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Abstract 
 
In recent years, inland navigation networks benefit from the innovation of the 

instrumentation and SCADA systems. These data acquisition and control systems lead 

to the improvement of the management of these networks. Moreover, they allow the 

implementation of more accurate automatic control to guarantee the navigation 

requirements. However, sensors and actuators are subject to faults due to the strong 

effects of the environment, aging, etc. Thus, before implementing automatic control 

strategies that rely on the fault-free mode, it is necessary to design a fault diagnosis 



scheme. This fault diagnosis scheme has to detect and isolate possible faults in the 

system to guarantee fault-free data and the efficiency of the automatic control 

algorithms. Moreover, the proposed supervision scheme could predict future incipient 

faults that are necessary to perform predictive maintenance of the equipment. In this 

paper, a general architecture of sensor fault detection and isolation using model-based 

approaches will be proposed for inland navigation networks. The proposed approach  

will be particularized for the Cuinchy-Fontinettes reach located in the north of France. 

The preliminary results show the effectiveness of the proposed fault diagnosis 

methodologies using a realistic simulator and fault scenarios. 
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1. INTRODUCTION 

 

The main management objective of the inland navigation networks is to guarantee the 

navigation levels in each reach (Blesa et al., 2012), i.e. the Normal Navigation Levels 

(NNL). These levels are principally disturbed by the navigation and the lock operations. 

During lock operations, large volume of water is withdrawn from the upstream reach 

and supplied to the downstream reach causing a wave travelling in both directions; 

upstream to downstream, and downstream to upstream after reflection. To reduce the 

effect of wave and to maintain the NNL, it is necessary to control the gates which are 

generally located beside the locks.  Another possibility is to control the discharges from 

natural rivers. The water levels are controlled by gates and measured by tele-operating 

sensors. To achieve these aims, an adaptive and predictive control architecture has been 

proposed in (Duviella et al., 2013) as depicted in Figure 1. This architecture is based on 

a SCADA system allowing the tele-control of the navigation network. A Human 

Machine Interface (HMI) is dedicated to the supervision of the inland navigation 

network by a supervisor. The management constraints and rules are gathered in the 

Management Objectives and Constraints Generation module (MOCG). To perform the 

management of the inland navigation network, a Hybrid Control Accommodation 

module (HCA) allows the determination of set-points (Management Strategies block) 



according to the current state (Supervision block) and the forecasting of the future state 

(Prognosis block) of the network. These strategies can be adapted or improved 

according to the Decision Support module (DS).  

 

Figure 1- Inland navigation network adaptive and predictive 

control architecture. 

 

 

 

In this work, we will focus on the part of the supervision block that determines if a 

sensor fault is present in the system (detection) and identifies what sensor is affected by 

the fault (isolation). 

In particular, model-based fault diagnosis techniques will be used for the 

implementation of the sensor supervision block.  

 



 

2. MODEL-BASED FAULT DETECTION AND ISOLATION 

 

The principle of model-based fault detection is to test whether the measured inputs and 

outputs from the system are consistent with the behavior described by a model of the 

faultless system. If the measurements are inconsistent with the model of the faultless 

system, the existence of a fault is proved. In general, two different types of models can 

be distinguished: qualitative and quantitative models. Quantitative models are used in 

the Systems Dynamics and Control Engineering community (Gertler, 1998; Iserman, 

2006; Blanke et al., 2006; Ding, 2008) known as FDI (Fault Detection Isolation) 

community. Quantitative models are mathematical models that can be described in time 

or frequency domains and most of the fault detection techniques based on this kind of 

models uses a residual that describes the consistency check between the predicted,  

obtained by the model, and the real behaviour, y(k) measured by the sensors. This fault 

detection approach is known as based on analytical redundancy.  

 

2.1 Robust fault detection 

Ideally, in quantitative model-based fault detection methods, residuals should only be 

affected by the faults. However, the presence of disturbances, noise and modelling 

errors causes residuals to become nonzero in the absence of faults and thus interferes 

with the detection of faults. Therefore, the fault detection procedure must be robust 

against these undesired effects (Chen and Patton, 1999). 

