Hamiltonian decompositions of Cayley graphs on abelian groups of even order

Jiuqiang Liu
Department of Mathematics, Eastern Michigan University, Ypsilanti, MI 48197, USA

Abstract

Alspach conjectured that any $2 k$-regular connected Cayley graph cay (A, S) on a finite abelian group A can be decomposed into k hamiltonian cycles. In 1992, the author proved that the conjecture holds if $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ is a minimal generating set of an abelian group A of odd order. Here we prove an analogous result for abelian group of even order: If A is a finite abelian group of even order at least 4 and $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ is a strongly minimal generating set (i.e., $2 s_{i} \notin\left\langle S-\left\{s_{i}\right\}\right\rangle$ for each $1 \leqslant i \leqslant k$) of A, then $\operatorname{cay}(A, S)$ can be decomposed into hamiltonian cycles. © 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Let $(A,+)$ be a finite group (we use + for the notation of the operation as our main focus in this paper is on abelian groups) and S be a subset of A with $0 \notin S$. The Cayley graph $\operatorname{cay}(A, S)$ is defined to be the graph G with $V(G)=A$ and $E(G)=$ $\{x y \mid x, y \in A, x-y \in S$ or $y-x \in S\}$. We say the edge $x y$ in $\operatorname{cay}(A, S)$ is generated by $s \in S$ if $x-y=s$ or $y-x=s$ and the subgraph Q of $\operatorname{cay}(A, S)$ is generated by s if all edges of Q are generated by s.

From the definition, it is clear that any element of S with order 2 generates a 1factor of $\operatorname{cay}(A, S)$ while any element of S with order at least 3 generates a 2-factor of $\operatorname{cay}(A, S)$.

Furthermore, $\operatorname{cay}(A, S)$ is connected if and only if S generates A.
It is known that any connected Cayley graph on a finite abelian group is hamiltonian [7]. In [1], Alspach conjectured that any $2 k$-regular connected Cayley

[^0]graph on a finite abelian group has a hamiltonian decomposition. Clearly, for $k=1$ the conjecture is trivial. Bermond et al. [2] proved the conjecture for $k=2$.

Theorem 1.1 (Bermond et al. [2]). Every 4-regular connected Cayley graph cay (A, S) on a finite abelian group A can be decomposed into two hamiltonian cycles.

Liu [5] proved that $\operatorname{cay}(A, S)$ has a hamiltonian decomposition if $S=$ $\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ is a generating set of an abelian group A such that $\operatorname{gcd}\left(\operatorname{ord}\left(s_{i}\right), \operatorname{ord}\left(s_{j}\right)\right)=1$ for $i \neq j$. In [6], the author derived a more general result for abelian groups of odd order as follows.

Theorem 1.2 (Liu [6]). If A is an abelian group of odd order and $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ is a minimal generating set of A, then cay (A, S) has a hamiltonian decomposition.

We say that a generating set S of a group A is strongly minimal if for any $s \in S, 2 s$ cannot be generated by the elements in $S-\{s\}$. Clearly, any minimal generating set of a group of odd order is also strongly minimal.

In this paper, we prove the following main result.
Theorem 1.3. If A is a finite abelian group of even order at least 4 and $S=$ $\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ is a strongly minimal generating set of A, then $\operatorname{cay}(A, S)$ has a hamiltonian decomposition.

The next result is a direct consequence to Theorem 1.3 since the condition imposed on the generating set S implies that S is strongly minimal.

Theorem 1.4. If A is a finite abelian group of even order at least 4 and S is a minimal generating set of A such that the quotient group $A /\langle s\rangle$ is of odd order for each $s \in S$, then cay (A, S) has a hamiltonian decomposition.

2. Direct proof of Theorem 1.4

In this section, we give a direct proof to Theorem 1.4 since we need to use this result in the proof of Theorem 1.3.

Proof of Theorem 1.4. Let A be a finite abelian group of order $2^{d}(2 h+1) \geqslant 4$ with $d \geqslant 1$ and $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ be a minimal generating set of A such that $A /\left\langle s_{i}\right\rangle$ is of odd order for each $1 \leqslant i \leqslant k$. Then $\operatorname{ord}\left(s_{i}\right)=2^{d}\left(2 k_{i}+1\right)$ for each $s_{i} \in S$. By the Decomposition Theorem of Finite Abelian Groups, any finite abelian group is a direct sum of finitely many cyclic groups with prime-power orders which implies that A can be expressed as a direct sum $A=A_{1} \oplus A_{2}$ with $\left|A_{1}\right|=2^{d}$ and $\left|A_{2}\right|=2 h+1$. For convenience, let $A=\left\{(x, y) \mid x \in A_{1}, y \in A_{2}\right\}$. Then for each $1 \leqslant i \leqslant k, s_{i}=\left(x_{i}, y_{i}\right)$
with $x_{i} \in A_{1}$ and $y_{i} \in A_{2}$. By the assumption, $\left\langle x_{i}\right\rangle=A_{1}$ for each i. Without loss of generality, let $A_{1}=Z_{2^{d}}=\left\{0,1,2, \ldots, 2^{d}-1\right\}$ and let $A_{2}=\left\{u_{1}, u_{2}, \ldots, u_{2 h+1}\right\}$. Then each x_{i} must be an odd integer in A_{1}. Since S is a minimal generating set of $A, S^{\prime}=$ $\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$ is a minimal generating set for A_{2}. By Theorem 1.2, $\operatorname{cay}\left(A_{2}, S^{\prime}\right)$ can be decomposed into k hamiltonian cycles $H_{i}^{\prime}=u_{\pi_{i}(1)} u_{\pi_{i}(2)} \cdots u_{\pi_{i}(2 h+1)} u_{\pi_{i}(1)}, 1 \leqslant i \leqslant k$, where each π_{i} is a permutation on $\{1,2, \ldots, 2 h+1\}$. Note that each edge $u v$ in $\operatorname{cay}\left(A_{2}, S^{\prime}\right)$ with $u-v=y_{r}$ gives rise to $M_{u v}=\left\{(j, u)\left(j+x_{r}, v\right) \mid 0 \leqslant j \leqslant 2^{d}-1\right\}$ (generated by $s_{r}=\left(x_{r}, y_{r}\right)$) which is a perfect matching between two columns $A_{1} \times$ $\{u\}$ and $A_{1} \times\{v\}$ (for convenience, we say this matching has a jump x_{r}). Clearly, different edges in $\operatorname{cay}\left(A_{2}, S^{\prime}\right)$ correspond to disjoint matchings between columns in $\operatorname{cay}(A, S)$. It follows that the edge-disjoint hamiltonian cycles $H_{i}^{\prime}, 1 \leqslant i \leqslant k$, in $\operatorname{cay}\left(A_{2}, S^{\prime}\right)$ correspond to edge-disjoint 2-factors $H_{i}=\bigcup_{u v \in E\left(H_{i}^{\prime}\right)} M_{u v}$ in $\operatorname{cay}(A, S)$. We next show that these $H_{i}, 1 \leqslant i \leqslant k$, are in fact hamiltonian cycles and thus form a hamiltonian decomposition for $\operatorname{cay}(A, S)$. Suppose that, in each H_{i} with $1 \leqslant i \leqslant k$, the jump for the matching between the columns $A_{1} \times\left\{u_{\pi_{i}(j)}\right\}$ and $A_{1} \times\left\{u_{\pi_{i}(j+1)}\right\}$ is $x_{r(i, j)} \in\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, where $1 \leqslant j \leqslant\left|A_{2}\right|=2 h+1$, then H_{i} is isomorphic to $\bigcup_{0 \leqslant t \leqslant 2^{d}-1}\left(t, u_{\pi_{i}(1)}\right)\left(t, u_{\pi_{i}(2)}\right) \cdots\left(t, u_{\pi_{i}(2 h+1)}\right)\left(t+x(i), u_{\pi_{i}(1)}\right)$, where $x(i) \equiv x_{r(i, 1)}+$ $x_{r(i, 2)}+\cdots+x_{r(i, 2 h+1)}\left(\bmod 2^{d}\right)$. Since all $x_{r(i, j)} \in\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ are odd, each $x(i)\left(\bmod 2^{d}\right), 1 \leqslant i \leqslant k$, must be an odd integer in $A_{1}=Z_{2^{d}}$. It follows that each H_{i} is a hamiltonian cycle in $\operatorname{cay}(A, S)$ for $1 \leqslant i \leqslant k$.

