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Abstract Many models of social network formation implicitly assume that net-
work properties are static in steady-state. In contrast, actual social networks are
highly dynamic: allegiances and collaborations expire and may or may not be re-
newed at a later date. Moreover, empirical studies show that human social networks
are dynamic at the individual level but static at the global level: individuals’ de-
gree rankings change considerably over time, whereas network-level metrics such
as network diameter and clustering coefficient are relatively stable. There have
been some attempts to explain these properties of empirical social networks using
agent-based models in which agents play social dilemma games with their imme-
diate neighbours, but can also manipulate their network connections to strategic
advantage. However, such models cannot straightforwardly account for reciprocal
behaviour based on reputation scores (“indirect reciprocity”), which is known to
play an important role in many economic interactions. In order to account for
indirect reciprocity, we model the network in a bottom-up fashion: the network
emerges from the low-level interactions between agents. By so doing we are able
to simultaneously account for the effect of both direct reciprocity (e.g. “tit-for-
tat”) as well as indirect reciprocity (helping strangers in order to increase one’s
reputation). This leads to a strategic equilibrium in the frequencies with which
strategies are adopted in the population as a whole, but intermittent cycling over
different strategies at the level of individual agents, which in turn gives rise to so-
cial networks which are dynamic at the individual level but stable at the network
level.

1 Introduction

An understanding of the conditions under which cooperative outcomes are achieved
by agents which maximise their own local objective functions is of great importance
not only in economics and biology, but also in distributed artificial intelligence and
multi-agent systems. Building large-scale systems comprised of many autonomous
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agents entails ensuring that the system as a whole is not undermined by incentives
for uncooperative behaviours which are rewarding for individual agents, but which
are harmful for the system as a whole.

Similar problems are faced in explaining the emergence large-scale cooperative
structures in evolutionary biology; for example, genes cooperate to form regulatory
networks; cells emerge from networks, multi-cellular organisms from cells and soci-
eties from organisms [35]. Hence there is a long tradition of modelling cooperation
in social dilemmas using evolutionary models, such as the replicator dynamics, in
which natural selection drives the choice of strategy.

A combination of both theoretical and empirical work has shown the impor-
tance of various forms of reciprocal behaviour in explaining cooperative outcomes.
Reciprocity may be either direct, or indirect. Direct reciprocity entails rewarding
or punishing other agents in order to elicit cooperation. When using direct reci-
procity, agents condition their behaviour on personal experience of other agents
— the archetypal example being Axelrod’s tit-for-tat strategy [1]. On the other
hand, indirect reciprocity occurs when agents cooperate with strangers in order to
gain reputation (also referred to as an “image score”). This can lead to subsequent
payoff from agents who cooperate with those with high reputation [20,21].

Theoretical work has shown that large-scale cooperation can be sustained in
large populations under natural selection through indirect reciprocity, provided
that a critical threshold of the population adopts indirect reciprocity at the out-
set [20]. This is compatible with several empirical studies. For example, within
groups of people, many have a tendency to be strong reciprocators [10]. Moreover,
the use of indirect reciprocity is observed not only in our own species [19], but has
also been empirically observed in non-human primates [31].

In smaller populations, however, agents have a strong probability of repeatedly
encountering each other and therefore we need to consider the possibility of com-
petition between strategies for both direct and indirect reciprocity. In earlier work
we showed that not only does the initial fraction of reciprocators determine the
outcome, but that both direct and indirect reciprocity play a role in determining
the evolutionary stable strategies that arise in smaller groups [27].

Earlier models of reciprocity considered a mean-field approach in which ev-
ery agent has equal probability of interaction with any other agent [20,21,27]. In
contrast, in reality many interactions occur in a more structured environment:
for example, we might model agents as nodes on a graph who interact with their
immediate neighbours capturing the fact that interactions occur within social net-
works. Thus there have been many models which analyse social dilemmas played
on graphs.

Earlier research focused on exogenous graph-formation processes and analysed
the conditions under which cooperation occurs, independently from the process
which forms the graph itself. In contrast, empirical studies highlight that real
world social networks are highly dynamic in nature [16]. This raises the question
as to whether strategies themselves contribute to network structure in a scenario
in which agents manipulate the network strategic for strategic advantage, and net-
work structure in turn plays a role in determining which are the optimal strategies;
network structure and strategy are both entangled in a co-evolutionary system [33].
In such models, agents play the usual normal-form social dilemma games with their
immediate neighbours (for example the prisoner’s dilemma), but they also have
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the possibility to “rewire” their edges in order to strategically manipulate the
network topology in their favour.

In such models the network topology is represented explicitly, and is modelled
in a top-down manner. In contrast, the pairwise public-goods games which are
used to model indirect reciprocity suggest an intriguing alternative possibility
in which the network topology is an emergent structure which arises from the
donations made from one agent to another, which can be visualised as a directed
graph (for an example, see Fig. 1). In this paper, we adopt such an approach in
which the network arises directly from the strategies chosen by the agents. Agents
are not restricted a priori from interacting with non-neighbouring agents. Rather,
we use the emergent network structure to propagate reputation information in
order to explore the “information hypothesis” [3] which conjectures that the value
of reputation information is not contingent on its origin. In contrast, empirical
evidence suggests that people place more trust information from direct sources [13].

