59,317 research outputs found

    Emergence of social networks via direct and indirect reciprocity

    Get PDF
    Many models of social network formation implicitly assume that network properties are static in steady-state. In contrast, actual social networks are highly dynamic: allegiances and collaborations expire and may or may not be renewed at a later date. Moreover, empirical studies show that human social networks are dynamic at the individual level but static at the global level: individuals' degree rankings change considerably over time, whereas network-level metrics such as network diameter and clustering coefficient are relatively stable. There have been some attempts to explain these properties of empirical social networks using agent-based models in which agents play social dilemma games with their immediate neighbours, but can also manipulate their network connections to strategic advantage. However, such models cannot straightforwardly account for reciprocal behaviour based on reputation scores ("indirect reciprocity"), which is known to play an important role in many economic interactions. In order to account for indirect reciprocity, we model the network in a bottom-up fashion: the network emerges from the low-level interactions between agents. By so doing we are able to simultaneously account for the effect of both direct reciprocity (e.g. "tit-for-tat") as well as indirect reciprocity (helping strangers in order to increase one's reputation). This leads to a strategic equilibrium in the frequencies with which strategies are adopted in the population as a whole, but intermittent cycling over different strategies at the level of individual agents, which in turn gives rise to social networks which are dynamic at the individual level but stable at the network level

    Human neuromaturation, juvenile extreme energy liability, and adult cognition/cooperation

    Get PDF
    Human childhood and adolescence is the period in which adult cognitive competences (including those that create the unique cooperativeness of humans) are acquired. It is also a period when neural development puts a juvenile’s survival at risk due to the high vulnerability of their brain to energy shortage. The brain of a 4 year-old human uses ≈50% of its total energy expenditure (TEE) (cf. adult ≈12%). This brain expensiveness is due to (1) the brain making up ≈6% of a 4 year-old body compared to 2% in an adult, and (2) increased energy metabolism that is ≈100% greater in the gray matter of a child than in an adult (a result of the extra costs of synaptic neuromaturation). The high absolute number of neurons in the human brain requires as part of learning a prolonged neurodevelopment. This refines inter- and intraarea neural networks so they become structured with economical “small world” connectivity attributes (such as hub organization and high cross-brain differentiation/integration). Once acquired, this connectivity enables highly complex adult cognitive capacities. Humans evolved as hunter-gatherers. Contemporary hunter-gatherers (and it is also likely Middle Paleolithic ones) pool high energy foods in an egalitarian manner that reliably supported mothers and juveniles with high energy intake. This type of sharing unique to humans protects against energy shortage happening to the immature brain. This cooperation that protects neuromaturation arises from adults having the capacity to communicate and evaluate social reputation, cognitive skills that exist as a result of extended neuromaturation. Human biology is therefore characterized by a presently overlooked bioenergetic-cognition loop (called here the “HEBE ring”) by which extended neuromaturation creates the cooperative abilities in adults that support juveniles through the potentially vulnerable period of the neurodevelopment needed to become such adults

    Preferences, trust, and performance in youth business groups

    Get PDF
    We study how social preferences and norms of reciprocity are related to generalized (outgroup) and particularized (ingroup) trust among members of youth business groups in northern Ethiopia. The Ethiopian government promotes youth employment among land-poor rural youth by allocating them rehabilitated communal lands for the formation of sustainable businesses. The typical sustainable production activities that the groups can invest in include apiculture, forestry, horticulture, and livestock production. Our study used incentivized experiments to elicit social preferences, trust, and trustworthiness. We use data from 2427 group members in 246 functioning business groups collected in 2019. Altruistic and egalitarian preferences were associated with stronger norms to reciprocate, higher outgroup and ingroup trustworthiness and trust while spiteful and selfish preferences had opposite effects. The social preferences had both direct and indirect effects (through the norm to reciprocate) on trustworthiness and trust. Ingroup trust was positively correlated with a number of group performance indicators.publishedVersio

    The nature of human altruism

    Get PDF
    Some of the most fundamental questions concerning our evolutionary origins, our social relations, and the organization of society are centred around issues of altruism and selfishness. Experimental evidence indicates that human altruism is a powerful force and is unique in the animal world. However, there is much individual heterogeneity and the interaction between altruists and selfish individuals is vital to human cooperation. Depending on the environment, a minority of altruists can force a majority of selfish individuals to cooperate or, conversely, a few egoists can induce a large number of altruists to defect. Current gene-based evolutionary theories cannot explain important patterns of human altruism, pointing towards the importance of both theories of cultural evolution as well as gene–culture co-evolution.altruism, selfishness, human altruism, evolution

