145 research outputs found

    Reducing the wrapping effect of set computation via Delaunay triangulation for guaranteed state estimation of nonlinear discrete-time systems

    Get PDF
    Set computation methods have been widely used to compute reachable sets, design invariant sets and estimate system state for dynamic systems. The wrapping effect of such set computation methods plays an essential role in the accuracy of their solutions. This paper studies the wrapping effect of existing interval, zonotopic and polytopic set computation methods and proposes novel approaches to reduce the wrapping effect for these set computation methods based on the task of computing the dynamic evolution of a nonlinear uncertain discrete-time system with a set as the initial state. The proposed novel approaches include the partition of a polytopic set via Delaunay triangulation and also the representation of a polytopic set by the union of small zonotopes for the following set propagation. The proposed novel approaches with the reduced wrapping effect has been further applied to state estimation of a nonlinear uncertain discrete-time system with improved accuracy. Similar to bisection for interval and zonotopic sets, Delaunay triangulation has been introduced as a set partition tool for polytopic sets, which has opened new research directions in terms of novel set partition, set representation and set propagation for reducing the wrapping effect of set computation

    Safety Control Synthesis with Input Limits: a Hybrid Approach

    Full text link
    We introduce a hybrid (discrete--continuous) safety controller which enforces strict state and input constraints on a system---but only acts when necessary, preserving transparent operation of the original system within some safe region of the state space. We define this space using a Min-Quadratic Barrier function, which we construct along the equilibrium manifold using the Lyapunov functions which result from linear matrix inequality controller synthesis for locally valid uncertain linearizations. We also introduce the concept of a barrier pair, which makes it easy to extend the approach to include trajectory-based augmentations to the safe region, in the style of LQR-Trees. We demonstrate our controller and barrier pair synthesis method in simulation-based examples.Comment: 6 pages, 7 figures. Accepted for publication at the 2018 American Controls Conference. Copyright IEEE 201

    Set-valued estimators for Uncertain Linear Parameter-Varying systems

    Get PDF
    Funding Information: This work was partially supported by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) through Institute for Systems and Robotics (ISR), under Laboratory for Robotics and Engineering Systems (LARSyS) project UIDB/50009/2020, through project PCIF/MPG/0156/2019 FirePuma and through COPELABS, University Lusófona project UIDB/04111/2020. Publisher Copyright: © 2022 Elsevier B.V.In this paper, we tackle the problem of state estimation for uncertain linear systems when bounds are known for the disturbances, noise and initial state. Practical systems often have parameters that cannot be measured precisely at every iteration. The framework of Uncertain Linear Parameter-Varying systems (Uncertain LPVs) have attracted attention from the community and have seen applications from the aerospace industry to mechatronic systems, among many other examples. By formulating the problem as the solution of a feasibility program, we show that the optimal convex solution can be computed through an enumeration of the vertices of the estimates. Resorting to this result, three algorithms are proposed: an approximation algorithm using only set operations; an exact convex hull method returning the optimal convex set suitable for cases where estimates do not have a large number of vertices; and an event-triggering algorithm suitable for fault/attack detection that combines both the convex and nonconvex methods. Simulations are conducted using a motor speed model where some of the parameters cannot be measured exactly pointing out that the uncertainty matrices are responsible for the accuracy of the approximation algorithm, and also that the point-based method is suitable for online estimation.publishersversionpublishe

    Control and filtering of time-varying linear systems via parameter dependent Lyapunov functions

    Get PDF
    The main contribution of this dissertation is to propose conditions for linear filter and controller design, considering both robust and parameter dependent structures, for discrete time-varying systems. The controllers, or filters, are obtained through the solution of optimization problems, formulated in terms of bilinear matrix inequalities, using a method that alternates convex optimization problems described in terms of linear matrix inequalities. Both affine and multi-affine in different instants of time (path dependent) Lyapunov functions were used to obtain the design conditions, as well as extra variables introduced by the Finsler\u27s lemma. Design problems that take into account an H-infinity guaranteed cost were investigated, providing robustness with respect to unstructured uncertainties. Numerical simulations show the efficiency of the proposed methods in terms of H-infinity performance when compared with other strategies from the literature