The structure of this paper is as follows. In the following section we give an
overview of the related literature. In Section 3 we formally describe our model of
reciprocity and the reinforcement learning model which agents use to adjust their
strategy. In Section 4 we describe how we analyse this model empirically, and we
discuss our results in Section 5. Finally we conclude in Section 7.

2 Background and related work

The simplest task environment for studying trust and cooperation between payoff
maximising agents is the so-called Prisoners’ Dilemma (PD). Defection is the dom-
inant strategy in the one-shot version of the game, however Axelrod [1] provided
empirical evidence suggesting that cooperative strategies could survive in an evo-
lutionary version of an iterated version of the game. Most notably a strategy called
tit-for-tat which copies the last move made by its opponent performed extremely
well in an evolutionary tournament.

There have been a number of psychological studies of PD with human subjects
[40] in which tit-for-tat like strategies are commonly observed to be actually used.
However, Roberts and Sherrat [30] noted that tit-for-tat like strategies are not
always observed in ecological field studies.

Van Vught et al. [38] provide an overview of some of the central problems in-
volved in building models of large-scale group formation that are both evolutionary
and cognitively plausible. The key problem with larger groups is that it is more
difficult to selectively retaliate against uncooperative behaviour, and thus cooper-
ative equilibria are not stable [5,29]; strategies like tit-for-tat or raise-the-stakes
are not sufficient on their own to prevent free-riding in larger groups.

Van Vught et al. postulate that reputation systems are a necessary prerequisite
of evolutionary-stable cooperation in large groups. Reputation together with pres-
sure to join profitable coalitions can result in “conspicuous altruism”, also known
as indirect reciprocity : that is, being generous to strangers in order to gain a good
reputation, thus allowing entry into profitable coalitions. Nowak and Sigmund [20,
21] study the effect of reputation (which they call “image scoring”) in a coalitional
version of the prisoner’s dilemma game using a combination of evolutionary simu-
lation and mathematical analysis, and find that indirect reciprocity is likely to be
widely adopted.
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In these models randomly chosen pairs of agents are drawn from a larger pop-
ulation. One of these agents is designated as the donor and may choose to invest
a certain amount in their partner. This results in a negative fitness payoff −γ to
the donor, and a positive fitness payoff m · γ to their partner.

Since we are interested in how cooperation can emerge in societies of selfish
agents, we must analyse outcomes in which agents attempt to choose values of
γ that maximise their own payoff. Provided that m > 1, over many bouts of
interaction it is possible for agents to enter into reciprocal relationships that are
mutually-beneficial, since the initial cost γ may be reciprocated with m ·γ yielding
a net benefit mc − γ = m(γ − 1). Provided that the agents trust each other
to reciprocate, they can increase their net benefit by investing larger values of
γ. However, by increasing their donation they put themselves more at risk from
exploitation, since just as in the alternating prisoner’s dilemma [22], defection is
the optimal strategy if the total number of bouts is known: the optimal behaviour
is to accept the benefits without investing in return. In the case where the length
of the game is unknown, and the number of agents is n = 2, it is well known
that conditional reciprocation is one of several optimal solutions in the form of
the so-called “tit for tat” strategy which copies the action that the opposing agent
chose in the preceding bout. Roberts and Sherrat [30] demonstrate that a similar
strategy, called raise the stakes, applies in the continuous game. This strategy
plays cautiously against agents it does not trust, but invests generously in agents
with a history of reciprocation. However, their result does not generalise to larger
groups n > 2.

Nowak and Sigmund [21] demonstrated that reciprocity can emerge indirectly
in large groups, provided that information about each agent’s history of actions
is summarised and made publicly available in the form of a reputation or “image-
score” which summarises the propensity-to-cooperate of any given agent based
on their history of actions. Provided that the initial population already contains
a certain threshold of reciprocators, discriminatory strategies (that is, strategies
that invest conditionally on a partner’s image-score) are evolutionary-stable, and
that this leads to indirect-reciprocity; agents help others not because they expect
direct reciprocation from their partner, but because by increasing their image-score
they will receive reciprocal donations indirectly from third parties.

Our work seeks to address two key questions arising from this kind of model.
Firstly, along with many other theoretical models, Nowak and Sigmund’s model
assumes that the population is very large relative to the “viscosity” of interac-
tions — that is, the frequency with which agents interact with each other before
reproducing. However, it is well known that this assumption is violated in most
natural settings; for many species group sizes are of the order of 10 or 100 individu-
als (e.g. [2,12,24]), and even single-celled organisms have demographic constraints
limiting interactions to groups sizes of the order of 103 individuals [6]. The assump-
tion of large group sizes makes models more tractable to analytic techniques, and
more importantly it implicitly rules out any possibility that strategies based on
direct reciprocity might affect the outcome, since the probability of encountering
the same agent before reproducing is negligible. In smaller groups, however, the
possibility arises that strategies based on direct reciprocity and strategies based on
indirect reciprocity might interact. In earlier work, we showed that within smaller
populations both types of reciprocity contribute to the mix of evolutionary sta-
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ble strategies in an evolutionary game-theoretic model [27] by using numerical
methods to make the analysis tractable for small group sizes.

