Note
 Cycle factorizations of cycle products ${ }^{1}$

S. El-Zanati*, C. Vanden Eynden
4520 Mathematics Department Illinois State University, Normal, IL 61790-4520, USA

Received 2 April 1996; revised 2 December 1997; accepted 16 February 1998

Abstract

Let n and $k_{1}, k_{2}, \ldots, k_{n}$ be integers with $n>1$ and $k_{i} \geqslant 2$ for $1 \leqslant i \leqslant n$. We show that there exists a C_{s}-factorization of $\prod_{i=1}^{n} C_{2^{k_{i}}}$ if and only if $s=2^{t}$ with $2 \leqslant t \leqslant k_{1}+\cdots+k_{n}$. We also settle the problem of cycle factorizations of the d-cube. (C) 1998 Elsevier Science B.V. All rights reserved

Keywords: Graph decomposition; Cycle factorization; Graph product; Hamilton cycle; Voltage graph; Disjoint sum; Spanning sum

1. Graph decompositions and products

A sequence $H_{1}, H_{2}, \ldots, H_{n}$ of graphs with union G is called a decomposition of G in case each edge of G is in H_{i} for exactly one i, and in this case we write $G=$ $H_{1}+H_{2}+\cdots+H_{n}$. If in addition the subgraphs H_{i} are all isomorphic to H, then we write $G=n H$, say that H divides G, and write $H \mid G$.

We call a subgraph F of G a factor of G if it contains all the vertices of G. If in addition each component of F is isomorphic to H, we call F an H-factor of G. A decomposition of G into H-factors is called an H-factorization of G, and in this case we write $H \| G$.

Let $H_{1}, H_{2}, \ldots, H_{n}$ be a decomposition of a graph G. We write $G=H_{1}+{ }_{s} H_{2}+_{s} \cdots+s$ $H_{n}=\sum_{i=1}^{n} H_{i}$ if each subgraph H_{i} is a factor of G, and $G=H_{1}+_{d} H_{2}+_{d} \cdots+{ }_{d} H_{n}=$ $\sum_{i=1}^{n} H_{i}$ if the subgraphs H_{i} are pairwise vertex disjoint.

If G_{1} and G_{2} are graphs with vertex sets V_{1} and V_{2}, respectively, then their product is the graph $G_{1} \times G_{2}$ with vertex set $V_{1} \times V_{2}$ and $\left\{\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\}$ an edge if and

[^0]only if $\left\{u_{1}, v_{1}\right\}$ is an edge of G_{1} and $u_{2}=v_{2}$ or $u_{1}=v_{1}$ and $\left\{u_{2}, v_{2}\right\}$ is an edge of G_{2}. It is easily proved that if G_{i} has v_{i} vertices and e_{i} edges, $1 \leqslant i \leqslant n$, then $\prod G_{i}$ has $\prod v_{i}$ vertices and $\sum e_{i} \prod_{j \neq i} v_{j}$ edges. We use the terminology of [3].

The decomposition of graphs has been, and remains, the focus of a great deal of research (see [4] for a thorough discussion of the subject). In particular, K_{k} decompositions of K_{n} and C_{k}-decompositions of K_{n} have received much attention. For an excellent reference on cycle decompositions, the reader is directed to [8].
In this article we investigate cycle factorizations of $\prod_{i=1}^{n} C_{2^{k}}$, where n and k_{1}, k_{2}, \ldots, k_{n} are integers $\geqslant 2$.
We use the following result of Stong [9] on Hamilton decompositions of the product of two Hamilton decomposable graphs. Stong's result subsumes earlier results on the same topic by Kotzig [7], Foregger [5] and Aubert and Schneider [1,2].

Theorem A. Let G_{1} and G_{2} be graphs that are decomposable into n and m Hamilton cycles, respectively, with $n \leqslant m$. Then $G_{1} \times G_{2}$ is Hamilton decomposable if one of the following holds:
(1) $m \leqslant 3 n$,
(2) $n \geqslant 3$,
(3) $\left|V\left(G_{1}\right)\right|$ is even, or
(4) $\left|V\left(G_{2}\right)\right| \geqslant 6\lceil m / n\rceil-3$, where $\lceil x\rceil$ is the least integer greater than or equal to x.

