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Abstract

Alspach conjectured that any 2k-regular connected Cayley graph cayðA;SÞ on a finite

abelian group A can be decomposed into k hamiltonian cycles. In 1992, the author proved that

the conjecture holds if S ¼ fs1; s2; y; skg is a minimal generating set of an abelian group A of

odd order. Here we prove an analogous result for abelian group of even order: If A is a finite

abelian group of even order at least 4 and S ¼ fs1; s2; y; skg is a strongly minimal generating
set (i.e., 2sie/S � fsigS for each 1pipk) of A; then cayðA;SÞ can be decomposed into

hamiltonian cycles.

r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Let ðA;þÞ be a finite group (we use + for the notation of the operation as our
main focus in this paper is on abelian groups) and S be a subset of A with 0eS: The
Cayley graph cayðA;SÞ is defined to be the graph G with VðGÞ ¼ A and EðGÞ ¼
fxyjx; yAA; x � yAS or y � xASg: We say the edge xy in cayðA;SÞ is generated by
sAS if x � y ¼ s or y � x ¼ s and the subgraph Q of cayðA;SÞ is generated by s if all
edges of Q are generated by s:
From the definition, it is clear that any element of S with order 2 generates a 1-

factor of cayðA;SÞ while any element of S with order at least 3 generates a 2-factor
of cayðA;SÞ:
Furthermore, cayðA;SÞ is connected if and only if S generates A:
It is known that any connected Cayley graph on a finite abelian group is

hamiltonian [7]. In [1], Alspach conjectured that any 2k-regular connected Cayley
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graph on a finite abelian group has a hamiltonian decomposition. Clearly, for k ¼ 1
the conjecture is trivial. Bermond et al. [2] proved the conjecture for k ¼ 2:

Theorem 1.1 (Bermond et al. [2]). Every 4-regular connected Cayley graph cayðA;SÞ
on a finite abelian group A can be decomposed into two hamiltonian cycles.

Liu [5] proved that cayðA;SÞ has a hamiltonian decomposition if S ¼
fs1; s2; y; skg is a generating set of an abelian group A such that
gcdðordðsiÞ; ordðsjÞÞ ¼ 1 for iaj: In [6], the author derived a more general result

for abelian groups of odd order as follows.

Theorem 1.2 (Liu [6]). If A is an abelian group of odd order and S ¼ fs1; s2;y; skg is

a minimal generating set of A; then cayðA;SÞ has a hamiltonian decomposition.

We say that a generating set S of a group A is strongly minimal if for any sAS; 2s

cannot be generated by the elements in S � fsg: Clearly, any minimal generating set
of a group of odd order is also strongly minimal.
In this paper, we prove the following main result.

Theorem 1.3. If A is a finite abelian group of even order at least 4 and S ¼
fs1; s2;y; skg is a strongly minimal generating set of A; then cayðA;SÞ has a

hamiltonian decomposition.

The next result is a direct consequence to Theorem 1.3 since the condition imposed
on the generating set S implies that S is strongly minimal.

Theorem 1.4. If A is a finite abelian group of even order at least 4 and S is a minimal

generating set of A such that the quotient group A=/sS is of odd order for each sAS;
then cayðA;SÞ has a hamiltonian decomposition.

2. Direct proof of Theorem 1.4

In this section, we give a direct proof to Theorem 1.4 since we need to use this
result in the proof of Theorem 1.3.

Proof of Theorem 1.4. Let A be a finite abelian group of order 2dð2h þ 1ÞX4 with
dX1 and S ¼ fs1; s2;y; skg be a minimal generating set of A such that A=/siS is of

odd order for each 1pipk: Then ordðsiÞ ¼ 2dð2ki þ 1Þ for each siAS: By the
Decomposition Theorem of Finite Abelian Groups, any finite abelian group is a
direct sum of finitely many cyclic groups with prime-power orders which implies that

A can be expressed as a direct sum A ¼ A1"A2 with jA1j ¼ 2d and jA2j ¼ 2h þ 1:
For convenience, let A ¼ fðx; yÞjxAA1; yAA2g: Then for each 1pipk; si ¼ ðxi; yiÞ
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with xiAA1 and yiAA2: By the assumption, /xiS ¼ A1 for each i: Without loss of

generality, let A1 ¼ Z2d ¼ f0; 1; 2;y; 2d � 1g and let A2 ¼ fu1; u2;y; u2hþ1g: Then
each xi must be an odd integer in A1: Since S is a minimal generating set of A;S0 ¼
fy1; y2;y; ykg is a minimal generating set for A2: By Theorem 1.2, cayðA2;S0Þ can be
decomposed into k hamiltonian cycles H 0

i ¼ upið1Þupið2Þ?upið2hþ1Þupið1Þ; 1pipk;

where each pi is a permutation on f1; 2;y; 2h þ 1g: Note that each edge uv in

cayðA2;S0Þ with u � v ¼ yr gives rise to Muv ¼ fð j; uÞð j þ xr; vÞj0pjp2d � 1g
(generated by sr ¼ ðxr; yrÞÞ which is a perfect matching between two columns A1 

fug and A1 
 fvg (for convenience, we say this matching has a jump xr). Clearly,
different edges in cayðA2;S0Þ correspond to disjoint matchings between columns in
cayðA;SÞ: It follows that the edge-disjoint hamiltonian cycles H 0

i ; 1pipk; in

cayðA2;S0Þ correspond to edge-disjoint 2-factors Hi ¼
S

uvAEðH 0
i
Þ Muv in cayðA;SÞ:

We next show that these Hi; 1pipk; are in fact hamiltonian cycles and thus form a
hamiltonian decomposition for cayðA;SÞ: Suppose that, in each Hi with 1pipk;
the jump for the matching between the columns A1 
 fupið jÞg and A1 
 fupið jþ1Þg
is xrði;jÞAfx1; x2;y; xkg; where 1pjpjA2j ¼ 2h þ 1; then Hi is isomorphic

to
S

0ptp2d�1 ðt; upið1ÞÞðt; upið2ÞÞ?ðt; upið2hþ1ÞÞðt þ xðiÞ; upið1ÞÞ; where xðiÞ � xrði;1Þ þ
xrði;2Þ þ?þ xrði;2hþ1Þ ðmod 2dÞ: Since all xrði;jÞAfx1; x2;y; xkg are odd, each

xðiÞ ðmod 2dÞ; 1pipk; must be an odd integer in A1 ¼ Z2d : It follows that each Hi

is a hamiltonian cycle in cayðA;SÞ for 1pipk: &

3. Preliminary results

We first recall the well-known concept of cartesian product and a result.

