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Abstract 
Improvements in railway capabilities have resulted in heavier axle loads and higher 

speed operations. Both of these factors increase the dynamic loads on the track. As a 

result, railway subsidence has become a threat to good railway performance and safe 

railway operation. Poor infrastructure performance requires more maintenance work, 

and therefore the life cycle costs of the railway will increase. In order to ensure good 

performance and reduce life cycle costs, railway subsidence should be monitored and 

predicted. The author of this thesis provides an approach for railway performance 

assessment through the monitoring of railway subsidence and prediction of railway 

subsidence based on a time series of Synthetic Aperture Radar (SAR) images.  

The railway is a long and relatively narrow infrastructure, which subsides 

continuously over a long time period. As a result, larger image coverage and long 

time monitoring periods are two key requirements for railway subsidence monitoring. 

In addition, railway subsidence monitoring should also consider the repeatability, 

precision and efficiency of the monitoring method, as well as labour costs. The 

Interferometric Synthetic Aperture Radar (InSAR) technique, which is able to monitor 

railway subsidence over a large area and long time period, was selected for railway 

subsidence monitoring by the author. In order to obtain a more reliable railway 

subsidence measurement result, and extension of InSAR, PS-InSAR (Permanent 

Scatterer InSAR), was used for the research, since it is capable of supporting a time 

series analysis of ground deformation. In addition to railway subsidence monitoring, 

future trends of railway subsidence should also be predicted using subsidence 

prediction models. Railway deformation records obtained by PS-InSAR can be 

considered as a discrete time series. As a result, three time series prediction models 

have been investigated in this thesis for railway subsidence prediction, which are the 

traditional statistical ARMA model, a neural network model based on artificial 

intelligence and the grey model.  

Case studies to monitor and predict the subsidence of ground under the High Speed 

One (HS1) route in Britain were carried out to assess the performance of the PS-

InSAR method and the time series prediction models. A deformation profile of HS1 
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has been developed for the case study, based on deformation monitoring results 

obtained by PS-InSAR. The deformation profile demonstrates that no large scale 

subsidence has occurred on HS1 and the line is still stable after having been in 

operation for 10 years. However, some areas of HS1 show potential subsidence. For 

instance, the areas over the North Downs Tunnel and the line between Hockers Lane 

Overbridge and Water Lane Underbridge have subsided by up to 4.0 mm per year and 

2.9 mm per year respectively. The stability of the ground under Ashford International 

Station was also assessed in this thesis. Based on the deformation monitoring records 

of HS1, railway subsidence prediction was carried out by the application of three 

main time series prediction models. The result of the railway prediction demonstrates 

that the neural network model has the best performance in predicting the subsidence 

of HS1. 
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Chapter 1 Introduction 

1.1 Background 
The rapid increase in the demand for transportation of people and goods requires that 

railways have better capability. As a result of the improving capability, heavier axle 

loads and higher speed lines are current trends of railway development. Heavier axle 

loads and higher speed operation are two important reasons for track geometry 

changes and railway subsidence. Railway subsidence refers to permanent settlement 

of the track and subgrade. In addition, some geotechnical defects, such as initial 

compaction of the ballast bed and poor drainage condition of railway subgrade 

(Coelho, et al., 2011) are also contributors to track geometry changes and railway 

subsidence.  

Unstable track geometry and inadequate railway subgrade will induce a poor railway 

performance, which includes poor ride quality, uncomfortable train journey, potential 

for train derailments, train service delay and increased fuel consumption. Moreover, 

frequent and expensive railway maintenance work is required to ensure a good 

railway performance. As a result, the life cycle costs of the railway will increase. 

Figure 1.1 shows an overview of poor railway performance.  
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Figure 1.1: Overview of poor railway performance 

In order to ensure good performance and reduce the life cycle costs of the railway, 

track geometry changes and railway subsidence should be monitored regularly. Track 

geometry changes can be measured by a track recording train or trolley based track 

measurement instrument. An approach for railway subsidence monitoring will be 

introduced in this thesis.  

The railway is a linear construction and it subsides continuously over a long time 

period. Therefore, large coverage and a long time period are two important 

requirements for railway subsidence monitoring. In addition, repeatability, precision 

and efficiency of the monitoring approach, as well as labour costs should be 

considered. An Interferometric Synthetic Aperture Radar (InSAR) approach，which 

has the potential to measure ground deformation at millimetre level (Bamler & Hartl, 

1998), is able to conduct railway subsidence monitoring over a large coverage and 
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long time period. As a result, InSAR is selected as an approach for railway subsidence 

monitoring.  

In order to manage railway performance, railway subsidence prediction should be 

used alongside monitoring. Monitoring records of railway subsidence over a certain 

period can be considered as a typical discrete time series. Time series prediction 

models which are able to predict trends of railway subsidence based on historical 

subsidence monitoring records will be applied for railway subsidence prediction. In 

general, the main time series prediction models include statistical model auto-

regressive moving average (ARMA), a neural network model based on artificial 

intelligence and a grey model which is capable of handling time series that have a 

limited number of observations with unknown parameters and inter-relationships.   

By the application of railway subsidence monitoring and railway subsidence 

prediction, this thesis provides an approach for assessing railway performance.  

1.2 Objectives 
The author aims to introduce a method to monitor railway subsidence over a large 

coverage and long time periods and to predict subsidence of the railway based on 

historical monitoring records. Three objectives of this thesis are presented below. 

(1) To provide an integrated approach for railway performance assessment 

Based on the current trend of railway development, an overview of poor railway 

performance is indicated. In order to improve performance and reduce life cycle costs 

of the railway, an approach for assessing railway performance is introduced, which 

includes subsidence monitoring and prediction. 

(2) To provide an approach to monitor railway subsidence 

The InSAR technique, which is suitable for subsidence monitoring over a large 

coverage and long time period, is applied in this research. A case study which adopts 

InSAR in subsidence monitoring of the High Speed One (HS1) railway is conducted 

to assess the feasibility of InSAR in railway subsidence monitoring. Based on the 

InSAR results of this case study, the stability status of HS1 can be assessed and 

railway sections with potential subsidence can be indicated.   
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(3) To provide an approach to predict railway subsidence 

InSAR results provide historical monitoring records of railway deformation, a railway 

subsidence prediction will be carried out based on the monitoring records. Time series 

prediction models will be reviewed and applied in this thesis. A comparison between 

the prediction results of railway subsidence obtained from different time series 

prediction models will be conducted and the model which is the most suitable for 

railway subsidence prediction will be identified. 

1.3 Thesis Structure 
This thesis contains eight chapters and the detailed thesis structure is given as follows.  

(1) Chapter 1 introduces the research background. Based on the background, the 3 

objectives of the thesis are presented. In addition, a thesis structure which 

generally introduces each chapter is presented.  

(2) Chapter 2 reviews three approaches for railway subsidence monitoring and selects 

InSAR for this research. This chapter introduces the development of InSAR and 

its main applications in various research areas. InSAR is able to measure the 

topography of the study area while Differential InSAR (D-InSAR) works well in 

ground deformation monitoring. Due to the limitations of D-InSAR, Persistent 

Scatterer InSAR (PS-InSAR) is applied to obtain a more reliable ground 

deformation result. The successful applications of PS-InSAR in ground 

deformation monitoring ensure the feasibility of applying it in railway subsidence 

monitoring. Three applications of PS-InSAR in railway subsidence monitoring are 

also presented in this chapter.  

