7,691 research outputs found

    Ground-Based Measurements and Validation Protocols for Flex

    Get PDF
    The upcoming ESA Fluorescence Explorer (FLEX) mission will incorporate ground-based validations for fluorescence parameters and reflectance indices, drawing on an international network of sensors located at eddy covariance tower sites. A program has been initiated by the OPTIMISE program to develop methods and protocols for this network. A sensor system suite under evaluation by OPTIMISE includes the FLoX hyperspectral spectroradiometers. The NASA team at GSFC is participating in this experiment and we report first results from the 2017 summer measurements made above the canopy at the USDA/ARS Beltsville cornfield using the DFLoX and two other leaf-level measurement systems, the MONI-PAM and the FluoWat

    Development of a Step Counting Algorithm Using the Ambulatory Tibia Load Analysis System for Tibia Fracture Patients

    Get PDF
    Introduction: Ambulation can be used to monitor the healing of lower extremity fractures. However, the ambulatory behavior of tibia fracture patients remains unknown due to an inability to continuously quantify ambulation outside of the clinic. The goal of this study was to design and validate an algorithm to assess ambulation in tibia fracture patients using the ambulatory tibial load analysis system during recovery, outside of the clinic. Methods Data were collected from a cyclic tester, 14 healthy volunteers performing a 2-min walk test on the treadmill, and 10 tibia fracture patients who wore the ambulatory tibial load analysis system during recovery. Results The algorithm accurately detected 2000/2000 steps from simulated ambulatory data. (see full text for full abstract

    Current State of Commercial Wearable Technology in Physical Activity Monitoring 2015-2017

    Get PDF
    International Journal of Exercise Science 11(7): 503-515, 2018. Wearable physical activity trackers are a popular and useful method to collect biometric information at rest and during exercise. The purpose of this systematic review was to summarize recent findings of wearable devices for biometric information related to steps, heart rate, and caloric expenditure for several devices that hold a large portion of the market share. Searches were conducted in both PubMed and SPORTdiscus. Filters included: humans, within the last 5 years, English, full-text, and adult 19+ years. Manuscripts were retained if they included an exercise component of 5-min or greater and had 20 or more participants. A total of 10 articles were retained for this review. Overall, wearable devices tend to underestimate energy expenditure compared to criterion laboratory measures, however at higher intensities of activity energy expenditure is underestimated. All wrist and forearm devices had a tendency to underestimate heart rate, and this error was generally greater at higher exercise intensities and those that included greater arm movement. Heart rate measurement was also typically better at rest and while exercising on a cycle ergometer compared to exercise on a treadmill or elliptical machine. Step count was underestimated at slower walking speeds and in free-living conditions, but improved accuracy at faster speeds. The majority of the studies reviewed in the present manuscript employed different methods to assess validity and reliability of wearable technology, making it difficult to compare devices. Standardized protocols would provide guidance for researchers to evaluate research-grade devices as well as commercial devices used by the lay public

    A comparison of the conventional PiG marker method versus a cluster-based model when recording gait kinematics in trans-tibial prosthesis users and the implications for future IMU gait analysis

    Get PDF
    Validation testing is a necessary step for Inertial Measurement Unit (IMU) motion analysis for research and clinical use. Optical tracking systems utilize marker models which must be precise in measurement and mitigate skin artifacts. Prosthesis wearers present challenges to optical tracking marker model choice. Seven participants were recruited and underwent simultaneous motion capture from two marker sets; Plug in Gait (PiG) and the Strathclyde Cluster Model (SCM). Variability of joint kinematics within and between subjects was evaluated. Variability was higher for PiG than SCM for all parameters. The within-subjects variability as reported by the average SD, was below 5.6° for all rotations of the hip on the prosthesis side for all participants for both methods, with an average of 2.1° for PiG and 2.5° for SCM. Statistically significant differences in joint parameters caused by a change in the protocol were evident in the sagittal plane (p < 0.05) on the amputated side. Trans-tibial gait analysis was best achieved by use of the SCM. The SCM protocol appeared to provide kinematic measurements with a smaller variability than that of the PiG. Validation studies for prosthesis wearer populations must reconsider the marker protocol for gold standard comparisons with IMUs

    Chapter “Flex 2018” Cruise: an opportunity to assess phytoplankton chlorophyll fluorescence retrieval at different observative scales

    Get PDF
    The “FLEX 2018” cruise, organized by the CNR-ISMAR in frame of the ESA “FLEXSense Campaign 2018” and CMEMS project, provided a ground station for several bio-optical instruments that investigated the coastal waters of the Tyrrhenian Sea in June 2018. The field measurements were performed in time synergy with Sentinel 3A and Sentinel 3B satellites and HyPlant airborne imaging spectrometer. Active and passive fluorescence were investigated at different scales in coastal waters to support preparatory activities of the FLuorescence EXplorer (FLEX) satellite mission

    Accuracy and repeatability of wrist joint angles in boxing using an electromagnetic tracking system

    Get PDF
    © 2019, The Author(s). The hand-wrist region is reported as the most common injury site in boxing. Boxers are at risk due to the amount of wrist motions when impacting training equipment or their opponents, yet we know relatively little about these motions. This paper describes a new method for quantifying wrist motion in boxing using an electromagnetic tracking system. Surrogate testing procedure utilising a polyamide hand and forearm shape, and in vivo testing procedure utilising 29 elite boxers, were used to assess the accuracy and repeatability of the system. 2D kinematic analysis was used to calculate wrist angles using photogrammetry, whilst the data from the electromagnetic tracking system was processed with visual 3D software. The electromagnetic tracking system agreed with the video-based system (paired t tests) in both the surrogate ( 0.9). In the punch testing, for both repeated jab and hook shots, the electromagnetic tracking system showed good reliability (ICCs > 0.8) and substantial reliability (ICCs > 0.6) for flexion–extension and radial-ulnar deviation angles, respectively. The results indicate that wrist kinematics during punching activities can be measured using an electromagnetic tracking system

    Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence

    Get PDF
    Global monitoring of sun-induced chlorophyll fluorescence (SIF) is improving our knowledge about the photosynthetic functioning of terrestrial ecosystems. The feasibility of SIF retrievals from spaceborne atmospheric spectrometers has been demonstrated by a number of studies in the last years. In this work, we investigate the potential of the upcoming TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite mission for SIF retrieval. TROPOMI will sample the 675–775 nm spectral window with a spectral resolution of 0.5 nm and a pixel size of 7 km × 7 km. We use an extensive set of simulated TROPOMI data in order to assess the uncertainty of single SIF retrievals and subsequent spatio-temporal composites. Our results illustrate the enormous improvement in SIF monitoring achievable with TROPOMI with respect to comparable spectrometers currently in-flight, such as the Global Ozone Monitoring Experiment-2 (GOME-2) instrument. We find that TROPOMI can reduce global uncertainties in SIF mapping by more than a factor of 2 with respect to GOME-2, which comes together with an approximately 5-fold improvement in spatial sampling. Finally, we discuss the potential of TROPOMI to map other important vegetation parameters at a global scale with moderate spatial resolution and short revisit time. Those include leaf photosynthetic pigments and proxies for canopy structure, which will complement SIF retrievals for a self-contained description of vegetation condition and functioning
    corecore