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Robust Synchronization for Two-Dimensional
Discrete-Time Coupled Dynamical Networks

Jinling Liang, Zidong Wang, Xiaohui Liu and Panos Louvieris

Abstract—In this paper, a new synchronization problem is
addressed for an array of two-dimensional (2-D) coupled dy-
namical networks. The class of systems under investigation
is described by the 2-D nonlinear state space model which is
oriented from the well-known Fornasini-Marchesini second
model. For such a new 2-D complex network model, both
the network dynamics and the couplings evolve in two inde-
pendent directions. A new synchronization concept is put
forward to account for the phenomenon that the propaga-
tions of all 2-D dynamical networks are synchronized in two
directions with influence from the coupling strength. The
purpose of the problem addressed is to first derive sufficient
conditions ensuring the global synchronization and then ex-
tend the obtained results to more general cases where the
system matrices contain either the norm-bounded or the
polytopic parameter uncertainties. An energy-like quadratic
function is developed, together with the intensive use of
the Kronecker product, to establish the easy-to-verify con-
ditions under which the addressed 2-D complex network
model achieves global synchronization. Finally, a numeri-
cal example is given to illustrate the theoretical results and
the effectiveness of the proposed synchronization scheme.

Keywords—Two-dimensional systems, Complex networks,
Coupling, Synchronization, Parameter uncertainties.

I. Introduction

The past ten years have seen a tremendous upsurge in the
research efforts towards the discovery of non-trivial topo-
logical features of complex networks, see [1,2] for the latest
advances in the area. Typical complex networks that have
been thoroughly investigated include communication net-
works, social networks, electrical power grids, cellular and
metabolic networks and the internet. Dynamic behaviors
of complex networks, such as stability, periodic oscillation,
bifurcation, or even chaos, are ubiquitous in the real world
and often reconfigurable. Complex networks have been
studied in the context of dynamical systems in a range
of disciplines which have already become an ideal research
area for control engineer, mathematicians, computer scien-
tists, and biologists to manage, analyze, and interpret func-
tional information from real-world networks. Recently, as
an emerging phenomenon of a population of dynamically
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interacting units, the synchronization problem has gained
particular research attention for complex networks in var-
ious fields [3, 4]. For example, the synchronization prob-
lem has been thoroughly investigated for the large-scale
networks of chaotic oscillators [5–7], the coupled systems
exhibiting spatio-temporal chaos and autowaves [8, 9], the
genetic oscillator networks [10, 11], and the array of cou-
pled neural networks with or without delays [12,13]. More
specifically, in [14], it has been shown that the synchro-
nization may help protecting interconnected neurons from
the influence of random intrinsic neuronal noise, which af-
fects all neurons in the nervous system. The experimental
demonstration of chaotic phase synchronization has been
reported in [15] for the unidirectionally coupled time-delay
systems using electronic circuits. A variety of synchronous
regimes has been found, respectively, in arrays of oscillatory
Belousov-Zhabotinsky microdrops, in linear configurations
and in arrays of partially stacked drops [16]. Furthermore,
it has been experimentally confirmed that the inhibitory
coupling is able to produce a rich variety of synchronous
patterns.

Most existing results concerning complex networks have
been established based on the assumption that the dy-
namical networks under consideration are accurate that
vary continuously over time. Such an assumption, how-
ever, is not always true in practice. In nowadays digital-
ized world, it is quite common that the signal transmis-
sion over the network links is conducted in a discrete-time
manner. Also, the connection weights of the nodes of com-
plex networks are typically dependent on certain resistance
and capacitance values that include uncertainties (model-
ing errors). Therefore, the robust synchronization problem
for various kinds of discrete-time complex/neural networks
has received considerable research interests in the past
few years. For instance, in [17], the robust synchroniza-
tion problem has been considered for an array of coupled
stochastic discrete-time neural networks with time-varying
delay, where the individual neural network is subject to
parameter uncertainty, stochastic disturbance and time-
varying delay. In [18], the synchronization problem has
been investigated for an array of coupled complex discrete-
time networks with the simultaneous presence of both the
discrete and the distributed time delays, where a more gen-
eral sector-like nonlinear function is employed to describe
the nonlinearities existing in the network. The problem of
synchronization stability has been further studied in [19] for
discrete complex dynamical networks with a time-varying
delay, where a new Lyapunov-Krasovskii functional has
been constructed by dividing the time-varying delay into a
constant part and a variant part.
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On another research frontier, the two-dimensional (2-D)
systems, where the information propagation occurs in two
independent directions, have received considerable research
attention in the past few decades. The research on 2-D
systems has mainly been inspired by the practical needs
to represent continuous- and discrete-time nonlinear dy-
namic systems by using the Volterra series. 2-D systems
have extensive applications in engineering problems such
as long-wall coal cutting and metal rolling, the control of
sheet-forming processes, image processing, seismographic
data processing, thermal processes, and water stream heat-
ing, etc., see [20–22]. For example, in [23], a 2-D general
learning model has been established for the mulitlayer feed-
forward neural network (MFNN) since the 2-D model can
exhibit two independent dynamics: one index reflects the
feedforward process of the network and the other reflects
the learning process of the network. Therefore, the learn-
ing process of the MFNN in [23] has been treated as a
2-D discrete-time dynamical system. In [24], an improved
2-D Hamming-like neural network model has been devel-
oped to process the 2-D images with advantages of direct
learning, easy reconfiguration (update or expand), multiple
functions, controllable attraction-basin size, high storage
capacity, enhanced local input fault tolerances, and suit-
ability for optical implementations. Among a variety of
models for 2-D systems, the Fornasini-Marchesini (F-M)
first and second models as well as the Roesser model have
been the popular ones because of their engineering insights
in image processing. It should be noted that the 2-D space
Roesser model, which has been proposed firstly in [25] and
then extensively studied in the literature [26–29], could be
embedded into the F-M model without increasing dimen-
sions. By using the finite-difference method, many fun-
damental partial differential equations can be transformed
into the Roesser model [28]. So far, many important re-
sults on 2-D systems have been reported in the literature.
For example, the stability analysis problem for 2-D sys-
tems has been investigated in [27, 30], the controller and
filter design problems have been considered in [26, 31–34],
and the model approximation problem for 2-D digital filters
has been studied in [35].