Secondly, the transitive aspect of indirect reciprocity suggests an implicit net-
work structure to the interactions within these models. For example, if A helps
B who helps C who then helps A we can visualise these interactions as a di-
rected graph. The natural question then arises as to whether this emergent net-
work structure can be used to strategic advantage by the agents. For example,
Granovetter [13] posits that the source of reputation information may be an im-
portant factor in an agent’s decision, and thus it may be important to discount
reputation information according to the social proximity of other agents in the
emergent network.

The use of social network models in the analysis of social dilemmas is a well es-
tablished area of research. Existing models can be classified according to whether
the network formation process is exogenous or endogenous. In the former case, non-
strategic models of network formation such as preferential attachment are used to
initialise a network and subsequently agents play social dilemma games with their
immediate neighbours. Santos et al. [32] showed that whether or not cooperation
prevails depends on the topology of the network and that small-world networks
formed using models such as preferential attachment lead to much greater coop-
eration. Ohtsuki et al. [23] generalised this result showing that natural selection
favours cooperation if the benefit of the altruistic act divided by the cost exceeds
the average number of neighbours on the network.

The aforementioned models assume that the network itself is not subject to
strategic manipulation — rather it is formed through some exogenous process and
remains static during strategic interactions. In contrast, real-world social networks
are highly dynamic [16]: allegiances and collaborations expire and may or may not
be renewed at a later date. This has led to a body of research which analyses
adaptive networks. Zimmermann et al. [41] introduced a model in which agents
play the prisoner’s dilemma with their immediate neighbours on the network but
may also choose to rewire one of edges to a randomly-chosen agent from the wider
population, thus resulting in a co-evolutionary adaptation between the network
topology and the strategies used by the agents. In a similar vein, Poncela et al. [28]
generalise the preferential-attachment model by making the connection probability
a function of the fitness accrued from agents’ choice of strategies, which in turn is
dependent on the network topology.

Santos, Pacheco and Lennaerts [33] analysed an adaptive network model in
which agents were also able to make use of direct reciprocity in the form of the
tit-for-tat strategy, but can also strategically choose whether or not to rewire an
edge replacing an existing partner x with one of x’s neighbours selected at random.

Such models are able to capture interactions based on direct reciprocity, but
cannot incorporate the indirect nature of interactions based on reputation, since
the social dilemma is restricted to intra-network interactions. However, indirect
reciprocity requires that agents are specifically able to seek out those with good
reputation regardless of their social proximity ; indeed, indirect reciprocity is the
basis of modern electronic e-commerce systems which make use seller feedback in
order to encourage people to trade with strangers [3].

In order to deal with these considerations we introduce a model in which
boundedly-rational agents can choose between strategies based on both forms of
reciprocity (in addition to unconditional defection or cooperation). Within this
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framework, we still allow for social network effects by modelling the network in a
bottom-up fashion: the network emerges from the low-level interactions between
agents. Our model is similar in this respect to that of Do et al. [7]. The main
respect in which our model differs is that we allow agents to condition their deci-
sion on both the local history of interactions with other agents and also on their
reputation score, thus allowing us to analyse the effect of both direct, and indirect,
reciprocity. Moreover, we explicitly allow the emergent network structure to play
an important causal role in the strategy dynamics by allowing agents to discount
global reputation-scores according to network distance thus modelling the idea
that reputation information can diffuse over the network. We describe our model
formally in the next section.

3 The model

As in earlier models, agents invest in partners at a cost to themselves, but recipients
receive a multiple m > 1 of the original donation. If agents reciprocate then
all parties to the interaction are better off than they would have been acting
alone. However, as with the prisoner’s dilemma there is a temptation to defect by
accepting donations from other agents without investing in turn.

We generalise earlier models by allowing agents to divide up their initial en-
dowment γ into a portfolio of donations in the other agents.

At each time step t every agent ai ∈ {a1, a2, . . . an} simultaneously chooses a
portfolio vector:

P ti,∗ = (w1, w2, . . . wn) (1)

pti,j ∈ [0, 1] ⊂ R ∀i,j (2)

pi,i = 0 ∀i (3)
n∑
j=0

pti,j ≤ 1 ∀i (4)

The weights w1, w2 . . . wn represent how the initial endowment γ of agent ai
is to be split across the other agents a1, a2 . . . an. Accordingly, the matrix of do-
nations between agents at time t is given by

Ct = γP t , (5)

and the payoff to agent ai by

uti =
n∑
j=1

m · ptj,i −
n∑
k=1

pti,k . (6)

