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a b s t r a c t

In this paper, we tackle the problem of state estimation for uncertain linear systems when bounds
are known for the disturbances, noise and initial state. Practical systems often have parameters that
cannot be measured precisely at every iteration. The framework of Uncertain Linear Parameter-Varying
systems (Uncertain LPVs) have attracted attention from the community and have seen applications
from the aerospace industry to mechatronic systems, among many other examples. By formulating
the problem as the solution of a feasibility program, we show that the optimal convex solution can
be computed through an enumeration of the vertices of the estimates. Resorting to this result, three
algorithms are proposed: an approximation algorithm using only set operations; an exact convex hull
method returning the optimal convex set suitable for cases where estimates do not have a large
number of vertices; and an event-triggering algorithm suitable for fault/attack detection that combines
both the convex and nonconvex methods. Simulations are conducted using a motor speed model where
some of the parameters cannot be measured exactly pointing out that the uncertainty matrices are
responsible for the accuracy of the approximation algorithm, and also that the point-based method is
suitable for online estimation.
© 2022 TheAuthor. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In this paper, the problem of estimating the state of a dynam-
cal system for a broad family of linear systems is tackled. The
ask has been addressed by two main approaches: (i) stochastic
where some information regarding the probability distribu-

ion is assumed to be known, with examples such as the well-
stablished Kalman Filter and its variants; (ii) set-membership
where bounds are known for the values of the unknown

ignals with a large body of research considering different types
f bounds and representation descriptions for the sets.
Linear Parameter-Varying (LPV) models have been introduced

y the work of Michael Athans (for example see [1]) to encom-
ass a class of nonlinear dynamics that can be treated as linear
ystems when designing controllers and observers. These models
ave a variety of applications in aerospace industry, mechatronic
ystems, automotive, robotic manipulators, vehicle motion, active
agnetic bearings, among other academic examples as reported

n the survey [2]. We remark that parameters in LPV are not
nown only at the design phase. However, when parameters
annot be measured during execution, the family is called Un-
ertain LPVs. These types of systems are radically different from
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standard Linear Time-Varying (LTV), where the entries are known
functions over time. The major advantage is that one can treat a
subset of nonlinear dynamics whenever these nonlinear param-
eters can be measured (LPVs) or account for model inaccuracies
and approximation residuals (Uncertain LPVs).

The estimation task for LTVs is well established using in-
terval arithmetic [3,4], zonotopes [5], ellipsoids [6], constrained
zonotopes (following a trivial extension from the work in [7]),
polytopes [8] and even by combining different Convex Genera-
tors [9]. On the other hand, for nonlinear systems these strategies
can be extended through the use of approximation functions to
the nonlinear dynamics and using the same types of set de-
scription as for the LTVs as in [10–14], respectively. However,
by explicitly considering an Uncertain LPVs it makes possible
for tighter estimation sets than for general nonlinear dynamics,
which represents a gap in the literature. The main challenge is
that uncertainty parameters in the dynamics represent bilinear
constraints that cannot be directly represented using any of the
set representations.

In the literature, the main approach to solving the estimation
problem for Uncertain LPVs uses polytopes for each of the vertices
of the uncertainty polytope, followed by a convex hull compu-
tation of all the produced sets [15] and can resort to a coprime
factorization to decrease the impact of the initial uncertainty
whenever using the approach in a model invalidation problem

(such as the case of fault detection or model selection) [16,17].
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owever, this approach has an exponential complexity in the
orst-case by having to first generate all vertices for the poly-
opic uncertainty, compute all polytopes for each of the vertices
there can be an exponential number of them), followed by a
onvex hull of all the sets. In this paper, we first formalize the
roblem in order to assess some of its fundamental limitations
nd propose a technique based on constrained zonotopes (a sim-
lar one could be defined using the hyper-plane definition of
olytopes given that they are equivalent formulations [7]) to
erform the set-valued estimation. The optimal solution and its
elationship to the proposed method are also discussed.

Therefore, the main contributions of this paper can be sum-
arized as:

• The optimal solution to the set-valued estimation of Uncer-
tain LPVs is formulated as a feasibility problem;

• We show that performing the convex hull for all polytopes
or constrained zonotopes obtained using all combinations of
uncertainty vertices is the optimal convex solution to the
problem;

• A novel method based on constrained zonotopes is pro-
posed to replace the bilinear constraints as an approximated
solution, which is the optimal if one is restricted to set
operations;

• An efficient and exact convex hull method is proposed that
has performance enabling it to be applied to online esti-
mation of the state, i.e., such that its computation time is
smaller than typical sampling times;

• Lastly, we note that for fault detection/isolation or to de-
tect attackers in the system, an event-triggering mechanism
based on the elapsed time can be employed that resorts to
the nonconvex solution for the detection between triggering
times and resets the constraints at triggering times using the
proposed convex hull method.