(3) Chapter 3 reviews time series models for railway subsidence prediction. PS-

InSAR is able to conduct a time series analysis of the stable Persistent Scatterers 

(PS) along the railway. As a result, historical deformation records obtained by PS-

InSAR can be considered as the discrete time series. In order to predict subsidence 

trends of the railway in the future, chapter 3 presents three prediction models 

which are applicable for discrete time series, which are the traditional statistical 

model, a neural network model based on artificial intelligence and a grey model 

which is suitable for a system with partially known parameters. This chapter also 

reviews some practical applications of these three models in subsidence prediction.  
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(4) Chapter 4 describes the methodologies of InSAR applied in railway subsidence 

monitoring. In order to extract the real ground deformation which has occurred 

during a time period, a radar image pair captured before and after the ground 

deformation is required. Instead of traditional Real Aperture Radar (RAR), 

Synthetic Aperture Radar (SAR) with a shorter radar antenna is applied to capture 

radar images with good resolution and obtain a good ground deformation result. 

This chapter describes the principle of InSAR for the generation of Digital 

Elevation Model (DEM) and the principle of PS-InSAR for obtaining a reliable 

ground deformation result.  

(5) Chapter 5 introduces the methods of time series prediction models in railway 

subsidence prediction. The traditional statistics prediction model auto-regressive 

integrated moving average (ARIMA) is introduced in this chapter, which includes 

the method applied in ARIMA and detailed procedures for utilising it in 

subsidence prediction. In addition, a neural network model based on artificial 

intelligence is reviewed. This chapter describes the construction of the multi-

player neural network, functions for output generation and the detailed procedures 

for the learning algorithm gradient descent backpropagation. This chapter also 

presents working procedures for a grey model. 

(6) Chapter 6 presents a case study, monitoring subsidence of HS1 by applying PS-

InSAR. A 53 km railway route, from Southfleet Junction near Ebbsfleet 

International Station to Ashford International Station is configured in this chapter. 

Due to tunnelling work, geology and large rainfall on the selected route, it faces 

potential railway subsidence. This chapter also introduces procedures for the 

collection of the radar data used for PS-InSAR and the data processing tool for 

PS-InSAR. According to the data processing result, a time series analysis of 

selected PS along HS1 is conducted and the deformation profile of HS1 is created. 

The subsidence monitoring results indicate the subsidence status of HS1 and the 

railway sections of HS1 with potential subsidence risk in the future.  

(7) Chapter 7 describes the applications of a time series prediction model for railway 

subsidence prediction based on deformation monitoring results obtained from PS-

InSAR in chapter 6. Two simulations are conducted in this chapter, which are a 

simulation for equal interval time series and a simulation for unequal interval time 
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series. For the time series with equal intervals, ARIMA, a neural network model 

and a grey model are applied separately for the simulation. For the time series 

with unequal intervals, only the grey model is used as it is the only model of the 

three which is able to handle an unequal interval time series.  

(8) Chapter 8 summarises the main contents presented in this thesis and provides 

conclusions for this research. In addition, future works for this research are also 

indicated.  

(9) Appendix A shows a list of available Envisat ASAR data while Appendix B 

presents the summary of the railway deformation for the case study.  In addition, 

Appendix C provides the scripts for PS-InSAR data processing of the case study 

described in chapter 6. Appendix D presents the scripts of ARIMA, the neural 

network model and grey model for the case study of railway subsidence prediction 

in chapter 7.   
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Chapter 2 Review of Railway Subsidence 

Monitoring 

2.1 Introduction 
Poor railway performance caused by heavier axle loads and higher speed lines induces 

a higher life cycle costs for the railway and safety problems in train operation. This 

chapter aims to introduce a method which can ensure good railway performance by 

monitoring railway subsidence over a large area and a long time period.  

Firstly, the nature of railway infrastructure and subsidence is introduced. Secondly, 

three approaches for railway subsidence monitoring are reviewed. After comparing 

the pros and cons of these approaches, the Interferometric Synthetic Aperture Radar 

(InSAR) technique, which is able to monitor ground subsidence with millimetre 

precision over a large area and a long time period, is selected for railway subsidence 

monitoring in this research. Then, the development and main applications of InSAR in 

various research areas are reviewed. Ground subsidence monitoring is one of the most 

important applications of InSAR. Based on its principles, subsidence of the railway 

can be monitored. This chapter represents three successful applications of railway 

subsidence monitoring.  

2.2 Nature of Railway Infrastructure and Subsidence 
The quality of the railway infrastructure determines its affordable traffic. As two of 

the most important components of railway infrastructure, stable track and the track 

foundation ensure good quality of the railway infrastructure.  Conventional ballasted 

track, which is the most widely used track, requires multiple layers of materials 

underneath the sleepers for support. Figure 2.1 illustrates the structure of conventional 

ballasted track (Vehicle /Track System Interface Committee, 2010). Track is 

comprised of flat bottom rails and sleepers while track foundation consists of ballast, 

sub-ballast, a protective layer and subgrade.  
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Figure 2.1: Structure of conventional ballasted track 

The sleepers not only support the rails but also transfer dynamic loads into the ballast. 

Figure 2.2 shows an example of load distribution in ballasted track (Vehicle /Track 

System Interface Committee, 2010). A 350 kilonewton dynamic wheel force is 

applied on the rail and the other components of the ballasted track also bear the 

pressure distribution.  

 

Figure 2.2: Example of load distribution in ballasted track 

Due to the pressure loaded onto the ballasted track, settlement of the ballast may 

occur, which further results in the settlement of the subgrade and natural ground 
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underneath the subgrade. Except for the settlement of the subgrade and natural ground 

caused by pressure, some factors, such as drainage and a large volume of rainfall, can 

also lead to the settlement of the subgrade and natural ground, eventually causing 

railway subsidence.  

2.3 Approaches for Railway Subsidence Monitoring 
Subsidence of the railway can cause track deterioration and, in some areas, has 

become a threat to good railway performance. As a result, railway subsidence should 

be monitored regularly. Three approaches, namely levelling survey, Global 

Positioning System (GPS) and radar based systems, are mainly used for railway 

subsidence monitoring. 

A levelling survey is the most precise approach in vertical ground deformation 

monitoring. Based on levelling data collected since 1935, Bell and his colleagues 

worked on the ground subsidence in Las Vegas Valley (Bell, et al., 2002). In addition, 

precise levelling data was applied to monitor the subsidence of the Taiwan High 

Speed Rail (Hwang, et al., 2008). Benchmarks in a levelling survey are discrete and 

their number is limited. As a result, it is difficult to depict ground deformation over a 

large coverage. In addition, frequent surveys increase costs due to the human 

resources required to carry them out. GPS performs well in horizontal ground 

deformation monitoring. However, for a precise result of vertical ground deformation, 

a long period of monitoring must be conducted. For instance, Hill and Blewittit 

demonstrated that a long time period (more than 5 years) of GPS monitoring can be 

applied to detect tectonic signals with a vertical rate greater than 0.3 mm per year in 

the Yucca Mountain area in Nevada (Hill & Blewitt, 2006). In addition, 16 GPS 

pillars were deployed along the Taiwan High Speed Rail for subsidence monitoring 

(Hwang, et al., 2008). GPS pillars are discrete and often sparse, with spacing from a 

few kilometres to a few hundred kilometres.  

Radar based system for railway subsidence monitoring can be divided into track based 

system and satellite based system. Track based LiDAR (Light Detection and Ranging) 

can be used to map ground features and settlement. LiDAR technique is able to 

precisely locate the survey target on the ground by transmitting radar pulses and 

recording backscattered radar signal (Baran, 2009). Zetica applied LiDAR surveys on 
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rail infrastructure (Zetica, 2015) while Ingegneria Dei Sistemi (IDS) also provided 

supports on measuring railroad and mapping track structure based on LiDAR 

technique (Zarembski, et al., 2013). However, deviation of radar trajectories may lead 

to errors in LiDAR survey results.  

