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For amultiple-attribute groupdecision-making problemwith interval intuitionistic fuzzy sets, amethod based on extendedTODIM
is proposed. First, the concepts of interval intuitionistic fuzzy set and its algorithms are defined, and then the entropy method to
determine the weights is put forward.Then, based on theHamming distance and the Euclidean distance of the interval intuitionistic
fuzzy set, both of which have been defined, function mapping is given for the attribute. Finally, to solve multiple-attribute group
decision-making problems using interval intuitionistic fuzzy sets, a method based on extended TODIM is put forward, and a case
that deals with the site selection of airport terminals is given to prove the method.

1. Introduction

Zadeh [1] put forward the concept of fuzzy sets in 1965;
shortly afterward, the theory of fuzzy sets gradually devel-
oped. In 1986, Atanassov [2] proposed the theory of intuition-
istic fuzzy set (IFS). However, the common fuzzy set can
be seen as the special form of IFS. In real life, an accurate
definition for the specific membership and the specific non-
membership degree of IFS is relatively difficult [3]. In 1989,
Atanassov and Gargov [4] extended the IFS into the interval
intuitionistic fuzzy set (IIFS). In the following years, the prop-
erties of the IIFSs were further expanded, the changes mainly
included related algorithms, the correlation and decom-
position theorem, topological properties, correlation coeffi-
cient, and the relationship between other fuzzy sets [5–9].
Xu [10] also put forward several kinds of weighted averaging
operators for the IIFSs in 2007. Also, there are some applica-
tions and extensions for these operators [11–13].

Multiple-attribute decision making (MADM) belongs to
multicriteria decision making (MCDM), which has charac-
teristics of discrete types and limited alternatives.The process
of decisionmaking is to gather the opinions of all the decision
makers for several alternatives. MADM means that there is
not only one attribute, and how to integrate the attributes
of various alternatives is very important. Therefore, many

researchers have devoted themselves to the study of MADM,
and rich achievements have been obtained. Specific methods
have been used to solve the problems of multiple-attribute
decision making, such as the method of choice [14, 15], the
ordering method of compromise [16], the method of grey
correlation analysis [17, 18], and the TOPSIS method [19, 20].
There are also many other methods [21–25], and multiple-
attribute group decision making has a wide array of theory
and practice basis [26, 27].

Park et al. [28] pointed out that problems in which the
attribute weights were unknown and interval intuitionistic
fuzzy decision was being applied were difficult. At present,
general methods used to solve the problem of multiple-
attribute decision making with IFS are based on the determi-
nation attribute weights [29, 30]. In the recent years, under
the condition in which attribute weights are determined,
studies have made great progress solving the problem of
multiattribute group decision making using interval number
information. For example, Bryson and Mobolurin [31] pro-
posed a method of linear programming which was based on
the deviation degree. Xu [32] presented themethod of relative
membership degree. Su et al. [33] put forward an extended
VIKOR method for dynamic multiattribute decision making
using interval numbers. And Wang et al. did some research
that included the condition of uncertainty [34, 35].
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However, the methods used to solve the problems that
concerned MADM with IIFS have been extended. Some
methods involving MADM with IIFS can be understood as
follows. Hu and Xu [36] proposed the TOPSIS method. Qi
et al. [37] gave an approach to include automatic conver-
gence. A dynamicmultiple-attribute grey incidence decision-
making method was put forward by Liu et al. [38]. Chen [39]
developed a qualities-based method for handling problems,
and he applied a confidence interval to the membership
degree and the nonmembership degree.

Gomes and Lima [40, 41] proposed the TODIM (an
acronym in Portuguese of interactive and multicriteria deci-
sion making) method, which was based on prospect theory
[42]. The TODIM method is used to establish the expected
function, whichmeasures the degree to which one alternative
is superior to others by calculating accurate number infor-
mation. The TODIM method was successfully applied to the
MADMfor the first time byGomes andRangel [43], and it has
proved to be an effective method for dealing with MADM.
Krohling and De Souza [44] applied the TODIM method
to the attribute values, which are specifically expressed as
the IIFS. In addition, the TODIM method has provided a
great help in solving real problems. TODIM methods were
expanded by Fan et al. [45]. In the future, TODIM methods
can deal with three types of information, including the
real number, the interval number, and the triangular fuzzy
number [46].

The traditional TODIM method mainly handles real
numbers where the weights are known and only one decision
maker appears in the MADM problems. The IIFS is used to
express the opinions of every expert for every alternative,
because its description is more accurate than other math-
ematical linguistics. In this paper, multiple-attribute group
decision making is studied by using the extended TODIM
method, which is represented by IIFSs. The TODIM method
aims to optimize the ranking of alternatives. In addition,
the entropy method for the determination of weights is put
forward. We can derive the expert weights according to the
score function, and the attribute weights can be derived by
the idea of maximum entropy.