The remainder of the paper is organized as follows. In Sec-
ion 2, we formalize the problem as a feasibility program and
oint out a solution to find the convex hull of the generally
onconvex set. Three different algorithms are presented in Sec-
ion 3 while pointing out their relationship with the optimal set.
imulations for a motor speed control model are presented in
ection 4 and final conclusions and directions of future work as
resented in Section 5.
Notation: In this paper, we denote by v an anonymous vari-

ble in an optimization problem that corresponds to a possible
alue for the vector v. The Minkowski sum of two sets X and
is defined as X ⊕ Y := {v + u : v ∈ X, u ∈ Y }. The

onvex hull function that outputs a hyper-plane representation
f the smallest polytope enclosing all points in set A is given as
onvHull(A). Function vertex(X) returns a set of all vertices of the
olytope X . The infinity norm of a vector is denoted by ∥v∥∞ and
orresponds to maxi |vi| for the absolute value function |a| for the
calar a. We use rank(A) to denote the dimension of the column
space of matrix A.

2. Problem formulation

The problem of state estimation in Uncertain LPVs in the set-
membership approach consists in finding a set of possible values
given the dynamics and measurements obtained from the system.
These models can be written as:

x(k + 1) =

(
A(ρ(k)) +

n∆∑
ℓ=1

∆ℓ(k)Uℓ

)
x(k) + B(ρ(k))u(k)

+ L(ρ(k))d(k)
(1)
y(k) = C(ρ(k))x(k) + N(ρ(k))w(k) a

2

here x(k) ∈ Rn, u(k) ∈ Rnu , d(k) ∈ Rnd , y(k) ∈ Rm and
(k) ∈ Rnw are the system state, input, disturbance signal, output
nd noise, respectively. The parameter ρ(k) is the part of the pa-
ameters that can be measured at time k, which do not pose any
dditional difficulties for the estimation using a set-membership
pproach. The main challenge appears from considering the n∆

ncertainties denoted by ∆ℓ and the constant matrices Uℓ that
ccount for how the uncertainties affect the nominal dynamics
atrix given by A(ρ(k)). To lighten the notation, we will consider
k := A(ρ(k)) and similarly for all the remaining matrices in (1).
oreover, in order to have a well-posed problem, we assume

hat all unknown signals are bounded within a compact convex
olytope denoted by the correspondent capital letter, i.e., x(0) ∈

(0), d(k) ∈ D(k) and w(k) ∈ W (k). Without loss of generality, the
calar uncertainty parameters ∆ℓ satisfy |∆ℓ| ≤ 1.
The problem addressed in this paper is summarized as:

roblem 1. Given compact polytopic sets X(0), D(k) and W (k)
or all k ≥ 0 and measurements y(k), how to compute a set X(k)
uch that it is guaranteed that x(k) ∈ X(k), ∀k ≥ 0.

Notice that Problem 1 is called state estimation although a
onverse definition could be presented for the output of the
ystem (this is of particular interest in sensitivity analysis [18]
nd system distinguishability [19]).
The first step in formalizing the problem is through the de-

cription of possible solutions. Verifying if a given point p ∈ Rn

elongs to X(k) is equivalent to solving the following feasibility
roblem:

find
x(0) · · · x(k),

d(0) · · · d(k − 1)
w(1) · · ·w(k)

∆1(0) · · ·∆1(k − 1)
.
.
.

n∆ (0) · · ·∆n∆ (k − 1)
s.t. x(0) ∈ X(0),

d(i) ∈ D(k) , 0 ≤ i ≤ k − 1,
w(i) ∈ W (k) , 1 ≤ i ≤ k,
|∆ℓ(i)| ≤ 1 , 0 ≤ i ≤ k − 1, 1 ≤ ℓ ≤ n∆,

x(k) = p,
x(i) satisfy (1) , 0 ≤ i ≤ k

(2)

he feasibility problem in (2) is written with x variables account-
ng for the possible values of x for each of the time instants, and
similar notation for the remaining variables. The problem has
set of convex constraints and the last one is bilinear since it

nvolves the product of ∆ℓ and x.
In the next theorem, we show that, if the set of all points p that

atisfy (2) is a convex set, the solution can be computed using a
oint-based method.