3. Preliminary results

We first recall the well-known concept of cartesian product and a result.
Definition 3.1. The cartesian product $G=G_{1} \times G_{2}$ has vertex set $V(G)=V\left(G_{1}\right) \times$ $V\left(G_{2}\right)$ and edge set $E(G)=\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{1}=v_{1}\right.$ and $u_{2} v_{2} \in E\left(G_{2}\right)$ or $u_{2}=v_{2}$ and $\left.u_{1} v_{1} \in E\left(G_{1}\right)\right\}$.

Theorem 3.2 (Stong [8]). Let G_{1} and G_{2} be graphs that are decomposable into n and m hamiltonian cycles, respectively, with $n \leqslant m$. Then $G_{1} \times G_{2}$ is hamiltonian decomposable if one of the following holds: (1) $m \leqslant 3 n$, (2) $n \geqslant 3,(3)\left|G_{1}\right|$ is even, or (4) $\left|G_{2}\right| \geqslant 6\lceil m / n\rceil-3$.

From now on throughout this paper, we let $C_{1}=a_{1} a_{2} \cdots a_{n} a_{1}$ and $C_{2}=$ $b_{1} b_{2} \cdots b_{m} b_{1}$ be two cycles. By convention, the subscripts of a are expressed modulo n and the subscripts of b are expressed modulo m.

Definition 3.3. For $0 \leqslant r \leqslant m-1$, the r-pseudo-cartesian product of C_{1} and C_{2}, denoted by $C_{1} \times{ }_{r} C_{2}$, is the graph which is obtained from the cartesian product $C_{1} \times C_{2}$ by replacing the edge set $\left\{\left(a_{1}, b_{i}\right)\left(a_{n}, b_{i}\right) \mid 1 \leqslant i \leqslant m\right\}$ by the edge set $\left\{\left(a_{1}, b_{i+r}\right)\left(a_{n}, b_{i}\right) \mid 1 \leqslant i \leqslant m\right\}$.

From the definition, it is easy to see that $C_{1} \times{ }_{0} C_{2}=C_{1} \times C_{2}=C_{1} \times{ }_{m} C_{2}$. For convenience, we call the vertex set $\left\{\left(a_{i}, b_{j}\right) \mid 1 \leqslant i \leqslant n\right\}$ the b_{j}-row and the vertex set $\left\{\left(a_{i}, b_{j}\right) \mid 1 \leqslant j \leqslant m\right\}$ the a_{i}-column. Also, we call the edges whose two end-vertices have the same first component vertical edges and the edges with different first components horizontal-type edges in an r-pseudo-cartesian product.

Remark 3.4. If $\operatorname{gcd}(r, m)=d$ in an r-pseudo-cartesian product $C_{1} \times_{r} C_{2}$, then the horizontal-type edges form a 2-factor H which consists of d cycles $B_{1}, B_{2}, \ldots, B_{d}$ of length $(m n) / d$, where each cycle B_{i} consists of the vertices in the $b_{j d+i}$-rows for $0 \leqslant j \leqslant(m / d)-1$, and so any consecutive d rows of $C_{1} \times{ }_{r} C_{2}$ are on d different cycles of H. Moreover, if we give an orientation to H so that each cycle of H becomes a directed cycle, then for $1 \leqslant i \leqslant d$, all the horizontal-type edges in the rows contained in B_{i} have the same direction.

The following result [3] extended a result of Kotzig that the cartesian product of any two cycles is hamiltonian decomposable (see [4]).

Theorem 3.5 (Fan et al. [3]). Any pseudo-cartesian product $C_{1} \times_{r} C_{2}$ of two cycles C_{1} and C_{2} can be decomposed into two hamiltonian cycles.

The next three simple facts are useful in our discussion.
Fact 3.6. If $u_{1} u_{2} \in E\left(Q_{1}\right)$, and $v_{1} v_{2} \in E\left(Q_{2}\right)$, where Q_{1} and Q_{2} are two vertex-disjoint cycles, then $C=\left(Q_{1} \cup Q_{2}-\left\{u_{1} u_{2}, v_{1} v_{2}\right\}\right) \cup\left\{u_{1} v_{1}, u_{2} v_{2}\right\}$ is a cycle.

Fact 3.7. Given a cycle C, let $u_{1} u_{2}$ and $v_{1} v_{2}$ be edges of C which are separated by at least two edges. Then $\left(C-\left\{u_{1} u_{2}, v_{1} v_{2}\right\}\right) \cup\left\{u_{1} v_{1}, u_{2} v_{2}\right\}$ is a 2 -factor containing at most two cycles.

Fact 3.8. Given a cycle C, let $u_{1} u_{2}$ and $v_{1} v_{2}$ be two non-adjacent edges of C. If the order of the four end-vertices appearing on C is $u_{1}, u_{2}, v_{1}, v_{2}$ along a given direction, then $\left(C-\left\{u_{1} u_{2}, v_{1} v_{2}\right\}\right) \cup\left\{u_{1} v_{1}, u_{2} v_{2}\right\}$ is still a cycle.

For the following discussions, in $C_{1} \times_{r} C_{2}$, we color all horizontal-type edges by one color, say blue, and all vertical edges by another color, say red.

Definition 3.9. $A n\left\{a_{i}, a_{i+1}, b_{j}, b_{j+1}\right\}$-color switching in $C_{1} \times_{r} C_{2}$ means that we interchange the colors between two edge sets $\left\{\left(a_{i}, b_{j}\right)\left(a_{i}, b_{j+1}\right),\left(a_{i+1}, b_{j}\right)\left(a_{i+1}, b_{j+1}\right)\right\}$ and $\left\{\left(a_{i}, b_{j}\right)\left(a_{i+1}, b_{j}\right),\left(a_{i}, b_{j+1}\right)\left(a_{i+1}, b_{j+1}\right)\right\}$.

For convenience, one can simply think a color switching as interchanging the colors between one pair of opposite sides and the other pair of opposite sides in a square formed by two adjacent rows and two adjacent columns. In fact, we will indicate each color switching by a square in the following figures.

Lemma 3.10. If $\operatorname{gcd}(r, m)=2 t+1 \geqslant 3$, then, by making the color switchings $1,2, \ldots, 2 t$ in $C_{1} \times_{r} C_{2}$ shown in Fig. 1 and the color switching $x=$ $\left\{a_{3}, a_{4}, b_{2 t+1}, b_{2 t+2}\right\}$, we obtain a blue hamiltonian cycle and, connect four red cycles in the a_{j}-columns for $j=1,2,3,4$ to a single red cycle.

Proof. By Remark 3.4, all blue edges (namely, horizontal-type edges) form $2 t+1$ cycles with each row contained in a single blue cycle and no two of the first $2 t+1$ rows in $C_{1} \times_{r} C_{2}$ are on the same blue cycle. Furthermore, b_{1}-row and $b_{2 t+2}$-row are on the same blue cycle. It follows from Fact 3.6 that making color switchings $1,2, \ldots, 2 t$ in Fig. 1 will end up with a blue hamiltonian cycle H since each of those color switchings connects two different blue cycles. Suppose that we give orientation to the blue hamiltonian cycle H so that it becomes a directed cycle. Then it is clear that all blue edges in each row have the same direction, the blue edges in b_{j}-row and the blue edges in b_{j+1}-row have opposite directions for each $1 \leqslant j \leqslant 2 t$, and all the blue edges in the b_{1}-row and the $b_{2 t+2}$-row have the same direction, as they were contained in the same blue cycle originally. We conclude that the blue edges in the $b_{2 t+1}$-row and $b_{2 t+2}$-row have the same direction. It follows from Fact 3.8 that we still have a blue hamiltonian cycle after making the additional color switching $x=$ $\left\{a_{3}, a_{4}, b_{2 t+1}, b_{2 t+2}\right\}$ in Fig. 1. On the other hand, it is easy to check that the original four red cycles in the a_{j}-columns for $j=1,2,3,4$ are now connected to a single red cycle.