 



In case parametric uncertainties are taken into account, the healthy system model should 

include a vector of uncertain parameters bounded by sets that contain all possible 

parameter values when the system operates normally.  

 

One of the most developed families of robust approaches, called active, is based on 

generating residuals which are insensitive to uncertainty, while at the same time 

sensitive to faults. This approach has been extensively developed by several researchers 

using different techniques: unknown input observers, robust parity equations, etc. In the 

book of Chen and Patton (1999), there is an excellent survey of this active approach. On 

the other hand, there is a second family of approaches, called passive (Puig et al., 2008), 

which enhances the robustness of the fault detection system at the decision-making 

stage. 

 

2.2 Interval model 

Let us assume that the system to be monitored can be modeled using a model which is 

linear in the parameters and can be expressed in discrete time regressor form as a 

Moving Average (MA) model: 

ˆ( ) ( , ) ( ) ( ) ( )y k k e k y k e k    φ θ                                             (1) 

where 

- ( , )k φ  is the regressor vector of dimension 1 n  which can contain any function of 

inputs ( )ku  and output ( )y k . 

-  is the transport delay that is unknown but belongs to a set of natural numbers:  

 0 0 0, 1,              with  0 ,     and 0
   

- θ Θ  is the parameter vector of dimension 1n  .  



- Θ  is the set that bounds parameter values. In particular, for interval models, the set of 

uncertain parameters is bounded by an interval box centered in the nominal parameter 

values: 

                               1 1, ,n n 
          Θ    

where: 

-  0
i i i   ; 0

i i i     i=1,…, n , being 0
i  the nominal parameter values; 

- ( )e k is the additive error bounded by a constant ( )e k  . 

 

The parameter set Θ  and additive error bound   are calibrated using fault-free data 

from the system (rich enough regarding the identification point of view) and in such a 

way that all measured data in a fault-free scenario will be covered by the interval 

predicted output produced by using model (1), that is 

  

ˆ ˆ( ) ( ) , ( )y k y k y k                                                     (2) 

where 
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                                 (3) 

 

One of the key points in model based fault detection is how models are built and their 

uncertainty is estimated. The structure of the model, determined by ( , )k φ  and θ , 

nominal parameters  0θ  and  nominal transport delay 0  can be obtained by the physical 

knowledge of the system or by conventional identification techniques (Ljung, 1999). 

The additive error bound   can be determined by anlasying the noise statistics. The 



delay uncertainty    can be determined considering that the input process signal is 

white noise and carrying out the study of the independence between the input and 

output process signals using confidence intervals (usually, 99% or 95%). On the other 

hand, given N measurements of outputs and inputs from a scenario free of faults and 

rich enough from the identifiability point of view, the uncertainty in parameters ( i  

i=1,…, n ) can by computed by solving an optimization problem (Blesa et al, 2010). 

                                                  

2.3 Fault detection 

Once the model (1) has been calibrated in a non-faulty scenario, it can be used for fault 

detection checking if  

( ) ( )y k k                                                              (4) 

where ( )k  is the direct image of the uncertain model defined as 

  0 0 0ˆ ˆ( ) ( ) | ( ) ( , ) , , , , 1,

ˆ ˆ        ( ) , ( )

k y k e y k k e

y k y k

                    

     

φ θ θ Θ 
                   (5) 

In case that (4) is proved, a fault can be indicated; otherwise no fault is assumed to be 

present. Equivalently, the fault detection test (4) can be formulated in terms of the 

residual defined as 

ˆ( ) ( ) ( ) ( ) ( ) ( , ) ( )r k y k y k e k y k k e k     φ θ                                (6) 

Residual (6) corresponds to a MA parity equation (Gertler, 1998). Ideally, when 

modeling errors and noise are neglected, residual (6) should be zero in a fault-free 

scenario and different from zero, otherwise. However, because of modeling errors and 

noise, residuals could be different from zero even in a non-faulty scenario. In order to 

take into account uncertainty in parameters and additive noise, the effects of these 

uncertainties will be propagated to the residuals defining the region of admissible 



residuals. A fault will be detected when zero does not belong to this set. Thus, the fault 

detection test is equivalent to check the following condition  

0 ( )k                                                                (7) 

where ( )k  is the interval of possible residuals defined as follows  

  0 0 0( ) ( ) | ( ) ( ) ( , ) , ,  , , 1,k r k r k y k k e e                   φ θ θ Θ         (8) 

This test based on the direct evaluation of the residual is known as the direct test (Blesa 

et al., 2011). 

