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Abstract. Let d, m, and q be positive integers and A(q) = {0, . . . , q − 1}
be an alphabet. We investigate a generalization of the well-known sub-
word complexity of d-dimensional matrices containing the elements of A(q).
Let L = (L1, . . . ,Lm) be a list of distinct d-dimensional vectors, where
Li = (ai1, . . . , aid). The prism complexity of a d-dimensional q-ary matrix
M is denoted by C(d, q,L,M) and is defined as the number of distinct
d-dimensional q-ary submatrices, whose permitted sizes are listed in L.
We review and extend the earlier results, first of all results concerning
maximum complexity of matrices and performance parameters of the con-
struction algorithms.

1. Introduction

Let d, m, n, and q be positive integers, A(q) = {0, . . . , q − 1} be an al-
phabet, ε be the empty matrix, A(q, d)∗ be the set of d-dimensional q-ary
matrices, A(q, d)+ be the set of nonempty d-dimensional q-ary matrices. Let
L = (L1, . . . ,Lm) be a list of d-dimensional vectors, where Li gives the size of
an ai1 × · · · × aid sized submatrix of M.

The (q, d,L)-complexity (or shortly prism complexity) C(q, d,L,M) of a
matrix M is defined as follows.

Key words and phrases: Subword complexity, d-complexity, scattered complexity, prism com-
plexity, complexity of arrays, De Bruijn graphs.
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Definition 1.1. Let q, d, and L be given. The (q, d,L)-complexity of a given
d-dimensional q-ary matrixM is denoted by C(q, d,L,M) and is defined as the
number of distinct submatrices (containing neighboring rows and neighboring
columns) of M whose permitted sizes are given by L, that is

(1.1) C(q, d,L,M) =

m∑
i=1

f(q, d,Li,M),

where f(q, d,Li,M) = |S(q, d,Li,M)| and S(q, d,Li,M) is the set of the dis-
tinct ai1 × ai2 × · · · × aid sized submatrices of M.

For example if q = 3, d = 2, L = {(2, 2), (2, 3)}, and

(1.2) M =

 0 1 0
0 1 1
0 1 2

 ,

then C(q, d,L,M) = 5, sinceM contains the following five submatrices having
permitted size:

(1.3)

(
0 1
0 1

)
,

(
1 0
1 1

)
,

(
1 1
1 2

)
,

(
0 1 0
0 1 1

)
,

(
0 1 1
0 1 2

)
.

We remark, that sometimes M is considered as a periodic matrix. In this
case C(q, d,L,M) = 12, since there are further submatrices: four 2 × 2 sized
matrices

(1.4)

(
0 0
1 0

)
,

(
1 2
1 0

)
,

(
1 0
2 0

)
,

(
2 0
0 0

)
,

and three 3× 3 sized submatrices

(1.5)

(
1 0 0
1 1 0

)
,

(
1 1 0
1 2 0

)
,

(
1 2 0
1 0 0

)
.

If a matrix consists of distinct elements of A(q), then it is called a rainbow
matrix.

In this paper we deal with some special cases of this new combinatorial
complexity measure of q-ary matrices—first of all with the characterization of
extremal values and construction of extremal matrices.

The structure of the paper is the following. After this introductory Sec-
tion 1 one-dimensional matrices (words) are considered in Section 2. Then, in
Section 3 some construction algorithms of words having maximum subword
complexity are presented. In Section 4 a further one-dimensional complexity
measure (d-complexity) is analyzed. In Section 5 we deal with prism complex-
ity of two-dimensional rectangular matrices.
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2. Subword complexity of words

If n ≥ 1, then we consider the 1 × n sized matrices as one-dimensional
matrices and call words or sequences. In this and the further three sections we
deal with the complexity of words.

Wackerbauer, Witt, Atmanspacher, Kurths and Scheingraber [118] in 1994,
De Luca [26] in 1999, Ilie [65] in 2004, Allouche [4] in 2012 published a survey
on the complexity measures of symbol sequences. Allouche [4] classified the
complexity measures of words as algorithmic, combinatorial, number-theoretic
and inconstancy ones.

