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Abstract—This paper proposes a new set-membership
technique to implement polytopic set computation for
nonlinear discrete-time systems indirectly. The proposed
set-membership technique is applied to solve the guar-
anteed state estimation problem for nonlinear discrete-
time systems with a bounded description of noises and
parameters. A common practice for this problem in the
literature is to search an optimal zonotope to bound the
intersection of the evolved uncertain state trajectory and
the region of the state space consistent with the observed
output at each observation update. The new approach
keeps the polytopic set resulting from the intersection
intact and computes the evolution of this intact polytopic
set for the next time step through representing the poly-
topic set exactly by the intersection of zonotopes. Such an
approach avoids the over-approximation bounding process
at each observation update and thus a more accurate
state estimation can be obtained. An illustrative example is
provided to demonstrate the effectiveness of the proposed
guaranteed state estimation via indirectly implemented
polytopic set computation.

Index Terms—State estimation, set computation, zono-
tope, polytope, nonlinear systems.

I. INTRODUCTION

State estimation is formulated as the problem of
estimating the real state of the system given the
mathematical model of the system and also noise-
corrupted measurements of the system output [1].
There are roughly two main types of approaches to
tackle the state estimation problem: the stochastic
approaches and the deterministic approaches. The
most notable stochastic approach for state estima-
tion is the Kalman filter, which is an efficient and
recursive procedure to estimate the system state
in a way that minimizes the mean of the squared
estimation error [2]. If all noises and perturbations
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are Gaussian, the Kalman filter turns out to be
an optimal estimator. However, such probabilistic
assumptions on the system can be unrealistic or be
hard to validate in practice.

Instead of describing the uncertainties or noises
of a system by probability distributions, determin-
istic approaches to state estimation use various
kinds of sets such as ellipsoids, polytopes, intervals
and zonotopes to bound unknown perturbations,
noises and estimation errors [3], [4], [5], [6]. The
deterministic approaches are also called the set-
membership approaches and they are particularly
useful in case of lacking probabilistic information
on the systems concerned. The state estimators in
these set-membership approaches use a compact set
or a union of sets to contain all the state variables
that are consistent with available measurements and
disturbance specifications [7]. Acting as the worst-
case techniques for estimation, the set-membership
approaches to state estimation were studied long
before in [8] where ellipsoids were first used to
bound the set of all possible states for linear systems
with noise-corrupted observations. Due to the shape
restriction of ellipsoids, the ellipsoidal bounding
of uncertain states can be quite conservative and
polytopes are more preferable for the bounding tasks
as they can approximate any compact convex set
as closely as desired [9]. The use of polytopes for
state estimation was studied in [10], [3] where the
uncertain states of linear discrete-time systems were
recursively bounded by polytopes or the simplified
parallelotopes. These set-membership approaches of
using polytopes for state estimation are often com-
putationally demanding and they are also restricted
to linear systems or piece-wise affine systems [11].

Set-membership state estimation for nonlinear
systems was studied in [12], [13] where the ad-
missible state space was bisected and selected into
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subsets to test their consistency with the observa-
tions via interval set computation. The main hurdles
for interval-based state estimation are the so-called
wrapping effect that makes the solution conservative
and also the curse of dimensionality that makes
the computation burden grow exponentially with
the dimensionality of the state space. Similar to
interval set computation, the dynamic evolution of a
nonlinear system with a zonotopic set as the initial
state can also be computed directly via zonotopic
set computation and the wrapping effect can be
reduced greatly with comparison to interval set
computation [14]. Except for the reduced wrapping
effect, zonotopes as a special kind of polytopes are
also more flexible in shape than intervals. Therefore,
zonotopic set computation has been increasingly
used for state estimation of nonlinear systems [4],
[5], [15]. Nevertheless, zonotopic set computation
can be used for state estimation of linear discrete-
time systems as well [1]. A new class of sets called
constrained zonotopes was also proposed in [16] for
set-membership state estimation of linear discrete-
time systems.