Due to the fact that the railway is a long linear construction which subsides 

continuously over a long time period, both levelling survey and GPS approaches have 

limitations in monitoring railway subsidence. An approach which can cover a large 

area and allow a frequent monitoring in a long time period should be used to monitor 

railway subsidence. InSAR is a repeatable and continuous satellite based technique 

with good accuracy, wide coverage and stable radar trajectory. Additionally, it has the 

potential to measure ground surface deformation to millimetre precision over a period 

of days or years. As a result, satellite based InSAR technique is adopted to monitor 

railway subsidence in this research.  

2.4 Development of InSAR 
The development of InSAR can be traced to the late 1960s. In 1969, radar 

interferometry was first applied for probing the planet Venus. Radar with 3.8 cm 

wavelength on the Earth was used to map the surface reflectivity of Venus (Rogers & 

Ingalls, 1969). Similarly, radar interferometry was undertaken to map the topography 

of the Moon by Zisk in 1972 (Zisk, 1972). 

InSAR was first proposed to use an airborne Synthetic Aperture Radar (SAR) system 

with a cross-track platform to obtain topography information of the Earth. A Digital 

Elevation Model (DEM) of the Earth was generated in1974 (Graham, 1974). In 1986, 

Zebker and Goldstein indicated the first practical result of InSAR. A cross-track 

airborne InSAR system was applied to generate a DEM of the Golden Gate Bridge 

area in San Francisco (Zebker & Goldstein, 1986). Later, Goldstein and Zebker 

described a new airborne InSAR system with an along-track platform in 1987 

(Goldstein & Zebker, 1987). A map of ocean currents in San Francisco Bay was 

depicted by the along-track InSAR. Based on the SAR images captured by the Seasat 

mission with the repeat-pass platform, a DEM of the Cottonball Basin in Death Valley 

was generated by Goldstein and his colleagues in 1988, which was the first 

application of spaceborne InSAR (Goldstein, et al., 1988).  
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In 1989, Gabriel first adopted InSAR to measure ground deformation (Gabriel, et al., 

1989). However, as well as ground deformation information, topographic information 

was also represented in the InSAR results. In order to remove topographic information 

and obtain real ground surface deformation, Differential InSAR (D-InSAR) was 

applied to monitor ground deformation in the Imperial Valley region in California 

based on the Seasat SAR images (Gabriel, et al., 1989). 

According to the number of SAR images required, D-InSAR is divided into two-pass 

D-InSAR, three-pass D-InSAR and four-pass D-InSAR. Three-pass D-InSAR was 

adopted in the first application of D-InSAR in 1989 (Gabriel, et al., 1989). Later, 

Zebker and his colleagues conducted three-pass D-InSAR to remove topographic 

information from the interferogram of the region of Alaska in 1994 (Zebker, et al., 

1994). Similarly, four-pass D-InSAR was applied to measure the velocity of glacier 

movement in 1996 by Kwok and Fahnestock (Kwok & Fahnestock, 1996). In 1993, 

Massonnet and his colleagues utilised two-pass D-InSAR to remove topographic 

information from the deformation result of the Landers Earthquake in California. 

External DEM was selected as the reference in two-pass D-InSAR to remove 

topographic information (Massonnet, et al., 1993). Later, two-pass D-InSAR was 

Antenna  

  

Antenna  

 

Target point 

Antenna  
Antenna  

 Target point 

Figure 2.3: Airborne InSAR system (left) and spaceborne InSAR system (right) 
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adopted by Cumming et al. in 1997 to monitor alpine glacier flow (Cumming, et al., 

1997). 

As an enhanced D-InSAR technique, Persistent Scatterer InSAR (PS-InSAR) was 

applied by Ferretti and his colleagues to mitigate the effects of temporal decorrelation 

of the interferograms and atmospheric delay in 2000 (Ferretti & Rocca, 2000). Since 

the first application of PS-InSAR in 2000, it has been widely adopted. Usai in 2001 

(Usai, 2001), Kampes and Hanssen in 2004 (Kampes & Hanssen, 2004) utilised PS-

InSAR in their research.  

2.5 Acquisition of SAR Image 

2.5.1 Designation of Radar Band 
Beams of radar pulses are transmitted from a radar antenna to the ground and the 

ground is illuminated by the radar beams. Backscattered radar beams are recorded by 

the radar antenna, and a radar image, which represents the topography of the 

illuminated area, is generated.  

In 1986, Trevett designated radar bands by wavelength and frequency of radar wave 

(Trevett, 1986). Table 2.1 indicates the designation of each radar band. 

Radar Band Wavelength (cm) Frequency (MHz) 

Ka 0.75-1.18 36500-40000 

K 1.18-1.67 18000-26500 

Ku 1.67-2.40 12500-18000 

X 2.40-3.75 8000-12500 

C 3.75-7.5 4000-8000 

S 7.5-15 2000-4000 

L 15-30 1000-2000 

UHF 30-100 300-1000 

P 77-136 220-390 

Table 2.1: Designation of radar bands 
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Radar bands X, C and L are widely adopted in the SAR systems; their respective 

wavelengths are 3.1cm, 5.8cm and 23.5cm (Plaut, 1996). Based on the 

electromagnetic spectrum represented in Figure 2.3, a radar wave in a SAR system is 

classified as a microwave, which has wavelength range from 1 mm to 1 m.  

 

 

 

 

According to the characteristics of a microwave, it can penetrate cloud, atmosphere, 

fog, haze, rain and vegetation (Woodhouse, 2006). Therefore, using InSAR the results 

of ground deformation monitoring will not be affected by cloud cover or the weather. 

Jensen denoted that radar with a longer wavelength has a better ability for penetration 

and is good at volume scattering (Jensen, 2007). As shown in Figure 2.4 (Jensen, 

2007), compared with X band radar pulses, which only penetrate the top of the tree, L 

band radar pulses can penetrate leaves and branches of the tree, and more radar pluses 

are backscattered. As a result, L band radar works well areas covered by the 

vegetation.  

Figure 2.4: Electromagnetic spectrum 
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Figure 2.5: Penetration ability of radar band 

As well as penetrability, reflectivity is another characteristic of the microwave radar. 

Jensen indicated that radar with a short wavelength is good at surface reflectivity and 

it can capture the high resolution SAR image in areas with more scatterers (Jensen, 

2007). 

2.5.2 Image Acquisition Modes 
SAR images can be obtained by the airborne and spaceborne radar platforms, which 

are configured respectively as single-pass interferometry and repeat-pass 

interferometry. Single-pass interferometry can be further divided into cross-track 

interferometry and along-track interferometry according to the positional relationship 

between the radar antenna and the direction in which the radar is moving. 

(1) Cross-track interferometry 

Cross-track radar interferometry is carried out by a platform equipped with two 

airborne radar antennas whose baseline is perpendicular to the direction in which the 

radar is moving (Massonnet & Felgl, 1998). Baseline is the distance between orbital 

trajectories of the two radar antennas. 

One radar antenna emits a radar pulse and receives radar echo, while the other radar 

antenna can only receive radar echo. Cross-track platform is able to capture a pair of 
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interferometric radar images when the airborne radar is passing over the target area 

(Matias, 2006). Figure 2.5 represents the geometry of cross-track interferometry.  