Many papers deal with special combinatorial complexity measures of ma-
trices (especially with 1 × n sized matrices). For example arithmetical (Frid
[42, 43, 44]), d (Iványi [69], Kása [80, 81]), factor (Ilie [60]), I (Becher and Heiber
[13], Kreinovich and Nava [87]), inconstancy (Allouche and Maillard-Teyssier
[6]), Lempel–Ziv (Constantinescu and Ilie [21]), joint subword (Jacquet and
Szpankowski [75]), linguistic (Popov, Segal, and Trifonov [102], Troyanskaya,
Arbell, Koren, Landau, and Bolshoy [114]), palindrome (Allouche, Baake, Cas-
saigne, and Damanik [5], Anisiu, Anisiu and Kása [7]), pattern (Kamae and Sal-
imov [78], Qu, Rao, Wen, and Xie [103]), repetition (Crochemore and Iliev [23],
Ilie, Yu, and Zhang [64]), scattered substring (Okhotin [98]), scattered subword
(Fazekas and Nagy [36], Gruber, Holzer and Kutrib [48], Kása [82, 85], Okhotin
[98]), square (Ilie [61]), subarray (Iványi [70, 71, 72], Iványi and Tóth [74, 86],
Ma [94], MacWilliams and Sloane [95], Siu [109], van Lint, MacWilliams and
Sloane [116]), subsequence (Apostolico and Cunial [11], Kuliamin [88]), sub-
string (Elzinga [31], Ilie and Smith [63]), subword (Ehrenfeucht and Rozenberg
[28, 29, 30], Heinz [49], Ilie [59], Ilie and Smyth [63], Ivanko [67, 68], Lempel
and Ziv [89], Rote [106]), and word complexity (Ilie, Yu and Zhang [65]).

In this paper we deal first of all with the above defined prism complexity
and its special cases.

In the construction of the matrices having maximum complexity the De
Bruijn graphs and their generalizations play important role (these graphs are
intensively studied also as possible models of networks, therefore there are many
connected papers, e.g. [1, 2, 4, 8, 12, 13, 14, 17, 19, 26, 32, 34, 35, 37, 39, 40,
41, 46, 49, 50, 54, 55, 56, 57, 59, 69, 70, 71, 72, 73, 74, 80, 81, 84, 86, 90, 94,
107, 108, 111, 113, 114, 118].

Let A(q, 1)n = A(q)n be the language (set) of all n-length words (sequences)
w = w1 . . . wn over A(q), A(q, 1)+ = A(q)+ be the language of nonempty words
over A(q).

A subword of a q-ary word w = w1 . . . wn ∈ A(q)n is defined as a contiguous
part wi . . . wj (1 ≤ i ≤ j ≤ n) of w. We remark that this definition corresponds
to L = {(1, 1), . . . , (1, n)}.
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A k-length subsequence of w is defined as wj1 . . . wjk , where 1 ≤ j1 < · · · <
< jk ≤ n. According to these definitions the empty matrix (word) ε is neither
subword not subsequence.

Hunyadvári and Iványi proposed the following join generalization of the
subword and subsequence complexity.

Definition 2.1. (Hunyadvári, Iványi 1984 [54, 55, 69]) Let d, r and s be
positive integers, u = u1 . . . ur and v = v1 . . . vs be elements of A(q)+. u is a
d-subword of (u ⊆d v) if there exists a sequence j1, . . . , jr with 1 ≤ j1 < · · · <
< jr ≤ s and ji+1 − ji ≤ d for i = 1, . . . , s − 1 such that ui = vji for i =
= 1, . . . , r. If for given d, r and s there exist several such sequences then the
lexicographically smallest one belongs to the given d, r and s.

The d-complexity of a word w ∈ A(q)n is the number of its distinct d-
subwords which can be computed as the sum of the multiplicities of the distinct
1-, . . . , n-length d-subwords of w. We remark that in this section d means the
distance parameter of the complexity, while in the other sections d means the
number of dimensions of the considered matrices.

Definition 2.2. (Hunyadvári, Iványi 1984 [54, 55, 69]) For given w ∈ A(q)n

the d-complexity C(q, d, w) of w is

(2.1) C(q, d, w) =

n∑
i=1

f(q, d, w, i),

where f(q, d, w, i) = |S(q, d, w, i)|, S(q, d, w, i) = S(u|u ⊆d v) ∩ A(q)i for i =
= 1, . . . , n.