The structure of this paper is arranged as follows. In
Section 2, the definition and algorithms of the IIFS are
proposed. In Section 3, the group decision-makingmatrix for
the IIFSs is described. In Section 4, the method to determine
the weights is given in detail. In Section 5, the extended
TODIMmethod for interval intuitionistic fuzzy information
is put forward, and the steps of how to solve the problem of
multiple-attribute group decision making are listed one by
one. In the end, a case concerning the site selection of airport
terminals is shown to demonstrate the proposed method and
its results.

2. Definitions of IIFSs

Because the concept of IIFS is derived from intuitionistic
fuzzy sets, we first define IFS. On the basis of that, IIFS will
be defined. The basic algorithms of the IIFS are given, as well
as a description of its operators.

Definition 1 (intuitionistic fuzzy set (IFS) [2]). Let 𝐴 be an
IFS; it can be represented as follows:

𝐴 = ⟨𝑥, 𝑢 (𝑥) , V (𝑥) | 𝑥 ∈ 𝑅⟩ . (1)

In this definition, 𝑢(𝑥) represents the membership of the
element 𝑥 in the IFS, and ](𝑥) represents the nonmembership
degree of the element 𝑥 in the IFS. Let 𝜋(𝑥) represent the
hesitancy degree of 𝐴; that is, 𝜋(𝑥) = 1 − 𝑢(𝑥) − V(𝑥).

This expression should satisfy the following conditions:
(1) 𝑅 is a nonempty set;
(2) 0 ≤ 𝑢(𝑥) ≤ 1, 0 ≤ V(𝑥) ≤ 1, and 0 ≤ 𝜋(𝑥) ≤ 1.

Definition 2 (interval intuitionistic fuzzy set (IIFS) [4]). Let
�̃� be an IIFS; it can be represented as follows:

�̃� = ⟨[𝑢
𝛼

(𝑥) , 𝑢
𝛽

(𝑥)] , [V𝛼 (𝑥) , V𝛽 (𝑥)] | 𝑥 ∈ 𝑅⟩ . (2)

In this definition, 𝑢𝛼(𝑥) represents the lower limit of the
membership degree of the element 𝑥; 𝑢𝛽(𝑥) represents the
upper limit of the membership degree of the element 𝑥; V𝛼(𝑥)
represents the lower limit of the nonmembership degree of
the element 𝑥; and V𝛽(𝑥) represents the upper limit of the
nonmembership degree of the element𝑥. In addition, let �̃�(𝑥)
be the hesitancy degree of �̃�; that is, �̃�(𝑥) = (𝜇(𝑥) ∪ ]̃(𝑥))𝑐.
This is equal to [1 − 𝑢𝛽(𝑥) − V𝛽(𝑥), 1 − 𝑢𝛼(𝑥) − V𝛼(𝑥)].

This expression should satisfy the following conditions:
(1) 𝑅 is a nonempty set;
(2) 𝑢𝛼(𝑥) ∈ [0, 1], 𝑢𝛽(𝑥) ∈ [0, 1], and V𝛼(𝑥) ∈ [0, 1],

V𝛽(𝑥) ∈ [0, 1];
(3) [𝑢𝛼(𝑥), 𝑢𝛽(𝑥)] ⊂ [0, 1], [V𝛼(𝑥), V𝛽(𝑥)] ⊂ [0, 1], and
0 ≤ 𝑢
𝛼

(𝑥) + V𝛼(𝑥) ≤ 1.

Definition 3 (the basic algorithms of IIFS [4]). Given the fol-
lowing assumptions, let ℎ̃

1
and ℎ̃
2
be two interval intuitionis-

tic fuzzy numbers:

ℎ̃
1
= ([𝑢

𝛼

1
(𝑥) , 𝑢

𝛽

1
(𝑥)] , [V𝛼

1
(𝑥) , V𝛽

1
(𝑥)]) ,

ℎ̃
2
= ([𝑢

𝛼

2
(𝑥) , 𝑢

𝛽

2
(𝑥)] , [V𝛼

2
(𝑥) , V𝛽

2
(𝑥)]) .

(3)

Then we have these basic algorithms:

ℎ̃
1
+ ℎ̃
2
= ([𝑢

𝛼

1
(𝑥) + 𝑢

𝛼

2
(𝑥) − 𝑢

𝛼

1
(𝑥) ∗ 𝑢

𝛼

2
(𝑥) ,

𝑢
𝛽

1
(𝑥) + 𝑢

𝛽

2
(𝑥) − 𝑢

𝛽

1
(𝑥) ∗ 𝑢

𝛽

2
(𝑥)] ,

[V𝛼
1
(𝑥) ∗ V𝛼

2
(𝑥) , V𝛽

1
(𝑥) ∗ V𝛽

2
(𝑥)]) ,

ℎ̃
1
∗ ℎ̃
2
= ([𝑢

𝛼

1
(𝑥) ∗ 𝑢

𝛼

2
(𝑥) , 𝑢

𝛽

1
(𝑥) ∗ 𝑢

𝛽

2
(𝑥)] ,

[V𝛼
1
(𝑥) + V𝛼

2
(𝑥) − V𝛼

1
(𝑥) ∗ V𝛼

2
(𝑥) ,

V𝛽
1
(𝑥) + V𝛽

2
(𝑥) − V𝛽

1
(𝑥) ∗ V𝛽

2
(𝑥)]) ,

𝜆ℎ̃
1
= ([1 − (1 − 𝑢

𝛼

1
(𝑥))
𝜆

, 1 − (1 − 𝑢
𝛽

1
(𝑥))
𝜆

] ,

[V𝛼
1
(𝑥)
𝜆

, V𝛽
1
(𝑥)
𝜆

]) .