The following lemma is Lemma 1 in [6]. The variable x is used in Figs. 2 and 3 so that we can start color switchings from any row by choosing a value for x. We need this flexibility when we try to avoid repeated use of an edge later.

Lemma 3.11. Suppose $n \geqslant 5$ and $\operatorname{gcd}(r, m)=2 t+1 \geqslant 3$. Then, by making the color switchings in $C_{1} \times_{r} C_{2}$ shown in Fig. 2, we obtain a blue hamiltonian cycle and connect

Fig. 1. Color switchings in $C_{1} \times{ }_{r} C_{2}$ (drawn on a torus).

Fig. 2. Color switchings in $C_{1} \times{ }_{r} C_{2}$ (drawn on a torus), where $0 \leqslant x \leqslant m-1$.

(2) $2 t \equiv 0(\bmod 4)$:

Fig. 3. Color switchings in $C_{1} \times{ }_{r} C_{2}$ (drawn on a torus), where $0 \leqslant x \leqslant m-1$.
the red cycles in the a_{j}-columns for $1 \leqslant j \leqslant y$ to a single red cycle, where $y=3$ if $2 t+1=3$, and $y=5$ otherwise.

Proof. It is clear from Remark 3.4 and Fact 3.6 that the color switchings in Fig. 2 will result in a blue hamiltonian cycle. To see that the a_{j}-columns for $1 \leqslant j \leqslant y$ are connected to a single red cycle, let us label those color switchings shown in Fig. 2 from top to bottom by $1,2, \ldots, 2 t$. If $2 t+1=3$, the result is obvious. Suppose $2 t+1 \geqslant 5$. We will make those color switchings in the increasing order as follows: We first make the color switchings $1,2,3,4$ to connect the first five columns to a single red cycle; then make the remaining color switchings a pair $2 i-1$ and $2 i$ at each time for $i=3,4, \ldots, t$. Each time the color switching $2 i-1$ separates the single red cycle into two red cycles by Fact 3.7, and then the color switching $2 i$ connects the two red cycles to form a single red cycle again by Fact 3.6.

Similar to Lemma 3.11, when $\operatorname{gcd}(r, m)$ is even, the next lemma can be seen from Remark 3.4 and Facts 3.6 and 3.7.

Lemma 3.12. Suppose $n \geqslant 6$. If $\operatorname{gcd}(r, m)=2 t$, then, by making the $\left\{a_{i}, a_{i+1}, b_{i}, b_{i+1}\right\}$ color switchings, where $i=1$ for $t=1$ and $i=1,2,3$ for $t=2$, or the color switchings in $C_{1} \times{ }_{r} C_{2}$ shown in Fig. 3 for $t \geqslant 3$, we obtain a blue hamiltonian cycle and a red cycle consisting of all the vertices in the a_{i}-columns for $1 \leqslant i \leqslant y$, where $y=2$ if $t=1,4$ if $t=2$, and 6 if $t \geqslant 3$.

At this point, we would like to make a useful remark to Lemmas 3.11 and 3.12.
Remark 3.13. For $m \geqslant 6$, after we apply Lemma 3.11 for $\operatorname{gcd}(r, m)$ odd or Lemma 3.12 for $\operatorname{gcd}(r, m)$ even to $C_{1} \times_{r} C_{2}$, each a_{i}-column, $1 \leqslant i \leqslant n$, has the following property: for any $1 \leqslant f \leqslant m$, at least one of the two vertical edges $e_{f}=$ $\left(a_{i}, b_{f}\right)\left(a_{i}, b_{f+1}\right)$ and $e_{f+2}=\left(a_{i}, b_{f+2}\right)\left(a_{i}, b_{f+3}\right)$ is red. Moreover, each a_{i}-column, $1 \leqslant i \leqslant n$, has either a red P_{3} if $\operatorname{gcd}(r, m)$ is odd or a red P_{4} if $\operatorname{gcd}(r, m)$ is even or $m \geqslant 2 \operatorname{gcd}(r, m)$, where P_{j} is a path on j vertices.

When $\operatorname{gcd}(r, m)$ is even, r and m must be even and we have the following simple lemma.

Lemma 3.14. If $\operatorname{gcd}(r, m)$ is even, then, by switching the colors of the two edge sets $E_{1}=\left\{\left(a_{1}, b_{2 j-1}\right)\left(a_{1}, b_{2 j}\right) \mid 1 \leqslant j \leqslant m / 2\right\} \cup\left\{\left(a_{n}, b_{2 j}\right)\left(a_{n}, b_{2 j+1}\right) \mid 1 \leqslant j \leqslant m / 2\right\}$ and $E_{2}=$ $\left\{\left(a_{n}, b_{i}\right)\left(a_{1}, b_{i+r}\right) \mid 1 \leqslant i \leqslant m\right\}$ in $C_{1} \times_{r} C_{2}$, we obtain a blue hamiltonian cycle as shown with bold edges in Fig. 4 and a red cycle Q consisting of the vertices in the a_{1}-column and a_{n}-column. Moreover if we orient Q into a directed cycle, then all the vertical red edges in the a_{1}-column and a_{n}-column have the same direction.

The next special class of graphs (called D_{k} in [5, Definition 3.8]) plays a key role in our discussion.

Fig. 4. A hamiltonian cycle in $C_{1} \times_{r} C_{2}$ (drawn on a torus).
Definition 3.15. For $k \geqslant 2$ and $m, n \geqslant 3$, define $D(k, m, n)$ to be a $2 k$-regular graph satisfying:
(1) $V(D(k, m, n))=\left\{\left(a_{i}, b_{j}\right) \mid 1 \leqslant i \leqslant n\right.$ and $\left.1 \leqslant j \leqslant m\right\}$,
(2) $E(D(k, m, n))$ can be decomposed into 2-factors $H_{1}, H_{2}, \ldots, H_{k-1}$ and F,
(3) $F=\bigcup_{i=1}^{n} F_{i}$, where each F_{i} is the cycle $\left(a_{i}, b_{1}\right)\left(a_{i}, b_{2}\right) \cdots\left(a_{i}, b_{m}\right)\left(a_{i}, b_{1}\right)$, and
(4) for $1 \leqslant j \leqslant k-1, H_{j} \cup F=C_{1}^{j} \times_{r_{j}} C_{2}$ with the edges of F being vertical, where $0 \leqslant r_{j} \leqslant m-1$ and $C_{1}^{j}=a_{\pi_{j}(1)}^{(j)} a_{\pi_{j}(2)}^{(j)} \cdots a_{\pi_{j}(n)}^{(j)} a_{\pi_{j}(1)}^{(j)}$ with π_{j} being a permutation of $\{1,2, \ldots, n\}$ and $\left(a_{i}^{(j)}, b_{t}\right)=\left(a_{i}, b_{t+h_{i, j}}\right)$ for $1 \leqslant i \leqslant n, 1 \leqslant t \leqslant m$, and $0 \leqslant h_{i, j} \leqslant m-1$.

Clearly, in each $H_{j} \cup F=C_{1}^{j} \times{ }_{r_{j}} C_{2}$ for $1 \leqslant j \leqslant k-1$ of a graph $D(k, m, n)$, the vertical edges form F and the horizontal-type edges form H_{j}. The example shown in Fig. 5 is a graph $D(3,5,6)$ with $r_{1}=1, r_{2}=2, \pi_{1}=I$ (the identity), $\pi_{2}=$ (124653), $h_{i, 1}=0$ and $h_{i, 2} \equiv 3 i-1 \bmod 5$ for $1 \leqslant i \leqslant 6$.

For graphs $D(3, m, n)$, Lemma 3.14 in [5] and Lemma 3.9 in [3] together give the next result, where D_{3} is replaced by $D(3, m, n)$.

Proposition 3.16. Suppose that each H_{i} in a $D(3, m, n)$ consists of $2 t_{i}+1 \geqslant 3$ cycles for $i=1$ and 2 . If the sets $K_{1}=\left\{\pi_{1}(1), \pi_{1}(2), \pi_{1}(3), \pi_{1}(4)\right\}$ and $K_{2}=\left\{\pi_{2}(1), \pi_{2}(2), \pi_{2}(3)\right\}$ have exactly one common element $\pi_{1}(4)=\pi_{2}(1)$, then $D(3, m, n)$ has a hamiltonian decomposition.