A common practice within these zonotope-based
state estimation approaches for nonlinear discrete-
time systems is to search an optimal zonotope to
bound the intersection of the evolved uncertain state
trajectory and the region of the state space consistent
with the observed output at each observation update.
Then the optimized zonotope is to be propagated
for computing the dynamic evolution of this non-
linear system via zonotopic set computation. The
set resulting from the intersection of the evolved
uncertain state trajectory and the region of the
state space consistent with the observed output
at each observation update is essentially a poly-
topic set therein. This polytopic set is often over-
approximated by one single zonotope. The repetitive
bounding processes of the polytopic set by one
single zonotope and the following propagations of
the over-approximated zonotopes impact negatively
on the accuracy of state estimation although great
efforts have been made to obtain a tighter zonotopic
bound of the intersection in [15].

The over-approximating bounding of a polytopic
set by one single zonotope at each observation
update in [4] becomes unnecessary if the dynamic
evolution of a polytopic set can be computed for a
nonlinear discrete-time system. Currently, there is
no direct method to compute the dynamic evolution

of a nonlinear discrete-time system with a polytopic
set as the initial set. This paper proposes a novel
idea to implement polytopic set computation for
nonlinear discrete-time systems indirectly, which
is to represent the polytope exactly by the inter-
section of zonotopes at first and then to compute
the dynamic evolutions of these individual zono-
topes whose intersection forms the polytope. The
proposed idea in this paper is originated from the
perspective of extending existing interval or zono-
topic set computation for nonlinear discrete-time
systems into polytopic set computation for nonlinear
discrete-time systems. The intersection of zonotopes
was called a zonotope bundle in [17] and it was used
for the efficient computation of reachable sets. The
intersection of ellipsoids was also used to bound the
reachable set of singular systems in [18]. However,
the problem of researchable set computation is
different from state estimation because reachable set
computation does not involve the intersection with
the observation update at each step as in [19], [20].

The rest of the paper is organized as follows.
Section II provides the mathematical formulation of
the state estimation problem to be solved. Section
III describes the proposed idea of indirectly im-
plemented polytopic set computation for nonlinear
discrete-time systems. The procedure of guaranteed
state estimation via indirectly implemented poly-
topic set computation for nonlinear discrete-time
systems is given in Section IV. An illustrative exam-
ple to demonstrate the effectiveness of the proposed
technique is provided in Section V. Finally, some
conclusions and future work are drawn in Section
VI.

II. PROBLEM FORMULATION

Consider the following nonlinear uncertain
discrete-time system [4]:{

xk = f(xk−1, ωk−1)
yk = g(xk, υk),

(1)

where xk ∈ <n and yk ∈ <p are the system
state and the observed system output at time instant
k, respectively; ωk ∈ <nω represents the time-
varying process parameters and process perturba-
tions; υk ∈ <nυ represents the observation noises.
The state function f(xk−1, ωk−1) is assumed to be
nonlinear while the output function g(xk, υk) is
assumed to be linear as in [4], [15] with the format
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of g(xk, υk) = cTxk +dTυk. It is also assumed that
the initial state and all the uncertainties are bounded
by known compact sets: x0 ∈ X0, ωk ∈ Wk and
υk ∈ Vk.

Starting from the initial set X0 for the system
state, the problem to be considered is to estimate
recursively the set Xk(k = 1, 2, · · · ) for the system
state at future time instants. The estimated set Xk

should guarantee to bound any feasible system state
under all the uncertainties Wk(k = 0, 1, 2, · · · ) and
Vk(k = 1, 2, · · · ). Furthermore, the estimated set Xk

should also be consistent with the observed system
output yk(k = 1, 2, · · · ).