Definition 3.1. The cartesian product G ¼ G1 
 G2 has vertex set VðGÞ ¼ VðG1Þ 

VðG2Þ and edge set EðGÞ ¼ fðu1; u2Þðv1; v2Þju1 ¼ v1 and u2v2AEðG2Þ or u2 ¼ v2 and
u1v1AEðG1Þg:

Theorem 3.2 (Stong [8]). Let G1 and G2 be graphs that are decomposable into n and m

hamiltonian cycles, respectively, with npm: Then G1 
 G2 is hamiltonian decom-

posable if one of the following holds: (1) mp3n; (2) nX3; ð3ÞjG1j is even, or (4)
jG2jX6Jm=nn� 3:

From now on throughout this paper, we let C1 ¼ a1a2?ana1 and C2 ¼
b1b2?bmb1 be two cycles. By convention, the subscripts of a are expressed modulo n

and the subscripts of b are expressed modulom:

Definition 3.3. For 0prpm � 1; the r-pseudo-cartesian product of C1 and C2;
denoted by C1 
r C2; is the graph which is obtained from the cartesian product
C1 
 C2 by replacing the edge set fða1; biÞðan; biÞj1pipmg by the edge set
fða1; biþrÞðan; biÞj1pipmg:
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From the definition, it is easy to see that C1 
0 C2 ¼ C1 
 C2 ¼ C1 
m C2: For
convenience, we call the vertex set fðai; bjÞj1pipng the bj-row and the vertex set

fðai; bjÞj1pjpmg the ai-column. Also, we call the edges whose two end-vertices have

the same first component vertical edges and the edges with different first components
horizontal-type edges in an r-pseudo-cartesian product.

Remark 3.4. If gcdðr;mÞ ¼ d in an r-pseudo-cartesian product C1 
r C2; then the
horizontal-type edges form a 2-factor H which consists of d cycles B1;B2;y;Bd of
length ðmnÞ=d; where each cycle Bi consists of the vertices in the bjdþi-rows for

0pjpðm=dÞ � 1; and so any consecutive d rows of C1 
r C2 are on d different cycles
of H: Moreover, if we give an orientation to H so that each cycle of H becomes a
directed cycle, then for 1pipd; all the horizontal-type edges in the rows contained
in Bi have the same direction.

The following result [3] extended a result of Kotzig that the cartesian product of
any two cycles is hamiltonian decomposable (see [4]).

Theorem 3.5 (Fan et al. [3]). Any pseudo-cartesian product C1 
r C2 of two cycles C1

and C2 can be decomposed into two hamiltonian cycles.

The next three simple facts are useful in our discussion.

Fact 3.6. If u1u2AEðQ1Þ; and v1v2AEðQ2Þ; where Q1 and Q2 are two vertex-disjoint

cycles, then C ¼ ðQ1,Q2 � fu1u2; v1v2gÞ,fu1v1; u2v2g is a cycle.

Fact 3.7. Given a cycle C; let u1u2 and v1v2 be edges of C which are separated by at

least two edges. Then ðC � fu1u2; v1v2gÞ,fu1v1; u2v2g is a 2-factor containing at most

two cycles.

Fact 3.8. Given a cycle C; let u1u2 and v1v2 be two non-adjacent edges of C: If the

order of the four end-vertices appearing on C is u1; u2; v1; v2 along a given direction,
then ðC � fu1u2; v1v2gÞ,fu1v1; u2v2g is still a cycle.

For the following discussions, in C1 
r C2; we color all horizontal-type edges by
one color, say blue, and all vertical edges by another color, say red.

Definition 3.9. An fai; aiþ1; bj; bjþ1g-color switching in C1 
r C2 means that we

interchange the colors between two edge sets fðai; bjÞðai; bjþ1Þ; ðaiþ1; bjÞðaiþ1; bjþ1Þg
and fðai; bjÞðaiþ1; bjÞ; ðai; bjþ1Þðaiþ1; bjþ1Þg:

For convenience, one can simply think a color switching as interchanging the
colors between one pair of opposite sides and the other pair of opposite sides in a
square formed by two adjacent rows and two adjacent columns. In fact, we will
indicate each color switching by a square in the following figures.
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Lemma 3.10. If gcdðr;mÞ ¼ 2t þ 1X3; then, by making the color switchings

1; 2;y; 2t in C1 
r C2 shown in Fig. 1 and the color switching x ¼
fa3; a4; b2tþ1; b2tþ2g; we obtain a blue hamiltonian cycle and, connect four red cycles

in the aj-columns for j ¼ 1; 2; 3; 4 to a single red cycle.