It should be pointed out that, up to now, almost all
the research efforts on dynamical complex networks have
been devoted to the one-dimensional (1-D) case where the
network dynamics evolves along one direction only. How-
ever, in reality, many kinds of complex networks are best
treated in two dimensions. The 2-D phenomenon has been
addressed for complex networks as early as in [36] where the
2-D Fourier transform NMR (Nuclear magnetic resonance)
was used to study the behaviors of the proton-proton net-
works with spin-spin couplings. Wireless sensor networks
(WSNs) are a typical class of complex networks whose
nodes are the sensors linked by the wireless communica-
tions. For WSNs, so far, different geometric topologies have
been proposed to be the underlying network topologies to
achieve the sparseness of the communication networks or to
guarantee the package delivery of specific routing methods,
and most available topology control algorithms have been

based on the two-dimensional networks where all sensor
nodes are distributed in a 2-D plane [37]. Another type of
complex networks that exhibit dynamical behaviors along
two dimensions are the genetic regulatory networks, see
e.g. [38] for the collective dynamics of coupled 2-D chaotic
maps on gene regulatory network of bacterium Escherichia
coli. To this end, it can be concluded that many phenom-
ena in nature can be modeled as 2-D complex networks
whose dynamics (e.g. synchronization) analysis issue has,
unfortunately, been largely overlooked in the area due pri-
marily to the mathematical complexity. For example, the
time synchronization problem is known to be crucial for 2-
D wireless sensor networks, but few results have been avail-
able from a dynamics analysis perspective. It is, therefore,
the main purpose of this paper to investigate how the syn-
chronization of a 2-D complex network is affected by its
topology through the coupling strength in the presence of
the parameter uncertainties.

In this paper, we aim to make the one of the first few at-
tempts to address the synchronization problem for an array
of 2-D coupled dynamical networks. The class of systems
under investigation is described by the 2-D nonlinear state
space model which is oriented from the well-known FM
second model. The purpose of the problem addressed is
to derive sufficient conditions ensuring the global synchro-
nization in terms of linear matrix inequalities. Further-
more, the obtained results are extended to the more general
case where the system matrices contain parameter uncer-
tainties in either the polytopic or the norm-bounded form.
The main contribution of this paper is mainly threefold: 1)
a new 2-D complex network model is proposed where both
the network dynamics and the couplings evolve in two direc-
tions; 2) based on this 2-D complex network model, the syn-
chronization concept is put forward to account for the phe-
nomenon that the propagations of all sub-networks are syn-
chronized in both directions with the help from the coupling
strength; and 3) an energy-like quadratic function is devel-
oped, together with the intensive use of the Kronecker prod-
uct, to establish the easy-to-verify conditions under which
the addressed 2-D complex network model achieves global
synchronization. In summary, this paper deals with a new
problem for a new model using comprehensive mathemat-
ical analysis tools.

Notations: Throughout this paper, In is the n× n iden-
tity matrix and Z+ is the set of non-negative integers. The
notation X ≥ 0 (respectively, X > 0) means that X is real,
symmetric and positive semidefinite (respectively, positive
definite). ‘∗’ in a matrix is used to denote the term which
is induced by symmetry. ‖ · ‖ refers to the Euclidean vec-
tor norm; and λmin(·), λmax(·) denote the minimum and
the maximum eigenvalues of a real symmetric matrix re-
spectively. The Kronecker product of matrices X and Y
is denoted as X ⊗ Y . Matrices, if they are not explicitly
specified, are assumed to have compatible dimensions.

II. Problem formulation and preliminaries

Consider the following dynamical network consisting of
N identical nodes with diffusive coupling, in which each
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node is a 2-D nonlinear state space system generalized from
the well-known FM second model:

xi(k + 1, h + 1) =A1xi(k + 1, h) + A2xi(k, h + 1)
+ f(xi(k + 1, h), xi(k, h + 1))

+
N∑

j=1

G
(1)
ij Γxj(k + 1, h)

+
N∑

j=1

G
(2)
ij Λxj(k, h + 1), (1)

where i = 1, 2, . . . , N ; for k and h ∈ Z+, xi(k, h) ∈ Rn is
the state vector of the ith node; A1 and A2 are known real
system matrices; Γ and Λ describe the inner couplings of
the network in the horizontal and the vertical directions,
respectively; G(1) = (G(1)

ij )N×N and G(2) = (G(2)
ij )N×N are

the coupling configuration matrices denoting, respectively,
the topological structures of the complex network in the
horizontal and the vertical directions that satisfy the fol-
lowing diffusive coupling connections:

G
(q)
ij = G

(q)
ji ≥ 0 (i 6= j), G

(q)
ii = −

N∑

j=1,j 6=i

G
(q)
ij ; (2)

where q = 1, 2; i, j = 1, 2, . . . , N . The diffusive coupling
configuration means that these connected nodes would be
decoupled at the synchronized state. The nonlinear vector-
valued continuous function f : Rn×Rn → Rn is known and
assumed to satisfy that for all u, ũ, v, ṽ ∈ Rn, the following
condition holds:

‖f(u, v)− f(ũ, ṽ)‖ ≤ ‖B1(u− ũ) + B2(v − ṽ)‖, (3)

where B1 and B2 are known real matrices of appropriate
dimensions.

Remark 1: As stated in [27, 34], the 2-D dynamical sys-
tems exist extensively in practical applications, such as
those in thermal processes, water stream heating and im-
age data processing and transmission [21,30]. As a field of
investigation, 2-D FM second model has received consid-
erable attention, see e.g. [39,40] for stability analysis issue
using the Lyapunov approach, [32,34,41] for robust stabil-
ity and stabilization issues, and [31,33] for the H∞ filtering
issue. It has been shown in [42] that Roesser model could
be regarded as a special kind of FM second model without
requiring any increasing of dimension, while the converse
might not be true. For the representative results concern-
ing Roesser model, we refer the readers to [26, 27, 29] for
the H∞ control studies, to [28] for application of hyperbolic
partial differential equations, to [43] for the positive real
control, and to [35] and [44] for the H∞ model reduction
and filtering research, respectively. It should be noted that,
in all the references mentioned above, the model under con-
sideration is assumed to be linear which would largely limit
the application scope. In this paper, the nonlinear 2-D dy-
namical systems are to be studied and our main attention
is focused on the synchronization behavior for an array of
such systems coupled according to certain topologies.