We state two lemmas which extend in an obvious way to sums with more than two terms. Their straightforward proofs will be omitted.

Lemma 1. We have $H \times\left(G_{1}+{ }_{d} G_{2}\right)=\left(H \times G_{1}\right)+_{d}\left(H \times G_{2}\right)$.
Lemma 2. We have $\left(H_{1}+{ }_{s} H_{2}\right) \times\left(G_{1}+G_{2}\right)=\left(H_{1} \times G_{1}\right)+_{s}\left(H_{2} \times G_{2}\right)$.

2. Expanding decompositions

As usual, C_{m} denotes a cycle with m edges. We allow $m=2$ in some preliminary results. We identify the vertices of C_{m} with Z_{m}, with i adjacent to $i+1$. If x is a k-tuple, let $x[i]$ denote the i th component of x. Let

$$
G=C_{m_{1}} \times C_{m_{2}} \times \cdots \times C_{m_{k}} .
$$

Let $E=\left\{\varepsilon \in\{0,1,-1\}^{k}: \sum_{i=1}^{k}|\varepsilon[i]|=1\right\}$. We can represent any path in G by $P=\left(v+\sum_{j=1}^{t} \varepsilon_{j}: t=0,1, \ldots, n\right)$, where $v \in V(G)$ and $\varepsilon_{j} \in E$ for all j. Call this path i-closed if $\sum_{j=1}^{n} \varepsilon_{j}[i] \equiv 0\left(\bmod m_{i}\right)$. If P is a cycle, then P is i-closed for all i. Call P i-local if $\sum_{j=1}^{n} \varepsilon_{j}[i]=0$. Call a decomposition of G into cycles i-local if every cycle in the decomposition is i-local.

Theorem 1. Let G be as above, suppose $1 \leqslant h \leqslant k$, and let

$$
G^{\prime}=C_{m_{1}} \times C_{m_{2}} \times \cdots \times C_{m_{h-1}} \times C_{q m_{n}} \times C_{m_{h+1}} \times \cdots \times C_{m_{k}}
$$

where q is a positive integer. Suppose that G has an h-local C_{r}-decomposition (C_{r} factorization). Then G^{\prime} has a C_{r}-decomposition (C_{r}-factorization). Furthermore, if $1 \leqslant h^{\prime} \leqslant k$ and the decomposition of G is h^{\prime}-local, then so is the decomposition of G^{\prime}.

Proof. We will apply the theory of voltage graphs [6]. The base graph will be G and the group Z_{q}. Orient the edge $e=\{u, u+\varepsilon\}$ of G from u to v if $\varepsilon[i]=1$ for some i, and assign it the voltage $\alpha(e) \in Z_{q}$, where $\alpha(e)=1$ if $i=h$ and $u[i]=-1$, and $\alpha(e)=0$ otherwise. Then it can easily be seen that the derived graph G^{α} of the voltage graph $\langle G, \alpha\rangle$ is isomorphic to G^{\prime} if the orientations of its edges are ignored. Each h-local r-cycle of G has net voltage 0 , which has order 1 in Z_{q}. Then according to Theorem 2.1.3 of [6] each such cycle corresponds to q vertex-disjoint cycles of the same length in G^{\prime}.

If we have a C_{r}-factorization of G, we can partition the cycles of the decomposition into edge-disjoint 2 -factors, and these lift to edge-disjoint 2 -factors of G^{\prime}.

The last statement of the theorem is clear from how the decomposition of G^{\prime} is defined.