(4)
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Definition 4 (IIFWA [10]). The interval intuitionistic fuzzy
weighted averaging (IIFWA) operator is a kind of aggre-
gating operator, which evolved from the intuitionistic fuzzy
weighted averaging (IFWA) operator. This operator has been
proven, and its specific form is

IIFWA
𝑤
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= ([1 −

𝑛

∏

𝑖=1

(1 − 𝑢
𝛼

𝑖
(𝑥))
𝑤𝑖
, 1 −

𝑛

∏

𝑖=1

(1 − 𝑢
𝛽

𝑖
(𝑥))
𝑤𝑖

] ,

[

𝑛

∏

𝑖=1

V𝛼
𝑖
(𝑥)
𝑤𝑖 ,

𝑛

∏

𝑖=1

V𝛽
𝑖
(𝑥)
𝑤𝑖]) ,

(5)

where 𝑤
𝑖
≥ 0, 𝑖 ∈ 0, 1, 2 . . . , 𝑛, and ∑𝑛

𝑖=1
𝑤
𝑖
= 1, and 𝑤

𝑖
is the

weight of ℎ
𝑖
.

Definition 5 (the distances of IIFSs). Alternatives will be
evaluated according to the distance of IIFS. Based on the
Hamming distance and the Euclidean distance of IFS, we can
extend to the normalizedHamming distance and the normal-
ized Euclidean distance of IIFS. Its specific form is as follows.

Definition 5.1. The normalized Hamming distance of interval
intuitionistic fuzzy is as follows:

𝑑
𝐻

(ℎ̃
1
, ℎ̃
2
) =

1

4
(
𝑢
𝛼

1
(𝑥) − 𝑢

𝛼

2
(𝑥)
 +

𝑢
𝛽

1
(𝑥) − 𝑢

𝛽

2
(𝑥)


+
V
𝛼

1
(𝑥) − V𝛼

2
(𝑥)
 +

V𝛽
1
(𝑥) − V𝛽

2
(𝑥)

) .

(6)

Definition 5.2. The normalized Euclidean distance of interval
intuitionistic fuzzy is as follows:

𝑑
𝐸

(ℎ̃
1
, ℎ̃
2
)

=
1

2
((𝑢
𝛼

1
(𝑥) − 𝑢

𝛼

2
(𝑥))
2

+ (𝑢
𝛽

1
(𝑥) − 𝑢

𝛽

2
(𝑥))
2

+ (V𝛼
1
(𝑥) − V𝛼

1
(𝑥))
2

+ (V𝛽
1
(𝑥) − V𝛽

2
(𝑥))
2

)

1/2

.

(7)

Definition 6 (the score function of IIFS [10]). Let ℎ̃ be an
interval intuitionistic fuzzy number: ℎ̃ = ([𝑢

𝛼

(𝑥), 𝑢
𝛽

(𝑥)],

[V𝛼(𝑥), V𝛽(𝑥)]), and let 𝑆(ℎ̃) be the score function of ℎ̃:

𝑆 (ℎ̃) =
1

2
((𝑢
𝛼

(𝑥) + 𝑢
𝛽

(𝑥)) − (V𝛼 (𝑥) + V𝛽 (𝑥))) . (8)

When 𝑆(ℎ̃
1
) < 𝑆(ℎ̃

2
), there is ℎ̃

1
< ℎ̃
2
.

3. Description of the Group Decision-Making
Matrix with IIFSs Information

For a multiple-attribute group decision-making problem, we
suppose that there is an alternative set 𝐴; its form is 𝐴 =

(1, 2, 3, . . . , 𝑛), and the attributes of the alternative set can

be expressed as 𝐶 = (1, 2, 3, . . . , 𝑚). Let 𝐷 be the decision-
maker set; that is, 𝐷 = (1, 2, 3, . . . , ℎ). The decision-maker
𝑘 evaluates the attributes 𝑗 of alternative 𝑖 by the form of
IIFS.This process of assignment can be expressed as a matrix
of �⃗�𝑘
𝑖𝑗
(𝑛 × 𝑚) = ([𝑢

𝛼

𝑖𝑗𝑘
(𝑥), 𝑢
𝛽

𝑖𝑗𝑘
(𝑥)], [V𝛼

𝑖𝑗𝑘
(𝑥), V𝛽
𝑖𝑗𝑘
(𝑥)]), and the

evaluation matrix of all decision makers can be expressed as
(�⃗�
1

𝑖𝑗
, �⃗�
2

𝑖𝑗
, . . . , �⃗�

ℎ

𝑖𝑗
)
𝑇.

Definition 7 (the aggregating of the experts matrix). The
IIFWA operator is adopted to aggregate the expert matrix. In
this case, we suppose that the weight of expert 𝑞

𝑖
is known.

