, , , , , ,
Ti i i i i i

i b b b b b b=θ                                                (19) 
  
 
6. RESULTS 
 
6.1 IDENTIFICATION 
 
The nominal values of parameters in Eq. (17) have been obtained by the physical 
knowledge of the system and considering a sample time Ts=5 minuts. The values of this 
parameters are summarized in Tables 2, 3 and 4   
 

Table 2-Cuinchy level equation 1y  nominal parameters 
0
1,1τ  0

2,1τ  0
3,1τ  1,0

1,1b  1,0
1,2b  1,0

2,1b  1,0
2,2b  1,0

3,1b  1,0
3,2b  

1 16 24 0.0063    -0.0062     0.0023    -0.0021    -0.0019     0.0018 
 

Table 3- Aire level equation 2y  nominal parameters 
0
1,2τ  0

2,2τ  0
3,2τ  2,0

1,1b  2,0
1,2b  2,0

2,1b  2,0
2,2b  2,0

3,1b  2,0
3,2b  

16 1 8 0.0023    -0.0021     0.0047    -0.0046    -0.0028     0.0027 
 



Table 4- Fontinettes level equation 3y  nominal parameters 
0
1,3τ  0

2,3τ  0
3,3τ  3,0

1,1b  3,0
1,2b  3,0

2,1b  3,0
2,2b  3,0

3,1b  3,0
3,2b  

24 8 1 0.0019    -0.0018     0.0028    -0.0027    -0.0042     0.0040 
 
 Once the nominal parameters have been computed, a fault-free scenario has been 
generated by numerical model implemented in the SIC (Simulation Irrigation Canals) 
software (Malaterre, 2006). SIC uses a finite difference method to solve the SV 
equations implicitly. The fault-free scenario defined by the input (positive) and output 
(negative) flow values in 6 days , based on a realistic scenario is depicted in Figure 4. 
Using this fault-free scenario and solving optimization problems (Blesa et al., 2010; 
Puig and Blesa, 2013) the uncertainty in parameters has been computed in such a way 
that the non faulty data is contained in the interval bounds following Eq. (2) .  
 

Figure 4- Input(positive)/output(negative) flow values in the fault-
free scenario 

 
 
The uncertain bounds in parameters obtained in the identification procedure are the 
following 
 

- Delay uncertainty: 2τλ =  for all the transport delays 
- Additive errors: 1 1,5cmσ = , 2 3cmσ =   and 3 3.5cmσ =  
- Uncertainty in parameters: ( )1 1,0

, 1 ,1i j i jb b= ±α , ( )2 2,0
, 2 ,1i j i jb b= ±α  and ( )3 3,0

, 3 ,1i j i jb b= ±α  
with 1 0.066α = , 2 0.027α =  and 3 0.008α =  

 
 
Figure 5 shows the evolution of the Cuinchy, Aire and Fontinettes levels and the bound 
levels obtained using the interval model.  
 

 
 
 
 
 
 
 



Figure 5- Levels and interval bound levels in the fault-free 
scenario 

 
 

 
 
6.2. FAULT DETECTION 

 
Once the interval model has been calibrated, different fault scenarios have been 
simulated in order to verify the effectiveness in fault detection using Test (4) or (7).  
Figure (6) shows the evolution of the bounds of the interval residuals 1Γ  in the Cuinchy 
level  when an additive fault of -2cm has been introduced in this sensor level i.e 

1 0.02f m= −  at 990fk =  (i.e. at time 82h 30’). Figure 7 depicts the details of Figure 6 
around the fault time occurrence. 
    

Figure 6- Bounds of the interval residuals 1Γ  (Cuinchy level 
residual) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 7- Detail of bounds of the interval residuals 1Γ  (Cuinchy 
level residual) 

 
 
 

Finally, Figure 8 (upper) shows the fault detection results applying fault detection test 
defined in Eq. (7)  to 1r  and (lower) applying this fault detection test but with the 
additional residual 1_ 2r  defined in Eq. (23) in order to deal with the dead-beat observer 
effect described in Section 4. As can be seen if test (7) is directly applied to 1r  there is 
not persistence in the fault indicator, whereas that this problem disappear when the 
auxiliary residual is used and there is persistence in the fault indicator.  
 

Figure 8- Fault detection results without and with additional 
residual 1_ 2r  

 
 
 
 
 
 
 
6. CONCLUSIONS 
 
 



In recent years, inland navigation networks have benefited from the innovation of the 
instrumentation and SCADA systems. However, before implementing automatic control 
strategies that rely on the fault-free mode it is necessary to design a fault diagnosis 
scheme. In this paper, a model-based scheme has been proposed for the sensor level 
fault detection and isolation in inland navigation networks. The scheme is based on the 
use of analytical redundancy provided by a mathematical model. The fault detection is 
implemented by a passive robust approach based on interval methods that consider 
uncertainty in parameters of the mathematical model and additive error. Finally, the 
proposed scheme has been successfully validated in real scenarios using a high-fidelity 
simulator of a reach of the inland navigation network located in the north of France.  
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