22 research outputs found

    Investigation of the ground displacement in Saint Petersburg, Russia, using multiple-track differential synthetic aperture radar interferometry

    Get PDF
    Abstract Global sea level rise and local land subsidence might exacerbate the risk of flooding in coastal plains. Among other cities, this is also the case for the high-latitude city of St. Petersburg, which has long been threatened by flood events. To protect the urban area from storm surges, the Union of Soviet Socialist Republics (USSR) in 1978 approved the construction of the 25 km long Flood Prevention Facility Complex (FPFC), which was completed in 2011. The risk of flooding in the city area of St. Petersburg is amplified by the fact that large sections of the coastal area have been reclaimed from the sea. In this study, we investigate the temporal evolution of the ground displacement in St. Petersburg. To this end, we perform an extended analysis based on the application of a simplified version of the differential interferometric synthetic aperture radar technique, known as the minimum acceleration (MinA) approach. The MinA algorithm is a multi-satellite/multi-track interferometric combination technique that allows working with multiple sets of SAR images. The method allowed generation of time series of two-dimensional (2-D) (i.e. East-West and Up-Down) deformation of the terrain by processing two sequences of Sentinel-1A/B (S-1A/B) SAR images acquired from 2016 to 2018, along the ascending and descending flight passes. The Small BAseline Subset (SBAS) algorithm was independently applied to the two sets of SAR data to generate the relevant Line-Of-Sight (LOS)-projected ground deformation time series. Subsequently, the LOS-projected deformation products were geocoded and jointly combined. The results indicate that the deformation in the city is predominantly vertical (i.e. it is subsiding) with a maximum subsidence rate of about 20 mm/year corresponding to the newly sea-reclaimed lands. Finally, the error budget of the retrieved 2-D deformation time series has also been addressed

    Detecting differential ground displacements of civil structures in fast-subsiding metropolises with interferometric SAR and band-pass filtering

    Get PDF
    Ground displacements due to changes in soil conditions represent a threat to the stability of civil structures in many urban areas, worldwide. In fast-subsiding areas, regional subsidence (wavelength ~ 1,000’s m) can be dominantly high and, consequently, mask other signals at local scales (wavelength ~ 10–100’s m). Still, engineering and construction applications require a comprehensive knowledge of local-scale signals, which can threaten the stability of buildings and infrastructure. Here we present a new technique based on band-pass filters for uncovering local-scale signals hidden by regional subsidence as detected by interferometric SAR measurements. We apply our technique to a velocity field calculated from 21 high-resolution COSMO-SkyMed scenes acquired over Mexico City and obtain components of long (\u3e 478 m), intermediate (42–478 m) and short (\u3c 42 m) spatial wavelengths. Our results reveal that long-wavelength velocities exceed − 400 mm/year, whereas intermediate- and short-wavelength velocities are in the order of ± 15 mm/year. We show that intermediate-wavelength velocities are useful for retrieving signals such as uplift along elevated viaducts of Metro lines 4 and B, as well as differential displacements in Pantitlán station’s pedestrian overpass system and across sharp geotechnical boundaries in the piedmont of Sierra de Santa Catarina—where surface faulting occurs

    Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

    Get PDF
    This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this fiel

    Monitoring and predicting railway subsidence using InSAR and time series prediction techniques

    Get PDF
    Improvements in railway capabilities have resulted in heavier axle loads and higher speed operations, which increase the dynamic loads on the track. As a result, railway subsidence has become a threat to good railway performance and safe railway operation. The author of this thesis provides an approach for railway performance assessment through the monitoring and prediction of railway subsidence. The InSAR technique, which is able to monitor railway subsidence over a large area and long time period, was selected for railway subsidence monitoring. Future trends of railway subsidence should also be predicted using subsidence prediction models based on the time series deformation records obtained by InSAR. Three time series prediction models, which are the ARMA model, a neural network model and the grey model, are adopted in this thesis. Two case studies which monitor and predict the subsidence of the HS1 route were carried out to assess the performance of HS1. The case studies demonstrate that except for some areas with potential subsidence, no large scale subsidence has occurred on HS1 and the line is still stable after its 10 years' operation. In addition, the neural network model has the best performance in predicting the subsidence of HS1

    Influence of ambient temperature on building monitoring in urban areas during the construction of tunnels for transportation