The boundary condition associated with the dynamical
network (1) is given as

xi(0, k) = ϕi(k), xi(k, 0) = ψi(k); k ∈ Z+ (4)

where i = 1, 2, . . . , N ; ϕi, ψi : R → Rn are known non-
linear functions satisfying ϕi(0) = ψi(0) and the following
condition:

lim
M→∞

M∑

k=0

N−1∑

i=1

N∑

j=i+1

(‖ϕi(k)− ϕj(k)‖2

+‖ψi(k)− ψj(k)‖2) < ∞. (5)

For the purpose of simplicity, we introduce the following
notations: x(k, h) :=

(
xT

1 (k, h), xT
2 (k, h), . . . , xT

N (k, h)
)T ,

F (x(k+1, h), x(k, h+1)) :=
(
fT (x1(k+1, h), x1(k, h+1)),

fT (x2(k+1, h), x2(k, h+1)), . . . , fT (xN (k+1, h), xN (k, h+
1))

)T . By using the Kronecker product, the coupled 2-D
dynamical network (1) can be rewritten in the following
compact form:

x(k + 1, h + 1) =(IN ⊗A1 + G(1) ⊗ Γ)x(k + 1, h)

+ (IN ⊗A2 + G(2) ⊗ Λ)x(k, h + 1)
+ F (x(k + 1, h), x(k, h + 1)). (6)

To proceed, we need to introduce the following defini-
tions and lemmas.

Definition 1: The synchronization manifold is defined as
S , {(xT

1 (k, h), xT
2 (k, h), . . . , xT

N (k, h))T ∈ RnN |xi(k, h) =
xj(k, h) for i, j = 1, 2, . . . , N}, where xi(k, h) = (xi1(k, h),
xi2(k, h), . . . , xin(k, h))T (i = 1, 2, . . . , N) is the state of
node i.

Definition 2: The synchronization manifold S is said to
be globally asymptotically stable for the dynamical net-
work (1) or, in other words, the 2-D two-dimensional net-
work (1) is globally asymptotically synchronized, if

lim
k+h→∞

‖xi(k, h)− xj(k, h)‖ = 0 (7)

holds for all i, j = 1, 2, . . . , N and for every boundary con-
dition (4) satisfying (5).

Remark 2: The complex network model (1)-(3) is, to the
best of the authors’ knowledge, the first 2-D model of this
kind that is proposed to reflect both the network dynam-
ics and the couplings propagating in two directions. Also,
based on such a 2-D complex network model, the definition
of synchronization given in Definition 2 is a new concept
that accounts for the phenomenon that the propagations
of all sub-networks are synchronized in both directions,
thanks to the coupling strength. In the sequel, we aim to
develop an energy-like quadratic function and employ the
Kronecker product so as to establish easily solvable suffi-
cient conditions under which the addressed 2-D complex
network model achieves global synchronization.

Lemma 1: [17] Let e be the N -dimensional vector with
all components being 1 and U = (uij)N×N , NIN − eeT .
For i = 1, 2, . . . , N , assume that P is an n× n matrix, x =
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(xT
1 , xT

2 , . . . , xT
N )T where xi = (xi1, xi2, . . . , xin)T ∈ Rn,

and y = (yT
1 , yT

2 , . . . , yT
N )T where yi = (yi1, yi2, . . . , yin)T ∈

Rn. Then, we have the following relationships:
(1) UG(j) = G(j)U = NG(j), j = 1, 2;

(2) xT (U ⊗ P )y = −
N−1∑
i=1

N∑
j=i+1

uij(xi − xj)T P (yi − yj);

where G(1) and G(2) are matrices defined in model (6).

III. Synchronization for the 2-D dynamical
network

In this section, we first investigate the globally asymp-
totic synchronization problem and derive easy-to-verify cri-
teria for the 2-D dynamical network (1) with couplings.
After that, we shall extend the obtained results to the
discrete-time coupled networks with parameter uncertain-
ties.

A. The synchronization problem without parameter uncer-
tainties

The following theorem provides a sufficient condition un-
der which the 2-D coupled dynamical network (1) is glob-
ally asymptotically synchronized.

Theorem 1: The synchronization manifold S is globally
asymptotically stable for the dynamical network (1) if there
exist matrices P > 0, Q > 0 and a scalar ε > 0 such that
the following matrix inequalities hold for all 1 ≤ i < j ≤ N :

Q < P,

Φij ,




Φ(1,1)
ij Φ(1,2)

ij AT
1 P −NG

(1)
ij ΓT P

∗ Φ(2,2)
ij AT

2 P −NG
(2)
ij ΛT P

∗ ∗ P − εI


 < 0; (8)

where

Φ(1,1)
ij =AT

1 PA1 −NG
(1,1)
ij ΓT PΓ−Q

−NG
(1)
ij (AT

1 PΓ + ΓT PA1) + εBT
1 B1,

Φ(1,2)
ij =AT

1 PA2 −NG
(1,2)
ij ΓT PΛ−NG

(2)
ij AT

1 PΛ

−NG
(1)
ij ΓT PA2 + εBT

1 B2,

Φ(2,2)
ij =AT

2 PA2 −NG
(2,2)
ij ΛT PΛ− P + Q

−NG
(2)
ij (AT

2 PΛ + ΛT PA2) + εBT
2 B2

and G(1,1) = G(1)G(1) = (G(1,1)
ij )N×N , G(1,2) = G(1)G(2) =

(G(1,2)
ij )N×N , G(2,2) = G(2)G(2) = (G(2,2)

ij )N×N .
On the synchronization manifold S, the connected nodes

are decoupled and each of them would have the same dy-
namical behavior as the following 2-D nonlinear system:

y(k + 1, h + 1) =A1y(k + 1, h) + A2y(k, h + 1)
+ f(y(k + 1, h), y(k, h + 1)). (9)

The dynamical behaviors of system (9) could be various.
Among others, the stability is one of the most important
features. Similar to the proof of Theorem 1, by consid-
ering the Schur complement operation [45], the following
corollary is readily accessible.