The set of the system state consistent with the
observed output yk at time instant k can be denoted
as Xyk = {x ∈ <n : yk ∈ g(x,Vk)}. Then the set
Xk for the system state at time instant k can be
computed recursively as follows:

Xk = f(Xk−1,Wk−1) ∩ Xyk , k = 1, 2, · · · (2)

It can be seen that the state estimation problem
considered here involves the set computation for
the dynamic evolution of the past system state Xk−1

and also the intersection of two sets f(Xk−1,Wk−1)
and Xyk . Existing methods for this problem search
an optimal zonotope to bound the polytopic set
resulting from this intersection at each time instant
and thus the initial state for the dynamic evolution
in (1) is always a zonotope. The over-approximating
bounding process at each time instant facilitates the
computation of the dynamic evolution in (1) as the
dynamic evolution of a nonlinear system with a
zonotopic set as the initial state is straightforward
[14]. However, the set resulting from the intersec-
tion is essentially a polytopic set and it would be
more accurate to compute the dynamic evolution
of this exact polytopic set rather than to compute
the dynamic evolution of an over-approximating
zonotopic set. Since there is no direct method to
implement polytopic set computation for nonlinear
discrete-time systems, an indirectly implemented
polytopic set computation technique is to be pro-
posed for the first time in the following section.

III. POLYTOPIC SET COMPUTATION

Taking a set as the input for a function, set
computation returns another set as the output of
the function. Polytopic set computation involves
the computation of the dynamic evolution of a

nonlinear discrete-time system with a polytopic set
as the initial state. Polytopic set computation can be
implemented indirectly through zonotopic set com-
putation, which is to be introduced in the following
subsections.

A. Zonotopic set computation
A zonotope is a centrally symmetric convex poly-

tope and it is closely related to interval analysis in
terms of set computation. Given a vector p ∈ <n

and a matrix H ∈ <n×m, the zonotope Z of order
n×m is the set:

p⊕HBm = {p+Hz|z ∈ Bm}, (3)

where Bm is a box composed of m unitary intervals
B = [−1, 1] and ⊕ is the Minkowski sum of sets,
which is to add each member in one set to each
member in the other set so as to obtain a new set.
Representing the matrix H by its column vectors,
i.e., H = [h1 · · ·hm], then the zonotope can also be
regarded as a set spanned by the column vectors of
H , which are called line segment generators:

Z = {p+
m∑
i=1

αihi| − 1 ≤ αi ≤ 1}. (4)

Geometrically, the zonotope Z is the transferred
Minkowski sum of the line segments defined by the
columns of the matrix H to the central point p.
Specifically, the zonotope Z degenerates to be an
interval vector as well as a box when H is a diagonal
matrix or when m = 1. The list of line segment
generators is an efficient implicit representation of
a zonotope in terms of which set computations
such as the Minkowski sum and difference are
trivial. The explicit representation of a zonotope or
the representation of a zonotope in the format of
a polytope is the zonotope construction problem
aiming to list all extreme points of a zonotope
defined by its line segment generators. A relatively
efficient algorithm was proposed in [21] to address
the zonotope construction problem, where the addi-
tion of line segments was replaced by the addition of
convex polytopes. Standard algorithms for polytope
geometry such as vertex enumeration for a polytope
and the intersection of polytopes have been imple-
mented in Multi-Parametric Toolbox [22].

Using zonotopes, Kühn developed a procedure
to bound the dynamic evolution of a nonlin-
ear discrete-time system with a guaranteed sub-
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exponential over-estimation [14]. The following the-
orem introduces the zonotope inclusion operator of
Kühn’s method [14]:

Theorem 1 (Zonotope Inclusion) Consider a fam-
ily of zonotopes represented by Z = p ⊕ MBm

where p ∈ <n is a real vector and M ∈ In×m is an
interval matrix. A zonotope inclusion, denoted by
�(Z), is defined by:

�(Z) = p⊕ [mid(M) G]

[
Bm

Bn

]
, (5)

where mid(M) is the centered-point matrix of M
and G ∈ <n×n is a diagonal matrix that satisfies:

Gii =
m∑
j=1

diam(Mij)

2
, i = 1, · · · , n (6)

where diam(Mij) is the length of the interval Mij .
Under these definitions, it results that Z ⊆ �(Z).