    Get PDF
    A large number of underground works are under construction in several big cities around the world (London, Paris, Amsterdam, Beijing, Shanghai, Chicago, Caracas, Mexico D.F., and Riad, for instance): railway tunnels, water supplies and other kinds of underground structures. In the last decade several underground infrastructures have been designed and constructed in the city of Barcelona, Spain, as well; e.g. the new line 9 of the city underground and the city junction for the High Velocity train that links Madrid and Barcelona with France. During the construction, intensive monitoring is becoming an increasingly common practice in order to guarantee the safety of the people, buildings and other infrastructures on the surface. Among others, the Robotic Total Stations (RTS) play an important role in the task. In these monitoring works, some "Thermal Effects" have occasionally appeared in the graphs, between winter/summer and day/night situation. Sometimes this undesirable noise has produced discussion among the infrastructure actors. As this effect has not been adequately studied so far, the present PhD aims to improve the basic knowledge and the current practice in the building monitoring in urban areas during underground works when the scene is affected by temperature changes. To characterize and, eventually, to correct the aforementioned influence of the "ambient' variables", a computer simulation program has been implemented. The code can simulate the movement of the buildings when the temperature changes, and proves that the thermal influence on structure deformation monitoring cannot be ignored in the practice. The PhD work has taken advantage of an experimental monitoring area built at the UPC Campus Nord (Barcelona, Spain) within an I+D project, with Robotic Total Stations and other sensors (temperature, tilt, levelling, insolation and other meteorological data), acquiring data during two years and a half. The fieldwork and data processing have been used to improve and adjust the numerical simulation model. Several approaches have been tested with the program. Strategies D, B and K permit us, respectively, to simulate the standard monitoring practice, to "fully" filter the thermal effect, and to filter it while preserving the building's own movements. Apart from helping in the mitigation of the quoted influence, these results may eventually facilitate the improvement of the present monitoring practices.Un gran número de trabajos subterráneos están en marcha en diversas ciudades del mundo (Londres, Paris, Ámsterdam, Beijing, Shanghai, Chicago, Caracas, México D.F., Riad, entre otras): túneles para FFCC y Metro, suministros, otras obras. En la última década varias infraestructuras subterráneas han afectado al Área Metropolitana de Barcelona: la línea 9 de metro y el paso del AVE Madrid-Barcelona-Francia entre otras. Durante la construcción de estas obras, la monitorización intensiva se está convirtiendo en práctica habitual para garantizar la seguridad de la gente, de los edificios y de otras construcciones en superficie. Entre otras técnicas, las Estaciones Totales Robotizadas juegan un papel importante en este cometido. De manera ocasional, en estos trabajos de auscultación han aparecido en las gráficas diarias o anuales unas oscilaciones espurias atribuibles a “Efecto Térmico”. En algunos momentos ese ruido no deseado ha producido ciertos problemas entre los actores presentes en la Obra Pública. Como este efecto no ha sido adecuadamente estudiado hasta ahora, esta Tesis pretende abundar en el conocimiento de su naturaleza, y mejorar la práctica habitual de la monitorización de edificios en zonas urbanas afectadas por obras subterráneas cuando los cambios de temperatura puedan influir. Un programa de simulación ha sido desarrollado para caracterizar y corregir la citada influencia de dichas “variables ambientales”. El código puede simular el movimiento de los edificios cuando cambia su temperatura, y ha servido para comprobar que los cambios térmicos pueden influir a un nivel que no puede ser ignorado en la práctica de la auscultación de precisión. La Tesis ha aprovechado una zona experimental a escala real que se estableció en el Campus Nord de la UPC dentro de un proyecto I+D, en la que Estaciones Totales Robotizadas y otros sensores (termómetros, clinómetros, niveles, piranómetros y estaciones meteorológicas) han estado suministrando mediciones durante unos dos años y medio. Los datos de campo y su procesamiento han servido para mejorar el código numérico y para ajustar sus variables. Con el programa se han establecido varios escenarios. Las estrategias D, B y K permiten simular la práctica habitual de la monitorización, y filtrar totalmente (al menos en teoría) o parcialmente el “Efecto Térmico”. Los resultados obtenidos, aparte de ayudar a mitigar la presencia no deseada de la firma térmica en los resultados de la auscultación, tras ulteriores investigaciones podrán mejorar las prácticas actuales en la monitorización de edificios.Postprint (published version

    Semantic location extraction from crowdsourced data

    Get PDF
    Crowdsourced Data (CSD) has recently received increased attention in many application areas including disaster management. Convenience of production and use, data currency and abundancy are some of the key reasons for attracting this high interest. Conversely, quality issues like incompleteness, credibility and relevancy prevent the direct use of such data in important applications like disaster management. Moreover, location information availability of CSD is problematic as it remains very low in many crowd sourced platforms such as Twitter. Also, this recorded location is mostly related to the mobile device or user location and often does not represent the event location. In CSD, event location is discussed descriptively in the comments in addition to the recorded location (which is generated by means of mobile device's GPS or mobile communication network). This study attempts to semantically extract the CSD location information with the help of an ontological Gazetteer and other available resources. 2011 Queensland flood tweets and Ushahidi Crowd Map data were semantically analysed to extract the location information with the support of Queensland Gazetteer which is converted to an ontological gazetteer and a global gazetteer. Some preliminary results show that the use of ontologies and semantics can improve the accuracy of place name identification of CSD and the process of location information extraction

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Innovative Methods and Materials in Structural Health Monitoring of Civil Infrastructures

    Get PDF
    In the past, when elements in sructures were composed of perishable materials, such as wood, the maintenance of houses, bridges, etc., was considered of vital importance for their safe use and to preserve their efficiency. With the advent of materials such as reinforced concrete and steel, given their relatively long useful life, periodic and constant maintenance has often been considered a secondary concern. When it was realized that even for structures fabricated with these materials that the useful life has an end and that it was being approached, planning maintenance became an important and non-negligible aspect. Thus, the concept of structural health monitoring (SHM) was introduced, designed, and implemented as a multidisciplinary method. Computational mechanics, static and dynamic analysis of structures, electronics, sensors, and, recently, the Internet of Things (IoT) and artificial intelligence (AI) are required, but it is also important to consider new materials, especially those with intrinsic self-diagnosis characteristics, and to use measurement and survey methods typical of modern geomatics, such as satellite surveys and highly sophisticated laser tools
    corecore