8 research outputs found

    Cycle factorizations of cycle products

    Get PDF
    AbstractLet n and k1,k2,…,kn be integers with n > 1 and ki ⩾ 2 for 1 ⩽ i ⩽ n. We show that there exists a Cs-factorization of Πi=1n C2ki if and only if s = 2t with 2 ⩽ t ⩽ k1 + ··· + kn. We also settle the problem of cycle factorizations of the d-cube

    Long path and cycle decompositions of even hypercubes

    Get PDF
    We consider edge decompositions of the nn-dimensional hypercube QnQ_n into isomorphic copies of a given graph HH. While a number of results are known about decomposing QnQ_n into graphs from various classes, the simplest cases of paths and cycles of a given length are far from being understood. A conjecture of Erde asserts that if nn is even, â„“<2n\ell < 2^n and â„“\ell divides the number of edges of QnQ_n, then the path of length â„“\ell decomposes QnQ_n. Tapadia et al.\ proved that any path of length 2mn2^mn, where 2m<n2^m<n, satisfying these conditions decomposes QnQ_n. Here, we make progress toward resolving Erde's conjecture by showing that cycles of certain lengths up to 2n+1/n2^{n+1}/n decompose QnQ_n. As a consequence, we show that QnQ_n can be decomposed into copies of any path of length at most 2n/n2^{n}/n dividing the number of edges of QnQ_n, thereby settling Erde's conjecture up to a linear factor

    Hamiltonian decompositions of Cayley graphs on abelian groups of even order

    Get PDF
    AbstractAlspach conjectured that any 2k-regular connected Cayley graph cay(A,S) on a finite abelian group A can be decomposed into k hamiltonian cycles. In 1992, the author proved that the conjecture holds if S={s1,s2,…,sk} is a minimal generating set of an abelian group A of odd order. Here we prove an analogous result for abelian group of even order: If A is a finite abelian group of even order at least 4 and S={s1,s2,…,sk} is a strongly minimal generating set (i.e., 2si∉〈S−{si}〉 for each 1⩽i⩽k) of A, then cay(A,S) can be decomposed into hamiltonian cycles

    Prism complexity of matrices

    Get PDF

    Edge-disjoint Hamiltonian cycles in two-dimensional torus

    Get PDF
    The torus is one of the popular topologies for the interconnecting processors to build high-performance multicomputers. This paper presents methods to generate edge-disjoint Hamiltonian cycles in 2D tori

    Hamilton decompositions of 6-regular abelian Cayley graphs

    Get PDF
    In 1969, Lovasz asked whether every connected, vertex-transitive graph has a Hamilton path. This question has generated a considerable amount of interest, yet remains vastly open. To date, there exist no known connected, vertex-transitive graph that does not possess a Hamilton path. For the Cayley graphs, a subclass of vertex-transitive graphs, the following conjecture was made: Weak Lovász Conjecture: Every nontrivial, finite, connected Cayley graph is hamiltonian. The Chen-Quimpo Theorem proves that Cayley graphs on abelian groups flourish with Hamilton cycles, thus prompting Alspach to make the following conjecture: Alspach Conjecture: Every 2k-regular, connected Cayley graph on a finite abelian group has a Hamilton decomposition. Alspach’s conjecture is true for k = 1 and 2, but even the case k = 3 is still open. It is this case that this thesis addresses. Chapters 1–3 give introductory material and past work on the conjecture. Chapter 3 investigates the relationship between 6-regular Cayley graphs and associated quotient graphs. A proof of Alspach’s conjecture is given for the odd order case when k = 3. Chapter 4 provides a proof of the conjecture for even order graphs with 3-element connection sets that have an element generating a subgroup of index 2, and having a linear dependency among the other generators. Chapter 5 shows that if Γ = Cay(A, {s1, s2, s3}) is a connected, 6-regular, abelian Cayley graph of even order, and for some1 ≤ i ≤ 3, Δi = Cay(A/(si), {sj1 , sj2}) is 4-regular, and Δi ≄ Cay(ℤ3, {1, 1}), then Γ has a Hamilton decomposition. Alternatively stated, if Γ = Cay(A, S) is a connected, 6-regular, abelian Cayley graph of even order, then Γ has a Hamilton decomposition if S has no involutions, and for some s ∈ S, Cay(A/(s), S) is 4-regular, and of order at least 4. Finally, the Appendices give computational data resulting from C and MAGMA programs used to generate Hamilton decompositions of certain non-isomorphic Cayley graphs on low order abelian groups
    corecore