An agent i might choose to invest only a fraction, or none of their endow-
ment in the rest of the community (equation 4). As in other models we make this
information publicly available in the form of a reputation score rti ∈ [0, 1] ⊂ R:
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Fig. 1 An example social network that arises through donations
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The above figure shows a snapshot at one moment in time of the social network that arises
from the donations between agents in a population of n = 60 agents. Each node on the
directed graph represents an agent. The directed edges represent donations from one agent to
another, with the width of the edge representing the current exponential moving average of
the donation c̄ti,j (equation 8). The labels inside each node represent the current reputation

score of the agent rti .

rti =
n∑
j=1

Cti,j (7)

We allow agent ai to condition their donation decision P ti,∗ on the reputation
of other agents (indirect reciprocity) as well as the history of donations received
(direct reciprocity). In each case, we use an exponential moving average to sum-
marise this time series and give more weight to recent values.

The exponential moving average of the donations between agents is represented
by the matrix Ct:

c̄ ti,j = max(κ, α · cti,j + (1− α) · c̄ t−1
i,j ) (8)

where κ is a threshold parameter normalised with respect to the population size,
endowment and multiplier: κ = γ·m

4n .

We can visualise the matrix C̄
t

as a weighted directed graph representing the
social network that emerges from the donations between agents. Fig. 1 shows an
example of the social network produced by our simulation model where the vertices
represent agents and the labels on the directed edge between any two nodes i and
j correspond to the value c̄ ti,j .
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This emergent network plays an actual causal role in our model, since agents
can use it to discount the reputation of other agents according to their distance in
the social network, thus modelling the idea that information from direct sources
may be implicitly more trustworthy more than information from strangers [13].

The vector R̄
t

contains exponential moving average of agents’ reputations, without
taking into account any effect of network distance:

r̄ ti = α · rti + (1− α) · r̄ t−1
i . (9)

On the other hand, the networked version of these reputation scores is given
by the matrix Φt

φti,j =
r̄ tj
di,j

(10)

where di,j is the shortest path from i to j on the graph defined by C̄. Agents can
use either form of measure in making their donation decisions.

3.1 Strategies

We analyse populations of agents choosing amongst the following set of strate-
gies: the cooperate strategy (C), the defect strategy (D), the reputation weighted
strategy (RW) and the tit-for-tat strategy (T4T). These are described and for-
malised below.

An agent ai using the defect strategy (D) accepts donations without any re-
ciprocation:

pti,j = 0 ∀aj∈A . (11)

An agent ai using the cooperate strategy (C) unconditionally donates its en-
dowment equally across the rest of the population:

pti,j =
1

n− 1
∀aj∈A:j 6=i . (12)

An agent ai using the reputation weighted strategy (RW) distributes its en-
dowment amongst the rest of the population in proportion to the other agents’
reputation scores (as defined by Equation 9):

pti,j =
r̄ t−1
i,j∑
R̄
t−1
i,∗

∀aj∈A:j 6=i .

An agent ai using the reputation weighted networked strategy (RWN) dis-
tributes its endowment amongst the rest of the population in proportion to the
other agents’ networked reputation scores (as defined by Equation 10):

pti,j =
φ t−1
i,j∑
Φt−1
i,∗
∀aj∈A:j 6=i .

An agent ai using the tit-for-tat strategy (T4T) distributes its endowment in
proportion to the moving average of inward donations:
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pti,j =
c̄ t−1
j,i∑
C̄
t−1
∗,i

.

3.2 Learning

Agents use a simple reinforcement learning algorithm based on Q-learning [39] in
order to select between the above strategies. The central idea is that each agent
attempts to estimate the expected payoff through an inductive sampling process
in which the agent tries out different strategies and uses the payoff values thus
obtained to estimate the expected payoff of each, and hence determine the strategy
which will give the best long-term reward – the so-called greedy strategy. Similar
models have been widely adopted in modelling the behaviour that is empirically
observed in strategic environments, both generally [9], and also specifically in the
case of social dilemmas [11,14].

The estimated payoff may depend not only on the strategy selected, but also
the state of the system. In our model we approximate the state of the environment
θi,t from the perspective of agent ai at time t by rounding the agent’s reputation
score r̄i into four possible values {0, 14 ,

1
2 ,

3
4 , 1}. This allows for the possibility

that different strategies may be effective depending on whether or not the agent
currently has a good or poor reputation.

The payoff estimates are held in a table of Q values which gives the current
estimate for each strategy in each possible state, and these are updated according
to the following equation:

Qi,t(si,t′ , θi,t′) = α · [Ui,t′ + β ·Qi,t(s∗i,t, θi,t)]
+ (1− α) ·Qi,t′(si,t′ , θi,t′)

where si,t′ is the strategy that agent ai played in period t − 1, α is the learning-
rate parameter, β is the discount parameter and s∗i,t is the greedy strategy of
agent ai. The above equation is simply a discounted exponential moving average
of historical payoff samples. The recency parameter gives more weight to more
recent samples and this takes into account that the environment may be highly
dynamic, and thus we should give more weight to more recent information. In our
case, the environment consists of other agents who are dynamically changing their
behaviour which in turn will determine the expected payoffs.