After a series of calculations, we will derive the aggregation
of the experts matrix as �⃗�(𝑚 × 𝑛); the element of �⃗�(𝑚 × 𝑛)
is 𝑟
𝑖𝑗
, which means that experts evaluate every attribute 𝑗 of

every alternative 𝑖. That is to say, when all of the experts’
evaluations of all of the alternatives are put together, they
equal one expert’s evaluation of all of the alternatives. So, we
consider this matrix an overall evaluation matrix:

𝑟
𝑖𝑗
= ([1 −

ℎ

∏

𝑘=1

(1 − 𝑢
𝛼

𝑖𝑗𝑘
(𝑥))
𝑞𝑘

,

1 −

ℎ

∏

𝑘=1

(1 − 𝑢
𝛽

𝑖𝑗𝑘
(𝑥))

𝑞𝑘

] ,

[

ℎ

∏

𝑘=1

V𝛼
𝑖𝑗𝑘
(𝑥)
𝑞𝑘 ,

ℎ

∏

𝑘=1

V𝛽
𝑖𝑗𝑘
(𝑥)
𝑞𝑘]) ,

(9)

where 𝑞
𝑘
≥ 0, 𝑖 ∈ 0, 1, 2, . . . , ℎ, and ∑ℎ

𝑘=1
𝑞
𝑘
= 1.

4. Entropy Weight Method for Group Decision
Making with IIFS

The concept of entropy is derived from thermodynamics. C.
E. Shannon has recently applied it to information theory.The
basic principle is that entropy can be used as a measure of the
useful information that the data provides.The entropy weight
method has beenwidely used in the decision-making process.
In this paper, the entropy coefficient method is applied to
determine the weights of experts and attributes in group
decision making using IIFS.

4.1. Entropy Weight Method for Determination of
Expert Weights

Definition 8 (the entropy of expert). Let 𝐸
𝑘
be the entropy of

expert 𝑘:

𝐸
𝑘
= −

1

ln 𝑛

𝑖=𝑛

∑

𝑖=1

(
𝑠
𝑖𝑘

∑
𝑛

𝑖=1
𝑠
𝑖𝑘

∗ ln


𝑠
𝑖𝑘

∑
𝑛

𝑖=1
𝑠
𝑖𝑘



) , (10)

where 𝑠
𝑖𝑘
can be calculated by formula (12), and its form is as

follows:

𝑠
𝑖𝑘
=
1

2

𝑚

∑

𝑗=1

((𝑢
𝛼

𝑖𝑗𝑘
(𝑥) + 𝑢

𝛽

𝑖𝑗𝑘
(𝑥)) − (V𝛼

𝑖𝑗𝑘
(𝑥) + V𝛽

𝑖𝑗𝑘
(𝑥))) .

(11)
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Formula (11) is based on the score function, which is pro-
posed by Xu [10]. It is used to calculate the overall evaluating
values of expert 𝑘 to the alternative 𝑖.

Definition 9 (the expert weights). Using the properties of
entropy, we find that if the degree of disorder in a system
is high, the entropy value will correspondingly be larger. In
group decisionmaking, if experts have similar opinions about
different alternatives, the entropy value will be larger. That is,
the greater the entropy value of expert 𝐸

𝑘
is, the smaller the

differences the results will show. Let 𝑞
𝑘
be the entropy weight

of expert 𝑘; its form will be as follows:

𝑞
𝑘
=

1 − 𝐸
𝑘

ℎ − ∑
ℎ

𝑘=1
(𝐸
𝑘
)

, (12)

where 0 ≤ 𝑞
𝑘
≤ 1 and ∑ℎ

𝑘=1
𝑞
𝑘
= 1.

4.2. Entropy Weight Method for Determination of
Attribute Weights

Definition 10 (the entropy of attributes). Let 𝑒
𝑗
be the entropy

of attribute 𝑗:

𝑒
𝑗
= −

1

ln 𝑛

𝑛

∑

𝑖=1

(

ℎ
𝑖𝑗

∑
𝑚

𝑗=1
ℎ
𝑖𝑗

∗ ln(
ℎ
𝑖𝑗

∑
𝑚

𝑗=1
ℎ
𝑖𝑗

)) , (13)

where ℎ
𝑗
can be calculated by formula (16), and its form is as

follows [37]:

ℎ
𝑖𝑗
= (1 − 𝑑 (([�̃�

𝛼

𝑖𝑗
(𝑥) , �̃�

𝛽

𝑖𝑗
(𝑥)] , [Ṽ𝛼

𝑖𝑗
(𝑥) , Ṽ𝛽

𝑖𝑗
(𝑥)]) ,

([0.5, 0.5] , [0.5, 0.5]))) .