Next, we will show that under certain conditions, graphs $D(k, m, n)$ can be decomposed into hamiltonian cycles. To do so, we first color the edges of $D(k, m, n)$ so that all edges of F are of red color and for $1 \leqslant j \leqslant k-1$, all edges of H_{j} are of color c_{j}; we then try to find some edge-disjoint color switchings so that making those color switchings results in k monochromatic hamiltonian cycles.

Lemma 3.17. Let n be even, $k \geqslant 2$, and $m \geqslant 5$. If each H_{i} in a $D(k, m, n)$ consists of $2 t_{i}+1$ cycles for $1 \leqslant i \leqslant k-1$, and the sets K_{j} for $1 \leqslant j \leqslant m-1$ are mutually disjoint, where $K_{1}=\left\{\pi_{1}(1), \pi_{1}(2), \pi_{1}(3), \pi_{1}(4)\right\}$ and $K_{j}=\left\{\pi_{j}(i) \mid 1 \leqslant i \leqslant 5\right\}$ for $2 \leqslant j \leqslant k-1$, then $D(k, m, n)$ has a hamiltonian decomposition.

Fig. 5. A graph $D(3,5,6)$ (drawn on a torus).

Proof. Clearly, in each $H_{j} \cup F=C_{1}^{j} \times_{r_{j}} C_{2}$ of $D(k, m, n)$ for $1 \leqslant j \leqslant k-1$, the vertical edges form F and thus are red, the horizontal-type edges form H_{j} and thus are of color c_{j}. Without loss of generality, we assume π_{1} to be the identity permutation and $H_{1} \cup F=C_{1} \times_{r_{1}} C_{2}$ in $D(k, m, n)$, and so $K_{1}=\{1,2,3,4\}$. By Remark 3.4, for each $1 \leqslant j \leqslant k-1,2 t_{j}+1=\operatorname{gcd}\left(r_{j}, m\right)$ and each row of $H_{j} \cup F$ (in the sense that we visualize $H_{j} \cup F$ as in (form B) of Fig. 5) is in the same cycle of H_{j}. If $t_{j}=0$ for some j, then H_{j} is already a hamiltonian cycle and so we only need to work on the remaining graph $D(k-1, m, n)$ obtained by removing the edges of H_{j} from $D(k, m, n)$ unless $k=2$, in this case $D(2, m, n)=H_{1} \cup F=C_{1} \times_{r_{1}} C_{2}$ is hamiltonian decomposable by Theorem 3.5. Thus, we may assume that $t_{j} \geqslant 1$ for each $1 \leqslant j \leqslant k-$ 1. Since the sets K_{j} for $1 \leqslant j \leqslant k-1$ are mutually disjoint, we can make edge-disjoint color switchings as follows: First, apply Lemma 3.10 to $H_{1} \cup F=C_{1} \times{ }_{r_{1}} C_{2}$ to obtain a hamiltonian cycle H^{*} of color c_{1} and connect the a_{i}-columns for $i=1,2,3,4$ to a single red cycle Q_{1}. Note that the hamiltonian cycle H^{*} contains two subpaths $P^{\prime}=\left(a_{n}, b_{1}\right)\left(a_{n-1}, b_{1}\right) \ldots\left(a_{4}, b_{1}\right)\left(a_{3}, b_{1}\right)\left(a_{3}, b_{2}\right)\left(a_{4}, b_{2}\right) \ldots\left(a_{n}, b_{2}\right)$ and $P^{\prime \prime}=$ $\left(a_{n}, b_{3}\right)\left(a_{n-1}, b_{3}\right) \ldots\left(a_{h+1}, b_{3}\right)\left(a_{h}, b_{3}\right)\left(a_{h}, b_{4}\right)\left(a_{h+1}, b_{4}\right) \ldots\left(a_{n}, b_{4}\right)$, where $h=4$ for $t_{1}=1$ and $h=3$ for $t_{1} \geqslant 2$. Next, for each $2 \leqslant j \leqslant k-1$, we apply Lemma 3.11 to $H_{j} \cup F=C_{1}^{j} \times_{r_{j}} C_{2}$ to obtain a hamiltonian cycle of color c_{j} and connect the $a_{\pi_{j}(i)}$-columns for $1 \leqslant i \leqslant y$ to a single red cycle Q_{j}, where $y=3$ if $\operatorname{gcd}\left(r_{j}, m\right)=$ $2 t_{j}+1=3$, and $y=5$ otherwise. We remark that when we apply Lemma 3.11 to
$H_{j} \cup F$ for each $2 \leqslant j \leqslant k-1$, the value of x can be any integer between 0 and $m-1$ which allows us to have a red P_{3} (see Remark 3.13) anywhere as we wish in the leftmost $a_{l_{j}}$-column of Q_{j}, where l_{j} is the smallest index among all a_{i}-columns contained in Q_{j}.

Note that we connect four columns to form a single red cycle in $H_{1} \cup F$ and connect an odd number of columns to a single red cycle in each $H_{j} \cup F$ for $j \geqslant 2$. Since n is even and each column is contained in a single red cycle, we now have an odd number $2 d+1$ of red cycles, where each red cycle is either a Q_{j} or a cycle consisting of a single column. Let $0<z_{1}<z_{2}<\cdots<z_{2 d}<n$ be the integer sequence such that the $a_{z_{i}+1}$-columns for $1 \leqslant i \leqslant 2 d$ are the leftmost columns of those $2 d$ red cycles other than Q_{1}, where the leftmost column of a red cycle is the column with the smallest index among all columns contained in that red cycle. Then $z_{1}=4$. To connect these red cycles to form a red hamiltonian cycle, we next focus on $H_{1} \cup F=C_{1} \times_{r_{1}} C_{2}$ and find $2 d$ additional color switchings $X_{1}, X_{2}, \ldots, X_{2 d}$ between red edges and edges of color c_{1} such that each X_{i} is between the $a_{z_{i}}$-column and the $a_{z_{i}+1}$-column. By Remark 3.13, each a_{i}-column for $4 \leqslant i \leqslant n$ has the following property P : for any $1 \leqslant f \leqslant m$, at least one of the vertical edges $\left(a_{i}, b_{f}\right)\left(a_{i}, b_{f+1}\right)$ and $\left(a_{i}, b_{f+2}\right)\left(a_{i}, b_{f+3}\right)$ is red. Note that each $a_{z_{i}+1}$-column is either the leftmost column of a red cycle consisting of a single column which means all of its vertical edges are red, or the leftmost column of a red cycle Q_{j} and so we can have a red P_{3} in the $a_{z_{i}+1}$-column anywhere as we wish according to the earlier remark. Thus, when we define the color switchings $X_{1}, X_{2}, \ldots, X_{2 d}$ in the following, which only need to use either one red vertical edge or two adjacent red vertical edges from each involved column, we can use red vertical edges freely in each of the $a_{z_{i}+1}$-columns. For $1 \leqslant i \leqslant d$, having $X_{1}, X_{2}, \ldots, X_{2 i-3}, X_{2 i-2}$ defined, we then define $X_{2 i-1}$ and $X_{2 i}$: Since the $a_{22 i}$-column has property P, one of the two edges $e_{1}=\left(a_{z_{2 i}}, b_{1}\right)\left(a_{z_{2 i}}, b_{2}\right)$ and $e_{2}=\left(a_{z i}, b_{3}\right)\left(a_{z_{2 i}}, b_{4}\right)$ is red, we define $X_{2 i}$ to be the $\left\{a_{z_{2 i} i}, a_{z_{2 i}+1}, b_{y}, b_{y+1}\right\}$-color switching, where $y=1$ if e_{1} is red, and $y=3$ otherwise. Then, since one of $e_{3}=\left(a_{z_{2 i-1}}, b_{y-1}\right)\left(a_{z_{2 i-1}}, b_{y}\right)$ and $e_{4}=$ $\left(a_{z_{2 i-1}}, b_{y+1}\right)\left(a_{z_{2 i-1}}, b_{y+2}\right)$ is red by property P, we define $X_{2 i-1}$ to be either $\left\{a_{z_{2 i-1}}, a_{z_{2 i-1}+1}, b_{y-1}, b_{y}\right\}$-color switching or $\left\{a_{z_{2 i-1}}, a_{z_{2 i-1}+1}, b_{y+1}, b_{y+2}\right\}$-color switching depending on whether e_{3} or e_{4} is red. Clearly, the color switchings $\left\{X_{1}, X_{2}, \ldots, X_{2 d}\right\}$ are edge-disjoint and between red edges and edges of color c_{1}. Since each color switching X_{i} connects two different red cycles, by Fact 3.6, making the color switchings $X_{1}, X_{2}, \ldots, X_{2 d}$ will result in a red hamiltonian cycle. Now, we claim that applying the color switchings $X_{1}, X_{2}, \ldots, X_{2 d}$ in $H_{1} \cup F$ will still end up with a hamiltonian cycle of color c_{1}. In fact, starting with the hamiltonian cycle H^{*} of color c_{1} which contains two subpaths P^{\prime} and $P^{\prime \prime}$ as noted earlier $\left(P^{\prime}\right.$ and $P^{\prime \prime}$ are still part of H^{*} since we did not use any of the edges from H^{*} before making the color switchings X_{j} 's), let us make those color switchings in the order $X_{2 d}, X_{2 d-1}, \ldots, X_{2}, X_{1}$, a pair $X_{2 i-1}, X_{2 i}$ at each time: by Fact 3.7, making color switching $X_{2 i}=$ $\left\{a_{z_{2 i}}, a_{z_{2 i}+1}, b_{y}, b_{y+1}\right\}$ with $y=1$ or 3 will separate the hamiltonian cycle of color c_{1} into two cycles with one being $\left(a_{z_{2 i} i}, b_{1}\right)\left(a_{z_{2 i}-1}, b_{1}\right) \ldots\left(a_{4}, b_{1}\right)\left(a_{3}, b_{1}\right)\left(a_{3}, b_{2}\right)\left(a_{4}, b_{2}\right) \ldots$ $\left(a_{z_{2 i}}, b_{2}\right)\left(a_{z_{2 i}}, b_{1}\right)$ if $y=1$ or $\left(a_{z_{2 i}}, b_{3}\right)\left(a_{z_{2 i}-1}, b_{3}\right) \ldots\left(a_{h+1}, b_{3}\right)\left(a_{h}, b_{3}\right)\left(a_{h}, b_{4}\right)\left(a_{h+1}, b_{4}\right) \ldots$ $\left(a_{z_{2 i}}, b_{4}\right)\left(a_{z_{2 i}}, b_{3}\right)$ if $y=3$; and then by Fact 3.6, making the color switching $X_{2 i-1}$ will
connect the two cycles of color c_{1} into a hamiltonian cycle of color c_{1} again. Thus, the claim follows. Together with the existing monochromatic hamiltonian cycles of colors c_{j} for $2 \leqslant j \leqslant k-1$, we obtain a hamiltonian decomposition of $D(k, m, n)$.