Corollary 1: The 2-D nonlinear system (9) under the ad-
ditional assumption of f(0, 0) = 0 is globally asymptot-
ically stable if there exist matrices P > 0, Q > 0 and
a scalar ε > 0 such that the following matrix inequality
holds:




−Q + εBT
1 B1 εBT

1 B2 0 AT
1 P

∗ Q 0 AT
2 P

∗ ∗ −εI P
∗ ∗ ∗ −P


 < 0, (10)

where Q = −P + Q + εBT
2 B2.

Remark 3: As stated in Remark 1, most of the 2-D
discrete-time models discussed in the literature have been
assumed to be linear except, for example, Ref. [40] where
the nonlinear local state-space model was firstly studied
and an important sufficient asymptotic stability condition
was derived. Compared with Theorem 2 in [40], our result
in Corollary 1 is more general. For example, the matrix
P in Theorem 2 of [40] was required to be positive-definite
and diagonal while P in Corollary 1 here is only required to
be positive definite. Furthermore, when system (9) reduces
to the linear model

y(k + 1, h + 1) = A1y(k + 1, h) + A2y(k, h + 1), (11)

a sufficient condition could be derived easily from Corollary
1 ensuring the linear model (11) to be globally asymptoti-
cally stable, that is, system (11) is globally asymptotically
stable if there exist matrices P > 0 and Q > 0 such that
the following matrix inequality



−Q 0 AT

1 P
∗ −P + Q AT

2 P
∗ ∗ −P


 < 0 (12)

holds. Note that (12) has been obtained in [34] and is
explicitly stated in Remark 3 of [41].

B. The synchronization problem with parameter uncertain-
ties

Having established the sufficient conditions for the glob-
ally asymptotic synchronization for the 2-D dynamical net-
work (1) with couplings, we are now in a position to extend
the obtained results to the discrete-time coupled networks
with parameter uncertainties.

In reality, modeling errors are unavoidable. For 2-D
discrete-time complex networks, the modeling error may
result from the fluctuation of the connection weights of the
node of complex networks, the inconsistency introduced
by the discretization process, and the estimation variance
from statistical tests when identifying the network param-
eters. Parameter uncertainties are a typical class of mod-
eling errors. Generally, according to the way it occurs,
the parameter uncertainty can be categorized into norm-
bounded uncertainty and polytopic uncertainty, both of
which have been extensively studied in the literature on
research problems such as robust stability, robust control
and robust filtering [17,26,32–35]. Needless to say, param-
eter uncertainties inevitably exist in the modeling process
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of 2-D complex networks and the purpose of this subsec-
tion is therefore to extend our previously obtained results
to account for both the norm-bounded and the polytopic
uncertainties.

Let us first deal with the 2-D complex networks with
norm-bounded parameter uncertainties.

Assumption 1: Matrices A1 and A2 in the dynamical
network (1) are of the following form

A1 = A10 + ∆A1, A2 = A20 + ∆A2

where A10 and A20 are known constant matrices in Rn×n;
∆A1 and ∆A2 are real-valued time-varying matrix func-
tions denoting the perturbations from the environment to
the array of dynamical systems which are assumed to sat-
isfy

[
∆A1 ∆A2

]
= DH

[
W1 W2

]
, (13)

where D, W1 and W2 are known matrices with appropri-
ate dimensions, and H is a real uncertain matrix function
satisfying HT H ≤ I.

Lemma 2: Given appropriately dimensioned matrices
Σ1, Σ2 and Σ3 with ΣT

1 = Σ1, then

Σ1 + Σ2ΩΣ3 + ΣT
3 ΩT ΣT

2 < 0 (14)

holds for all Ω satisfying ΩT Ω ≤ I if and only if there exists
some ε > 0 such that

Σ1 + ε−1Σ2ΣT
2 + εΣT

3 Σ3 < 0. (15)
Theorem 2: The synchronization manifold S is globally

robustly asymptotically stable for the dynamical network
(1) with Assumption 1 if there exist matrices P > 0, Q > 0
and scalars ε > 0, γ > 0 such that the matrix inequalities
in (16) (shown at the top of the next page) hold for all
1 ≤ i < j ≤ N , where matrices Ψ(1,1)

ij , Ψ(1,2)
ij , Ψ(2,2)

ij are
defined just below (16) and the other symbols are the same
as defined in Theorem 1.

Next, let us cope with the robust synchronization prob-
lem for 2-D complex networks with polytopic parameter
uncertainties.

Assumption 2: Matrices A1 and A2 in dynamical net-
work (1) contain partially unknown parameters, that is,
(A1, A2) ∈ Υ where

Υ , {ℵ(λ)|ℵ(λ) =
κ∑

l=1

λlℵl;
κ∑

l=1

λl = 1, λl ≥ 0} (17)

and ℵl = (A1l, A2l) denotes the lth vertex of the polytope.
The following theorem is easily accessible and its proof

is therefore omitted.
Theorem 3: The synchronization manifold S is globally

robustly asymptotically stable for the dynamical network
(1) with Assumption 2 if there exist matrices P > 0, Q > 0
and scalar ε > 0 such that the following matrix inequalities
hold for all 1 ≤ i < j ≤ N and l = 1, 2, . . . , κ:

Q < P,




Θ(1,1)
ij Θ(1,2)

ij −NG
(1)
ij ΓT P AT

1lP

∗ Θ(2,2)
ij −NG

(2)
ij ΛT P AT

2lP
∗ ∗ −εI P
∗ ∗ ∗ −P


 < 0; (18)

where

Θ(1,1)
ij =−NG

(1,1)
ij ΓT PΓ−Q + εBT

1 B1

−NG
(1)
ij (AT

1lPΓ + ΓT PA1l),

Θ(1,2)
ij =−NG

(1,2)
ij ΓT PΛ−NG

(2)
ij AT

1lPΛ

−NG
(1)
ij ΓT PA2l + εBT

1 B2,

Θ(2,2)
ij =−NG

(2,2)
ij ΛT PΛ− P + Q

−NG
(2)
ij (AT

2lPΛ + ΛT PA2l) + εBT
2 B2

and the other symbols are defined in Theorem 1.
In terms of Theorem 2 and Theorem 3 obtained above,

the following corollaries can be readily obtained.
Corollary 2: Under Assumption 1 and an additional as-

sumption that f(0, 0) = 0, the 2-D nonlinear system (9) is
globally robustly asymptotically stable if there exist matri-
ces P > 0, Q > 0 and scalars ε > 0, γ > 0 such that the
following matrix inequality holds:



P1 εBT
1 B2 + γWT

1 W2 0 AT
10P 0

∗ P2 0 AT
20P 0

∗ ∗ −εI P 0
∗ ∗ ∗ −P PD
∗ ∗ ∗ ∗ −γI




< 0, (19)

where P1 = −Q + εBT
1 B1 + γWT

1 W1 and P2 = −P + Q +
εBT

2 B2 + γWT
2 W2.

Corollary 3: Under Assumption 1 and an additional as-
sumption that f(0, 0) = 0, the 2-D nonlinear system (9) is
globally robustly asymptotically stable if there exist matri-
ces P > 0, Q > 0 and scalar ε > 0 such that the following
matrix inequality holds for all l = 1, 2, . . . , κ:




−Q + εBT
1 B1 εBT

1 B2 0 AT
1lP

∗ Q 0 AT
2lP

∗ ∗ −εI P
∗ ∗ ∗ −P


 < 0, (20)

where Q is the same as defined in Corollary 1.
Remark 4: The synchronization problem has been exten-

sively investigated in the literature for 1-D complex net-
works including neural networks and genetic regulatory
networks, and numerous results have been reported, see
e.g. [7,10,17,46–50]. In this paper, we have taken a major
step further to study the robust synchronization problem
for a class of new complex network, that is, an array of 2-D
coupled dynamical networks. The criteria derived here are
in the form of linear matrix inequalities (LMIs) that can
be effectively solved and checked by the algorithms such as
the interior-point method.

Remark 5: In this paper, the Lipschitz-like nonlinear
functions are employed to describe the nonlinearities ex-
isting in the coupled network. The main results estab-
lished contain all the information of the complex networks
including the physical parameters, coupling strength, non-
linear parameters and bounds/vertices for the parameter
uncertainties. In the next section, a simulation example is
provided to show the usefulness of the proposed synchro-
nization conditions.
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Q < P,




Ψ(1,1)
ij Ψ(1,2)

ij −NG
(1)
ij ΓT P AT

10P −NG
(1)
ij ΓT PD

∗ Ψ(2,2)
ij −NG

(2)
ij ΛT P AT

20P −NG
(2)
ij ΛT PD

∗ ∗ −εI P 0
∗ ∗ ∗ −P PD
∗ ∗ ∗ ∗ −γNI




< 0; (16)

with

Ψ(1,1)
ij = −NG

(1,1)
ij ΓT PΓ−Q−NG

(1)
ij (AT

10PΓ + ΓT PA10) + εBT
1 B1 + γNWT

1 W1,

Ψ(1,2)
ij = −NG

(1,2)
ij ΓT PΛ−NG

(2)
ij AT

10PΛ−NG
(1)
ij ΓT PA20 + εBT

1 B2 + γNWT
1 W2,

Ψ(2,2)
ij = −NG

(2,2)
ij ΛT PΛ− P + Q−NG

(2)
ij (AT

20PΛ + ΛT PA20) + εBT
2 B2 + γNWT

2 W2.

IV. Numerical Examples

In this section, a 2-D network model with five coupled
nodes is considered as an example to illustrate the main
theoretical results obtained. In a real world, it is known
that some dynamical processes in gas absorption, air drying
and water stream heating can be described by the Darboux
equation [28]:

∂2s(z, t)
∂z∂t

= a1
∂s(z, t)

∂t
+ a2

∂s(z, t)
∂z

+ a0s(z, t) + bg(z, t),

(21)

where s(z, t) is a function at z(space) ∈ [0, zend] and
t(time) ∈ [0,∞). a0, a1, a2 and b are real coefficients,
and g(z, t) can be regarded as input function or nonlinear
perturbation function.

By defining

r(z, t) , ∂s(z, t)
∂t

− a2s(z, t)

and letting

y1(i, j) , r(i, j), y2(i, j) , s(i, j),

where r(i, j) , r(i∆z, j∆t) and s(i, j) , s(i∆z, j∆t), the
partial differential equation (21) can be converted into a
second-order nonlinear system described by model (9) with

A1 =
[

0.01δ 0
∆t 1 + a2∆t

]
,

A2 =
[

1 + a1∆z (a0 + a1a2)∆z
0 0.02δ

]
(22)

and the nonlinear function f =
[

b(∆z)g(i, j + 1) 0
]T .

The readers are referred to Refs. [26,28,42] for more details
of the transformation process. In this example, we take
a0 = −1.9773, a1 = −2, a2 = −1, b = 0.7171, ∆t = 0.6085,
∆z = 0.2024 and appropriately choose g(·, ·) in (21) such
that condition (3) is satisfied with

B1 =
[

0.1451 0
0 0

]
, B2 =

[
0 0
0 0

]
.

First, assume that there are no parameter uncertainties,
i.e., the system matrices are completely known with δ = 0.
We consider the 2-D complex network with five coupled
nodes. For simplicity, the inner coupling matrices and the
outer coupling configuration matrices in (6) in the horizon-
tal and the vertical directions are chosen to be

Γ =
[

0.42 0.20
0.36 −0.52

]
, Λ =

[
0.30 0.22
−0.20 0.56

]
,

G(1) =




−0.3 0 0.1 0.1 0.1
0 −0.2 0.1 0.1 0

0.1 0.1 −0.3 0 0.1
0.1 0.1 0 −0.2 0
0.1 0 0.1 0 −0.2




,

G(2) =




−0.3 0.1 0.1 0.1 0
0.1 −0.3 0.1 0 0.1
0.1 0.1 −0.3 0 0.1
0.1 0 0 −0.1 0
0 0.1 0.1 0 −0.2




.