3. Factorizations of products of two cycles

In this section we give two theorems and a lemma concerning factorizations of the products of two cycles. We use the abbreviations 1 for $(1,0), \overline{1}$ for $(-1,0), 2$ for $(0,1)$, and $\overline{2}$ for $(0,-1)$. The path in $C_{r} \times C_{s}$ with vertices $v, v+a_{1}, v+a_{1}+a_{2}, \ldots, v+a_{1}+$ $\cdots+a_{n}$ will be abbreviated $v+a_{1} a_{2} \cdots a_{n}$, and we use exponents to indicate repeated symbols.

Theorem 2. Let $m \geqslant 2, n \geqslant 1$ and $q \geqslant 1$ be integers. Then $C_{4 m n} \| C_{2 m} \times C_{2 n q}$.
Proof. We decompose $C_{2 m} \times C_{2 n}$ into two Hamilton cycles, namely

$$
A=(0,0)+(21 \overline{2} 1)^{m-1} 2\left(21^{-2(m-1)} 21^{2(m-1)}\right)^{n-1} 12^{-2 n-1} 1
$$

and

$$
B=(0,0)+\left(1 \overline{2}^{2 n-1} 12^{2 n-1}\right)^{m-2} 1 \overline{2}^{2 n-1} 1\left(1^{2} 2 \overline{1}^{-2} 2\right)^{n-1} 21 \overline{2} 12
$$

These are pictured in Fig. 1. (Note that the order of the vertices is changed for B to simplify the picture.) By examining Fig. 1 it can be verified that these are Hamilton cycles. It may also be checked that A and B have no common edges. For example

Fig. 1.
the 'horizontal' edges $\{(x, y),(x+1, y)\}$ of A with $y=0$ are exactly those with $x=1,3, \ldots, 2 m-1$, while the corresponding edges of B have $x=0,2, \ldots, 2 m-2$. The other rows and columns can be checked similarly.

Since 2 and $\overline{2}$ appear the same number of times in A, and also in B, these cycles are 2 -local. Thus, the result follows from Theorem 1.

Theorem 3. Let p, q, and m be positive integers. Then $C_{4 m} \| C_{2 m p} \times C_{2 m q}$ if either $m>1$ or else $p>1$ and $q>1$.

Proof. We start with the case $m>1$, where we will first show that $C_{4 m} \| C_{2 m} \times C_{2 m}$. The factors will consist of cycles

$$
A_{r}=(2 r, 2 r)+1^{2 m-1} 21^{-2 m-1} \overline{2}, \quad 0 \leqslant r<m
$$

and

$$
B_{s}=(2 s, 2 s)+\overline{2}^{2 m-1} \overline{1} 2^{2 m-1} 1, \quad 0 \leqslant s<m .
$$

These are easily seen to be cycles of length $4 m$. The cycles A_{r} are vertex disjoint since the second coordinate of each vertex in A_{r} is either $2 r$ or $2 r+1$.
It remains to show that no edge is in both A_{r} and B_{s}. Suppose the horizontal edge $\{(x, y),(x+1, y)\}$ is in both. Note that for this edge to be in B_{s} we must have $x=2 s-1$ and $y=2 s$ or $y=2 s+1$, while for it to be in A_{r} we must have $x \in\{2 r, 2 r+1, \ldots, 2 r+2 m-2\}$ and $y=2 r$ or $y=2 r+1$. Whether y is even or odd we conclude that $r=s$ and so $x=2 r-1$, a contradiction. The proof for vertical edges is similar.

Since the cycles in the factorization are both 1-local and 2-local, this case of the theorem follows from an application of Theorem 1.

The remaining case is when $m=1$ and p and q both exceed 1 . Then it may be checked that the factors

$$
A_{r, s}=(2 r, 2 s)+12 \overline{12}, \quad 0 \leqslant r<p, \quad 0 \leqslant s<q
$$

and

$$
B_{u, v}=(2 u, 2 v)+\overline{12} 12, \quad 0 \leqslant u<p, 0 \leqslant v<q
$$

work.
Lemma 3. Let k and l be integers $\geqslant 2$. Then $C_{s} \| C_{2^{k}} \times C_{2^{t}}$ if $s=2^{t}$ with $2 \leqslant t \leqslant k+l$.
Proof. Let $s=2^{t}$ with $2 \leqslant t \leqslant k+l$. Assume $k \leqslant l$. If $t \leqslant k+1$, we apply Theorem 3 with $m=2^{t-2}, p=2^{k+1-t}$ and $q=2^{l+1-t}$, while if $t \geqslant k+2$, we apply Theorem 2 with $m=2^{k-1}, n=2^{t-k-1}$ and $q=2^{k+l-t}$.