 

2.4 Fault isolation 

Fault isolation consists in identifying the faults affecting the system once a fault has 

been detected. Fault isolation could be carried out, as classically proposed in FDI books 

(Gertler, 1998 and Isermann, 2006, among others). Given a set of nr residuals 

 1( ), , ( )
rnr k r k  at time k,  the fault detection tests (4) or (7) applied component-wise to 

each single residual produces the observed fault signature 

 1 2( ) ( ), ( ), , ( )
rnk k k k                                                (9) 

where 

0 if ( ) is consistent
( )

1 if ( ) is not consistent
i

i
i

r k
k

r k


  


                                               (10) 

The observed fault signature is, then, supplied to the fault isolation module that has the 

knowledge about the binary relation between the considered fault hypothesis set  

 1 2( ) ( ), ( ), , ( )
fnk f k f k f k f                                            (11) 

and the fault signal set ( )k . This relation is stored in the theoretical binary fault 

signature matrix (FSM) of dimension r fn n . Thereby, an element FSMi,j of this matrix 



is equal to 1 if the fault hypothesis fj(k) is expected to affect the residual ri(k) such that 

the related fault signal fi(k) is equal to 1 when this fault is affecting the monitored 

system. Otherwise, the element FSMi,j is zero-valued. 

 

Considering single faults, a general approach to fault isolation is based on comparing 

the observed fault signature ( )k  with the theoretical one related to every fault 

hypotheses that can be calculated as the distance between both vectors: ( )k and the jth-

column of matrix FSM for the hypothesis fj, e.g. using the Hamming distance 

measurement. As a result of this comparison, a distance measurement disj(k) is obtained 

for every fault hypothesis fj, being dis(k) the vector of all the computed distances at time 

instant k:  1( ) ( ), , ( ), , ( )j nfk dis k dis k dis k  dis . If the Hamming distance approach is 

applied, then 

    ,
1

( ) FSM XOR ( )
rn

j i j i
i

dis k k


                                           (12) 

       

where XOR is the XOR logic operator. Then, the fault hypotheses with the shortest 

distance regarding the current observed fault signature ( )k  are considered as the fault 

isolation result:  

 1, ,
:  if ( ) min ( )j j

nf
f dis k dis k

    
 

DGN


f     (13) 

 

Thus, DGN denotes the set of fault hypothesis fj which are consistent with the observed 

fault signals. 

 



3. INLAND NAVIGATION MODEL 

Figure 2-Piece of inland navigation network of the north of France 

and its Scheme 

 

The real behaviour of every reach NR i   of the network, can be described by the Saint-

Venant (SV) equations (Chow, 1959) that are partial-differential equations describing 

accurately the dynamics in a one-dimensional free surface flow. These equations 

express the conservation of mass and momentum principles in a one-dimensional free 

surface flow: 

0
Q S

x t

 
 

 
                                                                     .            

 
2

0
Q Q h

gS gS I J
t x S x

   
     
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                                (14) 



where ( , )Q Q x t  is the flow (in m3/s), ( , )S S x t  is the cross-sectional area (in m2), t is 

the time variable (in s), x is the spatial variable (in m), measured in the direction of the 

movement, h is the spatial variable corresponding to the water elevation (in m), g is the 

gravity (in m/s2), I  is the bottom slope and J  is the friction slope.  