 

 

 

 

 

 

 

 

Figure 2.6: Geometry of cross-track interferometry 

The phase difference between the radar echoes results from the different position of 

the antennas. In cross-track interferometry, the instantaneous position difference of 

the two antennas in respect to the scatterer on the ground is on the direction which is 

perpendicular to the direction of the radar moving. As a result, Cross-track 

interferometry is sensitive to changes in the topographic elevation (Romeiser, et al., 

2007). Cross-track interferometry has been widely adopted in the DEM generation. 

However, errors caused by terrain slope and tilt of the aircraft are difficult to be 

removed from the the interferometric phase of the interferogram generated from the 

radar image pair.  

(2) Along-track interferometry 

Along-track radar interferometry is conducted by an aeroplane based platform with 

two radar antennas whose baseline are parallel to the moving direction of the radar 

(Hirsch, 2001). Similarly, one radar antenna transmits a radar pulse and receives the 

radar echo while the other antenna only receives the radar echo. Figure 2.6 represents 

the geometry of along-track interferometry. 
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Figure 2.7: Geometry of along-track interferometry 

When the airborne radar is passing over the target area, a pair of radar images is 

obtained by the two radar antennas. In along-track interferometry, the instantaneous 

position difference of the two antennas in respect to the scatterer on the ground is 

parallel to the direction in which the radar is moving. Accordingly, along-track 

interferometry is sensitive to deformation along the direction in which the radar is 

moving, and it has been widely applied in the movement monitoring of ocean currents 

(Hirsch, 2001). 

(3) Repeat-pass interferometry 

In order to monitor ground deformation, a pair of radar images captured at different 

times is required. However, two flight trajectories of the aircraft can not be guaranteed 

to be the same. Trajectory deviations of the aircraft will bring errors in the 

interferogram (Fornaro, 1999). As a result, a spaceborne radar platform with 

stationary orbit is adopted to capture a radar image pair for ground deformation 

monitoring.   

Repeat-pass interferometry is undertaken on the spaceborne radar platform. Different 

to airborne radar, only one antenna is provided for each spaceborne radar. Two radars 
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with a single antenna on the parallel radar orbits are able to obtain a pair of radar 

images of the same target at different times (Hagberg, et al., 1995).  

 

 

 

 

 

 

 

 

Figure 2.8: Geometry of repeat-pass interferometry 

2.5.3 Satellites for Image Acquisition 
Since the Jet Propulsion Laboratory in the U.S. launched the first satellite with a SAR 

system in June 1978, Seasat, it has been possible to capture SAR images by using 

spaceborne radar. The Seasat satellite was used to undertake remote sensing of the 

ocean on the Earth based on a SAR approach. Due to a short circuit of the electric 

power system, the useful life of this satellite ended 4 months after its launch (NASA, 

2014). The launch of the satellite with a SAR system significantly speeded up the 

development of InSAR and broadened the scope of InSAR applications.  

The European Space Agency (ESA) launched ERS-1 satellite in 1991, ERS-2 satellite 

in 1995 (ESA, 2014) and Envisat (Environmental Satellite) in 2002, whose image 

mode has the 30 m spatial resolution and the 100 km swath coverage (ASAR 

Instrument Functionality, 2014).  JERS-1 and ALOS PALSAR were launched by the 

Japan Aerospace Exploration Agency (JAXA)1 in 1992 and 2006 respectively ( Japan 

Aerospace Exploration Agence, 2004) (Rosenqvist, et al., 2004).  

                                                 
1 JAXA used to be National Space Development Agency of Japan (NASDA) 
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In addition, the Canadian Space Agency (CSA) launched its RADARSAT-1 in 1995 

and RADARSAT-2 in 2007 (Hurley, 2010). RADARSAT-2 is able to capture SAR 

images with the spatial resolution up to 3 m. Since the launch of RADARSAT-2, 

more satellites with higher spatial resolution were applied in ground deformation 

monitoring. For instance, TerraSAR-X and COSMO SkyMED, which were both 

launched in 2007 and operated by the German Aerospace Centre (DLR2) and the 

Italian Space Agency (ASI) respectively, have spatial resolution up to 1 m 

(GEOIMAGE, 2012) (ISA, 2007).  

Due to the high spatial resolution (up to 1 m) and a short revisit time (11 days), 

TerraSAR-X data has been widely adopted in ground deformation monitoring. 

Wegmuller and his colleagues conducted PS-InSAR based on TerraSAR-X data to 

monitor ground deformation (Wegmuller, et al., 2010).  

Compared with the expensive high resolution TerraSAR-X data, Envisat data 

provided by ESA are free of charge for the academia. Osmanoğlu and his colleagues 

worked on subsidence monitoring for Mexico City by PS-InSAR using Envisat data 

(Osmanoğlu, et al., 2011). This thesis aims to identify railway sections with 

significant subsidence, which does not have a particularly high requirement for the 

spatial resolution. As a result, Envisat data are chosen for railway subsidence 

monitoring in this research.  

2.6 Applications of InSAR 
Since the first application of radar interferometry in 1969, InSAR has been widely 

applied. Applications of InSAR can be divided into four categories, which are 

topography mapping, DEM generation, ocean currents mapping and landscape 

characterization (Lu, et al., 2007).  

2.6.1 Topography Mapping 
The initial purpose of InSAR is to carry out topography mapping based on ground 

surface reflectivity. Radar interferometry was first applied to map the topography of 

                                                 
2 Deutsches Zentrum für Luft- und Raumfahrt in German 
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the planet Venus in 1969 (Rogers & Ingalls, 1969) and later to the topography of the 

Moon, which was mapped by the same method in 1972 (Zisk, 1972).  

2.6.2 DEM Generation 
InSAR is able to monitor topography of the target area by a single-pass airborne radar 

platform and finally generate a DEM of this area. When the airborne radar is passing 

over the target area, a pair of radar images is captured by the two radar antennas at the 

same time. Therefore, there is no time interval between the two acquisitions of the 

images and external condition, such as vegetation change, do not affect the result of 

the DEM generation. Moreover, weather conditions will not affect the DEM 

generation by InSAR due to the good penetrability of radar wave. In addition, InSAR 

is able to generate a DEM of areas where traditional methods cannot gain access.  

In 2000, National Aeronautics and Space Administration (NASA) and the National 

Imagery and Mapping Agency (NIMA) cooperated on a project which aimed to map 

the Earth in three dimensions. Shuttle Radar Topography Mission (SRTM) was 

developed by the single-pass airborne InSAR, and a world-wide DEM was generated 

(Bamler, et al., 2003).  

 

Figure 2.9: SRTM coverage map 

The surface of the Earth between 60 degrees north latitude and 56 degrees south 

latitude was mapped by SRTM, and a DEM of the mapped area was generated (Van 
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Zyl, 2001). Jet Propulsion Laboratory stated that about 80% of the land surface on the 

Earth is covered by SRTM (Jet Propulsion Laboratory, 2005). As shown in Figure 2.8, 

the surface of the Earth which is not coloured red is covered by SRTM. 

2.6.3 Ocean Currents Mapping 
Ocean currents mapping is another important application of InSAR. Radar wave can 

go through atmosphere and cloud to the ocean surface. Ocean currents can be mapped 

due to variances in the roughness of the ocean surface (Mikhail, 2009). 

The velocity of ocean currents was measured by Siegmund and his colleagues by 

hybrid along-track and cross-track InSAR in 2004 (Siegmund, et al., 2004). Baek and 

Shum measured ocean tidal heights by D-InSAR in 2011 (Baek & Shum, 2011). 

InSAR has also been applied to monitor the movement of coastline by extracting 

coastline from SAR images (Dellepiane, et al., 2004).  

2.6.4 Landscape Deformation Measurement 
In terms of monitoring landscape characterization, most researchers have focused on 

seismic deformation, subsidence and uplift of the volcano, glacier movement, and 

topography deformation.  