(14)

Formula (14) has to satisfy the following conditions:

(1) the relative importance of evaluation attributes and
alternatives is independent;

(2)

𝑑 (𝑟
𝑖𝑗
, ([0.5, 0.5] , [0.5, 0.5]))

=
1

2
((𝑢
𝛼

𝑖𝑗
(𝑥) − 0.5)

2

+ (𝑢
𝛽

𝑖𝑗
(𝑥) − 0.5)

2

+ (V𝛼
𝑖𝑗
(𝑥) − 0.5)

2

+ (V𝛽
𝑖𝑗
(𝑥) − 0.5)

2

)

1/2

;

(15)

(3) if there is 𝑑(�̃�, ([0.5, 0.5], [0.5, 0.5])) ≥ 𝑑(𝛽, ([0.5, 0.5],
[0.5, 0.5])) for any two IIFSs, then there will be ℎ(�̃�) ≤
ℎ(𝛽).

Formula (14) is based on the Euclidean distance of IIFS.
The interval intuitionistic fuzzy number ([0.5, 0.5], [0.5, 0.5])
has no hesitancy degree, but its entropy attains the maximum
value. That is to say, the positive and negative evidence of
this number are accounted equally, and it is impossible to
use fuzzy information to describe or make a reasonable
judgment.

Definition 11 (the attribute weight). According to the theory
of entropy, when the entropy of attribute 𝑗 is greater than
the value of other attributes, the value of attribute 𝑗 between
every alternative and the optimal strategy will have a smaller
difference. In order to facilitate a comprehensive evaluation,
the weight of attribute 𝑗 can be determined by 𝑒

𝑗
. Let 𝑤

𝑗
be

the weight of attribute 𝑗; it is formed as follows:

𝑤
𝑗
=

1 − 𝑒
𝑗

𝑚 − ∑
𝑚

𝑗=1
(𝑒
𝑗
)

, (16)

where 0 ≤ 𝑤
𝑗
≤ 1 and ∑𝑚

𝑗=1
𝑤
𝑗
= 1.

5. The Extended TODIM Method for Group
Decision Making with IIFS

Based on the above discussion, which included the concept of
IIFSs, as well as its basic algorithms and the gatheringmethod
of the interval intuitionistic fuzzy matrix, a new method of
processing multiattribute group decision making is given,
which is called the extended TODIMmethod.The traditional
TODIM method measures the comprehensive degree of an
alternative better than others and is extended in this paper
to handle IIFS. Assuming the conditions that (a) weights of
the experts and attributes are unknown and (b) there is more
than one decision maker, we outline the steps of how to use
the TODIMmethod in the next segment.

Step 1. There are 𝐾 experts to evaluate every attribute of
𝑛 alternatives. When evaluating alternatives, IIFSs are used
to express the evaluating values. After that, an assessment
matrix �⃗�𝑘

𝑖𝑗
of every 𝑘th expert will be derived; each row

represents an attribute, and the columns represent alterna-
tives. All of the assessment matrices can be expressed as
(�⃗�
1

𝑖𝑗
, �⃗�
2

𝑖𝑗
, . . . , �⃗�

ℎ

𝑖𝑗
)
𝑇.

Step 2. Calculate the expert weights. The weight measure 𝑞
𝑘

can be determined according to formulas (10) through (12).

Step 3. Aggregate all of the assessment matrices �⃗�𝑘
𝑖𝑗
. On the

premise that the obtained weight values of every expert 𝑞
𝑘

can be expressed by (𝑖 = 1, 2, . . . , ℎ), formula (9) is applied to
assemble the advice of ℎ experts, and the aggregating matrix
�⃗�(𝑚 × 𝑛) can be derived.

Step 4. Calculate the attribute weights. On the basis of Step
3, the weight measure 𝑤

𝑗
can be determined according to

formulas (13) through (16).

Step 5. According to the Hamming distance (Definition 5.1)
and the Euclidean distance (Definition 5.2) of IIFSs, the
distance between every element in the aggregatingmatrix and
the interval intuitionistic fuzzy number ([0, 0], [1, 1]) can be
calculated, respectively, and matrix 𝑌 can be obtained after
the distance is gathered into expression (18), which is shown
below. Let 𝑦

𝑖𝑗
be the element of matrix𝑌, where 𝑟

𝑖𝑗
represents

the element of the aggregating matrix �⃗�(𝑚 × 𝑛):

𝑦
𝑖𝑗
= 𝑑 (𝑟

𝑖𝑗
, ([0, 0] , [1, 1])) . (17)
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The interval intuitionistic fuzzy number ([0, 0], [1, 1]) is
the minimum, so we can define it as the negative ideal point.
When the distance between an alternative and this point is
larger, the result will be more accurate.

