954 research outputs found

    Fast iterative solvers for convection-diffusion control problems

    Get PDF
    In this manuscript, we describe effective solvers for the optimal control of stabilized convection-diffusion problems. We employ the local projection stabilization, which we show to give the same matrix system whether the discretize-then-optimize or optimize-then-discretize approach for this problem is used. We then derive two effective preconditioners for this problem, the �first to be used with MINRES and the second to be used with the Bramble-Pasciak Conjugate Gradient method. The key components of both preconditioners are an accurate mass matrix approximation, a good approximation of the Schur complement, and an appropriate multigrid process to enact this latter approximation. We present numerical results to demonstrate that these preconditioners result in convergence in a small number of iterations, which is robust with respect to the mesh size h, and the regularization parameter β, for a range of problems

    Domain-decomposed preconditionings for transport operators

    Get PDF
    The performance was tested of five different interface preconditionings for domain decomposed convection diffusion problems, including a novel one known as the spectral probe, while varying mesh parameters, Reynolds number, ratio of subdomain diffusion coefficients, and domain aspect ratio. The preconditioners are representative of the range of practically computable possibilities that have appeared in the domain decomposition literature for the treatment of nonoverlapping subdomains. It is shown that through a large number of numerical examples that no single preconditioner can be considered uniformly superior or uniformly inferior to the rest, but that knowledge of particulars, including the shape and strength of the convection, is important in selecting among them in a given problem

    Preconditioned iterative methods for Navier-Stokes control problems

    Get PDF
    PDE-constrained optimization problems are a class of problems which have attracted much recent attention in scientific computing and applied science. In this paper, we discuss preconditioned iterative methods for a class of Navier-Stokes control problems, one of the main problems of this type in the field of fluid dynamics. Having detailed the Oseen-type iteration we use to solve the problems and derived the structure of the matrix system to be solved at each step, we utilize the theory of saddle point systems to develop efficient preconditioned iterative solution techniques for these problems. We also require theory of solving convection-diffusion control problems, as well as a commutator argument to justify one of the components of the preconditioner

    Space Decompositions and Solvers for Discontinuous Galerkin Methods

    Full text link
    We present a brief overview of the different domain and space decomposition techniques that enter in developing and analyzing solvers for discontinuous Galerkin methods. Emphasis is given to the novel and distinct features that arise when considering DG discretizations over conforming methods. Connections and differences with the conforming approaches are emphasized.Comment: 2 pages 2 figures no table

    Efficient Multigrid Preconditioners for Atmospheric Flow Simulations at High Aspect Ratio

    Get PDF
    Many problems in fluid modelling require the efficient solution of highly anisotropic elliptic partial differential equations (PDEs) in "flat" domains. For example, in numerical weather- and climate-prediction an elliptic PDE for the pressure correction has to be solved at every time step in a thin spherical shell representing the global atmosphere. This elliptic solve can be one of the computationally most demanding components in semi-implicit semi-Lagrangian time stepping methods which are very popular as they allow for larger model time steps and better overall performance. With increasing model resolution, algorithmically efficient and scalable algorithms are essential to run the code under tight operational time constraints. We discuss the theory and practical application of bespoke geometric multigrid preconditioners for equations of this type. The algorithms deal with the strong anisotropy in the vertical direction by using the tensor-product approach originally analysed by B\"{o}rm and Hiptmair [Numer. Algorithms, 26/3 (2001), pp. 219-234]. We extend the analysis to three dimensions under slightly weakened assumptions, and numerically demonstrate its efficiency for the solution of the elliptic PDE for the global pressure correction in atmospheric forecast models. For this we compare the performance of different multigrid preconditioners on a tensor-product grid with a semi-structured and quasi-uniform horizontal mesh and a one dimensional vertical grid. The code is implemented in the Distributed and Unified Numerics Environment (DUNE), which provides an easy-to-use and scalable environment for algorithms operating on tensor-product grids. Parallel scalability of our solvers on up to 20,480 cores is demonstrated on the HECToR supercomputer.Comment: 22 pages, 6 Figures, 2 Table
    corecore