Proof. By Remark 3.4, all blue edges (namely, horizontal-type edges) form 2t þ 1
cycles with each row contained in a single blue cycle and no two of the first 2t þ 1
rows in C1 
r C2 are on the same blue cycle. Furthermore, b1-row and b2tþ2-row are
on the same blue cycle. It follows from Fact 3.6 that making color switchings
1; 2;y; 2t in Fig. 1 will end up with a blue hamiltonian cycle H since each of those
color switchings connects two different blue cycles. Suppose that we give orientation
to the blue hamiltonian cycle H so that it becomes a directed cycle. Then it is clear
that all blue edges in each row have the same direction, the blue edges in bj-row and

the blue edges in bjþ1-row have opposite directions for each 1pjp2t; and all the blue

edges in the b1-row and the b2tþ2-row have the same direction, as they were
contained in the same blue cycle originally. We conclude that the blue edges in the
b2tþ1-row and b2tþ2-row have the same direction. It follows from Fact 3.8 that we still
have a blue hamiltonian cycle after making the additional color switching x ¼
fa3; a4; b2tþ1; b2tþ2g in Fig. 1. On the other hand, it is easy to check that the original
four red cycles in the aj-columns for j ¼ 1; 2; 3; 4 are now connected to a single red

cycle. &

The following lemma is Lemma 1 in [6]. The variable x is used in Figs. 2 and 3 so
that we can start color switchings from any row by choosing a value for x: We need
this flexibility when we try to avoid repeated use of an edge later.

Lemma 3.11. Suppose nX5 and gcdðr;mÞ ¼ 2t þ 1X3: Then, by making the color

switchings in C1 
r C2 shown in Fig. 2, we obtain a blue hamiltonian cycle and connect

Fig. 1. Color switchings in C1 
r C2 (drawn on a torus).
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Fig. 2. Color switchings in C1 
r C2 (drawn on a torus), where 0pxpm � 1:

Fig. 3. Color switchings in C1 
r C2 (drawn on a torus), where 0pxpm � 1:
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the red cycles in the aj-columns for 1pjpy to a single red cycle, where y ¼ 3 if

2t þ 1 ¼ 3; and y ¼ 5 otherwise.

Proof. It is clear from Remark 3.4 and Fact 3.6 that the color switchings in Fig. 2
will result in a blue hamiltonian cycle. To see that the aj-columns for 1pjpy are

connected to a single red cycle, let us label those color switchings shown in Fig. 2
from top to bottom by 1; 2;y; 2t: If 2t þ 1 ¼ 3; the result is obvious. Suppose
2t þ 1X5:We will make those color switchings in the increasing order as follows: We
first make the color switchings 1,2,3,4 to connect the first five columns to a single red
cycle; then make the remaining color switchings a pair 2i � 1 and 2i at each time for
i ¼ 3; 4;y; t: Each time the color switching 2i � 1 separates the single red cycle into
two red cycles by Fact 3.7, and then the color switching 2i connects the two red
cycles to form a single red cycle again by Fact 3.6. &

Similar to Lemma 3.11, when gcdðr;mÞ is even, the next lemma can be seen from
Remark 3.4 and Facts 3.6 and 3.7.

Lemma 3.12. Suppose nX6: If gcdðr;mÞ ¼ 2t; then, by making the fai; aiþ1; bi; biþ1g-
color switchings, where i ¼ 1 for t ¼ 1 and i ¼ 1; 2; 3 for t ¼ 2; or the color switchings

in C1 
r C2 shown in Fig. 3 for tX3; we obtain a blue hamiltonian cycle and a red cycle

consisting of all the vertices in the ai-columns for 1pipy; where y ¼ 2 if t ¼ 1; 4 if

t ¼ 2; and 6 if tX3:

At this point, we would like to make a useful remark to Lemmas 3.11 and 3.12.

Remark 3.13. For mX6; after we apply Lemma 3.11 for gcdðr;mÞ odd or Lemma
3.12 for gcdðr;mÞ even to C1 
r C2; each ai-column, 1pipn; has the following
property: for any 1pfpm; at least one of the two vertical edges ef ¼
ðai; bf Þðai; bfþ1Þ and efþ2 ¼ ðai; bfþ2Þðai; bfþ3Þ is red. Moreover, each ai-column,

1pipn; has either a red P3 if gcdðr;mÞ is odd or a red P4 if gcdðr;mÞ is even or
mX2 gcdðr;mÞ; where Pj is a path on j vertices.

When gcdðr;mÞ is even, r and m must be even and we have the following simple
lemma.

Lemma 3.14. If gcdðr;mÞ is even, then, by switching the colors of the two edge

sets E1 ¼ fða1; b2j�1Þða1; b2jÞj1pjpm=2g,fðan; b2jÞðan; b2jþ1Þj1pjpm=2g and E2 ¼
fðan; biÞða1; biþrÞj1pipmg in C1 
r C2; we obtain a blue hamiltonian cycle as shown

with bold edges in Fig. 4 and a red cycle Q consisting of the vertices in the a1-column

and an-column. Moreover if we orient Q into a directed cycle, then all the vertical red

edges in the a1-column and an-column have the same direction.

The next special class of graphs (called Dk in [5, Definition 3.8]) plays a key role in
our discussion.
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Definition 3.15. For kX2 and m; nX3; define Dðk;m; nÞ to be a 2k-regular graph
satisfying:

(1) VðDðk;m; nÞÞ ¼ fðai; bjÞj1pipn and 1pjpmg;
(2) EðDðk;m; nÞÞ can be decomposed into 2-factors H1;H2;y;Hk�1 and F ;
(3) F ¼

Sn
i¼1 Fi; where each Fi is the cycle ðai; b1Þðai; b2Þ?ðai; bmÞðai; b1Þ; and

(4) for 1pjpk � 1;Hj,F ¼ C
j
1 
rj

C2 with the edges of F being vertical, where

0prjpm � 1 and C
j
1 ¼ a

ð jÞ
pjð1Þa

ð jÞ
pjð2Þ?a

ð jÞ
pjðnÞa

ð jÞ
pjð1Þ with pj being a permutation of

f1; 2;y; ng and ðað jÞ
i ; btÞ ¼ ðai; btþhi;j

Þ for 1pipn; 1ptpm; and 0phi;jpm � 1:

Clearly, in each Hj,F ¼ C
j
1 
rj

C2 for 1pjpk � 1 of a graph Dðk;m; nÞ; the
vertical edges form F and the horizontal-type edges form Hj: The example shown

in Fig. 5 is a graph Dð3; 5; 6Þ with r1 ¼ 1; r2 ¼ 2; p1 ¼ I (the identity), p2 ¼
ð1 2 4 6 5 3Þ; hi;1 ¼ 0 and hi;2 � 3i � 1 mod 5 for 1pip6:
For graphs Dð3;m; nÞ; Lemma 3.14 in [5] and Lemma 3.9 in [3] together give the

next result, where D3 is replaced by Dð3;m; nÞ:

Proposition 3.16. Suppose that each Hi in a Dð3;m; nÞ consists of 2ti þ 1X3 cycles for

i ¼ 1 and 2. If the sets K1 ¼ fp1ð1Þ; p1ð2Þ; p1ð3Þ; p1ð4Þg and K2 ¼ fp2ð1Þ; p2ð2Þ; p2ð3Þg
have exactly one common element p1ð4Þ ¼ p2ð1Þ; then Dð3;m; nÞ has a hamiltonian

decomposition.

Next, we will show that under certain conditions, graphs Dðk;m; nÞ can be
decomposed into hamiltonian cycles. To do so, we first color the edges of Dðk;m; nÞ
so that all edges of F are of red color and for 1pjpk � 1; all edges of Hj are of color

cj; we then try to find some edge-disjoint color switchings so that making those color
switchings results in k monochromatic hamiltonian cycles.

Lemma 3.17. Let n be even, kX2; and mX5: If each Hi in a Dðk;m; nÞ consists of

2ti þ 1 cycles for 1pipk � 1; and the sets Kj for 1pjpm � 1 are mutually disjoint,

where K1 ¼ fp1ð1Þ; p1ð2Þ; p1ð3Þ; p1ð4Þg and Kj ¼ fpjðiÞj1pip5g for 2pjpk � 1;

then Dðk;m; nÞ has a hamiltonian decomposition.

Fig. 4. A hamiltonian cycle in C1 
r C2 (drawn on a torus).
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Proof. Clearly, in each Hj,F ¼ C
j
1 
rj

C2 of Dðk;m; nÞ for 1pjpk � 1; the vertical

edges form F and thus are red, the horizontal-type edges form Hj and thus are of

color cj : Without loss of generality, we assume p1 to be the identity permutation and
H1,F ¼ C1 
r1 C2 in Dðk;m; nÞ; and so K1 ¼ f1; 2; 3; 4g: By Remark 3.4, for each
1pjpk � 1; 2tj þ 1 ¼ gcdðrj;mÞ and each row of Hj,F (in the sense that we

visualize Hj,F as in (form B) of Fig. 5) is in the same cycle of Hj: If tj ¼ 0 for some

j; then Hj is already a hamiltonian cycle and so we only need to work on the

remaining graph Dðk � 1;m; nÞ obtained by removing the edges of Hj from

Dðk;m; nÞ unless k ¼ 2; in this case Dð2;m; nÞ ¼ H1,F ¼ C1 
r1 C2 is hamiltonian
decomposable by Theorem 3.5. Thus, we may assume that tjX1 for each 1pjpk �
1: Since the sets Kj for 1pjpk � 1 are mutually disjoint, we can make edge-disjoint

color switchings as follows: First, apply Lemma 3.10 to H1,F ¼ C1 
r1 C2 to
obtain a hamiltonian cycle H� of color c1 and connect the ai-columns for i ¼ 1; 2; 3; 4
to a single red cycle Q1: Note that the hamiltonian cycle H� contains two
subpaths P0 ¼ ðan; b1Þðan�1; b1Þyða4; b1Þða3; b1Þða3; b2Þða4; b2Þyðan; b2Þ and P00 ¼
ðan; b3Þðan�1; b3Þyðahþ1; b3Þðah; b3Þðah; b4Þðahþ1; b4Þyðan; b4Þ; where h ¼ 4 for t1 ¼ 1
and h ¼ 3 for t1X2: Next, for each 2pjpk � 1; we apply Lemma 3.11 to

Hj,F ¼ C
j
1 
rj

C2 to obtain a hamiltonian cycle of color cj and connect the

apjðiÞ-columns for 1pipy to a single red cycle Qj; where y ¼ 3 if gcdðrj;mÞ ¼
2tj þ 1 ¼ 3; and y ¼ 5 otherwise. We remark that when we apply Lemma 3.11 to

Fig. 5. A graph Dð3; 5; 6Þ (drawn on a torus).
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Hj,F for each 2pjpk � 1; the value of x can be any integer between 0 and m � 1

which allows us to have a red P3 (see Remark 3.13) anywhere as we wish in the
leftmost alj -column of Qj; where lj is the smallest index among all ai-columns

contained in Qj:

Note that we connect four columns to form a single red cycle in H1,F and
connect an odd number of columns to a single red cycle in each Hj,F for jX2: Since

n is even and each column is contained in a single red cycle, we now have an odd
number 2d þ 1 of red cycles, where each red cycle is either a Qj or a cycle consisting

of a single column. Let 0oz1oz2o?oz2don be the integer sequence such that the
aziþ1-columns for 1pip2d are the leftmost columns of those 2d red cycles other than

Q1; where the leftmost column of a red cycle is the column with the smallest index
among all columns contained in that red cycle. Then z1 ¼ 4: To connect these red
cycles to form a red hamiltonian cycle, we next focus on H1,F ¼ C1 
r1 C2 and find
2d additional color switchings X1;X2;y;X2d between red edges and edges of color
c1 such that each Xi is between the azi