    Application of Dirichlet Distribution for Polytopic Model Estimation

    Get PDF
    The polytopic model (PM) structure is often used in the areas of automatic control and fault detection and isolation (FDI). It is an alternative to the multiple model approach which explicitly allows for interpolation among local models. This thesis proposes a novel approach to PM estimation by modeling the set of PM weights as a random vector with Dirichlet Distribution (DD). A new approximate (adaptive) PM estimator, referred to as a Quasi-Bayesian Adaptive Kalman Filter (QBAKF) is derived and implemented. The model weights and state estimation in the QBAKF is performed adaptively by a simple QB weights\u27 estimator and a single KF on the PM with the estimated weights. Since PM estimation problem is nonlinear and non-Gaussian, a DD marginalized particle filter (DDMPF) is also developed and implemented similar to MPF. The simulation results show that the newly proposed algorithms have better estimation accuracy, design simplicity, and computational requirements for PM estimation

    Application of Dirichlet Distribution for Polytopic Model Estimation

    Get PDF
    The polytopic model (PM) structure is often used in the areas of automatic control and fault detection and isolation (FDI). It is an alternative to the multiple model approach which explicitly allows for interpolation among local models. This thesis proposes a novel approach to PM estimation by modeling the set of PM weights as a random vector with Dirichlet Distribution (DD). A new approximate (adaptive) PM estimator, referred to as a Quasi-Bayesian Adaptive Kalman Filter (QBAKF) is derived and implemented. The model weights and state estimation in the QBAKF is performed adaptively by a simple QB weights\u27 estimator and a single KF on the PM with the estimated weights. Since PM estimation problem is nonlinear and non-Gaussian, a DD marginalized particle filter (DDMPF) is also developed and implemented similar to MPF. The simulation results show that the newly proposed algorithms have better estimation accuracy, design simplicity, and computational requirements for PM estimation