If in Definition 2.1 and Definition 2.2 d = 1, then we get the usual definitions
of subword, resp. subword complexity introduced by Morse and Hendlund in
1938 [97] and redefined later by others [27, 49]. It is worth to remark that some
authors (as Shallit [108], and Flaxman, Harrow, Sorkin [38]) count the empty
word too as a subword.

In some cases we will suppose that the investigated matrices are periodic.

Let m(q, n) denote the maximum number of 1-subwords of w ∈ A(q)n. w is
called d-complex if C(q, 1, w) = m(q, n). An infinite word w = w1w2 . . . is called
1-supercomplex if C(q, 1, w(k)) = m(q, n) for all prefixes w(k) = w1, . . . , wk

(k = 1, 2, . . .) of w.

In 1984 Nóra Vörös [117] gave the following bounds.
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Theorem 2.1. (Vörös [117]) If n and q are positive integers and w ∈ A(q)n,
then

(2.2) n ≤ C(q, 1, w) ≤
n∑

i=1

min(qi, n− i + 1)

and the bounds are sharp.

Proof. See [9, 13, 37, 117]. �

(2.2) was reproved by Ferenczi and Kása [37] in 1999, by Anisiu and Cas-
saigne in 2004 [9], by Becher and Heiber in 2012 [13]. Theorem 2.1 was reproved
in the case q = 2 by Shallit in 1993 [108].

In 1984 Nóra Vörös proved the following sufficient and necessary condition
for the existence of supercomplex words.

Theorem 2.2. (Vörös [117]) If n ≥ 1 then there exists a 1-supercomplex
word if and only if q = 1 or q ≥ 3.

Proof. See [12, 24, 38, 69, 117]. �

This assertion in 1986 was reproved by Cummings and Wiedemann [24], in
1987 by Iványi [69], in 2004 by Flaxman, Harrow and Sorkin [38], and in 2011
by Becher and Heiber [12].

In 1993 Shallit proved the following closed form for the maximum 1-subword
complexity of binary sequences.

Theorem 2.3. (Shallit [108]) If n is a positive integer then

(2.3) m(2, n) =

(
n− k + 1

2

)
+ 2k+1 − 2,

where k is the unique integer such that 2k + k − 1 ≤ n < 2k+1 + k.

Proof. See [37, 108]. �

In 1999 Ferenczi and Kása gave the following closed upper bound for m(q, n).

Theorem 2.4. (Ferenczi, Kása [37]) If q ≥ 3 then

(2.4) m(q, n) ≤
(
n− k + 1

2

)
+ qk+1 − 1,

where k is the unique integer such that qk + k − 1 ≤ n < qk+1 + k, further

(2.5) m(q, n) =
n2

2
− Ω(n log n).

Proof. See [37]. �
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In 2004 Anisiu and Cassaigne analyzed the 1-complexity function

(2.6) h(n, q, i) = min(qi, n− i− 1) for i = 1, . . . , n

and proved the following theorem.

Theorem 2.5. (Anisiu, Cassaigne [9]) If n and q are positive integers then
there exists a word w = w1 . . . wn ∈ A(q)n such that

(2.7) C(q, n, w) = m(q, n) =

n∑
i=1

h(n, q, i).

Proof. See [9]. �

In 2004 Flaxman, Harrow and Sorkin proved the following upper bound of
m(q, n).

Theorem 2.6. (Flaxman, Harrow, Sorkin [38]) If q ≥ 3 and n ≥ 1 are
positive integers, then

(2.8) m(q, n) ≤
(
n− k + 1

2

)
+

qk+1 − 1

q − 1
− 1,

where k = blogq nc.

Proof. See [38]. �

Higgins in 2012 published the following upper bound for m(q, n).

Theorem 2.7. (Higgins, [50]) If q and n are positive integers, then

(2.9) m(q, n) =
n2

2
−O(n log n).

Proof. See [50]. �

The previous seven theorems (Theorem 2.1, 2.2, . . . , 2.7) are consequences
of the following new theorem.