-column and the aziþ1-column. By Remark

3.13, each ai-column for 4pipn has the following property P: for any 1pfpm; at
least one of the vertical edges ðai; bf Þðai; bfþ1Þ and ðai; bfþ2Þðai; bfþ3Þ is red. Note that
each aziþ1-column is either the leftmost column of a red cycle consisting of a single

column which means all of its vertical edges are red, or the leftmost column of a red
cycle Qj and so we can have a red P3 in the aziþ1-column anywhere as we wish

according to the earlier remark. Thus, when we define the color switchings
X1;X2;y;X2d in the following, which only need to use either one red vertical edge or
two adjacent red vertical edges from each involved column, we can use red vertical
edges freely in each of the aziþ1-columns. For 1pipd; having X1;X2;y;X2i�3;X2i�2
defined, we then define X2i�1 and X2i: Since the az2i

-column has property P; one of
the two edges e1 ¼ ðaz2i

; b1Þðaz2i
; b2Þ and e2 ¼ ðaz2i

; b3Þðaz2i
; b4Þ is red, we define X2i to

be the faz2i
; az2iþ1; by; byþ1g-color switching, where y ¼ 1 if e1 is red, and y ¼ 3

otherwise. Then, since one of e3 ¼ ðaz2i�1 ; by�1Þðaz2i�1 ; byÞ and e4 ¼
ðaz2i�1 ; byþ1Þðaz2i�1 ; byþ2Þ is red by property P; we define X2i�1 to be either

faz2i�1 ; az2i�1þ1; by�1; byg-color switching or faz2i�1 ; az2i�1þ1; byþ1; byþ2g-color switching
depending on whether e3 or e4 is red. Clearly, the color switchings fX1;X2;y;X2dg
are edge-disjoint and between red edges and edges of color c1: Since each color
switching Xi connects two different red cycles, by Fact 3.6, making the color
switchings X1;X2;y;X2d will result in a red hamiltonian cycle. Now, we claim that
applying the color switchings X1;X2;y;X2d in H1,F will still end up with a
hamiltonian cycle of color c1: In fact, starting with the hamiltonian cycle H� of color
c1 which contains two subpaths P0 and P00 as noted earlier (P0 and P00 are still part of
H� since we did not use any of the edges from H� before making the color switchings
Xj ’s), let us make those color switchings in the order X2d ;X2d�1;y;X2;X1;

a pair X2i�1;X2i at each time: by Fact 3.7, making color switching X2i ¼
faz2i

; az2iþ1; by; byþ1g with y ¼ 1 or 3 will separate the hamiltonian cycle of color c1
into two cycles with one being ðaz2i

; b1Þðaz2i�1; b1Þyða4; b1Þða3; b1Þða3; b2Þða4; b2Þy
ðaz2i

; b2Þðaz2i
; b1Þ if y ¼ 1 or ðaz2i

; b3Þðaz2i�1; b3Þyðahþ1; b3Þðah; b3Þðah; b4Þðahþ1; b4Þy
ðaz2i

; b4Þðaz2i
; b3Þ if y ¼ 3; and then by Fact 3.6, making the color switching X2i�1 will
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connect the two cycles of color c1 into a hamiltonian cycle of color c1 again.
Thus, the claim follows. Together with the existing monochromatic hamiltonian
cycles of colors cj for 2pjpk � 1; we obtain a hamiltonian decomposition of

Dðk;m; nÞ: &

In the following proof, we call a path P4 ¼ ðai; byÞðai; byþ1Þðai; byþ2Þðai; byþ3Þ in an
ai-column of C1 
r1 C2 odd if y is odd, and even if y is even. Also, we call a vertical
edge ðai; byÞðai; byþ1Þ odd if y is odd, and even if y is even.

Lemma 3.18. Suppose that n is even, kX2; and mX6: If H1 in Dðk;m; nÞ consists of an

even number of cycles, and the sets K1 ¼ fp1ð1Þ; p1ðnÞg and Kj ¼ fpjðiÞj1pip6g
for 2pjpk � 1 are mutually disjoint, then Dðk;m; nÞ has a hamiltonian decom-

position.

Proof. We proceed in a way similar to the proof of Lemma 3.17. Clearly, in each

Hj,F ¼ C
j
1 
rj

C2 of Dðk;m; nÞ for 1pjpk � 1; the vertical edges form F and thus

are red, the horizontal-type edges form Hj and thus are of color cj: Again, without

loss of generality, we assume p1 to be the identity permutation and H1,F ¼
C1 
r1 C2 in Dðk;m; nÞ; and so K1 ¼ f1; ng: By Remark 3.4, each Hj consists of

hj ¼ gcdðrj;mÞ cycles for 1pjpk � 1: By the assumption, h1 is even. This implies

that m is even and mX2hj for each odd hj : Since the sets Kj for 1pjpk � 1 are

mutually disjoint, we make edge-disjoint color switchings in each Hj,F within ai-

columns for iAKj as follows: We first apply Lemma 3.14 to H1,F ¼ C1 
r1 C2 to

obtain a hamiltonian cycle H� of color c1 and connect the a1-column and an-column
to a single red cycle Q1: Note that all even edges in the a1-column and all odd edges
in the an-column are still red. Next, for each 2pjpk � 1; we apply Lemma 3.11

when hj41 is odd or Lemma 3.12 when hj is even to Hj,F ¼ C
j
1 
rj

C2 to obtain a

hamiltonian cycle of color cj and connect the involved ai-columns with iAKj to a

single red cycle Qj ; where the value of x can be any integer between 0 and m � 1

which allows us to have a red P4 anywhere as we wish in the leftmost column of Qj

(such a red P4 exists by Remark 3.13 and the fact that mX2hj when hj ¼ gcdðrj ;mÞ is
odd). Clearly, the red edges still form a 2-factor and each column is contained in a
single red cycle. By Remark 3.13, each ai-column for 2pipn � 1 has the following
property P: for any 1pfpm; at least one of the vertical edges ðai; bf Þðai; bfþ1Þ and
ðai; bfþ2Þðai; bfþ3Þ is red and there is a red P4 in the ai-column.