heorem 2. Let Θ(k) be the optimal set to the estimation problem
efined as Θ(k) = {p : ∀p satisfies (2)} for any given time instant k.
f Θ(k) is convex then Θ(k) is as given in Box I where Y (k) := {q :

(k) = Ckq + Nkw(k), w(k) ∈ W (k)}.

roof. We first notice that the solution to (2) can be given as:

(k) = Xp(k) ⊕ Bk−1u(k − 1) ⊕ Lk−1D(k − 1)
⋂

Y (k) (3)

here Xp(k) corresponds to the set of all points propagated using

ll possible instances of the uncertain dynamics matrices, the ⊕
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(i) Θ(k) = convHull

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⋃

vx ∈ vertex(X(k − 1))
v∆ℓ

∈ {−1, 1}
vd ∈ vertex(D(k − 1))

(
Ak−1 +

n∆∑
ℓ=1

v∆ℓ
Uℓ

)
vx + Bk−1u(k − 1) + Lk−1vd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⋂

Y (k),

Box I.
1
s
f
a
f
g
a

otation stands for the Minkowski sum of sets and Y (k) corre-
ponds to the set of possible state vectors that would result in
he obtained y(k). By assumption, all signals are assumed to take
alues in compact convex sets and, therefore, the sets Bk−1u(k−1),
k−1D(k − 1) and Y (k) are all convex since they are the result
f applying a linear map to convex compact sets. If Θ(k) is
onvex, then Xp(k) must be convex since the Minkowski sum and
ntersection operations preserve convexity.

If Xp(k) is convex, it forms a convex polytope of matrices and
ne can replace the bilinear constraint by the convex hull of the
ets produced by a linear constraint for each vertex of the set
(k − 1).1 Let us recall that:

⊕ B = convHull

⎛⎝ ⋃
va∈vertex(A),vb∈vertex(B)

va + vb

⎞⎠
or two polytopes A and B. Thus, using the format in (3) and
he definition of Xp(k) after replacing the bilinear constraints by
he union of linear constraints for all vertices of X(k − 1), the
onclusion follows. ■

Theorem 2 draws an important fact regarding the state esti-
ation problem for Uncertain LPVs, namely that if the optimal
et is convex it will be a polytope given the assumption that the
nitial state, disturbance and noise signals are contained within
olytopes. The following corollary is also useful.

orollary 3. The optimal convex solution Θ(k) to the feasibility
roblem in (2) is a convex polytope.

Corollary 3 asserts that the Set-Valued Observers (SVOs) com-
utation is optimal for Uncertain LPVs, which extends the result
n [20] for LTV systems. This is one of the main contributions
f this paper in showing that a point-based method using the
ertices produces the optimal convex set enveloping the solution
f (2). The SVO algorithm works by computing a polytopic set
or each vertex of the uncertainty polytope and doing the con-
ex hull of the union of all such sets. However, the algorithm
roposed in [8] requires twice the number of constraints than is
ecessary, leading to a worse efficiency. A point-based algorithm
orresponding to the result in Theorem 2 to compute the optimal
onvex solution set is presented in pseudo-code in Algorithm 1.
The main disadvantage of Algorithm 1 is that it requires enu-

erating all vertices of the polytopes (be it saved in the hyper-
lane representation as in [8] or its constrained zonotope for-
at [7]), which in the worst-case can represent an exponential
rowth followed by a combinatorial computation done in line 10
ithin the for cycles. However, there are very efficient algorithms
o compute the convex hull in line 15, which makes the algorithm

1 Please see the implemented Yalmip example in https://yalmip.github.io/
xample/lpvstatefeedback/.
 w

3

Algorithm 1 State estimation for Uncertain LPVs using the
vertices of the polytopes.
Require: Set X(0) and, for all k ≥ 0, sets D(k), W (k) and

measurement polytope Y (k).
Ensure: Computation at each time instant k of X(k) as the convex

hull of the list of points stored in the variable plist.