In the following proof, we call a path $P_{4}=\left(a_{i}, b_{y}\right)\left(a_{i}, b_{y+1}\right)\left(a_{i}, b_{y+2}\right)\left(a_{i}, b_{y+3}\right)$ in an a_{i}-column of $C_{1} \times_{r_{1}} C_{2}$ odd if y is odd, and even if y is even. Also, we call a vertical edge $\left(a_{i}, b_{y}\right)\left(a_{i}, b_{y+1}\right)$ odd if y is odd, and even if y is even.

Lemma 3.18. Suppose that n is even, $k \geqslant 2$, and $m \geqslant 6$. If H_{1} in $D(k, m, n)$ consists of an even number of cycles, and the sets $K_{1}=\left\{\pi_{1}(1), \pi_{1}(n)\right\}$ and $K_{j}=\left\{\pi_{j}(i) \mid 1 \leqslant i \leqslant 6\right\}$ for $2 \leqslant j \leqslant k-1$ are mutually disjoint, then $D(k, m, n)$ has a hamiltonian decomposition.

Proof. We proceed in a way similar to the proof of Lemma 3.17. Clearly, in each $H_{j} \cup F=C_{1}^{j} \times_{r_{j}} C_{2}$ of $D(k, m, n)$ for $1 \leqslant j \leqslant k-1$, the vertical edges form F and thus are red, the horizontal-type edges form H_{j} and thus are of color c_{j}. Again, without loss of generality, we assume π_{1} to be the identity permutation and $H_{1} \cup F=$ $C_{1} \times_{r_{1}} C_{2}$ in $D(k, m, n)$, and so $K_{1}=\{1, n\}$. By Remark 3.4, each H_{j} consists of $h_{j}=\operatorname{gcd}\left(r_{j}, m\right)$ cycles for $1 \leqslant j \leqslant k-1$. By the assumption, h_{1} is even. This implies that m is even and $m \geqslant 2 h_{j}$ for each odd h_{j}. Since the sets K_{j} for $1 \leqslant j \leqslant k-1$ are mutually disjoint, we make edge-disjoint color switchings in each $H_{j} \cup F$ within $a_{i}{ }^{-}$ columns for $i \in K_{j}$ as follows: We first apply Lemma 3.14 to $H_{1} \cup F=C_{1} \times_{r_{1}} C_{2}$ to obtain a hamiltonian cycle H^{*} of color c_{1} and connect the a_{1}-column and a_{n}-column to a single red cycle Q_{1}. Note that all even edges in the a_{1}-column and all odd edges in the a_{n}-column are still red. Next, for each $2 \leqslant j \leqslant k-1$, we apply Lemma 3.11 when $h_{j}>1$ is odd or Lemma 3.12 when h_{j} is even to $H_{j} \cup F=C_{1}^{j} \times_{r_{j}} C_{2}$ to obtain a hamiltonian cycle of color c_{j} and connect the involved a_{i}-columns with $i \in K_{j}$ to a single red cycle Q_{j}, where the value of x can be any integer between 0 and $m-1$ which allows us to have a red P_{4} anywhere as we wish in the leftmost column of Q_{j} (such a red P_{4} exists by Remark 3.13 and the fact that $m \geqslant 2 h_{j}$ when $h_{j}=\operatorname{gcd}\left(r_{j}, m\right)$ is odd). Clearly, the red edges still form a 2 -factor and each column is contained in a single red cycle. By Remark 3.13, each a_{i}-column for $2 \leqslant i \leqslant n-1$ has the following property P : for any $1 \leqslant f \leqslant m$, at least one of the vertical edges $\left(a_{i}, b_{f}\right)\left(a_{i}, b_{f+1}\right)$ and $\left(a_{i}, b_{f+2}\right)\left(a_{i}, b_{f+3}\right)$ is red and there is a red P_{4} in the a_{i}-column.

Clearly, each column is either a red cycle or contained in a red cycle Q_{j}. Suppose that the resulting red 2 -factor F^{\prime} has p red cycles. To connect those red cycles to a red hamiltonian cycle, we focus on $H_{1} \cup F=C_{1} \times{ }_{r_{1}} C_{2}$. Similar to Lemma 3.17, we will find an integer sequence $0<z_{1}<z_{2}<\cdots<z_{2 d}<n$ and additional color switchings $X_{1}, X_{2}, \ldots, X_{2 d}$ between red edges and edges of color c_{1} in $H_{1} \cup F$, where each X_{i} is between the $a_{z_{i}}$-column and the $a_{z_{i}+1}$-column, such that making these color switchings will end up with a red hamiltonian cycle and a hamiltonian cycle of color c_{1}, thereby a hamiltonian decomposition of $D(k, m, n)$.