(1) Seismic deformation 

Ground deformation of the 1992 Landers earthquake was firstly mapped by InSAR in 

1998 (Massonnet & Felgl, 1998). A pair of radar images which were captured before 

and after the earthquake was applied in the research. Later, InSAR was widely 

adopted in seismic deformation monitoring, such as the Antofagasta earthquake in 

Chile in 1995 (Pritchard, et al., 2002), the Hector Mine earthquake in California in 

1999 (Simons, et al., 2002), the Wenchuan Earthquake in China in 2008 (Lin, et al., 

2009), etc. 

(2) Subsidence and uplift of the volcano 

InSAR has been successfully applied in detecting the volcanic eruption. Subsidence 

and uplift detection of Alaskan volcanoes in 2002 (Lu, et al., 2002) and the Sierra 

Negra Volcano in 2006 (Yun, et al., 2006) were undertaken by InSAR.  

(3) Glacier movement 
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Glacier movement monitoring is another important application of InSAR, which 

supports the research on global warming and sea level change. Surface deformation of 

the active alpine rock glaciers was monitored by Kenyi and Kaufmann in 2003 (Kenyi 

& Kaufmann, 2003).  Later, Joughin and his colleagues measured the velocities of 

JakobshavnIsbræglaciersin Greenland and found large fluctuations (Joughin, et al., 

2004).  

(4) Topography deformation 

Topography deformation includes landslides, ground deformation, etc. Hilley and his 

colleagues worked on the monitoring of slow-moving landslides using PS-InSAR and 

published a paper in 2004 (Hilley, et al., 2004).  

Differing from ground deformation caused by the earthquakes and volcanic activity, 

ground subsidence caused by excessive exploitation of ground water, coal mining, oil 

mining and construction of infrastructure occurs slowly. The time period for ground 

deformation monitoring can be several years. As a result, temporal decorrelation 

should be considered. The hydrologic dynamics of the Sian Ka’an Wetlands in 

Mexico were monitored by Gondwe and his colleagues in 2010 (Gondwe, et al., 2010).  

Subsidence of the Samchukcoal field in Korea was measured by D-InSAR in 2008 

(Baek, et al., 2008).  In addition, PS-InSAR was applied to monitor ground 

subsidence of the Jingjin Railway in China (Ge, et al., 2008).  

2.7 Ground Deformation Monitoring by D-InSAR 
Due to the slow progression of ground deformation, there must be a time interval 

between the acquisitions of the two radar images required for ground deformation 

monitoring. Apart from the information on ground deformation, topographic 

information also has an impact on the ground deformation results derived from the 

interferogram. As a result, the topographic phase should be removed from the 

interferometric phase of the interferogram to obtain real ground deformation results 

(Adam, et al., 2003).  

In order to remove the topographic phase and extract the ground deformation results, 

D-InSAR, which applies differential interferometry to one interferogram which only 

contains topographic information and the other one interferogram which contains not 
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only topographic information but also ground deformation information, is used in this 

research.  D-InSAR is considered as the only approach to monitor ground deformation 

with large spatial and temporal scales to millimetre precision (Bamler & Hartl, 1998). 

2.7.1 Classifications of D-InSAR 
According to the number of radar images used in differential interferometry, D-

InSAR can be divided into two-pass D-InSAR, three-pass D-InSAR and four-pass D-

InSAR (Lubis, et al., 2011).  

(1) Two-pass D-InSAR 

Undulating terrain may reduce the accuracy of DEM generation by InSAR. As a result, 

external DEM should be adopted in D-InSAR to remove topographic information for 

an area with undulating terrain (Liao, et al., 2007). Two-pass D-InSAR is an approach 

to monitor ground deformation by applying differential interferogram to the two 

interferograms. The magnitude map simulated by external DEM and orbital trajectory 

of the radar is considered as the first interferogram, while the other interferogram is 

generated from a pair of radar images captured before and after ground deformation.  

The simulated magnitude map only contains topographic information, while the phase 

of the second interferogram contains both topographic information and ground 

deformation information. As a result, topographic information can be removed by 

undertaking differential interferometry and the ground deformation results can be 

generated.  

(2) Three-pass D-InSAR 

For areas with the flat terrain, three-pass D-InSAR can be adopted to measure ground 

deformation by generating two interferograms based on three radar images (Liao, et 

al., 2007).  

The first interferogram is obtained from two radar images captured before ground 

deformation while the second interferogram is generated from one radar image 

captured after ground deformation and any one of the two radar images obtained 

before ground deformation. Only topographic information is contained in the first 

interferogram and both topographic information and ground deformation information 
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exist in the second interferogram. The ground deformation results can be obtained 

after undertaking differential interferometry. 

(3) Four-pass D-InSAR 

In four-pass D-InSAR, two interferograms are generated from four radar images. The 

first interferogram is generated from two radar images obtained before the ground 

deformation while the second interferogram is obtained from the other two radar 

images captured after the ground deformation. Both of the interferograms contain 

only topographic phase and the topography information of the monitoring area before 

and after the ground deformation can be obtained by the interferograms. Accordingly, 

the ground deformation results can be extracted from the differential interferogram 

created by the two interferograms (Agustan, 2010). 

2.7.2 Limitations of D-InSAR 
D-InSAR has been widely adopted in ground deformaiton monitoring. However, the 

reliability of a D-InSAR result is reduced due to its limitations.  

(1) Temporal decorrelation 

If the time interval for the acquisition of two radar images is too long, vegetation 

coverage and the topography of the monitored area will change, which results in 

changes in the characteristics of the scatterers on the ground (Gondwe, et al., 2010). 

As a result, temporal decorrelation may occur on the interferogram generated from 

this radar image pair. In addition, phase delay of the radar pulse occurring in the 

ionosphere and troposphere of the atmosphere also contribute to the temporal 

decorrelation (Li, et al., 2009) (Ding, et al., 2008).  

(2) Spatial decorrelation 

If the baseline between two radar antennas is too long, look angles (see Figure 4.2) for 

the two acquisitions of radar images are significantly different. Different phase of 

radar pulses caused by different look angles result in low coherence between the radar 

pulses and spatial decorrelation on the interferogram generated from the radar image 

pair (Strozzi, et al., 2001). In addition, phase delay caused by variability of 

atmospheric water vapour is another reason for spatial decorrelation (Hanssen, 2001). 
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(3) Phase noise in D-InSAR 

Except for the ground deformation, phase caused by flat earth effects, topographic 

effects, atmospheric delay, orbit error and random phase noises are considered as the 

phase noise of the interferogram. Phase cycle and continuity of the interferometric 

fringes in the interferogram are affected by the phase noise. In order to extract real 

ground deformation results from the interferogram, phase noise must be removed.   

• Flat earth effect 

For an area with flat terrain, there is no periodic change in the interferometric fringes 

in the interferogram. Due to the curvature of the Earth’s surface, propagation 

distances of the radar pulses between radar antenna and the scatterers on the ground 

are different (see Figure 4.9). As a result, phase difference of radar pulses caused by 

different propagation distances leads to periodic changes in interferometric fringes in 

the interferogram, which is considered to be the flat earth effect.  

The flat earth effect can result in dense interferometric fringes, which are periodic 

changes to interferometric fringes in the interferorgam of the area without ground 

elevation change. In addition, an interferogram with flat earth effect is difficult for 

phase unwrapping (Strozzi, et al., 2001). A phase caused by flat earth effect can be 

removed based on the precise orbit data of the radar and the geometric principle of 

radar imaging (Li, et al., 2004).  