Step 6. When matrix 𝑌 that has been derived is brought
into expression (18), matrix 𝐼 will be derived. The function
𝐼(𝐴
𝑖
, 𝐴
𝑗
) is used to represent the degree to which alternative

𝑖 is better than alternative 𝑗 and is the sum of the subfunc-
tion Φ

𝑐
(𝐴
𝑖
, 𝐴
𝑗
) where 𝑐 applies from 1 to 𝑚. Subfunction

Φ
𝑐
(𝐴
𝑖
, 𝐴
𝑗
) indicates the degree to which alternative 𝑖 is better

than alternative 𝑗 when a particular attribute 𝑐 is given.
In expression (18), there is a constant parameter 𝜋, which

is used to represent the sensitive coefficient of risk aversion.
When the parameter 𝜋 has different values, the values of
subfunctionΦ

𝑐
(𝐴
𝑖
, 𝐴
𝑗
) will change correspondingly:

Φ
𝑐
(𝐴
𝑖
, 𝐴
𝑗
) =

{{{{{{{{{

{{{{{{{{{

{

√
𝑤
𝑐
(𝑦
𝑖𝑐
− 𝑦
𝑗𝑐
)

∑
𝑚

𝑐=1
𝑤
𝑐

𝑦
𝑖𝑐
> 𝑦
𝑗𝑐

−
1

𝜋

√
(∑
𝑚

𝑐=1
𝑤
𝑐
) (𝑦
𝑗𝑐
− 𝑦
𝑖𝑐
)

𝑤
𝑐

𝑦
𝑖𝑐
< 𝑦
𝑗𝑐

0 𝑦
𝑖𝑐
= 𝑦
𝑗𝑐

(18)

𝐼 (𝐴
𝑖
, 𝐴
𝑗
) =

𝑚

∑

𝑐=1

Φ(𝐴
𝑖
, 𝐴
𝑗
) 𝑖, 𝑗 ∈ 𝐴. (19)

Step 7. According to expression (20), the overall appraisal
values of alternatives can be worked out, and these values
should be sorted. If the value 𝜉(𝐴

𝑖
) is larger than other values,

then alternative 𝑖will bemore optimal. Function 𝜉(𝐴
𝑖
)will be

obtained by matrix 𝐼, and 𝜉(𝐴
𝑖
) represents the degree of pri-

ority bywhich alternative 𝑖 is preferred over the others.There-
fore, these alternatives can be sorted according to the results
of function 𝜉(𝐴

𝑖
). That is to say, if the result of function 𝜉(𝐴

𝑖
)

is larger, this alternative will be more optimal than others:

𝜉 (𝐴
𝑖
)

=

∑
𝑛

𝑗=1
𝐼 (𝐴
𝑖
, 𝐴
𝑗
) −min

1≤𝑖≤𝑛
∑
𝑛

𝑗=1
𝐼 (𝐴
𝑖
, 𝐴
𝑗
)

max
1≤𝑖≤𝑛

∑
𝑛

𝑗=1
𝐼 (𝐴
𝑖
, 𝐴
𝑗
) −min

1≤𝑖≤𝑛
∑
𝑛

𝑗=1
𝐼 (𝐴
𝑖
, 𝐴
𝑗
)

.

(20)

Step 8. Rank the values of function 𝜉(𝐴
𝑖
) and analyze the

results.

6. Analysis of Examples: The Site Selection of
Airport Terminals

An airfield plans to construct different airport terminals
in surrounding cities. After preliminary screening, several
cities remain for further analysis and research. First, a com-
prehensive evaluation index system should be established,
starting from the following three aspects: number of potential
customers, degree of traffic connections, and the existing
competitive capacity.

The number of potential customers can refer not only to
the volume of airline passenger transportation and the rate
of growth in recent years, but also to the local economic
conditions, such as local GDP, industrial patterns, and other
enterprises. The degree of traffic connections mainly takes
other modes of transport into account, considers whether
the others are convenient and fast and have a high coverage
rate throughout the city, and also considers the convenience
degree of each traffic connection from the city to the
surrounding areas. The existing competitive capacity mainly
means the competitive pressures coming fromhigh-speed rail
and airport terminals of other airfields, the degree of local
government supporting the air transportation industry, and
the advantages of relevant policies.

Suppose there are five alternative cities 𝐴
𝑖
(𝑖 = 1, 2,

3, 4, 5). Three experts 𝐷
𝑘
(𝑘 = 1, 2, 3) in the field of aviation

are invited to evaluate the five cities using IIFSs. According
to the above evaluation index system about remote airport
terminals, a similar description of attributes can be made as
follows: attribute 𝐶

1
signifies the amount of potential cus-

tomers, attribute𝐶
2
signifies the degree of traffic connections,

and attribute 𝐶
3
signifies the existing competitive capacity.

For the above three indices, IIFSs are adopted to express the
evaluated values. When assigning the evaluating values, we
assume that the attribute dimensions have been eliminated.
Thus, this data can be seen as normalized.

Specific steps are as follows.