1: for each k do
2: plist = ∅

3: /* Find the vertices of the necessary sets */
4: Vx = vertex(X(k − 1))
5: Vd = vertex(D(k − 1))
6: /* For each combination of vertices find the propagated point

*/
7: for each vx ∈ Vx do
8: for each vd ∈ Vd do
9: for each v∆ ∈ {−1, 1}n∆ do

10: plist = plist ∪

(
Ak +

∑n∆

ℓ=1 v∆ℓ
Uℓ

)
vx + Bku(k) + Lkvd

11: end for
12: end for
13: end for
14: /* Create propagated polytope */
15: Xp(k) = convHull (plist)
16: /* Update the propagated polytope */
17: X(k) = Xp(k) ∩ Y (k)
18: end for

particularly suitable to cases where the sets D(k) are known
a priori and preferably constant over time. In such cases, the
vertices can be computed offline and stored for future uses.

In order to illustrate to the reader the results presented in this
section, we have considered a simple model given by:

x(k + 1) =

([0.2 0.5
0.1 0.3

]
+ ∆1(k)

[
1 0
0 0

])
x(k) +

[
0.1
0.2

]
u(k)

+

[
0.2 0
0 0.2

]
d(k)

y(k) =
[
1 0

]
x(k) + w(k)

(4)

with ∥x(0)∥∞ ≤ 1, and for all k ≥ 0 the disturbance and noise
signals were considered to satisfy ∥d(k)∥∞ ≤ 1 and ∥w(k)∥∞ ≤

. Also, ∆1(k) ∈ [−1, 1] for all k ≥ 0. We implemented a
olution based on the constrained zonotopes description to be
ound in Section 3 along with the optimal feasibility set in (2)
nd the algorithm described in Algorithm 1. The produced sets
or X(1) are depicted in Fig. 1 where the circles correspond to the
rid points used to draw the boundary of the polytope and the
sterisks on the convex hull approach corresponds to all points

ithin plist of Algorithm 1. Given that the set X(0) possesses a

https://yalmip.github.io/example/lpvstatefeedback/
https://yalmip.github.io/example/lpvstatefeedback/
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Fig. 1. The produced polytopes for the example in (4) with k = 1 using the approximation algorithm in Section 3 both for the propagated set (up) and the updated
set (bottom) are given on the left. The same sets are given using the feasibility approach in (2) (middle) and with Algorithm 1 (right).
Fig. 2. The produced polytopes for the example in (4) with k = 2 using the approximation algorithm in Section 3 both for the propagated set (up) and the updated
set (bottom) are given on the left. The same sets are given using the feasibility approach in (2) (middle) and with Algorithm 1 (right).
symmetry to be discussed in Section 3.1, the sets computed by
the approximation algorithm are the optimal sets produced both
by the points approach or the feasibility method.

In order to better illustrate the difference, we depict in Fig. 2
the propagated and updated sets for the three algorithms at time
k = 2 and similarly in Fig. 3 for k = 3. Interestingly, for k = 2 the
optimal solution of the nonconvex approach is a convex set, and
we obtain the same set using Algorithm 1. However, for k = 3, the
optimal set is no longer convex but Algorithm 1 finds its convex
hull. The approximation method (in the left), is more conservative
4

but with a lower computational cost since it only applies set
operations instead of requiring converting set representations to
its vertices in each time step.

Elaborating on the complexity, the feasibility problem in (2)
has a number of variables equal to k(n+ n∆ + nd + nw), meaning
that, at iteration 8, there exists 36 variables and 37 constraints.
Compiling the constraints in (2) took around 10 ms in a Hewlett
Packard (HP) personal computer running Windows 10, Matlab
R2018a with a processor Intel i7-8550U at 1.8 GHz and with
12 GB of RAM. However, checking if a point belongs to the set
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Fig. 3. The produced polytopes for the example in (4) with k = 3 using the approximation algorithm in Section 3 both for the propagated set (up) and the updated
set (bottom) are given on the left. The same sets are given using the feasibility approach in (2) (middle) and with Algorithm 1 (right).
took on average 0.54 s at the k = 1 and at k = 10 was already
taking 4.39 s using the solver BMIBNB available in Yalmip version
30-Sep-2016. Therefore, the non-convex approach is not viable
unless the observer is applied in an off-line estimator. Later in this
paper, we also propose the use of the non-convex approach for
fault detection with a window mechanism to serve as a trade-off
between accuracy and performance.

3. Set-valued estimator based on constrained zonotopes

The previous section hinted at an important fact that either the
state estimation task is optimal through a nonconvex approach
with a fast growing complexity or the optimal convex set requires
propagating individual points for all combination of vertices of
all polytopes containing the unknown signals. This method is
optimal in computing the convex hull for the non-convex set
membership problem at the expenses of an increase in compu-
tational complexity whenever the sets have a large number of
vertices or when the number of uncertainty parameters is high. In
both cases, the method has a combinatorial nature of propagating
points using different values corresponding to all vertices.