    Stochastic Control for Cooperative Cyber-Physical Networking

    Get PDF
    Die stetig fortschreitende Digitalisierung erlaubt einen immer autonomeren und intelligenteren Betrieb von Produktions- und Fertigungslinien, was zu einer stärker werdenden Verzahnung der physikalischen Prozesse und der Software-Komponenten zum Überwachen, Steuern und Messen führt. Cyber-physische Systeme (CPS) spielen hierbei eine Schlüsselrolle, indem sie sowohl die physikalischen als auch die Software-Komponenten zu einem verteilten System zusammenfassen, innerhalb dessen Umgebungszustände, Messwerte und Steuerbefehle über ein Kommunikationsnetzwerk ausgetauscht werden. Die Verfügbarkeit von kostengünstigen Geräten und die Möglichkeit bereits existierende Infrastruktur zu nutzen sorgen dafür, dass auch innerhalb von CPS zunehmend auf den Einsatz von Standard-Netzen auf Basis von IEEE 802.3 (Ethernet) und IEEE 802.11 (WLAN) gesetzt wird. Nachteilig bei der Nutzung von Standard-Netzen sind jedoch auftretende Dienstgüte-Schwankungen, welche aus der gemeinsamen Nutzung der vorhandenen Infrastruktur resultieren und für die Endsysteme in Form von sich ändernden Latenzen und Daten- und Paketverlustraten sichtbar werden. Regelkreise sind besonders anfällig für Dienstgüte-Schwankungen, da sie typischerweise isochrone Datenübertragungen mit festen Latenzen benötigen, um die gewünschte Regelgüte zu garantieren. Für die Vernetzung der einzelnen Komponenten, das heißt von Sensorik, Aktorik und Regler, setzt man daher klassischerweise auf Lösungen, die diese Anforderungen erfüllen. Diese Lösungen sind jedoch relativ teuer und unflexibel, da sie den Einsatz von spezialisierten Netzwerken wie z.B. Feldbussen benötigen oder über komplexe, speziell entwickelte Kommunikationsprotokolle realisiert werden wie sie beispielsweise die Time-Sensitive Networking (TSN) Standards definieren. Die vorliegende Arbeit präsentiert Ergebnisse des interdisziplinären Forschungsprojekts CoCPN:Cooperative Cyber-Physical Networking, das ein anderes Konzept verfolgt und explizit auf CPS abzielt, die Standard-Netze einsetzen. CoCPN benutzt einen neuartigen, kooperativen Ansatz um i) die Elastizität von Regelkreisen innerhalb solcher CPS zu erhöhen, das heißt sie in die Lage zu versetzen, mit den auftretenden Dienstgüte-Schwankungen umzugehen, und ii) das Netzwerk über die Anforderungen der einzelnen Regler in Kenntnis zu setzen. Kern von CoCPN ist eine verteilte Architektur für CPS, welche es den einzelnen Regelkreisen ermöglicht, die verfügbare Kommunikations-Infrastruktur gemeinsam zu nutzen. Im Gegensatz zu den oben genannten Lösungen benötigt CoCPN dafür keine zentrale Instanz mit globaler Sicht auf das Kommunikationssystem, sodass eine enge Kopplung an die Anwendungen vermieden wird. Stattdessen setzt CoCPN auf eine lose Kopplung zwischen Netzwerk und Regelkreisen, realisiert in Form eines Austauschs von Meta-Daten über den sog. CoCPN-Translator. CoCPN implementiert ein Staukontrollverfahren, welches den typischen Zusammenhang zwischen erreichbarer Regelgüte und Senderate ausnutzt: die erreichbare Regelgüte steigt mit der Senderate und umgekehrt. Durch Variieren der zu erreichenden Regelgüte kann das Sendeverhalten der Regler so eingestellt werden, dass die vorhandenen Kommunikations-Ressourcen optimal ausgenutzt und gleichzeitig Stausituationen vermieden werden. In dieser Arbeit beschäftigen wir uns mit den regelungstechnischen Fragestellungen innerhalb von CoCPN. Der Schwerpunkt liegt hierbei auf dem Entwurf und der Analyse von Algorithmen, die auf Basis der über den CoCPN-Translator ausgetauschten Meta-Daten die notwendige Elastizität liefern und es dadurch den Reglern ermöglichen, schnell auf Änderungen der Netzwerk-Dienstgüte zu reagieren. Dazu ist es notwendig, dass den Reglern ein Modell zur Verfügung gestellt wird, dass die Auswirkungen von Verzögerungen und Paketverlusten auf die Regelgüte erfasst. Im ersten Teil der Arbeit wird eine Erweiterung eines existierenden Modellierungs-Ansatzes vorgestellt, dessen Grundidee es ist, sowohl die Dynamik der Regelstrecke als auch den Einfluss von Verzögerungen und Paketverlusten durch ein hybrides System darzustellen. Hybride Systeme zeichnen sich dadurch aus, dass sie sowohl kontinuierlich- als auch diskretwertige Zustandsvariablen besitzen. Unsere vorgestellte Erweiterung ist in der Lage, Änderungen der Netzwerk-Dienstgüte abzubilden und ist nicht auf eine bestimmte probabilistische Darstellung der auftretenden Verzögerungen und Paketverluste beschränkt. Zusätzlich verzichtet unsere Erweiterung auf die in der Literatur übliche Annahme, dass Quittungen für empfangene Datenpakete stets fehlerfrei und mit vernachlässigbarer Latenz übertragen werden. Verglichen mit einem Großteil der verwandten Arbeiten, ermöglichen uns die genannten Eigenschaften daher eine realistischere Berücksichtigung der Netzwerk-Einflüsse auf die Regelgüte. Mit dem entwickelten Modell kann der Einfluss von Verzögerungen und Paketverlusten auf die Regelgüte prädiziert werden. Auf Basis dieser Prädiktion können Stellgrößen dann mit Methoden der stochastischen modellprädiktiven Regelung (stochastic model predictive control) berechnet werden. Unsere realistischere Betrachtung der Netzwerk-Einflüsse auf die Regelgüte führt hierbei zu einer gegenseitigen Abhängigkeit von Regelung und Schätzung. Zur Berechnung der Stellgrößen muss der Regler den Zustand der Strecke aus den empfangenen Messungen schätzen. Die Qualität dieser Schätzungen hängt von den berechneten Stellgrößen und deren Auswirkung auf die Regelstrecke ab. Umgekehrt beeinflusst die Qualität der Schätzungen aber maßgeblich die Qualität der Stellgrößen: Ist der Schätzfehler gering, kann der Regler bessere Entscheidungen treffen. Diese gegenseitige Abhängigkeit macht die Berechnung von optimalen Stellgrößen unmöglich und bedingt daher die Fokussierung auf das Erforschen von approximativen Ansätzen. Im zweiten Teil dieser Arbeit stellen wir zwei neuartige Verfahren für die stochastische modellprädiktive Regelung über Netzwerke vor. Im ersten Verfahren nutzen wir aus, dass bei hybriden System oft sogenannte multiple model-Algorithmen zur Zustandsschätzung verwendet werden, welche den geschätzten Zustand in Form einer Gaußmischdichte repräsentieren. Auf Basis dieses Zusammenhangs und einer globalen Approximation der Kostenfunktion leiten wir einen Algorithmus mit geringer Komplexität zur Berechnung eines (suboptimalen) Regelgesetzes her. Dieses Regelgesetz ist nichtlinear und ergibt sich aus der gewichteten Kombination mehrerer unterlagerter Regelgesetze. Jedes dieser unterlagerten Regelgesetze lässt sich dabei als lineare Funktion genau einer der Komponenten der Gaußmischdichte darstellen. Unser zweites vorgestelltes Verfahren besitzt gegensätzliche Eigenschaften. Das resultierende Regelgesetz ist linear und basiert auf einer Approximation der Kostenfunktion, welche wir nur lokal, das heißt nur in der Umgebung einer erwarteten Trajektorie des geregelten Systems, berechnen. Diese Trajektorie wird hierbei durch die Prädiktion einer initialen Zustandsschätzung über den Optimierungshorizont gewonnen. Zur Berechnung des Regelgesetzes schlagen wir dann einen iterativen Algorithmus vor, welcher diese Approximation durch wiederholtes Optimieren der System-Trajektorie verbessert. Simulationsergebnisse zeigen, dass unsere neuartigen Verfahren eine signifikant höhere Regelgüte erzielen können als verwandte Ansätze aus der Literatur. Der dritte Teil der vorliegenden Arbeit beschäftigt sich erneut mit dem hybriden System aus dem ersten Teil. Die im Rahmen dieser Arbeit verwendeten Netzwerk-Modelle, das heißt die verwendeten probabilistischen Beschreibungen der Verzögerungen und Paketverluste, werden vom CoCPN-Translator auf Grundlage von im Netzwerk gesammelten Status-Informationen erzeugt. Diese Status-Informationen bilden jedoch stets nur Ausschnitte ab und können nie exakt den "Zustand” des Netzwerks repräsentieren. Dementsprechend können die resultierenden Netzwerk-Modelle nicht als fehlerfrei erachtet werden. In diesem Teil der Arbeit untersuchen wir daher den Einfluss möglicher Fehler in den Netzwerk-Modellen auf die zu erwartende Regelgüte. Weiterhin gehen wir der Frage nach der Existenz von Reglern, die robust gegenüber solchen Fehlern und Unsicherheiten sind, nach. Dazu zeigen wir zunächst, dass sich Fehler in den Netzwerk-Modellen immer als eine polytopische Parameter-Unsicherheit im hybriden System aus dem ersten Teil manifestieren. Für solche polytopischen hybride System leiten wir dann eine sowohl notwendige als auch hinreichende Stabilitätsbedingung her, was einen signifikanten Beitrag zur Theorie der hybriden Systeme darstellt. Die Auswertung dieser Bedingung erfordert es zu bestimmen, ob der gemeinsame Spektralradius (joint spectral radius) einer Menge von Matrizen kleiner als eins ist. Dieses Entscheidungsproblem ist bekanntermaßen NP-schwer, was die Anwendbarkeit der Stabilitätsbedingung stark limitiert. Daher präsentieren wir eine hinreichende Stabilitätsbedingung, die in polynomieller Zeit überprüft werden kann, da sie auf der Erfüllbarkeit von linearen Matrixungleichungen basiert. Schließlich zeigen wir, dass die Existenz eines Reglers, der die Stabilität des betrachteten polytopischen hybriden Systems garantiert, von der Erfüllbarkeit einer ähnlichen Menge von Matrixungleichungen bestimmt wird. Diese Ungleichungen sind weniger restriktiv als die bisher in der Literatur bekannten, was die Synthese von weniger konservativen Reglern erlaubt. Schließlich zeigen wir im letzten Teil dieser Arbeit die Anwendbarkeit des kooperativen Konzepts von CoCPN in Simulations-Szenarien, in denen stark ausgelastete Netzwerk-Ressourcen mit anderen Anwendungen geteilt werden müssen. Wir demonstrieren, dass insbesondere das Zusammenspiel unserer modellprädiktiven Verfahren mit dem Staukontrollverfahren von CoCPN einen zuverlässigen Betrieb der Regelkreise ohne unerwünschte Einbußen der Regelgüte auch dann ermöglicht, wenn sich die Kommunikationsbedingungen plötzlich und unvorhergesehen ändern. Insgesamt stellt unsere Arbeit somit einen wichtigen Baustein auf dem Weg zu einem flächendeckenden Einsatz von Standard-Netzen als flexible und adaptive Basis für industrielle CPS dar
    corecore