Given a function f(x) : <n → <n,x ∈ Z ⊂ X ∈
In, where Z = p ⊕ HBm and X is the bounding
box for Z , the centered inclusion function Fc(Z) :
f(Z) ⊆ Fc(Z) can be deduced by the mean-value
theorem [14], [4], i.e.,

Fc(Z) = f(p) +∇xf(X)(Z − p), (7)

where Z − p = HBm. Thus the centered inclusion
function Fc(Z) of f(x) turns out to be a family
of zonotopes represented by Z = q ⊕ MBm,
where q = f(p) and M = ∇xf(X)H , which can
be further bounded by its corresponding zonotope
inclusion �(Z). This is the primary principle of
Kühn’s method to bound the dynamic evolution of a
nonlinear discrete-time system by zonotopes, where
the centered inclusion function is applied instead of
the natural inclusion function.

Kühn’s method has been generalized to bound the
dynamic evolution of nonlinear uncertain discrete-
time systems in [4]. According to [4], the evolution
of a zonotopic set as the initial state for a nonlinear
uncertain function f(x,W) can be bounded by the
following centered inclusion function:

Fc(Z,W) = f(p,W) +∇xf(X,W)(Z − p), (8)

where W is the uncertain set. Assume that f(p,W) ⊆
pw ⊕ JBw, then the centered inclusion function
Fc(Z,W) can be further bounded as follows:

Fc(Z,W) ⊆ pw ⊕ JBw ⊕MwB
m, (9)
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Fig. 1. Zonotopic set computation vs. interval set computation

where Mw = ∇xf(X,W)H . Based on (5), pw ⊕
JBw ⊕MwB

m can be further bounded by a zono-
topic set. Therefore the dynamic evolution of a
nonlinear uncertain discrete-time system with a
zonotopic set as the initial state returns a zonotopic
set as well, which is the essence of zonotopic set
computation.

The above discussion shows that the dynamic
evolution of a nonlinear discrete-time system with
a zonotopic set as the initial state can be com-
puted directly through zonotopic set computation.
Compared to interval set computation where each
variable is represented by an interval and interval
arithmetic is used for set computation [23], zono-
topic set computation has the benefit of a reduced
wrapping effect. The reduced wrapping effect can
be demonstrated by an illustrative example shown
in Figure 1, where the dynamic evolution of a
nonlinear uncertain discrete-time system studied in
[24] is computed for three steps via interval set
computation and zonotopic set computation, respec-
tively. These two approaches starts from the same
initial state and it can be seen that zonotopic set
computation is less conservative with comparison
to interval set computation.

B. Polytopic set computation

The dynamic evolution of a nonlinear discrete-
time system with a polytopic set as the initial state
cannot be computed directly due to its mathematical
format involving inequality constraints. However,
using the proposed idea of representing a poly-
tope exactly by the intersection of zonotopes, poly-
topic set computation can be implemented indirectly
through computing the dynamic evolution of these
individual zonotopes whose intersection forms the
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polytope. The principle of indirectly implemented
polytopic set computation can be illustrated by
Figure 2, where the polytope P = Z1 ∩ Z2 and
thus f(P) = f(Z1 ∩Z2) ⊆ f(Z1)∩ f(Z2) according
to set theory. So the key for indirectly imple-
mented polytopic set computation is to represent the
polytope exactly by the intersection of zonotopes.
The following theorem provides the guideline to
represent a 2-D polytope exactly by the intersection
of parallelograms, which are simple zonotopes in
2-D space:

Theorem 2 (Represent a polytope P in <2 ex-
actly by the intersection of zonotopes) Assume that
the polytope P ⊂ <2 has nc inequality constraints,
then the convex polygon P can be represented
exactly by the intersection of nc

2
zonotopes if nc

is even or exactly by the intersection of nc+1
2

zono-
topes if nc is odd.