 

Since there is no known analytical solution for equations (14) in real geometry, they 

have to be solved numerically. Then, the hydraulic behavior of this canal system can be 

simulated through numerical methods. Because of the complexity and the computational 

load of this complete distributed model several simplified models have been deduced 

from the SV equations with different simplifications (Bolea et al., 2014), as for example 

the IDZ model (Litrico and Fromion, 2004). The IDZ model is based on the 

linearisation of the SV equations around a set-point (in this case given by the NNL). 

The canal reach is divided into two parts: an upstream (uniform flow) part and a 

downstream (backwater) part. The relation between the level and the flow in these two 

parts is given by the following transfer function  

1 11 21 1

2 12 22 2

( ) ( )

( ) ( )

y s G G q s

y s G G q s

    
    

    
                                           (15)                            

where: y1 and y2 are the levels and q1, and, q2 are the upstream/downstream flow 

deviations from stationary values,  11
11

1

1
( )

p s
G s

A s


 , 

21
12

21
1

( )
sp e

G s
A s


 , 

12
21

12
2

( )
sp e

G s
A s


  

and 22
22

2

1
( )

p s
G s

A s


 . Discretizing (15) using a sample time Ts, the following MA models 

can be obtained 

1 1 1 1
1 1 1,1 1 1,2 1 2,1 2 21 2,2 2 21 1

2 2 2 2
2 2 1,1 1 12 1,2 1 12 2,1 2 2,2 2 2

( ) ( 1) ( ) ( 1) ( ) ( 1) ( )

( ) ( 1) ( ) ( 1) ( ) ( 1) ( )

y k y k b q k b q k b q k b q k e k

y k y k b q k b q k b q k b q k e k

 

 

          

          
             (16) 

 



In inland navigation reaches, there can exist intermediate measurement levels and 

intermediate points were extra flows can be injected/extracted. Then, in a general case, a 

reach with yn  measurement level points and with qn  input/output flow points, the 

following model can be obtained 

 ,1 , ,2 ,
1

( ) ( 1) ( ) ( 1) ( )
qn

i i
i i j j j i j j j i i

j

y k y k b q k b q k e k 


           1, , yi n                 (17) 

that can be rewritten as  

( ) ( , ) ( )i i i i iy k k e k φ θ                              1, , yi n                        (18) 

 with 

 1 1, 1 1, ,( , ) ( 1), ( ), ( 1), , ( 1)
q qi i i i i n n ik y k q k q k q k         φ                       

 1,1 1,2 ,21, , , ,
q

T
i i i

i nb b bθ                                                          (19) 

Since the IDZ is a physical-based model with a given structure, determined by ( , )i ikφ   

and iθ  1, , yi n   in (18)-(19),  nominal parameters 0
iθ  and  nominal delays 0

i  are 

given by the physical knowledge of the system (Litrico and Fromion, 2004). Finally, 

given input/output data from a scenario free of faults and rich enough from the 

identifiability point of view, the uncertainty in parameters and time delays around their 

nominal values can be estimated. 

 

4. FAULT DETECTION AND ISOLATION SCHEME 

Considering a navigation reach, described by (17),  with yn  measurement level points 

and  qn  input/output flow points, yn  different sensor faults can be defined 

( ) ( ) ( )nf
i i iy k y k f k          1, , yi n                                 (20) 

where ( )nf
iy k  is the real value of the level i and  and ( )if k the additive error fault that 



affects to level sensor i. 

 

Thus, yn primary residuals can be obtained as follows  

( ) ( , ) ( )i i i i i ir y k k e k  φ θ      1, , yi n                                 (21) 

Once the interval model has been calibrated, consistency test (7) can be applied to every 

residual (21). 

 

Regarding the fault isolation, considering the yn residuals affected by the possible 

yn faults, the Fault Signature Matrix defined in Table 1 can be obtained. 