In the realm of LTV systems, the next set-valued estimate is
equivalent to performing the propagate phase:

Xprop(k + 1) = AkX(k) ⊕ Bku(k) ⊕ LkD(k) (5)

where a matrix multiplying a set corresponds to applying that
linear map to all vectors in the set. In a similar fashion, the update
step could be carried out:

X(k) = Xprop(k) ∩Ck y(k) ⊕ NkW (k) (6)

where the symbol ∩Ck stands for the intersection through the map
Ck such that both sets being intersected constrain the possible
values of x(k). We opt by representing the polytopes through a
constrained zonotope formulation and, for the sake of complete-
ness, introduce how each of the operations is defined as described
in [7]. We remark to the reader that other solutions based on
intervals [4] would achieve better performance by sacrificing ac-
curacy. This is due to the fact that the sets would be overbounded
5

by hyper-rectangles adding conservatism that would then be
propagated using the dynamics for future time steps.

Definition 4 (Constrained Zonotope). A set Z is a constrained
zonotope defined by the tuple (G, c, A, b) ∈ Rn×ng ×Rn

×Rnc×ng ×

Rnc such that:

Z = {Gξ + c : ∥ξ∥∞ ≤ 1, Aξ = b}.

Definition 5 (Set Operations). Consider three constrained zono-
topes as in Definition 4:

• Z = (Gz, cz, Az, bz) ⊂ Rn;
• W = (Gw, cw, Aw, bw) ⊂ Rn;
• Y = (Gy, cy, Ay, by) ⊂ Rm;

and a matrix R ∈ Rm×n. The three set operations are defined as:

RZ = (RGz, Rcz, Az, bz) (7)

Z ⊕ W =

([
Gz Gw

]
, cz + cw,

[
Az 0
0 Aw

]
,

[
bz
bw

])
(8)

Z ∩R Y =

([
Gz 0

]
, cz,

[ Az 0
0 Ay

RGz −Gy

]
,

[ bz
by

cy − Rcz

])
. (9)

Using the set operations in Definition 5, the propagate in (5)
can be implemented resorting to linear maps applied to the sets
as in (7) followed by Minkowski sums of the sets as in (8). The
update in (6) starts by creating the set for the measurements us-
ing both linear maps and Minkowski sums and then intersecting
using (9).

We now detail three different methods, identifying the sce-
narios for which they are suitable. We point out to the interested
reader that Constrained Zonotopes are a representation of poly-
topes as given in [7]. We conjecture that these sets are bounded
in terms of hyper-volume following the discussion in [8] under
mild stability conditions.
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.1. Approximation method

In order to deal with the uncertain component in (1), we
irst address the problem when n∆ = 1 and matrix U1 satisfies
ank(U1) = 1 such that there exist vectors e1 and f1 satisfying:

1 = e1f
⊺
1 .

oreover, by defining an auxiliary vector z1(k) = f ⊺1 x(k)∆1(k) we
an rewrite (1) as:

(k + 1) = Akx(k) + e1z1(k) + Bku(k) + Lkd(k)
y(k) = Ckx(k) + Nkw(k)

(10)

here the signal z1(k) ∈ R is bounded by |z1(k)| ≤ max
⏐⏐f ⊺1 x(k)⏐⏐.

he right-hand side of the inequality can be approximated by
olving two linear programs:

in
x

f ⊺1 x

s.t. x ∈ X(k)
(11)

nd
in
x

−f ⊺1 x

s.t. x ∈ X(k)
(12)

nd taking the maximum of both absolute values. Thus, z1(k) ∈

1(k) which is defined as Z1(k) = (b, 0, 0, 0) where b is the
aximum of the absolute value of the cost functions in programs

11) and (12). As a consequence, the system in (10) is in an LTV
ormat with an extra unknown input z1(k) whose constrained
onotope can be computed at time k.

emark 6. We remark that the rank one decomposition results
n the optimal set operation (i.e., without having any point-wise
um) procedure for the state estimation. By optimal, we mean
hat there exists at least one point for which the direction e1
r −e1 achieves the maximum bound and the other it is an
uter approximation. Thus, to achieve a smaller estimation set, a
oint-wise operation would be required such that we could have
ifferent points in the set being affected by different values of the
ncertainty set. In the example (4), when the previous set was
ymmetric with respect to the hyper-planes f ⊺1 x and e⊺1x (Fig. 1)
he produced set was the optimal one whereas when this failed
e obtained an over-approximation (Figs. 2 and 3).