Proof. As the polytope P ⊂ <2 has nc inequality
constraints, it has nc edges associated to these
nc inequality constraints. At each vertex of the
polytope, there are two edges that start from this
vertex. Making use of these two edges that start
from the vertex, a zonotope or a parallelogram
can be constructed to contain the polytope. The
polytope can be represented by the intersection of
these constructed parallelograms if all its edges
have been used up to construct the parallelograms.
As each parallelogram uses two edges, the number
of parallelograms needed to represent the polytope
exactly is nc

2
if nc is even or nc+1

2
if nc is odd.

The construction of a parallelogram to contain
the 2-D polytope can be transformed to be a linear
programming (LP) problem that minimizes the sum
of the base length and the side length for the
parallelogram to be minimal in volume. Assume
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Zonotope 1

Vertex 1

Zonotope 2

Vertex 2

Zonotope 3
Vertex 3

Fig. 3. Representing a polytope exactly as the intersection of
zonotopes

that at the vertex V j , the corresponding two edges
starting from the vertex are ax1 + bx2 = p1 and
cx1 + dx2 = p2 according to the associated two
inequality constraints. The constructed parallelo-
gram should satisfy: q1 ≤ ax1 + bx2 ≤ p1 and
q2 ≤ cx1 + dx2 ≤ p2 where q1 and q2 determine
the size of the parallelogram and they are to be
optimized through the following LP problem:

(q∗1, q
∗
2) = arg min

(q1,q2)
[p1 + p2 − q1 − q2], (10)

subject to{
q1 ≤ aV i

x + bV i
y , i = 1, · · · , nv

q2 ≤ cV i
x + dV i

y , i = 1, · · · , nv,
(11)

where V i = (V i
x , V

i
y ) is the ith vertex of the

polytope and nv is the total number of vertices for
the polytope. These linear constraints are to guar-
antee that the constructed parallelogram contains
the whole 2-D polytope. Once the parallelogram
is constructed with the optimized q∗1 and q∗2 , it
can be re-represented in the format of a zonotope
Z = p ⊕ HB2 where p is the center of this
parallelogram and H is algebraically determined
from the vertices of this parallelogram.

Taking the 2-D polytope with five vertices
(1,−3), (0.5, 3), (2, 6), (3.5, 4) and (3,−4) as an
example, it can be represented exactly as the in-
tersection of three zonotopes as shown in Figure 3,

where these three zonotopes are Z1 =

[
2.1957
1.1522

]
⊕[

−1.6087 −0.4130
0.8043 4.9565

]
B2, Z2 =

[
2.25
0.5

]
⊕[

−1.8 1.55
2.4 3.1

]
B2 and Z3 =

[
1.8462
1.0385

]
⊕[

−1.3558 0.2981
1.8077 4.7692

]
B2, respectively. These three
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zonotopes are obtained from the formulated LP
problem at the vertices of (1,−3),(2, 6) and (3.5, 4),
respectively. So a polytope in 2-D space can be
represented exactly by the intersection of zonotopes
through solving the corresponding LP problems.

It is worthy to note that the two edges with the
associated two inequality constraints for formulating
the LP problem in (10-11) do not necessarily come
from the same vertex. In fact, any two inequality
constraints can be sequentially selected from the
pool of all inequality constraints for the polytope to
formulate the LP problem for finding the optimal
parallelogram to contain the polytope as long as
the edges from these two inequality constraints are
not parallel. Using random inequality constraints for
the 2-D polytope shown in Figure 3 to formulate
the corresponding LP problems, the constructed
parallelograms to represent the polytope exactly
are shown in Figure 4. The obtained parallelogram
from two random edges in Figure 4 may not be as
compact as those obtained from two specified edges
coming from the same vertex as shown in Figure
3. However, such an approach of using inequality
constraints directly instead of using two specified
edges coming from the same vertex to formulate
the LP problem can be easily extended into higher
dimensional spaces, i.e., the sequential selection of
certain inequality constraints from the pool of all
inequality constraints for the higher dimensional
polytope to formulate the LP problem for finding
the optimal zonotope to contain the polytope until
all inequality constraints are used up.