 

Table 1- Fault Signature Matrix of residuals system (21) 

 1f  2f    1nyf  nyf  

1r  1 0 0 0 0 

2r  0 1 0 0 0 

   0 0    0 0 

1nyr   0 0 0 1  

nyr  0 0 0 0 1 

 

The problem of using model (17) in (21) for generating residuals, that allow sensor fault 

detection, is that it behaves as a dead-beat observer which can only indicate a fault for a 

minimum time period given by the system order. This implies that after a number of 

samples (related to the order of the system) once the fault has appeared, the residual 

tends to be small even the fault is still present (Ding, 2008). In order to deal with this 



problem, when an inconsistency is detected in residual ir  at instant fk  a new residual 

_ 2ir  is activated for fk k  

_ 2
ˆ( ) ( ) ( )i i ir k y k y k       1, , yi n                                            (22) 

with  ˆ ( )iy k  obtained by the following mass-balance average simulation model 

1ˆ ˆ( ) ( 1) ( )i i iy k y k Q k
A

                                                         (23) 

where A is the longitudinal area of the reach and the input average flow ( )iQ k  is 

computed as 

1

,
1 H

( ) ( )
qn k

i l l i
l j k

Q k q j


  

                                                        (24) 

 

and the initial condition of the simulation model is given by 

1

H

ˆ ( ) ( )
j kf

i f i
j kf

y k y j
 

 

                                                         (25) 

Then, the fault signature component  ( )i k  will be activated while the residual _ 2 ( )ir k  

will be bigger or equal a threshold _ 2i , i.e., 

_ 2 _ 2

_ 2 _ 2

0  if ( )
( )

1  if ( )

i i

i

i i

r k
k

r k





   


                                                         (26) 

where _ 2i   1, , yi n   are the detection threshold calibrated in a fault-free scenario. 

 

5. CUINCHY FONTINETTES REACH 

 

The Cuinchy-Fontinettes Reach (CFR) has a crucial importance due to its localization 

between two major catchment areas and its size (more than 40 km long). The main use 



of the CFR is for navigation purposes. However, it can be used to stock water volumes 

during wet periods in order to avoid or to limit floods in the two catchment areas, and 

during dry period to supply water to these two areas.  

 

The CFR is located between the upstream lock of Cuinchy at the East of the town 

Bethune and, at the Southwest of the town Saint-Omer, the downstream lock of 

Fontinettes (see Figure 3). The first part of the channel corresponds to the 28.7 km from 

Cuinchy to Aire-sur-la-Lys. The second part of the channel corresponds to 13.6 km from 

Aire-sur-la-Lys to Fontinettes. The channel is entirely artificial and has no significant 

slope. Considering the navigation flow, the water runs off from Cuinchy to Fontinettes. 

There are three measurement points in Cuinchy, Aire-sur-la-Lys and Fontinettes. The 

input/output flow points are located in: 

 

 Cuinchy where the flow can be injected by the lock operation (activated by 

navigation rules) and a submerged gate that can supply a controlled flow. 

 Aire where the flow can be injected/extracted by a controlled gate. 

 Fontinettes where the flow can be extracted by the lock operation (activated by 

navigation rules). 

 



Figure 3- Scheme of the Cuinchy-Fontinettes navigation reach 

 

Then, considering the discrete-time IDZ model, the system can be modelled by  

( ) ( , ) ( )i i i i iy k k e k φ θ                    1,2,3i                        (27) 

 with 

 1 1, 1 1, 2 2, 2 2, 3 3, 3,( , ) ( 1), ( ), ( 1), ( 1), ( 1), ( 1), ( 1)
qi i i i i i i i n ik y k q k q k q k q k q k q k            φ     

 1,1 1,2 2,1 2,2 3,1 3,21, , , , , ,
Ti i i i i i

i b b b b b bθ                                                (28) 

6. RESULTS 

6.1 Identification 

The nominal values of parameters in Eq. (27) have been obtained by the physical 

knowledge of the system and considering a sample time Ts=5 minutes. The values of 

these parameters are summarized in Tables 2, 3 and 4.   