4. Factorizations of cycle products

Lemma 4. Let j, k and l be integers $\geqslant 2$. Then $C_{s} \| C_{2^{j}} \times C_{2^{k}} \times C_{2^{t}}$ if $s=2^{t}$ with $2 \leqslant t \leqslant j+k+l$.

Proof. First, we treat the case when $t \leqslant j+l$. Let J represent the graph with 2^{k} vertices and no edges. We have

$$
\begin{aligned}
C_{2^{j}} \times C_{2^{k}} \times C_{2^{\prime}} & \cong C_{2^{k}} \times C_{2^{j}} \times C_{2^{t}} \\
& =\left(C_{2^{k}}+{ }_{s} J\right) \times\left(\sqrt{d} C_{2^{t}}+{ }_{s} \sum_{d} C_{2^{\prime}}\right) \quad(\text { Lemma 3) } \\
& =\left(C_{2^{k}} \times \sqrt{d} C_{2^{t}}\right)+_{s}\left(J \times \sum_{d} C_{2^{\prime}}\right) \quad(\text { Lemma 2) } \\
& =\sqrt{d}\left(C_{2^{k}} \times C_{2^{\prime}}\right)+s \sqrt{d}\left(J \times C_{2^{t}}\right) \quad(\text { Lemma 1) } .
\end{aligned}
$$

This case now follows from Lemma 3 and the fact that $C_{2^{t}} \| J \times C_{2^{2}}$.
Now, assume $t>j+l$. Let $p=t-(j+l) \geqslant 1$. By Theorem 2 with $m=2^{j-1}$, $n=2^{p-1}$, and $q=1$ we have $C_{2 j} \times C_{2^{p}}=A+s$, where A and B are 2-local Hamilton cycles of length 2^{j+p}, as pictured in Fig. 1. We will extend this to a Hamilton factorization of $C_{2 i} \times C_{2^{p}} \times C_{2^{l}}=(A+s) \times C$, where $C=C_{2^{\prime}}$, using the method of Aubert and Schneider [2]. They factor $G=(A+B) \times C$ into Hamilton cycles by first labeling the vertices of $A+B$ as v_{1}, v_{2}, \ldots according to their order in B. In our case we will let $v_{1}=(0,2 n-1), v_{2}=(0,0)$, etc. (See Fig. 1.) The vertices adjacent to v_{1} in A are $a=v_{4}=(1,2 n-1)$ and $b=v_{4 m n-6}=$ $(0,2 n-2)$.

First, Aubert and Schneider construct a Hamilton cycle $C^{(1)}$ in G in which all edges moving in the second coordinate come from edges of A. Since A has no edges in which the second coordinate changes from $2 n-1$ to 0 , the cycle $C^{(1)}$ is 2-local.
Then $G \backslash C^{(1)}$ is factored into two more Hamilton cycles, $C^{(2)}$ and $C^{(3)}$. All the edges of $G \backslash C^{(1)}$ that move in the second coordinate come from B except for some corresponding to the edge $\left\{v_{1}, b\right\}$ of A. The latter have the form $\{(0,2 n-1, i)$, $(0,2 n-2, i)\}$ in G. But $G \backslash C^{(1)}$ contains no edges where the second coordinatc changes from 0 to 1 , and so $C^{(2)}$ and $C^{(3)}$ are also 2-local.