IV. GUARANTEED STATE ESTIMATION VIA
INDIRECTLY IMPLEMENTED POLYTOPIC SET

COMPUTATION

Based on the problem formulation in Section II
and the proposed technique for indirectly imple-
mented polytopic set computation in Section III,
the general procedure of guaranteed state estimation
for nonlinear discrete-time systems via indirectly
implemented polytopic set computation can be listed
as follows:

• Step 1: Represent the past system state of a
polytopic set Xk−1 exactly by the intersection
of zonotopes Xk−1 = Z1 ∩ · · · ∩Znz , where nz

is the number of zonotopes whose intersection
forms the polytopic set;

• Step 2: Compute the dynamic
evolution of these zonotopic sets
f(Z1,Wk−1),· · · ,f(Znz ,Wk−1) individually
via zonotopic set computation as formulated
in (9);

• Step 3: Compute the set of the system state
Xyk that is consistent with the observed system
output yk and Xyk is a convex set due to the
linearity of g(xk, υk);

• Step 4: Compute the current system state of
a new polytopic set Xk = f(Z1,Wk−1) ∩
· · · ∩ f(Znz ,Wk−1) ∩ Xyk where the zonotopes
f(Z1,Wk−1),· · · ,f(Znz ,Wk−1) are to be trans-
formed into the format of polytopes as de-
scribed in [21] before their intersection with
the convex set Xyk ;

• Step 5: Return to Step 1;

According to set theory, f(Xk−1,Wk−1) ∩ Xyk ⊆
f(Z1,Wk−1) ∩ · · · ∩ f(Znz ,Wk−1) ∩ Xyk = Xk and
thus the system states are guaranteed to be contained
in the computed polytopic sets Xk(k = 1, 2, · · · ).
The computed polytopic set Xk can still be an over-
approximation of the real state. However, such over-
approximation is mainly from the limited wrapping
effect of zonotopic set computation rather than the
extra over-approximation of a polytopic set by one
single zonotopic set and the following propagation
of such an over-approximation as in [4], [5], [15].
Furthermore, the intersection of zonotopes can also
contribute to the reduction of conservativeness and
the convergence of the algorithm since more con-
straints have been propagated during the evolution
process.
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V. AN ILLUSTRATIVE EXAMPLE

A modified nonlinear uncertain discrete-time sys-
tem studied in [25] is adopted as the illustrative
example for the proposed set-membership state
estimation of nonlinear discrete-time systems via
indirectly implemented polytopic set computation.
The system is described as follows:{

x1(k + 1) = 0.99x1(k) + δ(k)x2(k)

x2(k + 1) = −0.1x1(k) + 0.5x2(k)

1+x2
2(k)

+ ω(k),

(12)
y(k) = x1(k)− 3x2(k) + υ(k), (13)

where δ(k) ∈ [0.2, 0.3] is the uncertain parame-
ter; ω(k) ∈ [0.4, 0.5] is the process perturbation;
|υ(k)| ≤ 0.1 is the bounded measurement noise.
According to Section IV, the process of guaranteed
state estimation via indirectly implemented poly-
topic set computation for this system is shown in
Figure 5. The initial state is assumed to be within a
box x1(0) ∈ [0.5, 0.15] and x2(0) ∈ [0.5, 0.15]. For
this particular simulation, the real initial state is set
to be x1(0) = 0.1 and x2(0) = 0.1.