Theorem 2.8. If q and n are positive numbers, then

(2.10) m(q, n) ≤
n∑

i=1

min(qi, n− i + 1)

and

(2.11)

n∑
i=1

min(qi, n− i + 1) =

(
n− k + 1

2

)
+

qk+1 − 1

q − 1
− 1,
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where k is the unique integer such that qk + k − 1 ≤ n < qk+1 + k and

(2.12) m(q, n) =
n2

2
− n logq n + n + Θ(log2 n),

further if q 6= 2 then there exists an infinite word w = w1w2 . . . whose prefixes
w(k) = w1 . . . wk have the 1-subword complexity C(q, 1, w(k)) = m(q, k).

Proof. The proof of (2.10) can be found e.g. in [54, 117].

qk ≤ n− k + 1 if and only if k is the unique integer such that qk + k − 1 ≤
≤ n < qk+1 + k. Therefore (2.10) implies

(2.13) m(q, n) = q + · · ·+ qk + (n− k) + · · ·+ 1.

Since

(2.14) q + · · ·+ qk =
qk − 1

q − 1
,

and

(2.15) 1 + · · ·+ n− k =

(
n− k

2

)
,

(2.13), (2.14) and (2.15) imply (2.11). �

In 1999 in the paper [37] appeared the following assertion: if n and q are
positive integers, then

(2.16) m(q, n) ≤ (n− k)(n− k + I)

2
+ qk+1 − 1

where k is the unique integer such that 2k + k − 1 ≤ n < 2k+1 + k.

In 2004 in [38] the following assertion was published: if n and q are positive
integers, then

(2.17) m(q, n) =
(n− k)(n− k + 1)

2
+

qk+1 − 1

q − 1
− 1.

where k = blog nc.
The following example shows that (2.16) and (2.17) are not exact. Let q = 3

and n = 2. The word w = (01) has maximal complexity |{0, 1, 01}| = 3. In this
case (2.16) results 9 and (2.17) gives 4 while the word w = (0, 1) has maximal
complexity and so |{0, 1, 01}| = 3 is the correct value.

In the following we describe further interesting results.
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In 1988 Sridhar [111] proved that De Bruijn graphs B(q, n) are q-connected.

In 1991 Li and Zhang [91] counted the number of spanning trees and Eule-
rian tours. Blażewicz, Formanowicz Kasprzak and Kobler [15] in 2002 proposed
a polynomial algorithm to decide whether a directed graph is a De Bruijn graph
or the subgraph of a De Bruijn graph with given a (length of vertex names).

Flaxman, Harrow and Sorkin in 2004 [38] proved bounds for average
1-complexity and subsequence complexity. Szpankowski gave a more detailed
analysis of average 1-complexity in 2011 [113]. Ivanko also investigated the
average 1-complexity [67, 68].

3. Construction of De Bruijn words

In this section several construction algorithms of De Bruijn words are pre-
sented.

Definition 3.1. If q ≥ 1 and n ≥ 1 then the (q, a)-type De Bruijn word is
defined so that it contains all possible q-ary words w ∈ A(q)n exactly once as
a 1-subword.

This definition implies the length of the (q, a)-type nonperiodic and periodic
De Bruijn words.

Corollary 3.1. The length of a (q, n)-type nonperiodic De Bruijn word is
qa + a− 1 and the length of a (q, n)-type periodic De Bruijn word is qa.

The first known proof of the existence of (2, a)-type De Bruijn words ap-
peared in 1894 and was published by T. Flye-Sante Marie [39]. This assertion
was proved again many times afterwards, e.g. in 1946 independently by Good
[47] and by De Bruijn [25]. For example Fredricksen, Kessler and Maiorana,
Etzion proposed construction algorithms for binary and later q-ary De Bruijn
words [34, 40, 41, 104].

3.1. Algorithm Martin

Generating De Bruijn words is a common task with respectable number of
algorithms. Let q ≥ 2 and A(q) = {0, . . . , q − 1} be an alphabet. Our goals are
to generate from one side a (q, k)-type De Bruijn word, and also to generate
all (q, k)-type De Bruijn words for given q and k.

We present here a natural version Natural-Martin [84] of the classical
Martin algorithm [96].

We begin with the word 0a, and add at its right end the greatest possible
letter, such that the suffix of length a of the obtained word does not duplicate
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a previously occurring subword of length a. The algorithm repeats this until
such a prolongation is impossible.