We first find the desired integer sequence $0<z_{1}<z_{2}<\cdots<z_{2 d}<n$. Let $0<z_{1}^{\prime}<z_{2}^{\prime}<\cdots<z_{p-1}^{\prime}$ be the integer sequence such that the $a_{z_{i}^{\prime}+1}$-columns for $1 \leqslant i \leqslant p-1$ are the leftmost columns of those $p-1$ red cycles other than Q_{1}. Then $z_{1}^{\prime}=1$. If $p-1$ is even, then $p-1=2 d$ for some d and we have the desired sequence by setting $z_{i}=z_{i}^{\prime}$ for $1 \leqslant i \leqslant 2 d$. Assume that $p-1$ is odd, i.e., p is even. Suppose that we have $p-1$ edge-disjoint color switchings Y_{i} for $1 \leqslant i \leqslant p-1$ between red edges and edges of color c_{1}, with Y_{i} between $a_{z_{i}^{\prime}}$ column and $a_{z_{i}^{\prime}+1}$-column. Then, it follows from Fact 3.6 that by making those color switchings Y_{1}, \ldots, Y_{p-1}, we have a red hamiltonian cycle Q. If we give an orientation to Q to obtain a directed cycle, then it is clear that all red edges in the same column have the same direction and for each $1 \leqslant i \leqslant p-1$, the red edges in $a_{z_{i}^{\prime}}$ column and the red edges in $a_{z_{i}^{\prime}+1}$-column have opposite direction. By Lemma 3.14, all red vertical edges in both a_{1}-column and a_{n}-column have the same direction. Since n is even, there must exist $1 \leqslant z \leqslant n-1$ such that all red vertical edges in both a_{z}-column and a_{z+1}-column have the same direction. This implies that $z \neq z_{j}^{\prime}$ for $1 \leqslant j \leqslant p-1$. It follows that a_{z+1}-column is a non-leftmost column of some red cycle Q_{w}. By Fact 3.8, after making any one additional color switching Y between the a_{z}-column and a_{z+1}-column using one red edge from each column, we still have a red hamiltonian cycle. Inserting z to the sequence $z_{1}^{\prime}<z_{2}^{\prime}<\cdots<z_{p-1}^{\prime}$, we obtain the desired integer sequence $z_{1}<z_{2}<\cdots<z_{2 d}$, where $2 d=p$.

Now, we will find desired edge-disjoint color switchings $X_{1}, X_{2}, \ldots, X_{2 d}$ between red edges and edges of color c_{1} in $H_{1} \cup F$. Note that for each $z_{i} \neq z$, the $a_{z_{i}+1}$-column is either the leftmost column of a red cycle consisting of a single column which means all of its vertical edges are red, or the leftmost column of a red cycle Q_{j} and so we can have a red P_{4} in that column anywhere as we wish according to the earlier remark. For $1 \leqslant i \leqslant d$, having $X_{1}, X_{2}, \ldots, X_{2 i-3}, X_{2 i-2}$ defined, we then define $X_{2 i-1}$ and $X_{2 i}$ in two cases:

Case 1: $z \neq z_{2 i-1}, z_{2 i}$. We define $X_{2 i-1}$ and $X_{2 i}$ in the same way as in the proof of Lemma 3.17.

Case 2: $z=z_{2 i-1}$ or $z_{2 i}$. In this case, the a_{z+1}-column is a non-leftmost column of some red cycle Q_{w}. For $z+1<n$, the a_{z+1}-column is a non-leftmost column of some red cycle Q_{w} with $w>1$, and so both the a_{z+1}-column and the leftmost $a_{l_{w}}$-column of Q_{w} have a red P_{4} by Property P. Clearly, only the edges from a $D=P_{3}=$ $\left(a_{l w}, b_{h}\right)\left(a_{l w}, b_{h+1}\right)\left(a_{l_{w}}, b_{h+2}\right)$ in the $a_{l_{w}}$-column may be used by previously defined X_{j} 's. It follows that, when we apply Lemma 3.11 or Lemma 3.12 to $H_{w} \cup F$ above, we may choose the value for x appropriately so that the $D=P_{3}$ is part of a red P_{4} in the leftmost $a_{l_{w}}$-column of Q_{w} meanwhile we can make a red P_{4} in the a_{z+1}-column either odd or even. Thus, for $z+1<n$, we may assume that the a_{z+1}-column has an even red $P_{4}=\left(a_{z+1}, b_{2 q}\right)\left(a_{z+1}, b_{2 q+1}\right)\left(a_{z+1}, b_{2 q+2}\right)\left(a_{z+1}, b_{2 q+3}\right)$ for $z=z_{2 i-1}$, or an odd red $P_{4}=\left(a_{z+1}, b_{2 q-1}\right)\left(a_{z+1}, b_{2 q}\right)\left(a_{z+1}, b_{2 q+1}\right)\left(a_{z+1}, b_{2 q+2}\right)$ for $z=z_{2 i}$. Recall that each a_{i}-column has property P for $2 \leqslant i \leqslant n-1$, all even vertical edges in the a_{1}-column and all odd vertical edges in the a_{n}-column are red. For $z=z_{2 i}$, we define color switchings $X_{2 i-1}$ and $X_{2 i}$ in the same way as in the proof of Lemma 3.17 except that we take $y=2 q-1$ or $2 q+1$ depending on whether $\left(a_{z_{2 i}}, b_{2 q-1}\right)\left(a_{z_{2 i}}, b_{2 q}\right)$ or
$\left(a_{z_{2 i}}, b_{2 q+1}\right)\left(a_{z_{2 i}}, b_{2 q+2}\right)$ is red. For $z=z_{2 i-1}$, we first define $X_{2 i-1}$ to be $\left\{a_{z_{2 i-1}}, a_{z_{2 i-1}+1}, b_{y}, b_{y+1}\right\}$-color switching for $y=2 q$ or $2 q+2$ depending on whether $\left(a_{z_{2 i-1}}, b_{2 q}\right)\left(a_{z_{2 i-1}}, b_{2 q+1}\right)$ or $\left(a_{z_{2 i-1}}, b_{2 q+2}\right)\left(a_{z_{2 i-1}}, b_{2 q+3}\right)$ is red, then define $X_{2 i}$ to be $\left\{a_{z_{2 i} i}, a_{z_{2 i}+1}, b_{y-1}, b_{y}\right\}$-color switching or $\left\{a_{z_{2 i}}, a_{z_{2 i}+1}, b_{y+1}, b_{y+2}\right\}$-color switching depending on whether $\left(a_{z 2 i}, b_{y-1}\right)\left(a_{z i}, b_{y}\right)$ or $\left(a_{z 2 i}, b_{y+1}\right)\left(a_{z 2 i}, b_{y+2}\right)$ is red. Clearly, each $X_{2 j-1}$ uses only even red vertical edges while each $X_{2 j}$ uses only odd red vertical edges, and $X_{1}, \ldots, X_{2 d}$ are edge-disjoint.

From the choice of the integer sequence $0<z_{1}<z_{2}<\cdots<z_{2 d}<n$, it follows that making the color switchings $X_{1}, X_{2}, \ldots, X_{2 d}$ results in a red hamiltonian cycle. Note that the hamiltonian cycle H^{*} of color c_{1} contains subpaths $P(j)=\left(a_{n}, b_{2 j-1}\right)\left(a_{n-1}, b_{2 j-1}\right) \ldots\left(a_{2}, b_{2 j-1}\right)\left(a_{1}, b_{2 j-1}\right)\left(a_{1}, b_{2 j}\right)\left(a_{2}, b_{2 j}\right) \ldots\left(a_{n}, b_{2 j}\right)$ for $1 \leqslant$ $j \leqslant m / 2$. Similar to the proof of Lemma 3.17, we conclude that we still end up with a hamiltonian cycle of color c_{1} after those color switchings X_{i} 's. Together with the existing hamiltonian cycles of colors c_{j} for $2 \leqslant j \leqslant k-1$, we obtain a hamiltonian decomposition for $D(k, m, n)$.

4. Proof of Theorem 1.3

Let A be a finite abelian group, $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ be a generating set of A such that $0 \notin S$ and $s \in S$ implies $-s \notin S$. For $J=\left\langle s_{k}\right\rangle$, let $A_{1}=A / J$ and $\bar{S}=$ $\left\{\bar{s}_{1}, \bar{s}_{2}, \ldots, \bar{s}_{k-1}\right\}$, where we use \bar{x} to represent the coset $x+J$. Let $m=\operatorname{ord}\left(s_{k}\right) \geqslant 3$. Then all edges in $\operatorname{cay}(A, S)$ which are generated by s_{k} form a 2 -factor F. Furthermore, F consists of $n=\left|A_{1}\right|=|A| / m$ cycles of length m.