Step 1. Determination of basic data: the three matrices below
represent the three experts’ evaluation of the five cities for
every attribute:

𝑃
1

=



𝐶
1

𝐶
2

𝐶
3

𝐴
1

([0.60, 0.79] , [0.10, 0.15]) ([0.40, 0.50] , [0.30, 0.40]) ([0.50, 0.60] , [0.30, 0.35])

𝐴
2

([0.70, 0.75] , [0.10, 0.20]) ([0.60, 0.65] , [0.20, 0.30]) ([0.70, 0.80] , [0.05, 0.10])

𝐴
3

𝐴
4

𝐴
5

([0.50, 0.60] , [0.20, 0.25])

([0.30, 0.35] , [0.20, 0.25])

([0.70, 0.75] , [0.15, 0.20])

([0.70, 0.75] , [0.10, 0.20])

([0.50, 0.60] , [0.10, 0.15])

([0.30, 0.40] , [0.20, 0.25])

([0.30, 0.40] , [0.30, 0.40])

([0.60, 0.70] , [0.20, 0.25])

([0.65, 0.70] , [0.20, 0.30])



,
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𝑃
2

=



𝐶
1

𝐶
2

𝐶
3

𝐴
1

([0.50, 0.65] , [0.10, 0.20]) ([0.30, 0.40] , [0.20, 0.30]) ([0.40, 0.50] , [0.35, 0.45])

𝐴
2

([0.80, 0.90] , [0.05, 0.10]) ([0.50, 0.60] , [0.20, 0.30]) ([0.60, 0.70] , [0.20, 0.30])

𝐴
3

𝐴
4

𝐴
5

([0.60, 0.70] , [0.20, 0.25])

([0.50, 0.60] , [0.20, 0.30])

([0.70, 0.80] , [0.10, 0.20])

([0.50, 0.60] , [0.20, 0.25])

([0.70, 0.80] , [0.10, 0.15])

([0.20, 0.30] , [0.20, 0.25])

([0.30, 0.40] , [0.20, 030])

([0.70, 0.75] , [0.20, 0.25])

([0.50, 0.55] , [0.20, 0.25])



,

𝑃
3

=



𝐶
1

𝐶
2

𝐶
3

𝐴
1

([0.40, 0.50] , [0.20, 0.25]) ([0.50, 0.60] , [0.20, 0.25]) ([0.30, 0.40] , [0.50, 0.60])

𝐴
2

([0.60, 0.65] , [0.20, 0.30]) ([0.30, 0.35] , [0.10, 0.20]) ([0.60, 0.65] , [0.30, 0.35])

𝐴
3

𝐴
4

𝐴
5

([0.40, 0.45] , [0.10, 0.15])

([0.20, 0.30] , [0.40, 0.50])

([0.90, 1.00] , [0.30, 0.40])

([0.80, 0.90] , [0.00, 0.10])

([0.60, 0.65] , [0.20, 0.25])

([0.20, 0.30] , [0.40, 0.45])

([0.40, 0.45] , [0.20, 030])

([0.55, 0.15] , [0.40, 0.50])

([0.60, 0.70] , [0.20, 0.25])



.

(21)

Step 2. Calculating the values of expert weight: according to
formulas (10) through (12), the results are shown in Table 1
and the following:

𝐸
𝑘
=



𝐷
1

𝐷
2

𝐷
3

0.981 0.965 0.883



. (22)

Finally, the expert weights can be worked out and the
results are

𝑞
𝑘
=



𝐷
1

𝐷
2

𝐷
3

0.114 0.203 0.683



. (23)

Step 3. The above three matrices of the five cities can apply
Definition 6, and, in this manner, they can be integrated into
a matrix. The results of the matrix are shown in Table 2.

Step 4. Calculate the values of the attribute weights. On the
basis of Step 3, the weight measure 𝑤

𝑗
can be determined

according to formulas (13) through (16), and the results are
as shown in Table 3 and the following:

𝑒
𝑗
=



𝐶
1

𝐶
2

𝐶
3

0.9978 0.9974 0.9989



. (24)

Finally, the attribute weights can be worked out and the
results are as follows:

𝑊
𝑗
=



𝐶
1

𝐶
2

𝐶
3

0.371 0.435 0.194



. (25)

Step 5. Calculate the distance between the IIFSs in matrix 𝑅
with ([0, 0], [1, 1]).

(1) Calculating by the Hamming distance, the results are
as follows:

𝑌
𝐻

=



𝐶
1

𝐶
2

𝐶
3

𝐴
1
0.656 0.631 0.456

𝐴
2
0.758 0.621 0.694

𝐴
3
0.672 0.868 0.571

𝐴
4
0.482 0.731 0.508

𝐴
5
0.829 0.457 0.702



. (26)

(2) Calculating by the Euclidean distance, the results are
as follows:

𝑌
𝐸

=



𝐶
1

𝐶
2

𝐶
3

𝐴
1
0.675 0.645 0.462

𝐴
2
0.762 0.655 0.696

𝐴
3
0.696 0.872 0.597

𝐴
4
0.507 0.736 0.526

𝐴
5
0.837 0.499 0.706



. (27)

Step 6. The degree by which a given alternative is superior to
all of the others can be calculated using the extended TODIM
method. First, work out the values of function Φ

𝑐
(𝐴
𝑖
, 𝐴
𝑗
),

and then the values of function 𝐼may be calculated.The value
of parameter 𝜋 is given as 0.9, because of the principle that
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Table 1