• Topographic effect 

In addition to the flat earth effect, undulating topography of the Earth will also lead to 

different propagation distances between radar antenna and the scatterers on the ground. 

An interferometric phase caused by undulating topography profile refers to a phase 

caused by topographic effect (see Figure 4.10). Topographic effect can be removed by 

DEM generated by InSAR. However, due to the accuracy of DEM generation, 

external DEM is usually applied to remove the topographic phase (Tomás, et al., 

2005).  

• Atmospheric delay 

Due to water vapour in the troposphere, propagation delay of the radar signals may 

occur. In repeat-pass D-InSAR, two radar images are not obtained simultaneously and 
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atmospheric conditions for the two acquisitions of image pair are different. As a result, 

there is a phase difference between the two radar pulses. Atmospheric delay can be 

eliminated by atmospheric water vapour correction (Li, et al., 2009) and the persistent 

scatterers technique (Hooper , et al., 2013). For the persistent scatterers technique, a 

sparse grid of persistent scatterers (PS) with stable amplitude and phase are detected 

in the study area. These PS are characterized as the target with high signal to noise 

ratio (SNR). SNR is a ratio of the signal power to the noise power; the pixel with 

higher SNR is brighter than the one with lower SNR. Phase error of the interferogram 

caused by the atmospheric effect is strongly spatially correlated between the stack of 

interferograms. As a result, high-pass filtering in time and low-pass filtering in space 

can be carried out to estimate the atmospheric phase and remove the atmospheric 

effect (Hooper, et al., 2004).  

• Orbit error  

Orbit error caused by inaccurate position of the radar orbit leads to errors in ground 

deformation result (Ferretti, et al., 2007). Both the baseline between radar antennas 

and the look angle of the radar contribute to the flat earth phase and the topographic 

phase. Precise radar orbit data can ensure the estimation of the baseline and the look 

angle, and the removal of the phase caused by flat earth and topography effects from 

the interferogram. 

Orbit error can be eliminated by the adoption of precise orbit data. Delft University of 

Technology provides precise orbit determination for the ERS and Envisat satellites 

(Delft University of Technology, 2014).  

• Random noise 

Random noises include thermal noise of the radar system, noise resulting from 

variable scattering within the pixel, errors in radar image coregistration, etc. (Ferretti, 

et al., 2007). It can be reduced by adopting multi-looking and filtering (Balzter, 2001). 

Lee and his colleagues worked on the relationship between the standard deviation of 

the noise and the number of looks (Lee, et al., 1994). Speckle noise can be eliminated 

by generating a multi-looking image. The number of looks is defined by the number 

of partitioned beam widths which refers to the number of images captured by the 

radar at the same time. However, the azimuth resolution of a multi-looking image is 
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reduced while eliminating the speckle noise (Moreira, 1991). In addition, noise of the 

interferometric phase can be reduced by Goldstein filtering (Goldstein & Werner, 

1998) and Lee filtering (Lee, et al., 1994).  

2.8 Ground Deformation Monitoring by PS-InSAR 
Pairs of radar images used for D-InSAR are captured by spaceborne radar at different 

times. Due to the long time interval between the image pair acquisitions and the long 

baseline between the radar antennas, temporal coherence and spatial coherence of the 

interferogram created from the image pair are low, which results in decorrelation of 

the interferogram. Decorrelation of the interferogram not only results in phase noises 

but also leads to discontinuous stripes on the interferogram and difficulty in phase 

unwrapping (Ferretti, et al., 2001) (Strozzi, et al., 2001).  

In order to obtain a more robust ground deformation result, an interferogram with 

good coherence is required. Range for the coherence of the interferogram is between 0 

and 1, where 0 indicates that the interferogram is completed decorrelated while 1 

represents that a robust deformation result can be extracted from this interferogram. 

Generally, interferogram with a coherence index between 0.5 and 1 is considered to 

be able to generate a differential interferogram for accurate ground deformation 

monitoring (Suksmono & Hirose, 2002). PS-InSAR was developed as an enhanced D-

InSAR technique to overcome the decorrelation of the interferogram in D-InSAR. 

Ferretti and his colleagues applied PS-InSAR to mitigate the effects of low temporal 

coherence and the atmospheric delay in 2000 (Ferretti & Rocca, 2000). Only PS with 

more stable ability of radar backscattering are selected in PS-InSAR. For instance, PS 

can be the roof or the corner of buildings and the bare rocks. The PS pixel has stable 

amplitude and phase in the interferogram and has good coherence even over a long 

time interval. As a result, more interferograms with good coherence can be generated 

and the reliability of the D-InSAR result is improved. In repeat-pass D-InSAR, 

coherence of the interferogram created from the radar image pair is low if the baseline 

between the two acquisitions of the image pair is longer than the critical baseline. The 

stable scattering characteristic of the PS ensures a good coherence of the 

interferograms even though the baseline between the two radar antennas is long 

(Ferretti, et al., 2001). 
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PS-InSAR is able to generate a stack of differential interferograms which represent 

the ground deformation results at different time intervals. Accordingly, time series 

analysis of the PS pixel in the interferogram can be carried out (Tizzani, et al., 2007). 

Ferretti and his colleagues estimated a nonlinear subsidence rate with PS-InSAR in 

2000 (Ferretti, et al., 2000). PS-InSAR was also applied to measure land subsidence 

along Jingjin High Speed Rail by Ge et al. in 2009 and a time series analysis of land 

subsidence was conducted based the result of PS-InSAR (Ge, et al., 2009).  

2.9 PS-InSAR in Railway Subsidence Monitoring 

2.9.1 SNCF High Speed Rail Network 
PS-InSAR was applied to measure subsidence of the SNCF3 high speed rail network. 

In order to ensure the reliability of PS-InSAR results, historical levelling survey data 

or GPS data which record deformation history of the selected railway line are applied 

to calibrate PS-InSAR results. Standard deviation of the levelling survey results and 

PS-InSAR results can be used to assess the monitoring result.  

In subsidence monitoring of the SNCF network, historical levelling survey data were 

used to validate the PS-InSAR results. It was identified in the validation that PS-

InSAR can produce subsidence monitoring results with an accuracy of 4 mm. SNCF 

plans to monitor the subsidence of more railway lines using PS-InSAR to find the 

areas with more serious subsidence problems in their network (Altamira Information, 

n.d.) 

2.9.2 Jubilee Extension Line in London 
Ground subsidence may occur during underground tunneling projects. Tele-

Rilevamento Europa (TRE) utilised PS-InSAR in ground subsidence monitoring of 

the Jubilee Extension Line Tunnel Project. Figure 2.9 indicates the annual average 

deformation velocity of the Jubilee Extension Line (the white arrow). Tunneling work 

on this extension line was carried out during the 1990s and completed in 1999. Based 

on the SAR images captured by ERS satellite from May 1992 to Dec 2000, a ground 

deformation velocity map of the Jubilee Extension Line was generated (TRE, 2011).  

                                                 
3SNCF is French National Railways 
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Figure 2.10: Ground subsidence velocity map of the Jubilee Extension Line in 

London 

In the ground deformation velocity map, PS in red represents the area subsided up to 5 

mm per year during the Jubilee Extension Line tunneling project. 

2.9.3 Jinshan Railway in China 
PS-InSAR has been widely implemented in railway subsidence monitoring in China 

and most of the applications indicate good coherence with the precise leveling 

measurement results.  For instance, Ge and his colleague measured land subsidence of 

the Jingshan Railway in China by PS-InSAR based on Envisat ASAR images in 2008 

(Ge, et al., 2008).  