Clearly, each column is either a red cycle or contained in a red cycle Qj: Suppose

that the resulting red 2-factor F 0 has p red cycles. To connect those red cycles to a red
hamiltonian cycle, we focus on H1,F ¼ C1 
r1 C2: Similar to Lemma 3.17, we will
find an integer sequence 0oz1oz2o?oz2don and additional color switchings
X1;X2;y;X2d between red edges and edges of color c1 in H1,F ; where each Xi is
between the azi

-column and the aziþ1-column, such that making these color
switchings will end up with a red hamiltonian cycle and a hamiltonian cycle of
color c1; thereby a hamiltonian decomposition of Dðk;m; nÞ:
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We first find the desired integer sequence 0oz1oz2o?oz2don: Let
0oz01oz02o?oz0p�1 be the integer sequence such that the az0

i
þ1-columns for

1pipp � 1 are the leftmost columns of those p � 1 red cycles other than Q1: Then
z01 ¼ 1: If p � 1 is even, then p � 1 ¼ 2d for some d and we have the desired sequence

by setting zi ¼ z0i for 1pip2d: Assume that p � 1 is odd, i.e., p is even. Suppose that

we have p � 1 edge-disjoint color switchings Yi for 1pipp � 1 between red edges
and edges of color c1; with Yi between az0

i
-column and az0

i
þ1-column. Then, it follows

from Fact 3.6 that by making those color switchings Y1;y;Yp�1; we have a red

hamiltonian cycle Q: If we give an orientation to Q to obtain a directed cycle, then it
is clear that all red edges in the same column have the same direction and for each
1pipp � 1; the red edges in az0

i
-column and the red edges in az0

i
þ1-column have

opposite direction. By Lemma 3.14, all red vertical edges in both a1-column and
an-column have the same direction. Since n is even, there must exist 1pzpn � 1 such
that all red vertical edges in both az-column and azþ1-column have the same
direction. This implies that zaz0j for 1pjpp � 1: It follows that azþ1-column is a

non-leftmost column of some red cycle Qw: By Fact 3.8, after making any one
additional color switching Y between the az-column and azþ1-column using one red
edge from each column, we still have a red hamiltonian cycle. Inserting z to the
sequence z01oz02o?oz0p�1; we obtain the desired integer sequence z1oz2o?oz2d ;

where 2d ¼ p:
Now, we will find desired edge-disjoint color switchings X1;X2;y;X2d between

red edges and edges of color c1 in H1,F : Note that for each ziaz; the aziþ1-column
is either the leftmost column of a red cycle consisting of a single column which means
all of its vertical edges are red, or the leftmost column of a red cycle Qj and so we can
have a red P4 in that column anywhere as we wish according to the earlier remark.
For 1pipd; having X1;X2;y;X2i�3;X2i�2 defined, we then define X2i�1 and X2i in
two cases:

Case 1: zaz2i�1; z2i: We define X2i�1 and X2i in the same way as in the proof of
Lemma 3.17.

Case 2: z ¼ z2i�1 or z2i: In this case, the azþ1-column is a non-leftmost column of
some red cycle Qw: For z þ 1on; the azþ1-column is a non-leftmost column of some
red cycle Qw with w41; and so both the azþ1-column and the leftmost alw-column of
Qw have a red P4 by Property P: Clearly, only the edges from a D ¼ P3 ¼
ðalw ; bhÞðalw ; bhþ1Þðalw ; bhþ2Þ in the alw-column may be used by previously defined Xj’s.
It follows that, when we apply Lemma 3.11 or Lemma 3.12 to Hw,F above, we may
choose the value for x appropriately so that the D ¼ P3 is part of a red P4 in the
leftmost alw -column of Qw meanwhile we can make a red P4 in the azþ1-column either
odd or even. Thus, for z þ 1on; we may assume that the azþ1-column has an even
red P4 ¼ ðazþ1; b2qÞðazþ1; b2qþ1Þðazþ1; b2qþ2Þðazþ1; b2qþ3Þ for z ¼ z2i�1; or an odd red
P4 ¼ ðazþ1; b2q�1Þðazþ1; b2qÞðazþ1; b2qþ1Þðazþ1; b2qþ2Þ for z ¼ z2i: Recall that each
ai-column has property P for 2pipn � 1; all even vertical edges in the a1-column
and all odd vertical edges in the an-column are red. For z ¼ z2i; we define color
switchings X2i�1 and X2i in the same way as in the proof of Lemma 3.17 except that
we take y ¼ 2q � 1 or 2q þ 1 depending on whether ðaz2i

; b2q�1Þðaz2i
; b2qÞ or
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ðaz2i
; b2qþ1Þðaz2i

; b2qþ2Þ is red. For z ¼ z2i�1; we first define X2i�1 to be
faz2i�1 ; az2i�1þ1; by; byþ1g-color switching for y ¼ 2q or 2q þ 2 depending on whether
ðaz2i�1 ; b2qÞðaz2i�1 ; b2qþ1Þ or ðaz2i�1 ; b2qþ2Þðaz2i�1 ; b2qþ3Þ is red, then define X2i to be
faz2i