If the true expected payoff to each strategy in each possible state were known
a priori then a rational agent would always choose the greedy strategy s∗i,t in
order to maximise its payoff. However, because agents estimate payoffs through
sampling, there is in an inherent trade-off in exploiting the current greedy action
as opposed to exploring alternatives which may be proved to be more profitable
once further samples are collected.

We perform experiments with two commonly used exploration methods: epsilon-
greedy selection versus softmax [37]. When using the epsilon-greedy method, at
time t agent ai plays the greedy strategy with probability 1−ε. If the greedy strat-
egy is not chosen the agent chooses at random between all available strategies with
equal probability.
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On the other hand, when using softmax action selection the probability of
agent i choosing strategy a at time t′ is given by

P (si,t′ = a) =
exp(Qi,t(a, θi,t)/τ)∑

b e
Qi,t(b)/τ

(13)

The steady-state outcomes arising from the dynamics defined by this learning
model are not necessarily equivalent to the game-theoretic equilibria implicit in
the payoff structure. However, reinforcement learning models are attractive from
a modelling perspective since they can both be grounded in theories of learning
from cognitive psychology, and they have also been able to explain many deviations
from game-theoretic that are empirically observed with real subjects [9]. Addition-
ally, the learning-theoretic equilibria can be related to game-theoretic equilibria
in certain cases [15]. This is an important point which we shall return to later.

4 Methodology

As discussed in Section 2, we are particularly interested in analysing interactions
amongst relatively small groups of agents of the order of 100 individuals which
are typical of those empirically observed in natural settings (e.g. [2,12,24]), and
where the effects of both direct and indirect reciprocity can come into play. Such
models are extremely difficult to explore analytically1. Therefore, in line with many
other models of cooperation in structured populations [6,32], we analyse our model
numerically by simulating the agent-based model described in the previous section.

At the beginning of each simulation a minority fraction of the agents in the
population sr are initialised without learning and are configured to adopt the
reputation-weighted strategy (RW) unconditionally irrespective of the payoff re-
ceived. In line with [4] we refer to this fraction of the population as strong recip-
rocators; these agents do not interact with those of poor reputation even if this
leads to a reduction in their own payoff. The remainder of the population are
configured to use the learning algorithm described in Section 3.2 and are free to
switch between any strategy according to payoff.

Parameter Distribution Description
ε ∼ U(10−4, 10−2) Experimentation
α ∼ U(10−4, 1− 104) Recency
β ∼ U(0.9, 1− 104) Discount rate
Q0 ∼ N(0, 100) Initial value estimate
n ∈ {20, 60, 100} Number of agents in the population
sr ∈ {0, 0.05, . . . , 0.4} Proportion of strong reciprocators
m ∈ {1.5, 2, 2.5, 3} Multiplier

Table 1 Parameter settings

For each combination of the discrete parameter values below the line, we run 103 simulations
with real valued variables drawn i.i.d. from the distributions specified above the line.

We run a total of 3.6×105 independent simulations with parameters configured
according to Table 1; for each combination of the discrete parameter values, we

1 For example, there can be many complicated terms in the resulting equations that do not
tend to zero as the number of agents tends to infinity.
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Fig. 2 Mean frequency of each strategy as a time series
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Mean frequency of each strategy executed by the fraction of learning agents (excluding strong
reciprocators) as a time series from t = 0 to t = 2 × 105, sampled over intervals of 103. The
strategies are, from top to bottom: the reputation weighted strategy (RW), the reputation
weighted networked strategy (RWN), the defect strategy (D) and the cooperate strategy (C).
The population rapidly converges to a steady-state in which the frequencies fluctuate around
a static mean value as illustrated by the 30-period moving average shown for each series.

run 103 simulations with real valued variables drawn i.i.d. from the distributions
specified in the table.

We run each individual simulation for t = 2× 105 periods, taking the average
reputation across the last 5×104 periods as our estimate of the level of cooperation
in steady-state. We justify these time intervals on the grounds that the population
quickly converges to a steady-state: Fig. 2 shows how the frequency with which
each strategy is executed varies over time for a typical run of the simulation.

We treat each independent run as a single observation in our data set. For each
observation we record: all the values of random variates, the frequency with which
each type of strategy (section 3.1) is adopted over the entire population of agents,
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and the mean reputation of the population in the steady-state time period r̄. In
order to separate the contribution of strong reciprocators, the resulting level of
cooperation is also measured as the frequency with which cooperative strategies
are chosen by the learning fraction of the population, which we denote Γ .

The model was implemented using the Java Agent-Based Modelling (JABM)
framework [26], and the Mersenne Twister algorithm was used to draw all ran-
dom values in the simulation [18]. All of the code required to run the simulations
described in this paper is freely available under an open-source license [25].