The case when matrix U1 has a rank greater than the unity
eans that:

1 = e1,1f
⊺
1,1 + e1,2f

⊺
1,2 + · · · + e1,mf

⊺
1,r

or some r > 0. By defining additional variables:

1,j(k) := f ⊺1,jx(k)∆1(k)

e can carry out the same procedure as for the case of a rank one
atrix.

emark 7. We draw attention that the above separation of
atrix U1 into independent exogenous signals increases the size
f the produced set as we are implicitly ignoring the relationship
etween the entries in Ak affected by uncertainty ∆1.

If n∆ > 1, the same procedure can be applied for all the
emaining uncertainties as done for ∆1 with the produced sets
dded by the Minkowski sum.

.2. Exact convex hull method

The previous method explored a relaxation to the bilinear con-
traints imposed by the product between state and uncertainty.
6

uch an algorithm is the optimal one using only set operations.
n this section, we detail how to improve it combining both the
dea in Algorithm 1 and the commutativity of the convex hull
peration and the Minkowski sum. This method is of interest for
ases where the set-valued estimates do not have a very large
umber of vertices.
Since the solution to the state estimation for Uncertain LPVs

an be a nonconvex set, we opt to compute its convex hull:

onvHull (Θ(k))

= convHull
(
Xp(k) ⊕ Bk−1u(k − 1) ⊕ Lk−1D(k − 1) ∩Ck y(k) ⊕ NkW (k)

)
= convHull

(
Xp(k) ⊕ Bk−1u(k − 1) ⊕ Lk−1D(k − 1)

)
∩Ck y(k) ⊕ NkW (k)

= convHull
(
Xp(k)

)
⊕ Bk−1u(k − 1) ⊕ Lk−1D(k − 1) ∩Ck y(k) ⊕ NkW (k)

(13)

he first step in (13) used the fact that the convex hull is defined
s the intersection of all convex sets enclosing the set. Since the
easurement set is assumed to be convex, this intersection can
e performed after the convex hull. The second step resorted to
he commutativity of the convex hull and the Minkowski sum to
irst apply the convex hull to each set before taking the addition.
iven that the actuation (a single point) and the disturbance
ets are convex, its convex hull is equal to the set themselves.
he formulation in (13) means that the proposed algorithm to
ompute the exact convex hull follows the steps:

(i) Compute vertex (X(k − 1));
(ii) Propagate all vertices from (i) using the vertices −1 and 1

for each of the n∆ uncertainties;
(iii) Compute the convex hull of (ii);
(iv) Use the constrained zonotope set operations in Definition 5

to compute convHull (Θ(k)) following (13).

n the proposed algorithm, step (i) is the computationally expen-
ive one, even though we have reduced the cost in comparison
ith Algorithm 1 by only computing the vertices of the previ-
us estimate and using set operations for the remaining sets.
lso notice that step (iii) reduces the size (values nc and ng in
efinition 4) of the representation of the constrained zonotope
ssociated with the set-valued estimate. In the literature for
TVs using zonotopes or constrained zonotopes, this is typically
ncluded as an additional method to be performed after finding
he estimate [5,7]. Therefore, step (iii) precludes the need to any
f those methods.

.3. Event-triggering between convex and nonconvex method

One of the main uses of set-membership approaches is to
erform fault detection and isolation. In such case, one can con-
ider multiple LPV models as in (1) where one corresponds to
he fault-free case and an additional one for each combination of
onsidered faults. Then, detecting and isolating the fault requires
o perform model invalidation whenever the produced set for a
articular case produces the empty set, i.e., there are no possible
alues of all the exogenous signals and initial conditions that
ustify that particular model. Under such scenarios, the question
s not to produce the set of all possible state values at time k but
ather to check if the set is empty. If the faults can be caused by
n intelligent opponent trying to attack the system, accuracy is a
ital aspect since added conservatism means additional attacking
ignals going undetected. However, as seen in Section 2, finding
ny feasible point to the problem in (2) takes considerable time
ven for small values of k.