; az2iþ1; by�1; byg-color switching or faz2i
; az2iþ1; byþ1; byþ2g-color switching de-

pending on whether ðaz2i
; by�1Þðaz2i

; byÞ or ðaz2i
; byþ1Þðaz2i

; byþ2Þ is red. Clearly, each
X2j�1 uses only even red vertical edges while each X2j uses only odd red vertical
edges, and X1;y;X2d are edge-disjoint.
From the choice of the integer sequence 0oz1oz2o?oz2don; it follows

that making the color switchings X1;X2;y;X2d results in a red hamiltonian
cycle. Note that the hamiltonian cycle H� of color c1 contains subpaths
Pð jÞ ¼ ðan; b2j�1Þðan�1; b2j�1Þyða2; b2j�1Þða1; b2j�1Þða1; b2jÞða2; b2jÞyðan; b2jÞ for 1p
jpm=2: Similar to the proof of Lemma 3.17, we conclude that we still end up with a
hamiltonian cycle of color c1 after those color switchings Xi’s. Together with the
existing hamiltonian cycles of colors cj for 2pjpk � 1; we obtain a hamiltonian

decomposition for Dðk;m; nÞ: &

4. Proof of Theorem 1.3

Let A be a finite abelian group, S ¼ fs1; s2;y; skg be a generating set of A such

that 0eS and sAS implies �seS: For J ¼ /skS; let A1 ¼ A=J and %S ¼
f%s1; %s2;y; %sk�1g; where we use %x to represent the coset x þ J: Let m ¼ ordðskÞX3:
Then all edges in cayðA;SÞ which are generated by sk form a 2-factor F :
Furthermore, F consists of n ¼ jA1j ¼ jAj=m cycles of length m:

Definition 4.1. For any edge %x %y of cayðA1; %SÞ; where %x � %y ¼ %siA %S; we call the edge
set fu1u2j %u1 ¼ %x; %u2 ¼ %y and u1 � u2 ¼ sig of cayðA;SÞ the lifting edge set of the edge

%x %y:

Definition 4.2. For any subgraph %Q of cayðA1; %SÞ; the subgraph Q of cayðA;SÞ with
the edge set being the union of the lifting edge sets of the edges of %Q is called the

subgraph lifted by %Q and we say %Q lifts to Q:

It is easy to see from the above definitions that edge-disjoint subgraphs of

cayðA1; %SÞ lift to edge-disjoint subgraphs of cayðA;SÞ:
The following connection between Cayley graphs cayðA;SÞ on abelian group A

and graphs Dðk;m; nÞ is Lemma 5 in [6] (where Dk is changed to Dðk;m; nÞ here).

Proposition 4.3. If the Cayley cayðA1; %SÞ can be decomposed into k � 1 hamiltonian

cycles %Hj ¼ %gpjð1Þ %gpjð2Þ? %gpjðnÞ %gpjð1Þ for 1pjpk � 1; where each pj is a permutation of

f1; 2;y; ng; then cayðA;SÞDDðk;m; nÞ with each Hj being the 2-factor lifted by %Hj

and F being the 2-factor generated by sk:

The above proposition allows us to obtain a hamiltonian decomposition of Cayley
graph cayðA;SÞ by applying Lemmas 3.17 and 3.18. To guarantee the conditions
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imposed on pj in Lemmas 3.17 and 3.18 are satisfied, we give the following simple

results.

Lemma 4.4. If A is a finite abelian group of even order at least 4 and S ¼
fs1; s2;y; skg is a strongly minimal generating set of A; then jAjX4  3k�1:

Proof. We proceed by induction on k: For k ¼ 1; the result is clear. Assume the
result for koh (with hX2). Now, we consider k ¼ h: Since A is of even order and S is
a generating set of A; S has an element of even order, say s1: Let S0 ¼
fs1; s2;y; sk�1g and A0 ¼ /S0S: Then A0 has even order and S0 is a strongly
minimal generating set of A0 as S is strongly minimal. By the induction hypothesis,

jA0jX4  3k�2: Since S is a strongly minimal generating set of A; there are at least

three cosets of A0 in A: Thus, jAjX3jA0jX4  3k�1: &

The following two propositions are Lemmas 2.5 and 3.3 in [5].

Proposition 4.5. Let A be a finite abelian group which is generated by S ¼
fs1; s2;y; skg;A1 be the subgroup of A which is generated by S0 ¼ fs1; s2;y; sk�1g
and J ¼ /skS: If A1-J ¼ f0g; then cayðA;SÞ ¼ cayðA1;S0Þ 
 cayðJ; fskgÞ:

Proposition 4.6. Let G be hamiltonian decomposable 4-regular graph of order nX9:
Then, for each hamiltonian decomposition H1 and H2 of G; there exists a path P ¼
u1u2u3u4u5u6 such that P1 ¼ u1u2u3u4 is on H1 while P2 ¼ u4u5u6 is on H2:

Lemma 4.7. For dX2; if G is a hamiltonian decomposable 2d-regular multigraph

of order n4maxf12ðd � 1Þ; 36ðd � 2Þg; then, for any hamiltonian decomposition

H1;H2;y;Hd of G; there are d vertex-disjoint paths Pð1Þ ¼ u1v1 and Pð jÞ ¼
ujvjwjxjyjzj for 2pjpd such that PðiÞ is on Hi for 1pipd:

Proof. For tpd � 1; suppose t subpaths Pð jÞ; d � t þ 1pjpd; have been chosen on
the cycles Hj : The 6t vertices of those Pð jÞ’s divide the remaining n � 6t vertices of

Hd�t into 6t subpaths and let P be a longest one of those subpaths. Then P has at
least 6 vertices if tpd � 2 and at least two vertices if t ¼ d � 1 as n4maxf12ðd �
1Þ; 36ðd � 2Þg: Thus, we may choose a desired subpath of P to be Pðd � tÞ: &

Similarly, we can derive the following lemma.