We study our model under two different treatment conditions. Firstly, we anal-
yse outcomes when learning is stateless and agents cannot condition their strategy
on reputation scores, which we denote the “stateless treatment”. This treatment
corresponds to the earlier models of Nowak and Sigmund, which do not allow
agents to switch to an alternative strategy depending on whether they currently
have a good image-score. This model has been criticised by on the grounds that
the optimal decision could be more dependent on the donor’s own reputation than
that of the recipient [17]. In order to deal with this criticism we analyse our model
under a second treatment in which each agent’s reputation is discretized and used
as a state value as described in Section 3.2, which we denote the “stateful treat-
ment”.

5 Results

We first analyse the stateless treatment in which agents choice of strategy depends
only on payoff estimates and not reputation score. In line with other studies, we
find that cooperation can be sustained in this model provided that the proportion
of strong reciprocators sr is sufficiently high. Along with the multiplier m, these
two parameters have the strongest effect on steady-state cooperation (Γ ) with
linear correlation coefficients of ≈ 0.54. In contrast, all other parameters have cor-
relation coefficients ≤ 10−2 apart from the discount rate β. A multiple regression
gives:

Γ = 0.29×m+ 1.23× sr + 0.02× β − 0.44 (14)

as the best linear model with R2 ≈ 0.57, suggesting that the sensitivity of our
results to the β parameter is very small as compared with m and sr.

Closer inspection shows that the relationships are in fact non-linear. Fig. 3
shows the interaction between m and sr in determining the final level of coopera-
tion which is shown as the mean value of Γ .

Fig. 4 shows a cross section of this surface showing Γ̄ against sr when the
multiplier is held constant at m = 3. The error bars show the confidence intervals
for p = 0.05, and the additional plots below show the contribution made by each
cooperative strategy.

As the proportion of strong reciprocators — sr — is increased the remaining
fraction of the population responds by becoming more cooperative. Initially there
is a relatively large response but this tails off at sr ≈ 0.2. The results show that
provided sr ≥ 5×10−3 cooperative strategies will be chosen on average more than
half of the time by the rest of the population.
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Fig. 3 Mean reputation as function of the multiplier m and the proportion of the population
configured as strong reciprocators sr.
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These results were produced using 103 runs of the simulation for each position on the grid.
The value of the multiplier m was varied over the range [1.5, 3.0] with increments of 0.5 and
the proportion of strong reciprocators over the range [0, 0.4] with increments of 5× 10−2. All
other parameters were treated as random variates with the distributions specified in Table 1.

Under this treatment it is apparent that the network appears to play relatively
little role in determining agents’ strategies; the frequency with which network-
discounted reputation — RWN — is chosen over the standard reputation weighted
strategy — RW — is virtually identical over the entire range of sr. This is also the
case for all other values of the multiplier m. We also see that indirect reciprocity is
more widely adopted than direct reciprocity, as represented by the T4T strategy.

However, this situation is reversed when we introduce state into the learning
algorithm by allowing agents to condition their choice of strategy on reputation
scores. Fig. 5 shows the same cross section of Γ̄ under the stateful learning treat-
ment. Levels of direct reciprocity and network-discounted indirect reciprocity are
similar, both of which are more prevalent than the non-networked indirect reci-
procity strategy (RW). In this treatment, overall levels of cooperation are less
responsive to changes in sr. On the one hand there is greater cooperation in the
absence of strong reciprocators, but on the other hand as strong reciprocators are
introduced there is relatively little improvement (relative to the stateless treat-
ment) in the final level of cooperation.

Additionally, the difference in frequency between the networked and non-
networked strategies is sensitive to the value of the multiplier parameter. Fig. 6
shows the difference in frequency with which the RW (non-networked) and RWN
(networked) are executed by the learning algorithm in steady-state when the pro-
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Fig. 4 Cooperation (Γ ) against proportion of strong reciprocators (sr) — stateless treatment
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The above graph shows the mean frequency of every cooperative strategy in the learning
fraction of the population as the number of strong reciprocators sr is increased under the
stateless learning treatment when the multiplier is held constant at m = 3. The error bars
show the confidence intervals for p = 0.05.

portion of strong reciprocators is held constant at sr = 0.4. The difference in
steady-state adoption rates is more pronounced for intermediate values of the
multiplier and disappears altogether when the multiplier is low.

Thus our results indicate that the source of information regarding the trust-
worthiness of other agents does indeed matter, as per Bolton et al.’s empirical
study [3], in that both direct and indirect reciprocity come into play. Thus di-
rect information about the history of interaction together with global reputation
both inform agents’ decisions. This result is also corroborated by our earlier game-
theoretic modelling [27].