When we cannot continue, a nonperiodic De Bruijn word is obtained, with
the length qa + a − 1. In the following algorithm the input is q, the size of
the alphabet and a, the pattern size. The output is w = w1 . . . , wqa+a−1, a
(q, a)-type nonperiodic De Bruijn word. The working variables are l, which is
a logical variable, signalizing whether the last suffix is a new subword or not,
and the cycle variables i and k.

The pseudocodes are written according to the conventions described in [22].

Natural-Martin(q, a)

01 for i← 1 to a // line 01–03: initialization of w and i
02 wi ← 0
03 i← a
04 repeat // line 04–12: generation of the next word
05 l ← true
06 j ← q
07 while j ≥ 1
08 if bi−j+2wi−j+3 . . . wi(j − 1) 6⊂ w1w2 . . . wi // not a subword
09 i← i + 1
10 wi ← j − 1
11 l← false
12 else j ← j − 1
13 until l = true // line 13: if l = true, none of letter can be added
14 return w // line 14: return of the result

Because this algorithm generates all elements of a De Bruijn sequence
of length qa + a − 1, further q and a are independent, the time complexity
Natural-Martin is Ω(qa). The more precise characterization of the running
time depends on the implementation of line 08. The repeat statement is ex-
ecuted qa − 1 times. The while statement is executed at most q times for
each step of the repeat. The test wi−a+2wi−a+3 . . . wiak 6⊂ w1w2 . . . wi can
be made in the worst case in aqa steps. So, the total number of steps is not
greater than aq2a+1, resulting the worst case bound O(qa+1). If we use the
Knuth-Morris-Pratt string matching algorithm [22], then the worst case run-
ning time is O(q2a).

3.2. Algorithm Quick-Martin

Algorithm Quick-Martin also generates one-dimensional perfect arrays
(De Bruijn words). Its inputs are the alphabet size q and the window size a. Its
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output is a q-ary perfect sequence of length qa. The output begins with a zeros
and always continues with the maximal permitted element of the alphabet.

The following effective implementation of Martin algorithm is due to Horváth
and Iványi [53].

Quick-Martin(q, a)

01 for i = 0 to qa−1 − 1 // line 01–02: initialization of C
02 C[i] = q − 1
03 for i = 1 to a // line 03–04: initialization of w and k
04 w[i] = 0
05 for i = a + 1 to qa // line 05–11: generation of w
06 k = w[i− a + 1]
07 for j = 1 to a− 1
08 k = kq + w[i− a + j]
09 w[i] = C[k]
10 C[k] = C[k]− 1
11 return w

This algorithm runs in Θ(aqa) time.

3.3. Algorithm Optimal-Martin

The following implementation [72] of Martin algorithm requires even smaller
running time than Quick-Martin.

The input of Opt-Martin is q: the size of the alphabet; and a: the length
of the pattern. The output is w = w1 . . . wqa . The working variables are C =
C[0], . . . , C[qa−1]: the counters belonging to the vertices of the De Bruijn graph;
k: the decimal value of the label of the current vertex of the De Bruijn graph.
i cycle variable.

Optimal-Martin(q, a)

01 for i = 0 to qa−1 − 1
02 C[i] = q − 1
03 for i = 1 to a
04 w[i] = 0
05 k = 0
06 for i = a + 1 to qa

07 k = q(k − w[i− a]qa−2) + w[i− 1]
08 w[i] = C[k]
09 C[k] = C[k]− 1
10 return w
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The running time of any algorithm which constructs a one-dimensional
cyclical perfect array is Ω(qa), since the sequence contains qa elements. The
running time of Optimal-Martin is Θ(qa).

4. Scattered complexity of words

Scattered subwords of a word were defined by Kása in [82] as follows. This
definition is not a special case of the general definition of prism complexity,
since here the list J contains the permitted differences of the indices of the
choosed letters, that is J ⊆ {1, · · · , n− 1}.

Definition 4.1. Let n and q be positive integers, J ⊆ {1, . . . , n − 1} and
u = x1 . . . xn ∈ A(q)n. A J-subword of length s of u is defined as v = xi1 . . . xis ,
where

i1 ≥ 1,

ij+1 − ij ∈ J for j = 1, . . . , s− 1,

is ≤ n.