Solving the matrix inequality condition (8) in Theorem 1
by using the Matlab LMI Toolbox, a feasible solution can
be found as: ε = 3.6347,

P =
[

1.0192 0.0804
0.0804 0.3637

]
, Q =

[
0.3669 0.1391
0.1391 0.2335

]
.

It follows from Theorem 1 that the synchronization man-
ifold S is globally asymptotically stable. Let the initial
boundary condition be x1(0, h) = (0.4,−0.1)T , x1(k, 0) =
(0.3,−0.2)T ; x2(0, h) = (0.2, 0.5)T , x2(k, 0) = (0.5,−1.0)T ;
x3(0, h) = (1.0, 0.5)T , x3(k, 0) = (0.6, 1.0)T ; x4(0, h) =
(−0.5, 0.4)T , x4(k, 0) = (1.0, 0.7)T ; x5(0, h) = (0.4, 1.3)T ,
x5(k, 0) = (1.9,−0.1)T ; where k, h = 1, 2, . . . , 13; other-
wise, xi(0, h) = xi(k, 0) = 0 (i = 2, 3, 4, 5). It can be seen
from Figures 1-4 that the coupled 2-D network is indeed
globally asymptotically synchronized under the above con-
ditions.

Next, let us continue to consider the case of norm-
bounded uncertainties. Assume that the parameters are
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Fig. 1. Synchronization error x11(k, h)− x21(k, h) of network (1)
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Fig. 2. Synchronization error x12(k, h)− x32(k, h) of network (1)

subject to Assumption 1 with matrices A10 and A20 de-
fined in (22). Let the condition (13) be satisfied with

W1 =
[

0.1 0
]
,W2 =

[
0.1 0.1

]
, DT =

[
0.1 −0.1

]
.

The inequalities in (16) are solvable with ε = 0.6638, γ =
0.0309,

P =
[

0.1661 0.0130
0.0130 0.0613

]
, Q =

[
0.0612 0.0223
0.0223 0.0394

]
.

Using Theorem 2, one knows that the synchronization man-
ifold S is globally robustly asymptotically stable.

Finally, assume that |δ| ≤ 1, i.e., the network considered
has polytopic parameter uncertainties. In this case, ac-
cording to Assumption 2, the parameter uncertainties can
be represented by a two-vertex polytope. By resorting to
the Matlab Toolbox, the condition (18) is satisfied with
ε = 14.8932 and

P =
[

3.6103 0.2433
0.2433 1.2160

]
, Q =

[
1.3298 0.4628
0.4628 0.7900

]
.

It follows from Theorem 3 that the synchronization mani-
fold S is globally robustly asymptotically stable.
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Fig. 3. Synchronization error x11(k, h)− x41(k, h) of network (1)
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Fig. 4. Synchronization error x12(k, h)− x52(k, h) of network (1)

V. Conclusions

This paper has been concerned with the problem of ro-
bust synchronization for a class of 2-D coupled uncertain
dynamical networks. Firstly, some sufficient conditions
have been derived which ensure the deterministic coupled
complex network to be globally asymptotically synchro-
nized. After that, the obtained results have been extended
to the 2-D uncertain complex networks where the param-
eter uncertainties are assumed to be in either the norm-
bounded or the polytopic forms. An illustrative example
with numerical simulations has been presented to demon-
strate the effectiveness of the obtained criteria.

Appendix A

Proof of Theorem 1

Proof: To establish the synchronization performance,
we introduce the following energy-like index

J =xT (k + 1, h + 1)(U ⊗ P )x(k + 1, h + 1)

− xT (k + 1, h)(U ⊗Q)x(k + 1, h)

− xT (k, h + 1)(U ⊗ (P −Q))x(k, h + 1), (23)
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J =
N−1∑

i=1

N∑

j=i+1

{(
xi(k + 1, h)− xj(k + 1, h)

)T
[
AT

1 PA1 −NG
(1)
ij (AT

1 PΓ + ΓT PA1)−NG
(1,1)
ij ΓT PΓ−Q

]

× (
xi(k + 1, h)− xj(k + 1, h)

)
+

(
xi(k, h + 1)− xj(k, h + 1)

)T
[
AT

2 PA2 −NG
(2)
ij (AT

2 PΛ + ΛT PA2)

−NG
(2,2)
ij ΛT PΛ− P + Q

] (
xi(k, h + 1)− xj(k, h + 1)

)
+

(
f(xi(k + 1, h), xi(k, h + 1))

− f(xj(k + 1, h), xj(k, h + 1))
)T

P
(
f(xi(k + 1, h), xi(k, h + 1))− f(xj(k + 1, h), xj(k, h + 1))

)

+ 2
(
xi(k + 1, h)− xj(k + 1, h)

)T
[
AT

1 PA2 −NG
(1)
ij ΓT PA2 −NG

(2)
ij AT

1 PΛ−NG
(1,2)
ij ΓT PΛ

]

× (
xi(k, h + 1)− xj(k, h + 1)

)
+ 2

(
xi(k + 1, h)− xj(k + 1, h)

)T
[
AT

1 P −NG
(1)
ij ΓT P

]

× (
f(xi(k + 1, h), xi(k, h + 1))− f(xj(k + 1, h), xj(k, h + 1))

)
+ 2

(
xi(k, h + 1)− xj(k, h + 1)

)T

×
[
AT

2 P −NG
(2)
ij ΛT P

] (
f(xi(k + 1, h), xi(k, h + 1))− f(xj(k + 1, h), xj(k, h + 1))

)}
. (24)

where k, h ∈ Z+, {P > 0, Q > 0} is the solution of the ma-
trix inequalities (8), and U is the matrix defined in Lemma
1. Then, we have from Lemma 1 and the properties of
Kronecker product that formula (24) holds.