D. Silvestre Systems & Control Letters 166 (2022) 105311

a
r

t
r
e
t
p
i
t
f

s
t
a
a
t
c
a
c
r

4

t
p
t
c

Fig. 4. The produced polytopes for the motor speed example at time k = 5 using the approximation algorithm (set-based method) for the propagated set (up)
nd the updated set (bottom) are given on the left. The same sets are given using the nonconvex feasibility approach (middle) and using the exact convex method
esorting to point-based operations (right).
c
The proposed method in this section is to have an event-
riggered mechanism following the idea of incorporating these
ules in the context of set-valued estimators [15]. Whenever the
lapsed time to solve the feasibility (2) is greater than a given
hreshold (dependent on how much time the detector has to
roduce an output regarding the existence of faults), a trigger
s generated. Assume that the sequence of triggers is given at
imes τ0, τ1, . . . with τ0 = 0. At time τ1, the detector will do the
ollowing procedure:

(i) Compute the set-valued estimates for the current time τ1,
X(τ1) using the exact convex hull method from the set
X(τ0) = X(0);

(ii) Replace in (2) the condition x(0) ∈ X(0) by x(0) ∈ X(τ1);
(iii) The last constraint should use the measurements y(τ1 +

1), y(τ1 + 2), . . . instead of y(τ0 + 1), y(τ0 + 2), . . .;
(iv) Repeat for all events τ2, τ3, . . ..

The above procedure is solving the computationally hard fea-
ibility problem in (2) since the last triggering time τj up to
he current time instant k. The main advantage is that faults
re checked based on the exact nonconvex set (more accurate)
t time k from the convex hull set produced at time τj. Since
riggers happen when the computing time is larger than some
onstant, the procedure can be run online. However, there is still
dded conservatism in every event τ1, τ2, . . . as the convex hull is
omputed to replace the known bound for a past state value and
eset the number of constraints and optimization variables in (2).

. Simulations

In this section, simulations are presented in order to illustrate
he proposed algorithms (set-based labeled as ‘‘CZ approach’’ and
oint-based labeled as ‘‘ConvexHull of points’’ for the uncertain-
ies) along with the nonconvex approach for comparison. We
onsider a motor speed model with state space representation in
7

ontinuous time given by:

d
dt

[
θ̇

i

]
=

[
−

b
J

K
J

−
K
L −

R
L

][
θ̇

i

]
+

[
0
1
L

]
V

with source voltage V as input and rotational speed of the shaft
θ̇ as output, where i is the armature current. We consider the
following nominal system constants: moment of inertia of the
rotor J = 0.01 kg m2, motor viscous friction constant b = 0.1
N m s, K to represent the equal electromotive force constant
Ke = 0.01 V/rad/s and motor torque constant Kt = 0.01 N
m/Amp, electric resistance R = 1 Ohm and electric inductance
L = 0.5 H. In the first simulation, it is assumed that the value of b
is uncertain and contained in a range [0.09, 0.011]. We proceeded
to discretize the system using a sampling time of Ts = 0.1 s
and resorting to the method of zero-order hold on the inputs.
During the simulation the system is responding to a unit step as a
reference. Both disturbance and noise signals have infinity norm
equal to unity and matrices L = 0.2I and N = 1.

Fig. 4 depicts the evolution of the involved sets for the two
main approaches presented in this paper: the approximation
algorithm based on set operations and the exact convex method
resorting to point-based propagation for the dynamics. For com-
parison, we present the solution to the nonconvex feasibility
problem which stands for the optimal set. Throughout the whole
simulation, the optimal set Θ(k) remained a convex polytope,
which meant that the produced sets for the various values of k
represented similar results. All three methods produce the same
set, as given in Theorem 2 albeit with very distinct computational
costs.

In a more challenging simulation, we have considered the
moment of inertia of the rotor to be uncertain. In this case, the
optimal set is no longer convex given that the bilinear constraint
cannot be represented by a rank one uncertainty. In Fig. 5, it is
depicted the produced sets for k = 1. An interesting remark is
that the approximation algorithm produces a very conservative
set in comparison with the other two approaches. Nevertheless,
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Fig. 5. The produced polytopes for the motor speed example at time k = 1 using the approximation algorithm (set-based method) for the propagated set (up)
nd the updated set (bottom) are given on the left. The same sets are given using the nonconvex feasibility approach (middle) and using the exact convex method
esorting to point-based operations (right).
Fig. 6. The produced polytopes for the motor speed example at time k = 6 using the approximation algorithm (set-based method) for the propagated set (up)
nd the updated set (bottom) are given on the left. The same sets are given using the nonconvex feasibility approach (middle) and using the exact convex method
esorting to point-based operations (right).
hat difference is less noticeable in the updated sets given the
onsidered bound for the noise. In systems with larger noise sets,
he conservatism will be larger and integrated in the propagation
tep of the algorithm.
At iteration k = 5, the propagated set becomes convex. Fig. 6

epicts the sets at iteration k = 6 and we recover the typical
behavior where the approximation is conservative but the exact
convex hull of the feasibility set can still be computed by the
proposed algorithm with a point-based operation. An important
remark is that the computation including the enumeration of the
8

vertices and the final convex hull took at most 0.0439 s, meaning
that the method can be run as an online state estimator even for
smaller sampling times.