Definition 4.1. For any edge $\bar{x} \bar{y}$ of $\operatorname{cay}\left(A_{1}, \bar{S}\right)$, where $\bar{x}-\bar{y}=\bar{s}_{i} \in \bar{S}$, we call the edge set $\left\{u_{1} u_{2} \mid \bar{u}_{1}=\bar{x}, \bar{u}_{2}=\bar{y}\right.$ and $\left.u_{1}-u_{2}=s_{i}\right\}$ of $\operatorname{cay}(A, S)$ the lifting edge set of the edge $\bar{x} \bar{y}$.

Definition 4.2. For any subgraph \bar{Q} of $\operatorname{cay}\left(A_{1}, \bar{S}\right)$, the subgraph Q of $\operatorname{cay}(A, S)$ with the edge set being the union of the lifting edge sets of the edges of \bar{Q} is called the subgraph lifted by \bar{Q} and we say \bar{Q} lifts to Q.

It is easy to see from the above definitions that edge-disjoint subgraphs of $\operatorname{cay}\left(A_{1}, \bar{S}\right)$ lift to edge-disjoint subgraphs of $\operatorname{cay}(A, S)$.

The following connection between Cayley graphs $\operatorname{cay}(A, S)$ on abelian group A and graphs $D(k, m, n)$ is Lemma 5 in [6] (where D_{k} is changed to $D(k, m, n)$ here).

Proposition 4.3. If the Cayley cay $\left(A_{1}, \bar{S}\right)$ can be decomposed into $k-1$ hamiltonian cycles $\bar{H}_{j}=\bar{g}_{\pi_{j}(1)} \bar{g}_{\pi_{j}(2)} \cdots \bar{g}_{\pi_{j}(n)} \bar{g}_{\pi_{j}(1)}$ for $1 \leqslant j \leqslant k-1$, where each π_{j} is a permutation of $\{1,2, \ldots, n\}$, then cay $(A, S) \cong D(k, m, n)$ with each H_{j} being the 2-factor lifted by \bar{H}_{j} and F being the 2-factor generated by s_{k}.

The above proposition allows us to obtain a hamiltonian decomposition of Cayley graph $\operatorname{cay}(A, S)$ by applying Lemmas 3.17 and 3.18. To guarantee the conditions
imposed on π_{j} in Lemmas 3.17 and 3.18 are satisfied, we give the following simple results.

Lemma 4.4. If A is a finite abelian group of even order at least 4 and $S=$ $\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ is a strongly minimal generating set of A, then $|A| \geqslant 4 \cdot 3^{k-1}$.

Proof. We proceed by induction on k. For $k=1$, the result is clear. Assume the result for $k<h$ (with $h \geqslant 2$). Now, we consider $k=h$. Since A is of even order and S is a generating set of A, S has an element of even order, say s_{1}. Let $S^{\prime}=$ $\left\{s_{1}, s_{2}, \ldots, s_{k-1}\right\}$ and $A^{\prime}=\left\langle S^{\prime}\right\rangle$. Then A^{\prime} has even order and S^{\prime} is a strongly minimal generating set of A^{\prime} as S is strongly minimal. By the induction hypothesis, $\left|A^{\prime}\right| \geqslant 4 \cdot 3^{k-2}$. Since S is a strongly minimal generating set of A, there are at least three cosets of A^{\prime} in A. Thus, $|A| \geqslant 3\left|A^{\prime}\right| \geqslant 4 \cdot 3^{k-1}$.

The following two propositions are Lemmas 2.5 and 3.3 in [5].
Proposition 4.5. Let A be a finite abelian group which is generated by $S=$ $\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}, A_{1}$ be the subgroup of A which is generated by $S^{\prime}=\left\{s_{1}, s_{2}, \ldots, s_{k-1}\right\}$ and $J=\left\langle s_{k}\right\rangle$. If $A_{1} \cap J=\{0\}$, then $\operatorname{cay}(A, S)=\operatorname{cay}\left(A_{1}, S^{\prime}\right) \times \operatorname{cay}\left(J,\left\{s_{k}\right\}\right)$.

Proposition 4.6. Let G be hamiltonian decomposable 4 -regular graph of order $n \geqslant 9$. Then, for each hamiltonian decomposition H_{1} and H_{2} of G, there exists a path $P=$ $u_{1} u_{2} u_{3} u_{4} u_{5} u_{6}$ such that $P_{1}=u_{1} u_{2} u_{3} u_{4}$ is on H_{1} while $P_{2}=u_{4} u_{5} u_{6}$ is on H_{2}.

Lemma 4.7. For $d \geqslant 2$, if G is a hamiltonian decomposable $2 d$-regular multigraph of order $n>\max \{12(d-1), 36(d-2)\}$, then, for any hamiltonian decomposition $H_{1}, H_{2}, \ldots, H_{d}$ of G, there are d vertex-disjoint paths $P(1)=u_{1} v_{1}$ and $P(j)=$ $u_{j} v_{j} w_{j} x_{j} y_{j} z_{j}$ for $2 \leqslant j \leqslant d$ such that $P(i)$ is on H_{i} for $1 \leqslant i \leqslant d$.

Proof. For $t \leqslant d-1$, suppose t subpaths $P(j), d-t+1 \leqslant j \leqslant d$, have been chosen on the cycles H_{j}. The $6 t$ vertices of those $P(j)$'s divide the remaining $n-6 t$ vertices of H_{d-t} into $6 t$ subpaths and let P be a longest one of those subpaths. Then P has at least 6 vertices if $t \leqslant d-2$ and at least two vertices if $t=d-1$ as $n>\max \{12(d-$ $1), 36(d-2)\}$. Thus, we may choose a desired subpath of P to be $P(d-t)$.

Similarly, we can derive the following lemma.
Lemma 4.8. Let $d \geqslant 2$. If G is a hamiltonian decomposable $2 d$-regular multigraph of order $n>\max \{20(d-1), 25(d-2)\}$, then, for any hamiltonian decomposition $H_{1}, H_{2}, \ldots, H_{d}$ of G, there are d vertex-disjoint paths $P(1)=u_{1} v_{1} w_{1} x_{1}$ and $P(j)=$ $u_{j} v_{j} w_{j} x_{j} y_{j}$ for $2 \leqslant j \leqslant d$ such that $P(i)$, is on H_{i} for $1 \leqslant i \leqslant d$.

In the following discussions, we use the standard notation C_{i} to denote a cycle on i vertices for $i \geqslant 3$.

Remark 4.9. Fig. 6(a) shows a hamiltonian decomposition Q_{1}, Q_{2} of $C_{4} \times C_{3}$ with two disjoint paths of 2 and 6 vertices (shown by black dots) on Q_{1} and Q_{2}, respectively, and Fig. 6(b) shows a hamiltonian decomposition H_{1}, H_{2}, H_{3} of the graph $G=C_{4} \times C_{3} \times C_{3}$ with three vertex-disjoint paths $P(j)=u_{j} v_{j} w_{j} x_{j} y_{j} z_{j}$ (shown by black dots) such that each $P(j)$ is on H_{j} for $1 \leqslant j \leqslant 3$.