Figure 2.10 represents a velocity map of the land subsidence along the Jingshan 

Railway in 2004. The red rectangle indicates the monitoring area while the purple line 

represents the Jingshan railway line. According to the PS-InSAR result, the velocity 

of land subsidence along this railway line is up to 83.8 mm per year.  
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Figure 2.11: Land subsidence velocity map of Jingshan Railway in 2004 

In order to verify the reliability of the PS-InSAR result, leveling measurement results 

obtained from 74 leveling benchmarks were used to compare with the PS-InSAR 

results. Standard deviation between the leveling survey and PS-InSAR results is 

4.6mm, which indicates good agreement between the two results. As a result, it can be 

concluded that reliability of PS-InSAR in railway subsidence monitoring is acceptable.   

2.10 Summary 
InSAR is a technique to produce a radar interferogram from a pair of radar images, 

and extract information of ground deformation from the interferogram. This chapter 

described the development and applications of InSAR, and satellites which offer radar 

images for InSAR processing were reviewed.  

If ground deformation occurs during the acquisitions of the image pair, D-InSAR is 

applied to remove topography information and extract real ground deformation. Based 

on the number of radar images used in differential interferometry, three categories of 

D-InSAR were reviewed and two-pass D-InSAR was selected in this research. In 

order to eliminate the limitations of D-InSAR, PS-InSAR, which is able to provide a 

more robust ground deformation result and conduct a time series analysis of ground 

deformation, was introduced. PS-InSAR has been applied in railway subsidence 



Chapter 2 Review of Railway Subsidence Monitoring 
 

30 

 

monitoring of the SNCF High Speed Rail Network in France, the Jubilee Extension 

Line in London and the Jinshan Railway in China. 
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Chapter 3 Review of Railway Subsidence 

Prediction 

3.1 Introduction 
A time series is a collection of observations which are recorded over a specific period. 

According to the frequency at which the observations are made, it can be divided into 

discrete time series and continuous time series (Brockwell & Davis, 2002). The 

ground deformation data analysed in this thesis belong to discrete series, as they were 

recorded at certain intervals discretely. 

One major purpose of time series analysis is to predict the future trend of the time 

series. After decades of the research, various mathematical models have been 

developed to produce such predictions. In this chapter, the major types of time series 

models will be reviewed, which include not only traditional statistical models that 

have been developed for decades but also those inspired by new technologies or 

theories in recent years. 

In addition, this section will also present practical cases where the models mentioned 

above were utilised in studies of ground subsidence (Zhang, et al., 2011) (Yang, et al., 

2009) (Tang, et al., 2007) as well as tunnel surface subsidence (Suwansawat & 

Einstein, 2006). It has been demonstrated that these techniques perform well in 

simulating historical subsidence and are also able to produce reliable predictions of 

future subsidence development.   

3.2 Time Series Prediction Model 
In general, time series prediction models can be divided into parametric and non-

parametric models, depending on whether the prediction model is pre-determined by 

certain parameters. Moving average (MA), auto-regressive (AR), auto-regressive 

moving average (ARMA), decomposition analysis (Shiskin, 1958) and Box-Jenkins 

analysis (Box & Jenkins, 1976) can be considered as typical parametric models. In 
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terms of mathematical theories applied, all the models mentioned above have a 

common feature that they are developed based on statistical methodologies.  

In the last 20 years, in the aftermath of information technology development, artificial 

intelligence has been gradually utilised in time series analysis and models such as 

artificial neural network (ANN) models have been developed based on this 

technology (Quah & Srinivasan, 1999) (Rabiner, 1989) (Azoff, 1994). Compared to 

statistical models, ANN models have better performance when dealing with non-

linear relationships. Furthermore, in the early 1980’s, grey system theory was 

introduced by Deng (Deng, 1982). It is capable of handling time series that have a 

limited number of observations and contain unknown parameters and inter-

relationships. There are also a few other time series prediction approaches including 

fuzzy system (Stepnicka, et al., 2009), support vector machines (Thissen, et al., 2003) 

etc., which are widely used in various sectors. 

3.2.1 Statistical Models 
(1) Component analysis 

Regardless of mathematical technique and the complexity of statistical models applied 

in the time series prediction, component analysis mainly focuses on four key 

components of the time series, namely level, trend, seasonality and noises (Mentzer & 

Moon, 2005). The goal of the statistical analysis is to determine the level, trend and 

seasonality features of a time series.  

Level is usually described with different forms of average, which reflect the central 

tendency of the historical time series data. The simplest measure of level is the 

arithmetic mean. If the time series is relatively stable over a certain period and only 

havs small movements around a fixed point, as shown in Figure 3.1, the future 

development can be forecasted using the arithmetic mean of the historical data: 

        Fn+1 = ∑ Stn
t=1  /n                                               (3.1) 

Where,  

            Fn+1: forecast value for the next period; 

St: historical data at the period t; 

n: the number of historical data. 
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Figure 3.1: Level only time series 

The advantage of this measure is that it is usually quite straightforward to calculate 

and it also removes the effect of fluctuations. However, when the time series is not 

stable with small level changes, the performance of the average-based forecast can be 

quite poor (Mentzer & Moon, 2005). In order to dampen out the prediction errors 

resulting from the instability and fluctuation of the time series, moving average was 

introduced, which is the average of the time series data in a previous fixed period 

(Jones, 1966). 

Fn+1 = ∑ Stn
t=n+1−i /i                                              (3.2) 

Where,  

            i: the selected periods which is also known as the selected ‘window’. 

Compared to simple average which basically gives the same weights to all the 

historical data, moving average only considers the data captured in the selected 

window as the indicator for the forecast. Apparently, moving average based prediction 

can better reflect the recent development of the time series. However, as the selection 

of the size of the window is quite subjective, there is no absolute benchmark to assess 

whether the selected window is optimal or not. When the window size becomes larger, 

the moving average gets closer to the simple arithmetic average. On the contrary, 

when only one period is chosen for the moving average calculation, it basically 

assumes the last period as the best forecast for the next period (Mentzer & Moon, 

2005). In order to address the issues of moving average and establish a more 

systematic way of assigning weightings to the previous periods, a technical method, 

such as exponential smoothing which gives more emphasis on the most recent data 

(Jones, 1966), is introduced.  
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Ft+1 =  αSt + (1 − α)Ft                                            (3.3) 

Where, 

            St: actual data at the period t; 

            Ft: forecast value for the period t; 

 α: weighting for the estimation (between 0 and 1). 

When the time series does not stay at its current level and switches to other levels 

continuously, trend is brought into the prediction model to reflect the level changes. In 

general, trend can be considered as the difference between the two levels: 

Tt =  Lt −  Lt−1                                                  (3.4) 

Where, 

            Tt: trend at the period t; 

 Lt: level at the period t. 

Similar to the estimation of level, exponential smoothing can also be applied to 

estimate trend (Mentzer & Moon, 2005): 

Tt+1 =  β(Lt −  Lt−1) + (1 − β)Tt                                  (3.5) 

Where, 

           Tt+1: forecast trend for the next period; 

           Lt −  Lt−1: actual trend at the period t; 

           Tt: forecast trend in the period t; 

           β : weighting for estimation (between 0 and 1). 

Apart from level and trend, some time series also reveal significant seasonal patterns. 

For instance, the subsidence of the subgrade in plateau during winter and summer can 

vary materially. There are two main methods to adjust for seasonality, namely 

additive seasonal adjustment and multiplicative seasonal adjustment: 

Ft+1 = St + SAt−Z (Additive)                                        (3.6) 

Ft+1 = St SAt−Z⁄  (Multiplicative)                                    (3.7) 

Where, 

            Ft+1: forcast seasonality for the next period; 

            SA: seasonal adjustment; 
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 Z: the length of the seasonal cycle. 