    Matching times of leading and following suggest cooperation through direct reciprocity during V-formation flight in ibis

    Get PDF
    One conspicuous feature of several larger bird species is their annual migration in V-shaped or echelon formation. When birds are flying in these formations, energy savings can be achieved by using the aerodynamic up-wash produced by the preceding bird. As the leading bird in a formation cannot profit from this up-wash, a social dilemma arises around the question of who is going to fly in front? To investigate how this dilemma is solved, we studied the flight behavior of a flock of juvenile Northern bald ibis (Geronticus eremita) during a human-guided autumn migration. We could show that the amount of time a bird is leading a formation is strongly correlated with the time it can itself profit from flying in the wake of another bird. On the dyadic level, birds match the time they spend in the wake of each other by frequent pairwise switches of the leading position. Taken together, these results suggest that bald ibis cooperate by directly taking turns in leading a formation. On the proximate level, we propose that it is mainly the high number of iterations and the immediacy of reciprocation opportunities that favor direct reciprocation. Finally, we found evidence that the animals' propensity to reciprocate in leading has a substantial influence on the size and cohesion of the flight formations

    Stability of cooperation under image scoring in group interactions

    Get PDF
    Image scoring sustains cooperation in the repeated two-player prisoner's dilemma through indirect reciprocity, even though defection is the uniquely dominant selfish behaviour in the one-shot game. Many real-world dilemma situations, however, firstly, take place in groups and, secondly, lack the necessary transparency to inform subjects reliably of others' individual past actions. Instead, there is revelation of information regarding groups, which allows for `group scoring' but not for image scoring. Here, we study how sensitive the positive results related to image scoring are to information based on group scoring. We combine analytic results and computer simulations to specify the conditions for the emergence of cooperation. We show that under pure group scoring, that is, under the complete absence of image-scoring information, cooperation is unsustainable. Away from this extreme case, however, the necessary degree of image scoring relative to group scoring depends on the population size and is generally very small. We thus conclude that the positive results based on image scoring apply to a much broader range of informational settings that are relevant in the real world than previously assumed.Comment: 6 two-column pages, 4 figures; accepted for publication in Scientific Report

    Evolution of cooperation driven by zealots

    Full text link
    Recent experimental results with humans involved in social dilemma games suggest that cooperation may be a contagious phenomenon and that the selection pressure operating on evolutionary dynamics (i.e., mimicry) is relatively weak. I propose an evolutionary dynamics model that links these experimental findings and evolution of cooperation. By assuming a small fraction of (imperfect) zealous cooperators, I show that a large fraction of cooperation emerges in evolutionary dynamics of social dilemma games. Even if defection is more lucrative than cooperation for most individuals, they often mimic cooperation of fellows unless the selection pressure is very strong. Then, zealous cooperators can transform the population to be even fully cooperative under standard evolutionary dynamics.Comment: 5 figure

    Effectiveness of conditional punishment for the evolution of public cooperation

    Get PDF
    Collective actions, from city marathons to labor strikes, are often mass-driven and subject to the snowball effect. Motivated by this, we study evolutionary advantages of conditional punishment in the spatial public goods game. Unlike unconditional punishers who always impose the same fines on defectors, conditional punishers do so proportionally with the number of other punishers in the group. Phase diagrams in dependence on the punishment fine and cost reveal that the two types of punishers cannot coexist. Spontaneous coarsening of the two strategies leads to an indirect territorial competition with the defectors, which is won by unconditional punishers only if the sanctioning is inexpensive. Otherwise conditional punishers are the victors of the indirect competition, indicating that under more realistic conditions they are indeed the more effective strategy. Both continuous and discontinuous phase transitions as well as tricritical points characterize the complex evolutionary dynamics, which is due to multipoint interactions that are introduced by conditional punishment. We propose indirect territorial competition as a generally applicable mechanism relying on pattern formation, by means of which spatial structure can be utilized by seemingly subordinate strategies to avoid evolutionary extinction
    corecore