Using Definition 4.1 we can formalize the concept of the scattered subword
complexity.

Definition 4.2. For given J the scattered subword complexity (shortly
J-complexity) of a word u ∈ A(q)n is the number of J-subwords of u.

In the case 1 ≤ d ≤ n − 1 and of J = {1, . . . , d} the J-subword is the
d-subword defined in [69], while in the case J = {d, . . . , n − 1} is the su-
per -d-subword defined in [83]. The corresponding d-complexity and super -d-
complexity are similarly defined.

The scattered subword complexity for rainbow words can be easily com-
puted by a graph method [82]. The letters xi of the rainbow word are the
vertices of the graph, and two vertices, xi and xj , are joined by an arc from
xi to aj if these letters can be neighbors in this order in a scattered subword.
The scattered subword complexity is equal to the number of directed paths
in this attached graph (here each vertex is considered as a null length path).
The number of directed paths in this graph with n vertices can be computed
by a Floyd-Warshall type algorithm with worst case comnplexity Θ(n3) [82]. If
1 ≤ d1 ≤ d2 ≤ n − 1, and the list J is {d1, d1 + 1, . . . , d2}, then the scattered
subword complexity (the so called (d1, d2)-complexity [84]) can be computed
by a linear algorithm [85].

This method combined with the classical Latin square method yields an
algorithm by which even the scattered subwords can be obtained [82].
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(d1, d2)-subwords are related to compositions of integers. Compositions are
partitions in which the order of the components does matter. A (d1, d2)-compo-
sition is a restricted composition in which the components are natural numbers
from the interval [d1, d2].

For example, for the word abcdefg the (2,4)-subwords, which begin in a and
end in g are: aeg, aceg, adg, acg, which correspond to the following compositions
in which the components are the distances between the letters in the original
word:

6 = 4 + 2 = 2 + 2 + 2 = 3 + 3 = 2 + 4.

In general, if a1ai1 . . . aisan+1 is a (d1, d2)-subword of the rainbow word
a1a2 · · · an+1, then this subword corresponds to a composition:

n = (i1 − 1) + (i2 − i1) + · · ·+ (is − is−1) + (n + 1− is).

Definition of the (d1, d2)-subword can be generalized for rainbow words as
we choose letters not only going ahead in the word, but back too, at every
step [85].

Definition 4.3. Let n, d1 ≤ d2, q, and s be positive integer numbers, and
let u = x1 . . . xn ∈ A(q)n be a rainbow word over the alphabet A(q). A rainbow
word v = xi1 . . . xis , where

i1 ≥ 1,

d1 ≤ |ij+1 − ij | ≤ d2, for j = 1, . . . , s− 1,

is ≤ n, is an s-length duplex (d1, d2)-subword of u.

For example acfbe and beadfc both are duplex (2,4)-subwords, and the du-
plex subwords are rainbow words too. of the word abcdef.

The number of all duplex (d1, d2)-subwords of a word is the duplex (d1, d2)-
complexity of that rainbow word.

We remark that the term scattered subword complexity was used earlier for
example by Fazekas and Nagy in 2008, further by Gruber, Holzer and Kutrib
in 2009 [48], but they defined the scattered complexity of languages, while Kása
[83] defined the scattered complexity of words.

Fazekas and Nagy in 2008 [36], Gruber, Holzer and Kutrib in 2007 and in
2009 [48], Kása in 2011 and 2012 [82, 85], Okhotin in 2010 [98] investigated the
scattered subsequence complexity of words.

Flaxman, Harrow and Sorkin in 2004 [38], Szpankowski in 2001 [113] char-
acterized the average subsequence complexity.
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5. Prism complexity of two-dimensional rectangular matrices

In this section we consider the complexity of the usual q-ary matrices, that
is the d = 2 case of the prism complexity.

Definition 5.1. Let q, a, b, A, B be positive integers.,M an A×B sized,
periodic q-ary matrix, A ≥ a, B ≥ b, a ≤ b, L = {(a, b)} and qab = AB.M is
called (q, a, b,M,N)-type De Bruijn matrix, if it contains every possible a× b
sized q-ary submatrix exactly once.