Moreover, the source of reputation information itself matters in that agents
have a higher propensity to adopt the RWN strategy than the RW strategy. How-
ever, the source of reputation information plays an important role only when the
benefits from cooperation are relatively greater than the costs, and this effect di-
minishes as the benefits grow larger. Intuitively, this follows the same reasoning
that explains greater cooperation as the multiplier is increased: for small multipli-
ers cooperation is difficult to sustain in general and the choice of which cooperative
strategy to adopt is less relevant. On the other hand, for higher multipliers coop-
eration is easier to sustain in general, and similarly the particular choice of which
form of cooperation to adopt is less critical. It is only for intermediate values of
the multiplier that the game becomes subtle, and the exact mechanism for trans-
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Fig. 5 Cooperation (Γ ) against proportion of strong reciprocators (sr) — stateful treatment.
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The above graph shows the mean frequency of each cooperative strategy in the learning
fraction of the population once learning has reached a steady-state, against the number of
strong reciprocators sr. The error bars show the confidence intervals for p = 0.05.

mitting reputation becomes important. Within this regime the emergent social
network plays an important role, and it becomes important to pay attention not
only to the reputation of potential partners but also their social proximity — we
will return to this discussion in Section 6.

Thus the network relationships that arise from the interactions between agents
play an important causal role in determining those very same interactions, result-
ing in emergent networks which co-evolve with the choice of agents’ strategies. We
are especially interested in how these emergent networks evolve over time. As in
[16] we examine both individual and network-level degree metrics as time series.
The former is measured by the correlation of the ranking of agents’ degree values
over time using a measure based on Spearman’s rank correlation coefficient ρ [36].
The network dissimilarity coefficient ζt0(t) = 1 − ρ2 tracks the proportion of the
variance in the weighted degree rankings at time t that cannot be explained by
the rankings sampled at time t0.

Fig. 8 shows the dissimilarity coefficient ζ104(t) as a time series. This shows
how agents’ degree rankings evolve over time once the population has reached a
steady-state; that is, we start from the weighted degree distribution of the network
at t = 104 and compute the rank correlation with the weighted degree values at
successive time periods. Despite the fact that the population as a whole is in a
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Fig. 6 Difference between RWN and RW frequencies for sr = 0.4 — stateful treatment
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The above graph shows the difference between the frequency with which the networked rep-
utation (RWN) and non-networked reputation (RW) strategies are adopted in steady-state
plotted against the multiplier m when the proportion of strong reciprocators is held constant
at sr = 0.4. The error bars show the confidence intervals for p = 0.05. For intermediate
values of the multiplier there is a pronounced difference between the frequency with which
network-discounted reputation (RWN) is chosen over the global variant of this strategy (RW).

steady-state during this time period, as illustrated in Fig. 2, the individual-level
network properties continue to evolve2.

We find that the global network properties are relatively stable when compared
to individual properties; this is in accordance with the empirical study of Kossinets
and Watts [16]. Fig. 7 shows the weighted clustering coefficient ([34]) as a time a
series for a typical run of the simulation. After a brief period of significant change at
the beginning of the simulation the network converges to a steady-state behaviour
in which the moving average of the weighted clustering coefficient hovers around
a central value with only very small fluctuations away from the mean.

6 Discussion

It is a salient feature of our model that it gives rise to networks which are si-
multaneously dynamic at the individual level but stable at the global level in line
with empirical observations of large-scale human social networks [16]. This is par-
ticularly intriguing given that there is nothing to prevent the weighted clustering
coefficient from changing over time; the network structure is driven by the choice

2 This is most easily visualised as video — see http://www.youtube.com/watch?v=
rltW6CGj1WQ for an illustration of a typical run.
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Fig. 7 Weighted clustering coefficient as a time series
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The global properties of the networks arising from our model are relatively stable; this graph
shows the moving average of the weighted global clustering coefficient as a time series for
a typical simulation run. In contrast to the degree rankings of individual agents which are
highly volatile (see Fig. 8), the average global network properties do not change significantly
over time.

of strategies made by the agents and different combinations of strategies can give
rise to a diverse range of network structures with varying global metrics.

It is also striking that the average frequency with which each strategy is globally
adopted also reaches a steady-state equilibrium (Fig. 2), and indeed this is what
explains the stability of global properties of the network. In line with many other
models of cooperation, agents attempt to learn a pure strategy and only randomise
over other strategies in so far as they explore them randomly as determined by
the parameter ε. When we analyse the behaviour of each individual agent, we
see that the global equilibrium illustrated in Fig. 2 is in fact the result of highly
dynamic behaviour at the level of individual agents who are switching between pure
strategies in response to a changing environment. Although the population-level
frequencies form a learning-theoretic equilibrium in which the proportions with
which each strategy are adopted remain stable, this is the result of punctuated
switching between pure strategies at the level of individual agents, as can be seen
from Fig. 9 which shows how the propensity to play each strategy changes over
time for a single agent.

Moreover, provided that the recency parameter α is sufficiently high, this phe-
nomena persists even when we switch to an alternative learning model which al-
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Fig. 8 Mean dissimilarity coefficient
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The plot above shows the mean dissimilarity coefficient ζ104 (t) between the network at time t
and the network at t = 104 averaged across 100 runs of the simulation with parameters drawn
from the distributions shown in Table 1. The ζ values are sampled at intervals of 100. Despite
the fact that the population has already reached a steady-state during this time period (see
Fig. 2), the network continues to evolve at the level of individual agents.

lows agents to learn a policy which randomises over strategies; we observe similar
behaviour when agents use softmax action selection as defined by Equation 13.