Note that condition (3) on the nonlinear function f(·, ·)
ensures that, for scalar ε > 0, the inequality (25) (shown
on the next page) holds for all 1 ≤ i < j ≤ N . Substituting
(25) into (24) and considering the condition (8), one has

J ≤
N−1∑

i=1

N∑

j=i+1

ξT
ij(k, h)Φijξij(k, h) ≤ 0, (26)

where ξT
ij(k, h) =

(
(xi(k +1, h)−xj(k +1, h))T (xi(k, h+

1)−xj(k, h+1))T (f(xi(k +1, h), xi(k, h+1))−f(xj(k +
1, h), xj(k, h + 1)))T

)
. Hence, for all x(k, h) /∈ S, we have

the inequality (27) (shown on the next page below (25)).

Defining α , 1−min
i,j

λmin(−Φij)/ max{λmax(Q), λmax(P−
Q)}, we have α < 1 because of the positiveness of
min
i,j

λmin(−Φij)/ max{λmax(Q), λmax(P − Q)}. On the

other hand, inequality (28) (shown on page 9) holds; which
means that α ∈ (0, 1) and α is independent of x(k + 1, h)
and x(k, h + 1). Therefore, (28) ensures that the following
inequality holds for all k, h ∈ Z+

xT (k + 1, h + 1)(U ⊗ P )x(k + 1, h + 1)

≤ α
[
xT (k + 1, h)(U ⊗Q)x(k + 1, h)

+ xT (k, h + 1)(U ⊗ (P −Q))x(k, h + 1)
]
. (29)

Upon the relationship (29), it can be established that

xT (k + 1, 0)(U ⊗ P )x(k + 1, 0)

= xT (k + 1, 0)(U ⊗ P )x(k + 1, 0),

xT (k, 1)(U ⊗ P )x(k, 1)

≤ α
[
xT (k, 0)(U ⊗Q)x(k, 0)

+ xT (k − 1, 1)(U ⊗ (P −Q))x(k − 1, 1)
]

≤ α
[
xT (k, 0)(U ⊗ P )x(k, 0)

+ xT (k − 1, 1)(U ⊗ (P −Q))x(k − 1, 1)
]
,

xT (k − 1, 2)(U ⊗ P )x(k − 1, 2)

≤ α
[
xT (k − 1, 1)(U ⊗Q)x(k − 1, 1)

+xT (k − 2, 2)(U ⊗ (P −Q))x(k − 2, 2)
]
,

...

xT (1, k)(U ⊗ P )x(1, k)

≤ α
[
xT (1, k − 1)(U ⊗Q)x(1, k − 1)

+ xT (0, k)(U ⊗ (P −Q))x(0, k)
]
,

xT (0, k + 1)(U ⊗ P )x(0, k + 1)

= xT (0, k + 1)(U ⊗ P )x(0, k + 1).

Adding both sides of the above inequalities and equalities
yields

k+1∑
s=0

xT (k + 1− s, s)(U ⊗ P )x(k + 1− s, s)

≤ α
k∑

s=0

xT (k − s, s)(U ⊗ P )x(k − s, s)

+ xT (k + 1, 0)(U ⊗ P )x(k + 1, 0)

+ xT (0, k + 1)(U ⊗ P )x(0, k + 1)

− αxT (0, k)(U ⊗Q)x(0, k)

≤ α
k∑

s=0

xT (k − s, s)(U ⊗ P )x(k − s, s)

+ xT (k + 1, 0)(U ⊗ P )x(k + 1, 0)

+ xT (0, k + 1)(U ⊗ P )x(0, k + 1). (30)
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ε
(
f(xi(k + 1, h), xi(k, h + 1))− f(xj(k + 1, h), xj(k, h + 1))

)T

×(
f(xi(k + 1, h), xi(k, h + 1))− f(xj(k + 1, h), xj(k, h + 1))

)

≤ (
xi(k + 1, h)− xj(k + 1, h)

)T (εBT
1 B1)

(
xi(k + 1, h)− xj(k + 1, h)

)

+2
(
xi(k + 1, h)− xj(k + 1, h)

)T (εBT
1 B2)

(
xi(k, h + 1)− xj(k, h + 1)

)

+
(
xi(k, h + 1)− xj(k, h + 1)

)T (εBT
2 B2)

(
xi(k, h + 1)− xj(k, h + 1)

)
. (25)

J
xT (k + 1, h)(U ⊗Q)x(k + 1, h) + xT (k, h + 1)(U ⊗ (P −Q))x(k, h + 1)

≤
−min

i,j
λmin(−Φij)

N−1∑
i=1

N∑
j=i+1

‖ξT
ij(k, h)‖2

max{λmax(Q), λmax(P −Q)}
N−1∑
i=1

N∑
j=i+1

(‖xi(k + 1, h)− xj(k + 1, h)‖2 + ‖xi(k, h + 1)− xj(k, h + 1)‖2)

≤ −
min
i,j

λmin(−Φij)

max{λmax(Q), λmax(P −Q)} . (27)

α ≥ xT (k + 1, h + 1)(U ⊗ P )x(k + 1, h + 1)
xT (k + 1, h)(U ⊗Q)x(k + 1, h) + xT (k, h + 1)(U ⊗ (P −Q))x(k, h + 1)

> 0, (28)

Using the above relationship iteratively, one obtains

k+1∑
s=0

xT (k + 1− s, s)(U ⊗ P )x(k + 1− s, s)

≤
k∑

s=0

αs
[
xT (k + 1− s, 0)(U ⊗ P )x(k + 1− s, 0)

+ xT (0, k + 1− s)(U ⊗ P )x(0, k + 1− s)
]

+ αk+1xT (0, 0)(U ⊗ P )x(0, 0)

≤
k+1∑
s=0

αs
[
xT (k + 1− s, 0)(U ⊗ P )x(k + 1− s, 0)

+ xT (0, k + 1− s)(U ⊗ P )x(0, k + 1− s)
]
. (31)

It follows easily from (31) and Lemma 1 that inequality
(32) (shown on page 10) holds. Therefore, we can obtain
inequality (33), where β = λmax(P )/λmin(P ) ≥ 1.

By denoting

Sk ,
k∑

s=0

N−1∑

i=1

N∑

j=i+1

‖xi(k − s, s)− xj(k − s, s)‖2,

it follows from inequality (33) that the M + 1 inequalities
(shown in the middle of page 10) hold. Summing up both
sides of these inequalities yields formula (34) on page 10.