We remark, that De Bruijn matrices are called also perfect maps [105, 99,
100] or De Bruijn tori [57].

The first result belongs to Reed and Stewart [105] proving the existence
of a 4 × 4 sized periodic binary matrix containing all possible 2 × 2 sized
binary submatrix exactly once. A connected empirical result is due to Péter
Selmeczi, whose program gives that there are 800 5 × 5 sized non periodic
binary array containing the 2 × 2 sized submatrices exactly once, 256 such
matrices having identical first and fifth columns and 32 such matrices having
additionally identical first and fifth rows too, so the problem solved by Reed
and Stewart has 32 solutions.

Ma [94] in 1984, Fan Fan, Ma and Siu in 1985 proposed an algorithm which
constructs a binary matrix containing every a1 × a2 sized binary matrix as
submatrix exactly once.

Iványi in 1989 proved the following theorem.

Theorem 5.1. (Iványi, 1989 [70]) If q ≥ 1, a ≥ 1, b ≥ 1, then there exist
matrices A and B such that there exists a (q, a, b, A,B)-type de Bruijn matrix.

Proof. (Sketch) (a) If q = 1 then the assertion is straightforward.

(b) If a = 1 then algorithm Bruijn produces the required word.

(c) If a = b = 2 then see [74] or the monograph of Knuth [86].

(d) If q ≥ a ≥ 3 and b ≥ 2 then we construct M as follows.

(d1) We use Optimal-Martin with input data q and a and the w output
will the first column of M.

(d2) The ith (i = 2, . . . , qa(b−1) column ofM is generated shifting cyclically
downwards its (i − 1)th column by wi−1, where w1 . . . ws (s = qa(b−1) − 1) is
the output of Optimal-Martin for alphabet size qb.

(e) The case b = 2 and a ≥ 3 is similar to (c).

(f) Since in the cases (d) and (e) the height qa of the constructed matrix is
a divisor of the sum of the shift sizes and any two a×b submatrices are distinct
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(either their first columns or at least one of their corresponding shift sizes are
different), the construction is correct (see also [74]). �

It is worth to remark that the size of the constructed De Bruijn matrix is
qa × qb. The papers [99, 100] contain detailed analysis of the possible sizes of
De Bruijn matrices as the function of the sizes of the window. sizes a and b.

The analog of (2.2), containing the bounds for a one-dimensional word w
is the following assertion.

Lemma 5.1. Let q, a, b, A, B be positive integers. If M is an A × B
sized q-ary matrix and L = {(a, b)} then we get the following bounds:

(5.1) 1 ≤ C(q, 2,L,M) ≤ min(qab, AB).

The lower bound is sharp. In some cases the upper bound is also sharp.

Proof. IfM is a homogeneous word (that is q = 1 orM contains only one
element of a larger alphabet) then the a× b sized submatrices are identical so
the complexity equals to 1. Since A ≥ a and B ≥ b therefore the complexity is
always positive, so the lower bound is sharp.

The complexity ofM is not larger than the number of possible dstinct a×b
sized submatrices, and also is not larger than the number of elements of M
(since each element can be the left upper element of one a×b-sized submatrix),
therefore the upper bound is correct. According to Theorem 5.1 the constructed
qa × qb sized M contains dstinct submatrices, therefore in e.g. in this case the
upper bound also is sharp. �

For q large enough we can form a crossbow matrix [69] in which the ele-
ments are dstinct. For such matrices we get the following simple consequence
of Lemma 5.1 and Theorem 5.1.

Corollary 5.1. If q ≥ 1, A ≥ a, B ≥ b,,M is an A×B sized q-ary matrix,
L = {(a, b)} and qab ≥ AB then

(5.2) C(q, 2,L,M) = AB.

Proof. At the given conditions the minimum in (5.1) equals to AB. �
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[83] Kása, Z., Super-d-complexity of finite words, in (eds. H. F. Pop and A.
Bege): MACS 2010: 8th Joint Conference on Mathematics and Computer
Science, Selected Papers, Novadat, Győr, 2011, 257–266.
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A. Iványi): Conference of Young Programmers and Mathematicians (Bu-
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202 A. Iványi and Z. Kása
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