It is not possible to provide a full sensitivity analysis of parameter settings
under this treatment because the appropriate value of the temperature parameter
τ depends in a non-trivial way on the other parameters. Nevertheless, it serves
to demonstrate that the dynamic network behaviour is not merely an artifact
of the particular action-selection policy used in our model of learning. Rather,
the dynamics are a direct result of learning using recency, in which more weight
is placed on recent information. From the perspective of each individual agent,
performing learning with a high recency weighting is entirely rational in a strategic
environment populated by other agents who learn inductively; even if the true Nash
strategy profiles were known to the agent there could be a benefit from playing
non-equilibrium strategies against other inductive agents who are themselves not
necessarily playing a Nash strategy. Moreover since other agents are dynamically
adjusting their strategy through learning, it is rational to treat the other agents
as a dynamic environment and deploy the standard techniques for dealing with
such, viz. weighting more recent data.



Emergence of social networks via direct and indirect reciprocity 19

Fig. 9 Time series of the frequency of individual strategies for a single agent

0.
0

0.
4

0.
8

R
W

0.
0

0.
4

0.
8

R
W

N

0.
0

0.
4

0.
8

D

0.
0

0.
4

0.
8

0 50000 100000 150000 200000
C

Time

The frequency of each strategy executed by a single agent in the population as a time series
from t = 0 to t = 2 × 105, sampled using a window size of 103. The four panels in the
above graph shows the time series for four different strategies of the agent. These are from
top to bottom: the reputation weighted strategy (RW), the reputation weighted networked
strategy (RWN), the defect strategy (D) and the cooperate strategy (C). This shows that
the mix of strategies adopted by the population shown in Fig. 2 is the result of cycling over
predominantly pure strategies at the level of individual agents.

Although there might be rational justifications for off-equilibrium play by in-
dividual agents, a priori we would not expect such deviations to be systematic:
game-theoretic considerations suggest that agents who are currently adopting non-
equilibrium strategies which are not best responses will eventually be exploited un-
til they learn another strategy. Thus the existence of a game-theoretic equilibrium
should create stability at the level of the population through negative feedback by
driving out off-equilibrium behaviour, albeit with latency.

The other surprising phenomenon arising from our model is that agents learn
to use the emergent social network to discount reputation information according to
the social proximity of other agents (Fig. 6). Thus the source of information about
the trustworthiness of other agents does matter, in line with empirical findings from
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experimental economics [3]. This feature is not built into our model since agents are
free to choose between the network-discounted version of the reputation-weighted
strategy (RWN) or the strategy which uses a simple global reputation score (RW)
according to which version performs the best. Thus it is not a priori obvious why
social proximity and reputation interact in this way.

A closer analysis reveals that the RWN strategy yields higher payoff than the
RW strategy only in the presence of direct reciprocity (T4T) and the absence of
unconditional cooperation (C). In such a scenario, agents adopting RWN are able
to form cliques with each other and also with T4T. Agents within these cliques are
able to selectively invest their endowment with each other, whilst also receiving
low-level donations from the excluded agents which are below the threshold neces-
sary for creating a social tie (parameter κ in eq. 8). These cliques can arise because
RWN also embodies a form of direct reciprocity: the network distance metric used
to discount reputation scores is undirected, and therefore RWN is more favourable
to agents that have in turn favoured it. Thus RWN is able to exploit a niche in
which it simultaneously benefits from both direct and indirect reciprocity.

7 Conclusion

In this paper we have introduced a model of cooperation which incorporates two
distinct forms of reciprocity. Direct reciprocity uses a private source of information
based on personal history of interaction with others. On the other hand, indirect
reciprocity makes use of public information in the form of reputation. Whereas
other studies have looked at each of these in isolation, in contrast our model allows
for interaction between these two classes of strategy. Our key contributions have
been a) to show that both forms of reciprocity play an important role with neither
dominating the other; and moreover b) the interaction between these strategies
gives rise to complex social networks which emerge bottom-up from the lower-level
actions taken by agents. Moreover these networks evolve over time in a similar way
to those observed in empirical studies [16]: global network metrics remain stable
whilst individuals’ degree rankings are highly dynamic.

This discrepancy between global and local network properties arises directly
from the dynamics of learning. The global network properties are determined by
the frequency with which each type of strategy is adopted in the population as a
whole. This in turn determines the expected payoff to each strategy thus creating
a static game-theoretic equilibrium which stabilises the global network structure.
However, as is the case in nearly all non-trivial agent-based models, underlying this
static global equilibrium is a highly dynamic switching between different strategies
more reminiscent of “punctuated” equilibrium [8] as agents constantly adjust their
strategies in response to a changing environment. Two key features of reinforce-
ment learning are recency and experimentation and these result in off-equilibrium
behaviour at the level of the individual agents in our model.

We conjecture that a similar process underlies the phenomena observed in the
Kossinets and Watts study [16]. Establishing this will entail controlled experiments
with human subjects, which is the subject of our future work.
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