 

 



Table 2-Cuinchy level equation 1y  nominal parameters 

0
1,1  0

2,1  0
3,1  1,0

1,1b  1,0
1,2b  1,0

2,1b  1,0
2,2b  1,0

3,1b  1,0
3,2b  

1 16 24 0.0063   -0.0062   0.0023   -0.0021   -0.0019   0.0018 

 

Table 3- Aire level equation 2y  nominal parameters 

0
1,2  0

2,2  0
3,2  2,0

1,1b  2,0
1,2b  2,0

2,1b  2,0
2,2b  2,0

3,1b  2,0
3,2b  

16 1 8 0.0023   -0.0021   0.0047   -0.0046   -0.0028   0.0027 

 

Table 4- Fontinettes level equation 3y  nominal parameters 

0
1,3  0

2,3  0
3,3  3,0

1,1b  3,0
1,2b  3,0

2,1b  3,0
2,2b  3,0

3,1b  3,0
3,2b  

24 8 1 0.0019   -0.0018   0.0028   -0.0027   -0.0042   0.0040 

 

 Once the nominal parameters have been computed, a fault-free scenario has been 

generated by numerical model implemented in the SIC (Simulation Irrigation Canals) 

software (Malaterre, 2006). SIC uses a finite difference method to solve the SV 

equations implicitly. The fault-free scenario defined by the input (positive) and output 

(negative) flow values in 6 days, based on a realistic scenario is depicted in Figure 4. 

Using this fault-free scenario and solving optimization problems (Blesa et al., 2010; 

Puig and Blesa, 2013), the uncertainty in parameters has been computed in such a way 

that the non-faulty data is contained in the interval bounds following Eq. (2).  

 

 



Figure 4- Input(positive)/output(negative) flow values in the fault-

free scenario 

 

 

The uncertain bounds in parameters obtained in the identification procedure are the 

following 

- Delay uncertainty: 2   for all the transport delays 

- Additive errors: 1 1,5cm  , 2 3cm    and 3 3.5cm   

- Uncertainty in parameters:  1 1,0
, 1 ,1i j i jb b   ,  2 2,0

, 2 ,1i j i jb b    and  3 3,0
, 3 ,1i j i jb b    

with 1 0.066  , 2 0.027   and 3 0.008   

 

Figure 5 shows the evolution of the Cuinchy, Aire and Fontinettes levels and the bound 

levels obtained using the interval model.  

 

 

 

 



Figure 5- Levels and interval bound levels in the fault-free 

scenario 

 

6.2. Fault detection 

Once the interval model has been calibrated, different fault scenarios have been 

simulated in order to verify the effectiveness in fault detection using Test (4) or (7).  

Figure 6 shows the evolution of the bounds of the interval residuals 1  in the Cuinchy 

level when an additive fault of -2cm has been introduced in this sensor level i.e 

1 0.02f m   at 990fk   (i.e. at time 82h 30’). Figure 7 depicts the details of Figure 6 

around the fault time occurrence. 

 

 

 

 

 

 

 

    



Figure 6- Bounds of the interval residuals 1  (Cuinchy level 

residual) 

 

 

Figure 7- Detail of bounds of the interval residuals 1  (Cuinchy 

level residual) 

 

Finally, Figure 8 (upper) shows the fault detection results applying fault detection test 

defined in Eq. (7)  to 1r  and (lower) applying this fault detection test but with the 

additional residual 1_ 2r  defined in Eq. (22) in order to deal with the dead-beat observer 

effect described in Section 4. As can be seen if test (7) is directly applied to 1r , there is 

not persistence in the fault indicator, whereas this problem disappear when the auxiliary 

residual is used and there is persistence in the fault indicator.  



 

Figure 8- Fault detection results without and with additional 

residual 1_ 2r  

 

6. CONCLUSIONS 

In recent years, inland navigation networks have benefited from the innovation of the 

instrumentation and SCADA systems. However, before implementing automatic control 

strategies that rely on the fault-free mode it is necessary to design a fault diagnosis 

scheme. In this paper, a model-based scheme has been proposed for the sensor level 

fault detection and isolation in inland navigation networks. The scheme is based on the 

use of analytical redundancy provided by a mathematical model. The fault detection is 

implemented by a passive robust approach based on interval methods that considers 

uncertainty in parameters of the mathematical model and additive error. Finally, the 

proposed scheme has been successfully validated in real scenarios using a high-fidelity 

simulator of a reach of the inland navigation network located in the north of France.  
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