An important aspect in set estimation is to determine whether
the produced sets are bounded in terms of their hyper-volume.
For that reason, we ran the previous simulation for 100 s and
depict in the following plots the main characteristics regarding
the various algorithms.

The sets produced at the final iteration k = 1000 are depicted
in Fig. 7 which shows the relative conservatism of an algorithm



D. Silvestre Systems & Control Letters 166 (2022) 105311

1
w

t
A
c
i
w
e
i

Fig. 7. Sets produced by the Constrained Zonotope and Convex Hull of Points algorithms at k = 1000 iteration.
Fig. 8. Evolution of the volume of the produced sets every multiple of 50
iterations across the 100 s of simulation.

based on set operations as opposed to the true convex hull of the
nonconvex set. As discussed previously, checking a solution to the
nonconvex feasibility problem is prohibitively expensive for the
number of variables and constraints used at k = 1000.

From Fig. 8, we can check that the volume of the set remained
bounded throughout the entire simulation. The volume for the
non-convex is not presented as, apart from being hard to com-
pute, its description is in the form of the solution of a feasibility
program that requires significant computing power even for k =

0, evaluating it for a time instant at the end of the simulation
ould be prohibitively expensive.
Fig. 9 depicts the evolution of the number of constraints used

o define the sets/feasibility programs in all three approaches.
s one might expect, the point-based solutions requires zero
onstraints while both the other have a linear growth. Another
mportant aspect is the number of variables that are being stored
ithin the set definitions. In Fig. 10 is shown how this value
volves for each of the algorithms as time progresses. Interest-
ngly, representing the set as a convex hull of points also means
9

Fig. 9. Number of constraints used by each algorithm across the 100 s
simulation.

that we can easily check whether some of the points are irrele-
vant to the description and perform sort of an order reduction
just as a byproduct of the algorithm itself. Since we have not
implemented a specific order reduction for the Constrained Zono-
topes, the number of auxiliary variables used in the definition
keeps increasing linearly. Both the number of constraints and
variables helps explaining the difference in terms of performance
with the maximum computing time for the point-based solution
being 0.0089 s. This is only achieved because the sets for the
uncertainties, disturbances and noise are constant throughout the
simulation and the vertex enumeration could be performed a
single time off-line before the simulation started.

5. Conclusions and future work

In this paper, we have tackled the problem of state estima-
tion for uncertain linear systems in scenarios where there is no
information regarding the probabilistic nature of the unknown
signals. This results in a worst-case view with the produced set-
valued estimates representing all possible values for the state. By
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Fig. 10. Number of variables/points used by each algorithm across the 100 s
simulation.

formalizing the problem as a feasibility program, the state estima-
tion can be conducted using a nonconvex solver. It is shown that
whenever the solution is a convex set, an algorithm producing
the exact set must rely on point-based operations since set-
based approaches will be inherently conservative. Exploring this
result, we have proposed three methods: (i) an approximation
algorithm that overbounds the bilinear constraint with a convex
one (optimal set-based algorithm); a method to compute the
convex hull (optimal convex set) that requires enumerating the
vertices of the previous set-valued estimation but employs set
operations for the remaining signals; and, (iii) an event-triggering
algorithm especially useful in fault/attacker detection that uses
the nonconvex approach in-between triggers and resets the size
of the feasibility program using the method in (ii).

The current research opens the possibility to explore three
main avenues of future work: (i) tackle linear models with uncer-
tain measurement equations; (ii) study other practical models for
which the estimators can run online; and, (iii) investigate condi-
tions under which the optimal solution to the feasibility program
is a convex set. Uncertainty in matrix C is harder to incorporate
in the approximation algorithm since the measurement set can
also be nonconvex, resulting on a research challenge of its own.
The topic in (ii) would answer one of the harshest criticism of
set-membership solutions that are either conservative or do not
produce accurate convex sets when applied to uncertain systems
with small sampling times. Lastly, understanding the conditions
that result in a convex solution would characterize the types of
problems for which the point-based method is optimal.
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