Thus, we have $C_{2} \times C_{2^{p}} \times C_{2^{t}}=\Sigma_{1}^{3} C_{2^{j+p+l}}=\Sigma_{1}^{3} C_{2^{t}}$, where each factor on the right is 2-local. Note that $p=t-(j+l) \leqslant j+k+l-(j+l)=k$. Then by Theorem 1 with $h=2$ and $q=2^{k-p}$ we have $C_{2^{i}} \| C_{2} \times C_{2^{k}} \times C_{2^{t}}$.

Theorem 4. Let n and $k_{1}, k_{2}, \ldots, k_{n}$ be integers with $n>1$ and $k_{i} \geqslant 2$ for $1 \leqslant i \leqslant n$. Then $C_{s} \| \prod_{i=1}^{n} C_{2^{k_{i}}}$ if and only if $s=2^{t}$ with $2 \leqslant t \leqslant k_{1}+\cdots+k_{n}$.

Proof. If $C_{s} \| \prod C_{2^{k_{i}}}$, then, since the latter graph has $2^{k_{1}+\cdots+k_{n}}$ vertices, we must have $s \mid 2^{k_{1}+\cdots+k_{n}}$, from which it follows that $s=2^{t}$ with $1 \leqslant t \leqslant k_{1}+\cdots+k_{n}$. Since the product has no parallel edges, $t \geqslant 2$.

The cases $n=2$ and 3 of the converse are covered by Lemmas 3 and 4. Now assume we know that $C_{2^{2}} \| \prod_{i=1}^{n} C_{2^{k_{4}}}$ whenever $2 \leqslant t \leqslant k_{1}+\cdots+k_{n}$, where n is some integer $\geqslant 3$. We will prove the $n+1$ case.

Set $K=k_{1}+\cdots+k_{n}$. First, assume $2 \leqslant t \leqslant K$. Let J represent the graph with $2^{k_{n+1}}$ vertices and no edges. We have

$$
\begin{aligned}
\prod_{i=1}^{n+1} C_{2^{k_{i}}} & =\prod_{i=1}^{n} C_{2^{k_{i}}} \times C_{2^{k_{n+1}}} \\
& =\left(\sum_{i=1}^{n} \sum d C_{2^{i}}\right) \times\left(C_{2^{k_{n+1}}}+s \sum_{i=2}^{n} J\right) \quad \text { (induction hypothesis) } \\
& =\left(\sum C_{2^{t^{\prime}}}\right) \times C_{2^{k_{n+1}}}+s \sum_{i=2}^{n}\left(\sum d C_{2^{i}}\right) \times J \quad \text { (Lemma 2) } \\
& =\mathbb{d}\left(C_{2^{i}} \times C_{2^{k_{n+1}}}\right)+s \sum_{i=2}^{n} \sum d\left(C_{2^{t}} \times J\right),
\end{aligned}
$$

where the last equality uses Lemma 1 . It is easy to see that $C_{2^{t}}| | C_{2^{t}} \times J$, and so our result now follows from Lemma 3.

Now, assume $K<t \leqslant K+k_{n+1}$, so that $k_{n}<t-K+k_{n} \leqslant k_{n}+k_{n+1}$. Then

$$
\begin{aligned}
& \prod_{i=1}^{n+1} C_{2^{k_{i}}}=\left(\prod_{i=1}^{n-1} C_{2^{k_{i}}}\right) \times\left(C_{2^{k_{n}}} \times C_{2^{k_{n+1}}}\right) \\
& =\left(\sum_{i=1}^{n-1} C_{2^{K-k_{n}}}\right) \times\left(\sum C_{2^{\prime}-K+k_{n}}+{ }_{s} \sum_{d} C_{2^{i}-K+k_{n}}\right) \text { (Theorem A and Lemma 3) } \\
& =\left(C_{2^{K-k_{n}}} \times \sum_{d} C_{2^{t-K+k_{n}}}\right)+s\left(\left(\sum_{i=2}^{n-1} C_{2^{K-k_{n}}}\right) \times \sum_{d} C_{2^{1-K+k_{n}}}\right) \text { (Lemma 2) } \\
& \left.=\Sigma d\left(C_{2^{k-k_{n}}} \times C_{2^{1-K+k_{n}}}\right)+s \sum_{d}\left(\sum_{i=2}^{n-1} C_{2^{K-k_{n}}}\right) \times C_{2^{1-K+k_{n}}}\right) \text { (Lemma 1) } \\
& =\sum_{d}\left(\sum_{i=1}^{2} C_{2^{i}}\right)+{ }_{s} \sum_{d}\left(\sum_{i=1}^{n-1} C_{2^{i}}\right) \quad \text { (Lemma } 3 \text { and Theorem A) } \\
& =\sum_{i=1}^{n+1} \sum C_{2^{2}} .
\end{aligned}
$$