𝑠
𝑖𝑘

𝐷
1

𝐷
2

𝐷
3

𝐴
1

0.850 0.575 0.350
𝐴
2

1.625 1.475 0.850
𝐴
3

0.900 0.850 1.275
𝐴
4

0.950 1.425 0.100
𝐴
5

1.100 0.925 0.850
Total 5.425 5.250 3.425

Table 2

𝐶
1

𝐶
2

𝐶
3

𝐴
1

0.448 0.561 0.161 0.225 0.453 0.554 0.209 0.274 0.347 0.448 0.439 0.532
𝐴
2

0.664 0.739 0.139 0.229 0.387 0.451 0.125 0.227 0.613 0.682 0.225 0.294
𝐴
3

0.459 0.531 0.125 0.176 0.748 0.853 0.000 0.130 0.370 0.435 0.209 0.310
𝐴
4

0.284 0.380 0.321 0.417 0.613 0.683 0.161 0.213 0.591 0.411 0.321 0.401
𝐴
5

0.858 1.000 0.222 0.321 0.212 0.312 0.321 0.374 0.588 0.674 0.200 0.255

decision makers usually tend to avoid risk and pursue profit.
The results are as follows.

(1) Calculating by the Hamming distance, the results are

𝐼
1
=



𝐴
1

𝐴
2

𝐴
3

𝐴
4

𝐴
5

𝐴
1
0.000 −1.666 −2.077 −1.091 −1.848

𝐴
2
0.268 0.000 −0.835 −0.346 −0.810

𝐴
3
0.543 −1.214 0.000 0.344 −1.499

𝐴
4
−0.952 −2.056 −2.398 0.000 −2.192

𝐴
5
−0.478 −0.836 −1.147 −0.790 0.000



. (28)

(2) Calculating by the Euclidean distance, the results are

𝐼
2
=



𝐴
1

𝐴
2

𝐴
3

𝐴
4

𝐴
5

𝐴
1
0.000 −1.865 −2.149 −1.062 −1.818

𝐴
2
0.544 0.000 −0.803 −0.247 −0.860

𝐴
3
0.568 −1.057 0.000 0.427 −1.405

𝐴
4
−0.932 −1.996 −2.527 0.000 −2.153

𝐴
5
−0.399 −0.799 −1.107 −0.711 0.000



.

(29)

Step 7. According to expression (20), the overall evaluation
value of each alternative can be worked out, and the results
are as follows:

𝜉 (𝐴
𝑖
) =



𝐴
1

𝐴
2

𝐴
3

𝐴
4

𝐴
5

on condition that Hamming distance 0.156 1 0.983 0 0.740

on condition that Euclidean distance 0.114 1 0.984 0 0.736



. (30)

Step 8. The values of function 𝜉(𝐴
𝑖
) should be ranked by

ascending order after Step 7.

No matter what kinds of distance formulas were adapted
in this process, such as the Hamming distance formula or the
Euclidean distance formula, the final results of the sorting are
consistent. And it is 𝐴

2
≻ 𝐴
3
≻ 𝐴
5
≻ 𝐴
1
≻ 𝐴
4
. Therefore,

𝐴
2
is better than other alternatives; that is to say that when

the airfield constructs an airport terminals in the surrounding
cities, the second city will be the best choice. However, the
final results of the sorting can also be used to judge the
rationality of the position of the existing airport terminal. For
example, assume that city𝐴

3
and city𝐴

1
already have airport

terminals. In this case, if another airport terminal needs to be
constructed, city 𝐴

5
should also be taken into consideration.

7. Conclusion

Amethod of multiple-attribute group decision making based
on TODIM is proposed to evaluate the information of the
IIFSs. The differences between this paper and other studies
that discuss the TODIM method of group decision making
in the case of unknown weights [29, 30, 43, 44, 47] are made
clear. The entropy evaluation method is applied to determine
attribute weights and expert weights. The attribute value is
expressed as the IIFSs, as distinct from previous expressions,
such as the two-dimension linguistic variable and the triangle
fuzzy value [11, 18, 45, 47].

First, we show that expert weights can be obtained using
the original expert matrices. Second, we show how the
matrices of IIFSs including different expert opinions can be



8 Mathematical Problems in Engineering

Table 3

ℎ
𝑖𝑗

𝐶
1

𝐶
2

𝐶
3

𝐴
1

0.778 0.812 0.912
𝐴
2

0.732 0.760 0.798
𝐴
3

0.751 0.622 0.812
𝐴
4

0.842 0.753 0.880
𝐴
5

0.651 0.796 0.783
Total 3.754 3.743 4.185

integrated.Then, we discuss how the attribute weights can be
worked out on top of the aggregated expert matrix. Finally,
using the Hamming distance and the Euclidean distance of
the IIFSs, we accomplish the transformation of the matrix.
The traditional TODIMmethod is improved so that it can be
used to handle the IIFS information, allowing for a general
ranking of the alternatives. Finally, a case concerning the site
selection of airport terminals is described to show that the
steps of the above method are operable and easy.

However, according to the Hamming distance and the
Euclidean distance of the IIFSs, the transformation of the
matrix is simple, and there must be a more accurate mapping
function that can be used to express the relationship. Another
deficiency of this paper is the simplicity of the method used
to determine weights. Some studies have proposed other
methods to solve the unknown weights problems, which
may be applied to the extended TODIM method for group
decision making with the IIFSs.
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