As shown in Figure 5, a polytopic set is ob-
tained from the dynamic evolution of this initial
set and this polytopic set is then to be intersected
with the convex set Xy1 that is consistent with the
first observation. The renewed polytopic set from
the intersection with this observation update is a
hexagon and it is represented by three zonotopes
obtained from the LP formulation as described in
B of Section III. The dynamic evolution of these
three zonotopic sets for the system is computed
individually via zonotopic set computation as dis-
cussed in A of Section III. The polytopic set before
observation at the second step is the intersection
of these three propagated zonotopic sets and this

0 0.4 0.8 1.2 1.6
0

0.2

0.4

0.6

0.8

x
1

x 2

initial state

first step

second step

ninth step

Fig. 6. State estimation via indirectly implemented polytopic set
computation

polytopic set before observation is to be intersected
with the set Xy2 that is consistent with the second
observation. The same procedure of representing the
new polytopic set after observation exactly by the
intersection of zonotopes is performed at the second
step and therefore the state for any future steps can
all be bounded by polytopic sets.

Repeating the processes in Figure 5, Figure 6
shows an example of nine steps for state estimation
of this nonlinear discrete-time system with com-
parison to an existing method of approximating
the polytopic set by one single zonotope with the
minimized segments at each observation update
[4]. The dashed polytopes in Figure 6 are those
polytopes obtained after observation update using
the method proposed in [4] while the solid polytopes
are those polytopes obtained after observation up-
date using the method proposed here. To avoid too
many overlapping polytopes in Figure 6, the dashed
polytopes are plotted for only the first two steps
and the ninth step of the simulation. It can be seen
that the real states plotted by ⊕ are all within the
obtained polytopic sets of the proposed approach
and the polytopic sets from state estimation have
various kinds of shape as well. The intersection
operation of the propagated zonotopes as well as the
intersection with observation update at each step can
potentially reduce the complexity of the obtained
polytopic set as well as the number of zonotopes
needed to represent the polytope exactly. This can
be seen directly from the ninth step in Figure 6
as only two zonotopes are needed to represent the
obtained polytope exactly. The volume of the set
after observation update for the existing method in
[4] and the proposed approach is listed in Table I:

Overall, the obtained polytopic sets after obser-
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TABLE I
THE COMPARISON BETWEEN THE EXISTING METHOD IN [4] AND

THE PROPOSED METHOD IN TERMS OF THE VOLUME OF THE
OBTAINED SET AFTER OBSERVATION UPDATE

The volume of the set Method in [4] New method
Average volume for 9 steps 0.0210 0.0139
Specific volume at the 9th step 0.0247 0.0081

vation update for the proposed approach have an
average volume of 0.0139, which is much smaller
than the average volume of 0.0210 for the obtained
polytopic sets after observation update from the
existing method in [4]. Therefore the average ac-
curacy for state estimation has been improved by
33.81% for these nine steps. Particularly, the pro-
posed approach has a larger improvement of 67.21%
at the 9th step as shown in Table I, which shows
the greater benefit of using indirectly implemented
polytopic set computation for state estimation. The
computation involves the converted LP problems
and thus efficient algorithms are available.

VI. CONCLUSIONS

This paper has proposed the novel idea of rep-
resenting a polytope exactly by the intersection of
zonotopes, which enables polytopic set computation
for a nonlinear discrete-time system with a polytopic
set as the initial state. Such an extension of set com-
putation for nonlinear discrete-time systems from
interval and zonotopic set computation to polytopic
set computation opens new research directions for
set-membership methods. The paper has applied the
proposed idea to solve the guaranteed state estima-
tion problem for nonlinear uncertain discrete-time
systems. The resulting set-membership state estima-
tion via indirectly implemented polytopic set com-
putation avoids the over-approximating processes of
bounding the polytopic set at each observation up-
date by a single zonotope and thus a more accurate
state estimation can be obtained.
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