By noting the initial boundary conditions (4)-(5) and
the fact that α ∈ (0, 1), the right side of the inequality
(34) is bounded, which means that the positive term series
∞∑

l=0

Sl is convergent, and hence it can be concluded that

lim
l→∞

Sl = 0, that is, lim
k+h→∞

‖xi(k, h)− xj(k, h)‖ = 0 holds

for all i, j = 1, 2, . . . , N . From Definition 2, it is known that
the synchronization manifold S is globally asymptotically
stable for the 2-D dynamical network (1). The proof is now
completed.

Appendix B

Proof of Theorem 2

Proof: From the result of Theorem 1, Theorem 2
can be proved by substituting A1 and A2 in Assumption
1 (with norm-bounded uncertain parameter matrices) into
(8). Then, by the well-known Schur complement operation,
we obtain (14) with Ω = H and

Σ1 =




Σ(1,1)
1 Σ(1,2)

1 −NG
(1)
ij ΓT P AT

10P

∗ Σ(2,2)
1 −NG

(2)
ij ΛT P AT

20P
∗ ∗ −εI P
∗ ∗ ∗ −P


 ,

ΣT
2 =

√
N

[
−G

(1)
ij DT PΓ −G

(2)
ij DT PΛ 0 1

N DT P
]
,
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k+1∑
s=0

N−1∑

i=1

N∑

j=i+1

(
xi(k + 1− s, s)− xj(k + 1− s, s)

)T
P

(
xi(k + 1− s, s)− xj(k + 1− s, s)

)

≤
k+1∑
s=0

N−1∑

i=1

N∑

j=i+1

αs
[(

xi(k + 1− s, 0)− xj(k + 1− s, 0)
)T

P
(
xi(k + 1− s, 0)− xj(k + 1− s, 0)

)

+
(
xi(0, k + 1− s)− xj(0, k + 1− s)

)T
P

(
xi(0, k + 1− s)− xj(0, k + 1− s)

)]
. (32)

k+1∑
s=0

N−1∑

i=1

N∑

j=i+1

‖xi(k + 1− s, s)− xj(k + 1− s, s)‖2

≤ β
k+1∑
s=0

αs
N−1∑

i=1

N∑

j=i+1

[‖xi(k + 1− s, 0)− xj(k + 1− s, 0)‖2 + ‖xi(0, k + 1− s)− xj(0, k + 1− s)‖2] (33)

S0 ≤ β
N−1∑

i=1

N∑

j=i+1

[‖xi(0, 0)− xj(0, 0)‖2 + ‖xi(0, 0)− xj(0, 0)‖2] ,

S1 ≤ β
N−1∑

i=1

N∑

j=i+1

[
α
(‖xi(0, 0)− xj(0, 0)‖2 + ‖xi(0, 0)− xj(0, 0)‖2)

+
(‖xi(1, 0)− xj(1, 0)‖2 + ‖xi(0, 1)− xj(0, 1)‖2)] ,

S2 ≤ β

N−1∑

i=1

N∑

j=i+1

[
α2

(‖xi(0, 0)− xj(0, 0)‖2 + ‖xi(0, 0)− xj(0, 0)‖2)

+α
(‖xi(1, 0)− xj(1, 0)‖2 + ‖xi(0, 1)− xj(0, 1)‖2) +

(‖xi(2, 0)− xj(2, 0)‖2 + ‖xi(0, 2)− xj(0, 2)‖2)] ,

...

SM ≤ β
N−1∑

i=1

N∑

j=i+1

[
αM

(‖xi(0, 0)− xj(0, 0)‖2 + ‖xi(0, 0)− xj(0, 0)‖2)

+αM−1
(‖xi(1, 0)− xj(1, 0)‖2 + ‖xi(0, 1)− xj(0, 1)‖2) + · · ·+ α

(‖xi(M − 1, 0)− xj(M − 1, 0)‖2
+‖xi(0,M − 1)− xj(0,M − 1)‖2) +

(‖xi(M, 0)− xj(M, 0)‖2 + ‖xi(0,M)− xj(0,M)‖2)] .

M∑

l=0

Sl ≤β
N−1∑

i=1

N∑

j=i+1

{
(1 + α + · · ·+ αM )

(‖xi(0, 0)− xj(0, 0)‖2 + ‖xi(0, 0)− xj(0, 0)‖2)

+ (1 + α + · · ·+ αM−1)
(‖xi(1, 0)− xj(1, 0)‖2 + ‖xi(0, 1)− xj(0, 1)‖2) + · · ·

+ (1 + α)
(‖xi(M − 1, 0)− xj(M − 1, 0)‖2 + ‖xi(0,M − 1)− xj(0,M − 1)‖2)

+
(‖xi(M, 0)− xj(M, 0)‖2 + ‖xi(0,M)− xj(0,M)‖2)}

≤β
1− αM+1

1− α

M∑

l=0

N−1∑

i=1

N∑

j=i+1

(‖xi(l, 0)− xj(l, 0)‖2 + ‖xi(0, l)− xj(0, l)‖2). (34)
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Σ3 =
√

N
[

W1 W2 0 0
]
;

where

Σ(1,1)
1 =−NG

(1,1)
ij ΓT PΓ−Q + εBT

1 B1

−NG
(1)
ij (AT

10PΓ + ΓT PA10),

Σ(1,2)
1 =−NG

(1)
ij ΓT PA20 + εBT

1 B2 −NG
(2)
ij AT

10PΛ

−NG
(1,2)
ij ΓT PΛ,

Σ(2,2)
1 =−NG

(2,2)
ij ΛT PΛ− P + Q + εBT

2 B2

−NG
(2)
ij (AT

20PΛ + ΛT PA20).

By resorting to Lemma 2 and the Schur complement oper-
ation, (15) holds if and only if (16) is true, and this ends
the proof.
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[50] W. Yu, J. Cao, G. Chen, J. Lü, J. Han, and W. Wei, “Local syn-
chronization of a complex network model,” IEEE Trans. Syst.,
Man, Cybern.-B: Cybern., vol. 39, no. 1, pp. 230-241, Feb. 2009.