We are now ready to prove Theorem 1.3.
Proof of Theorem 1.3. Let A be a finite abelian group of even order at least 4 and $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ be a strongly minimal generating set of A. Then each s_{i} has order at least 3. We now prove $\operatorname{cay}(A, S)$ has a hamiltonian decomposition by induction on k. For $k=1$, the result is trivial. For $k=2$, the result follows from Theorem 1.1. Assume the result for $k<k^{\prime}$. Now, we consider $k=k^{\prime} \geqslant 3$. We first assume that S has an element s_{h} of order less than 6. Then $\left\langle s_{h}\right\rangle \cap\left\langle S-\left\{s_{h}\right\}\right\rangle=\{0\}$ as S is strongly minimal. It follows from Proposition 4.5 that $\operatorname{cay}(A, S) \cong \operatorname{cay}\left(\left\langle s_{h}\right\rangle,\left\{s_{h}\right\}\right) \times$ $\operatorname{cay}\left(A^{\prime}, S^{\prime}\right)$, where $S^{\prime}=S-\left\{s_{h}\right\}$ and $A^{\prime}=\left\langle S^{\prime}\right\rangle$. Since S is a strongly minimal generating set of A, S^{\prime} is a strongly minimal generating set of A^{\prime}. By Theorem 1.2 for $\left|A^{\prime}\right|$ odd or the induction hypothesis for $\left|A^{\prime}\right|$ even, $\operatorname{cay}\left(A^{\prime}, S^{\prime}\right)$ can be decomposed into $k-1$ hamiltonian cycles. Clearly, $\operatorname{cay}\left(\left\langle s_{h}\right\rangle,\left\{s_{h}\right\}\right)$ is a cycle of length $\operatorname{ord}\left(s_{h}\right)$. Since A is of even order, either $\operatorname{ord}\left(s_{h}\right)$ is even or A^{\prime} is of even order and so $\left|A^{\prime}\right| \geqslant 4$. $3^{k-2} \geqslant 6(k-1)-3$ by Lemma 4.4. It follows from Theorem 3.2(3) or (4) that $\operatorname{cay}(A, S) \cong \operatorname{cay}\left(\left\langle s_{h}\right\rangle,\left\{s_{h}\right\}\right) \times \operatorname{cay}\left(A^{\prime}, S^{\prime}\right)$ is hamiltonian decomposable. Now, we assume that every element of S has order at least 6 . By Theorem 1.4, we may assume

Fig. 6. Hamiltonian decomposition of $C_{4} \times C_{3}$ and $C_{4} \times C_{3} \times C_{3}$.
that there is an element in S, say s_{k}, such that the quotient group $A_{1}=A / J$ is of even order n, where $J=\left\langle s_{k}\right\rangle$. Let $m=|J|$ and $A_{1}=\left\{\bar{g}_{1}, \bar{g}_{2}, \ldots, \bar{g}_{n}\right\}$. Then $m \geqslant 6$ and $n \geqslant 4$ is even. Since S is a strongly minimal generating set of $A, \bar{S}=\left\{\bar{s}_{1}, \bar{s}_{2}, \ldots, \bar{s}_{k-1}\right\}$ is a strongly minimal generating set of A_{1}. By the induction hypothesis, $\operatorname{cay}\left(A_{1}, \bar{S}\right)$ can be decomposed into $k-1$ hamiltonian cycles $\bar{H}_{j}=\bar{g}_{\pi_{j}(1)} \bar{g}_{\pi_{j}(2)} \cdots \bar{g}_{\pi_{j}(n)} \bar{g}_{\pi_{j}(1)}$ for $1 \leqslant j \leqslant k-1$, where each π_{j} is a permutation of $\{1,2, \ldots, n\}$. By Proposition 4.3, $\operatorname{cay}(A, S) \cong D(k, m, n)$ with each H_{j} being the 2 -factor lifted by \bar{H}_{j}. In each $H_{j} \cup F=C_{1}^{j} \times{ }_{r_{j}} C_{2}$, let $t_{j}=\operatorname{gcd}\left(m, r_{j}\right)$. By symmetry, we may assume that t_{i} is even for $1 \leqslant i \leqslant \beta$ and t_{i} is odd for $i \geqslant \beta+1$. By Lemma 4.4, $\left|A_{1}\right| \geqslant 4 \cdot 3^{k-2}$. We consider the following two cases.

Case 1: $d=k-1 \geqslant 3$. Then $\left|A_{1}\right| \geqslant 4 \cdot 3^{k-2}=4 \cdot 3^{d-1}>\max \{20(d-1), 36(d-2)\}$ unless $d=k-1=3$ and $\left|A_{1}\right| \leqslant 40$. For $d=k-1=3$, since A_{1} is of even order $n \geqslant 4 \cdot 3^{2}$ and $\bar{S}=\left\{\bar{s}_{1}, \bar{s}_{2}, \bar{s}_{3}\right\}$ is a strongly minimal generating set of A_{1}, we must have either $\left|A_{1}\right|>40$ or $A_{1}=36$ and exactly one element in \bar{S} is of order 4 and the other two are of order 3. Furthermore, for the later case, we must have $\left\langle\bar{s}_{i}\right\rangle \cap\left\langle\overline{s_{j}}\right\rangle=\{0\}$ for $i \neq j$ which implies that $\operatorname{cay}\left(A_{1}, \bar{S}\right) \cong C_{3} \times C_{3} \times C_{4}$ by Proposition 4.5. Thus, we have either $\left|A_{1}\right|>\max \{20(d-1), 36(d-2)\} \quad$ or $\operatorname{cay}\left(A_{1}, \bar{S}\right) \cong C_{3} \times C_{3} \times C_{4}$. It follows from Lemmas 4.7 and 4.8 and Remark 4.9 that we may assume the permutations π_{j} for $1 \leqslant j \leqslant k-1$ in the above hamiltonian decomposition of $\operatorname{cay}\left(A_{1} \bar{S}\right)$ satisfy the conditions in Lemmas 3.17 and 3.18. Thus, by Lemmas 3.17 and 3.18, $\operatorname{cay}(A, S) \cong D(k, m, n)$ has a hamiltonian decomposition.

Case 2: $d=k-1=2$. In this case, we have $n=\left|A_{1}\right| \geqslant 12$. For $n=12$, since $\bar{S}=$ $\left\{\bar{s}_{1}, \bar{s}_{2}\right\}$ is a strongly minimal generating set of A_{1}, we must have $\left\langle\bar{s}_{1}\right\rangle \cap\left\langle\bar{s}_{2}\right\rangle=\{0\}$ and it follows from Proposition 4.5 that $\operatorname{cay}\left(A_{1}, \bar{S}\right) \cong C_{3} \times C_{4}$. If one of t_{1} and t_{2} is even, say t_{1}, then it follows from Lemmas 3.18 and 4.7 , and Remark 4.9 that $\operatorname{cay}(A, S) \cong D(3, m, n)$ has a hamiltonian decomposition. Now, suppose that both t_{1} and t_{2} are odd. By deleting one H_{i} for $t_{i}=1$ and applying Theorem 3.5, we may assume $t_{1}>1$ and $t_{2}>1$. Then the result follows from Propositions 3.16 and 4.6.

Acknowledgments

The author is grateful to the referees whose many comments have significantly helped to improve the presentation of this article.

References

[1] B. Alspach, Research problem 59, Discrete Math. 50 (1984) 115.
[2] J.-C. Bermond, O. Favaron, M. Maheo, Hamiltonian decomposition of Cayley graphs of degree 4, J. Combin. Theory Ser. B 46 (1989) 142-153.
[3] C. Fan, D.R. Lick, J. Liu, Pseudo-cartesian products and hamiltonian decompositions of Cayley graphs on abelian groups, Discrete Math. 158 (1996) 49-62.
[4] M.F. Foregger, Hamiltonian decompositions of products of cycles, Discrete Math. 24 (1978) 251-260.
[5] J. Liu, Hamiltonian decompositions of Cayley graphs on abelian groups, Discrete Math. 131 (1994) 163-171.
[6] J. Liu, Hamiltonian decompositions of Cayley graphs on abelian groups of odd order, J. Combin. Theory Ser. B 66 (1) (1996) 75-86.
[7] D. Marusic, Hamiltonian circuits in Cayley graphs, Discrete Math. 46 (1983) 49-54.
[8] R. Stong, Hamilton decompositions of cartesian products of graphs, Discrete Math. 90 (1991) 169-190.

Further reading

B. Alspach, J.-C. Bermond, D. Sotteau, Decomposition into cycles I: Hamilton decompositions, in: G. Hahn, G. Sabidussi, R. Woodrow (Eds.), Cycles and Rays, Kluwer, Amsterdam, 1990, pp. 9-18.
J. Aubert, B. Schneider, Decomposition de la somme cartésienne d'un cycle et de 1' union de deux cycles hamiltonens en cycles hamiltoniens, Discrete Math. 38 (1982) 7-16.
G. Chartrand, L. Lesniak, Graphs and Digraphs, 2nd Edition, Wadsworth and Brooks/Cole, Monterey, CA, 1986.
J.A. Gallian, Contemporary Abstract Algebra, D. C. Heath and Company, Lexington, MA.

[^0]: E-mail address: mth_liu@online.emich.edu.