This completes the proof.
Theorem 5. For $j=1, \ldots, n$, let G_{j} be a graph such that $G_{j} \Rightarrow \sum_{i=1}^{r} \sum_{d} C_{2^{k j}}$, where $n>1$ and $k_{j} \geqslant 2$ for $1 \leqslant j \leqslant n$. Then a sufficient condition that $C_{s} \| \prod_{j=1}^{n} G_{j}$ is that $s=2^{t}, 2 \leqslant t \leqslant k_{1}+\cdots+k_{n}$. If $\prod_{j=1}^{n}\left|V\left(G_{j}\right)\right|=2^{k_{1}+\cdots+k_{n}}$, then this condition is also necessary.

Proof. If $2 \leqslant t \leqslant k_{1}+\cdots+k_{n}$, we have

$$
\begin{aligned}
\prod_{j=1}^{n} G_{j} & =\prod_{j=1}^{n}\left(\sum_{i=1}^{r} \sum d_{2^{k_{j}}}\right)=\sum_{i=1}^{r} \prod_{j=1}^{n} \sum d C_{2^{k_{j}}} \quad \text { (Lemma 2) } \\
& =\sum_{i=1}^{r} \sum d \prod_{j=1}^{n} C_{2^{k_{j}}} \quad \text { (Lemma 1) }
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{r} \sum \sum_{j=1}^{n} \sum_{d} C_{2^{i}} \quad \text { (Theorem 4) } \\
& =\sum_{i=1}^{r} \sum_{j=1}^{n} \sum d d_{2^{t}} \\
& =\sum_{i=1}^{m} \sum C_{2} C_{2^{t}} .
\end{aligned}
$$

Conversely, if we have $\prod_{j=1}^{n}\left|V\left(G_{j}\right)\right|=2^{k_{1}+\cdots+k_{n}}$, then $\prod_{j=1}^{n} G_{j}$ has $2^{k_{1}+\cdots+k_{n}}$ vertices and no parallel edges, and so $C_{s} \| \prod_{j=1}^{n} G_{j}$ implies $s=2^{t}$ with $2 \leqslant t \leqslant k_{1}+\cdots+k_{n}$.

5. An application to cubes

The d-cube, denoted Q_{d}, is defined to be $\left(K_{2}\right)^{d}$. It is easily seen that Q_{d} has 2^{d} vertices, each of degree d, and $d 2^{d-1}$ edges, and is bipartite. Thus, if $C_{s} \mid Q_{d}$, then s must be even. Since the degree of a vertex of Q_{d} is twice the number of cycles in the decomposition that contain it, d must also be even.
The following theorem completely settles the question of for which s and d we have $C_{s} \| Q_{d}$.

Theorem 6. We have $C_{s} \| Q_{d}$ if and only if d is even and $s=2^{t}, 2 \leqslant t \leqslant d$.
Proof. If $C_{s} \| Q_{d}$, then we have already argued that d is even, say $d=2 n$. Then we have $Q_{d}=\left(\left(K_{2}\right)^{2}\right)^{n}=\left(C_{4}\right)^{n}$, and Theorem 4 shows that $s=2^{t}$ with $2 \leqslant t \leqslant d$.

Conversely, if $d=2 n$ and $s=2^{t}, 2 \leqslant t \leqslant d$, then Theorem 4 tells us that $C_{s} \|\left(C_{4}\right)^{n}=Q_{d}$ except possibly for $n=1$, which entails only $C_{4} \| C_{4}$.