Lemma 4.8. Let dX2: If G is a hamiltonian decomposable 2d-regular multigraph of

order n4maxf20ðd � 1Þ; 25ðd � 2Þg; then, for any hamiltonian decomposition

H1;H2;y;Hd of G; there are d vertex-disjoint paths Pð1Þ ¼ u1v1w1x1 and Pð jÞ ¼
ujvjwjxjyj for 2pjpd such that PðiÞ; is on Hi for 1pipd:

In the following discussions, we use the standard notation Ci to denote a cycle on i

vertices for iX3:
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Remark 4.9. Fig. 6(a) shows a hamiltonian decomposition Q1;Q2 of C4 
 C3 with
two disjoint paths of 2 and 6 vertices (shown by black dots) on Q1 and Q2;
respectively, and Fig. 6(b) shows a hamiltonian decomposition H1;H2;H3 of the
graph G ¼ C4 
 C3 
 C3 with three vertex-disjoint paths Pð jÞ ¼ ujvjwjxjyjzj (shown

by black dots) such that each Pð jÞ is on Hj for 1pjp3:

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let A be a finite abelian group of even order at least 4 and
S ¼ fs1; s2;y; skg be a strongly minimal generating set of A: Then each si has order
at least 3. We now prove cayðA;SÞ has a hamiltonian decomposition by induction on
k: For k ¼ 1; the result is trivial. For k ¼ 2; the result follows from Theorem 1.1.
Assume the result for kok0: Now, we consider k ¼ k0

X3:We first assume that S has
an element sh of order less than 6. Then /shS-/S � fshgS ¼ f0g as S is strongly
minimal. It follows from Proposition 4.5 that cayðA;SÞDcayð/shS; fshgÞ 

cayðA0;S0Þ; where S0 ¼ S � fshg and A0 ¼ /S0S: Since S is a strongly minimal
generating set of A;S0 is a strongly minimal generating set of A0: By Theorem 1.2 for
jA0j odd or the induction hypothesis for jA0j even, cayðA0;S0Þ can be decomposed
into k � 1 hamiltonian cycles. Clearly, cayð/shS; fshgÞ is a cycle of length ordðshÞ:
Since A is of even order, either ordðshÞ is even or A0 is of even order and so jA0jX4 
3k�2

X6ðk � 1Þ � 3 by Lemma 4.4. It follows from Theorem 3.2(3) or (4) that
cayðA;SÞDcayð/shS; fshgÞ 
 cayðA0;S0Þ is hamiltonian decomposable. Now, we
assume that every element of S has order at least 6. By Theorem 1.4, we may assume

Fig. 6. Hamiltonian decomposition of C4 
 C3 and C4 
 C3 
 C3:
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that there is an element in S; say sk; such that the quotient group A1 ¼ A=J is of even
order n; where J ¼ /skS: Let m ¼ jJj and A1 ¼ f %g1; %g2;y; %gng: Then mX6 and nX4

is even. Since S is a strongly minimal generating set of A; %S ¼ f%s1; %s2;y; %sk�1g is a

strongly minimal generating set of A1: By the induction hypothesis, cayðA1; %SÞ can
be decomposed into k � 1 hamiltonian cycles %Hj ¼ %gpjð1Þ %gpjð2Þ? %gpjðnÞ %gpjð1Þ for

1pjpk � 1; where each pj is a permutation of f1; 2;y; ng: By Proposition

4.3, cayðA;SÞDDðk;m; nÞ with each Hj being the 2-factor lifted by %Hj: In each

Hj,F ¼ C
j
1 
rj

C2; let tj ¼ gcdðm; rjÞ: By symmetry, we may assume that ti is even

for 1pipb and ti is odd for iXbþ 1: By Lemma 4.4, jA1jX4  3k�2:We consider the
following two cases.

Case 1: d ¼ k � 1X3: Then jA1jX4  3k�2 ¼ 4  3d�14maxf20ðd � 1Þ; 36ðd � 2Þg
unless d ¼ k � 1 ¼ 3 and jA1jp40: For d ¼ k � 1 ¼ 3; since A1 is of even order

nX4  32 and %S ¼ f%s1; %s2; %s3g is a strongly minimal generating set of A1; we must have

either jA1j440 or A1 ¼ 36 and exactly one element in %S is of order 4 and the other
two are of order 3. Furthermore, for the later case, we must have /siS-/sjS ¼ f0g
for iaj which implies that cayðA1; %SÞDC3 
 C3 
 C4 by Proposition 4.5. Thus, we

have either jA1j4maxf20ðd � 1Þ; 36ðd � 2Þg or cayðA1; %SÞDC3 
 C3 
 C4: It
follows from Lemmas 4.7 and 4.8 and Remark 4.9 that we may assume the
permutations pj for 1pjpk � 1 in the above hamiltonian decomposition of

cayðA1 %SÞ satisfy the conditions in Lemmas 3.17 and 3.18. Thus, by Lemmas 3.17
and 3.18, cayðA;SÞDDðk;m; nÞ has a hamiltonian decomposition.

Case 2: d ¼ k � 1 ¼ 2: In this case, we have n ¼ jA1jX12: For n ¼ 12; since %S ¼
f%s1; %s2g is a strongly minimal generating set of A1; we must have /%s1S-/%s2S ¼ f0g
and it follows from Proposition 4.5 that cayðA1; %SÞDC3 
 C4: If one of t1 and t2 is
even, say t1; then it follows from Lemmas 3.18 and 4.7, and Remark 4.9 that
cayðA;SÞDDð3;m; nÞ has a hamiltonian decomposition. Now, suppose that both t1
and t2 are odd. By deleting one Hi for ti ¼ 1 and applying Theorem 3.5, we may
assume t141 and t241: Then the result follows from Propositions 3.16 and 4.6. &
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