Although if d is odd we cannot hope to find a cycle factorization of Q_{d}, we can do so up to a 1 -factor.

Theorem 7. Let $d \geqslant 3$ be odd and suppose $2 \leqslant t \leqslant d$. Then there exists a 1-factor F of Q_{d} such that $C_{2^{\prime}} \| Q_{d} \backslash F$.

Proof. We can think of $Q_{d}=Q_{d-1} \times K_{2}$ as the disjoint union of two graphs G and G^{\prime}, each isomorphic to Q_{d-1}, and to each other via $v \rightarrow v^{\prime}$, along with all edges $\left\{v, v^{\prime}\right\}$. Then if $2 \leqslant t \leqslant d-1$ we have $C_{2^{t}}$-factorizations of G and G^{\prime} by Theorem 5 . These can be combined into a $C_{2^{\prime}}$-factorization of $Q_{d} \backslash F$, where F is the union of all the edges $\left\{v, v^{\prime}\right\}$.
The case where $t=d$ remains. We know that G has a decomposition into cycles $H_{1}, H_{2}, \ldots, H_{r}$ of length 2^{d-1}, where $r=(d-1) / 2$. We claim we can find distinct vertices $v_{1}, w_{1}, v_{2}, w_{2}, \ldots, v_{r}, w_{r}$ such that $\left\{v_{i}, w_{i}\right\}$ is an edge of H_{i} for $1 \leqslant i \leqslant r$. For suppose we have found $v_{1}, w_{1}, v_{2}, w_{2}, \ldots, v_{j}, w_{j}$, with $j<r$. Then $2 j<2 r=$
$d-1 \leqslant 2^{d-2}$, since $d \geqslant 3$. Thus we have used up fewer than half the vertices of H_{j+1} and can choose v_{j+1} and w_{j+1}. This proves the claim.

Now from each pair H_{i}, H_{i}^{\prime} in G and G^{\prime} we form a cycle of length 2^{d} by removing the edges $\left\{v_{i}, w_{i}\right\}$ and $\left\{v_{i}^{\prime}, w_{i}^{\prime}\right\}$ and inserting $\left\{v_{i}, v_{i}^{\prime}\right\}$ and $\left\{w_{i}, w_{i}^{\prime}\right\}$. Since the v 's and w 's are distinct this leaves a 1 -factor in Q_{d}.

The authors would like to thank the referee for providing a proof of Lemma 4. They would also like to thank Douglas West for pointing out that Theorem 1 follows from the theory of voltage graphs.

References

[1] J. Aubert, B. Schneider, Décomposition de $K_{m}+K_{n}$ en cycles hamiltoniens, Discretc Math. 37 (1981) 19-27.
[2] J. Aubert, B. Schneider, Décomposition de la somme cartésienne d'un cycle et de l'union de deux cycles hamiltoniens en cycles hamiltoniens, Discrete Math. 38 (1982) 7-16.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
[4] J. Bosák, Decompositions of Graphs, Kluwer Academic Publishers, Boston, 1990.
[5] M. Foregger, Hamiltonian decompositions of products of cycles, Discrete Math. 24 (1978) 251-260.
[6] J.L. Gross, T.W. Tucker, Topological Graph Theory, Wiley, New York, 1987.
[7] A. Kotzig, Every cartesian product of two circuits is decomposable into Hamiltonian circuits, Centre de Recherche Mathématiques, Montréal, 1973.
[8] C.C. Lindner, C.A. Rodger, Decompositions into cycles II: cycle systems, in: J.H. Dinitz, D.R. Stinson (Eds), Contemporary Design Theory, Wiley, New York, 1992, pp. 325-369.
[9] R. Stong, Hamilton decompositions of cartesian products of graphs, Discrete Math. 90 (1991) 169-190.

[^0]: ${ }^{1}$ Research of both authors supported by Illinois State University Research Office.

 * Corresponding author.