Combining the estimation of level, trend and seasonality together, the forecast of the 

time series can be made as follows: 

Ft+1 = α(St SAt−Z⁄ ) + (1 − α)(Lt−1 + Tt)                           (3.8) 

Where, 

            Ft+1: forcast data for the next period; 

            St/SAt-Z: actual data at period t; 

            Lt-1+Tt: forcast data for the period t. 

(2) Auto-regressive moving average  

Among various statistical models which were built up based on the rationale 

introduced above, auto-regressive moving average (ARMA) is one of the most 

prevailing methodologies. It is a combination of two models including the auto-

regressive (AR) model and moving average (MA) model. The AR model assumes that 

the prediction of the time series can be produced based on a finite number of previous 

observations: 

St = c + ∑ γnSt−n
p
n=1 + εt                                            (3.9) 

Where, 

            St: forcast value for the period t;  

            c: a constant; 

p: number of historical periods involved, also known as the order of the AR 

model; 

γ: parameters; 

            St-n: actual data for the period t-n; 

εt: white noise at the period t, which is stationary and has expected value of 0. 

Similarly, a MA model tries to estimate the future movements of the time series based 

on the average of the time series together with random noises during selected previous 

periods. The number of periods selected is known as the order of the MA model. 

St = μ + εt + ∑ θnεt−n
q
n=1                                         (3.10) 

Where, 
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            μ: the mean of the time series (a constant); 

εt: white noise at period t, which is stationary and has expected value of 0; 

q: number of historical periods involved, also known as the order of the MA 

model; 

θ: parameters; 

εt−n: white noise at period t-n, which is stationary and has expected value of 0; 

When considering both the AR and MA in the time series prediction model, it 

becomes auto-regressive moving average model (ARMA). The model ARMA (p, q) 

can be structured as follows (Brockwell & Davis, 2002): 

St = c + εt + ∑ γnSt−n
p
n=1 + ∑ θnεt−n

q
n=1                            (3.11) 

In the equation above, the AR part represents the impact of historical time points on 

the current period, while the MA part can be considered as random fluctuations / 

shocks in the past. The ARMA model is particularly suitable for a time series which is 

not only influenced by historical movements but also hit by unexpected shocks. The 

most critical part for an ARMA model is to decide its orders, i.e. the values of p and q 

respectively. Since the ARMA model was firstly introduced by Wold in 1938, which 

described ARMA model theoretically (Wold, 1938), mathematicians have developed 

various methodologies to calculate and choose the order of the model. The most 

popular method was introduced by Box and Jenkins (Box & Jenkins, 1970) in 1970, 

which significantly facilitated the utilisation of ARMA model and made it feasible to 

apply the ARMA model to real world data. The main elements of Box and Jenkins 

approach are (Makridakis & Hibon, 1997): 

• Proposing methods of transforming non-stationary time series to stationary 

series 

• Using autocorrelation and partial autocorrelation to determine optimal values 

of p and q for the model 

• Providing computer programme-based modules to estimate the parameters of 

the model 

• Examining and optimising both the values of p and q as well as the parameters 

The ARMA model constructed through the Box-Jenkins methodology is known as the 

auto-regressive integrated moving average (ARIMA) model, which has become one 
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of the most popular prediction models for time series. The ARIMA model can be 

interpreted as ARIMA (p, d, q), where p and q have the same definition as in the 

ARMA model. The additional d represents the number of differencing that the time 

series needs to make in order to be stationary. 

3.2.2 Artificial Neural Network 
An artificial neural network (ANN) is a computer-based model inspired by the natural 

neural system in animal’s brain and the way in which the neural system deals with the 

information. Human’s understanding on the world is through a process of learning and 

recognition. During this process, when information is received by the brain, it may be 

decomposed into elements each of which will be handled by specific neurons 

according to their respective functions. Then based on outputs produced by each 

neuron and the interactions among neurons, a global action and recognition will 

emerge. ANN tries to mimic the information processing procedure of the natural 

neural system by creating artificial neurons that can perform similar but highly 

abstracted tasks. Each artificial neuron is a computational module, which is usually 

comprised of four components, inputs, weights, activation function and outputs 

respectively (Gershenson, 2003). ANN was firstly introduced by McCulloch and Pitts 

in 1943, when they described the procedure of human brain’s recognition on complex 

information through the cooperation among neurons (McCulloch & Pitts, 1943). In 

their paper, a simple neuron model was also introduced, which became the basis of 

numerous artificial neuron network models developed later. As the output of an 

artificial neuron is determined by the activation function, which is further based on 

inputs and their corresponding weights, the most critical part of an ANN model is to 

decide weights of each neuron.  

Since the ANN was introduced, various algorithms have been developed to learn and 

adjust weights automatically based on the historical data. Gradient descent 

backpropagation is one of the most widely utilised algorithms, which enables the 

ANN to optimise input weights in order to minimising output errors (Rumelhart & 

McClelland, 1986). According to the gradient descent backpropagation algorithm, 

ANN is structured with layers, including the input layer and output layer as well as 

hidden layers if there are more than two layers. In the simplest 2-layer ANN, neurons 
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on the input layer receive data and pass them to neurons on the output layer, which 

will then produce output through the activation function based on inputs and their 

weights. The whole process can be illustrated in Figure 3.2. 

 

 

 

 

 

 

 

 

Apart from gradient descent backpropagation algorithm, other frequently applied 

algorithms also include Levenberg–Marquardt back propagation, Genetic algorithm 

etc (Ghaffari, et al., 2006). Due to its adaptability in dealing with various data types 

and relationships, ANN has become one of the most effective approaches to machine 

learning and pattern recognition in many fields. 

3.2.3 Grey Model 
Grey system theory was firstly introduced by Deng in 1982 (Deng, 1982). It aims to 

analyse systems with unknown parameters and estimate their movements accordingly. 

During the past 20 years, grey system theory has driven significant attentions in both 

the academic area and the practical fields.  

In terms of transparency, systems can be divided into 3 categories, namely black 

system, white system and grey system. If parameters and their relationships are not 

known in a system, the system is called a black system or black box. On contrary, if 

all information is known and transparent in a system, the system is defined as white 

system. When a system’s status is between the black and a white systems, i.e., only a 

portion of the information is known, it is a grey system (Deng, 1982). Due to the lack 

of transparency in grey system with unknown parameters, it is usually difficult to 

Input X1; Weight 𝑤𝑤1 

Input X2; Weight 𝑤𝑤2 

Activation Function Output Y 

Input Layer Output Layer 

Figure 3.2: Structure of the neural network 
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utilise parametric statistical models to describe the behaviour of the grey system. The 

grey system theory is thus developed to (Deng, 1989): 

• Establish alternative process instead of statistical analysis to understand grey 

system 

• Transform the original raw grey data to a more structured series for modeling 

purpose 

• Introduce grey model to describe the movements of grey system and make 

predictions on the future status 

The grey model can be described as GM (m, n), where m is the order of differencing 

and n represents the number of parameters in the model. The most basic and important 

grey model is GM (1, 1), which use the first order differencing and have only 1 

parameter (Deng, 1989). The differencing it implements is Accumulated Generating 

Operation (AGO), which is defined as (Deng, 1989): 

xk
(1) = ∑ xi

(0)k
i=1                                                    (3.12) 

Where, 

            xk
(1): the transformed data at time k; 

 xi
(0): the raw data at time i. 

Through AGO, the original grey data can be transformed to a series with more 

dependency between data points, which is then suitable for modelling and forecasting. 

Apart from GM (1, 1), other grey models have been also established, resulting from a 

combination of grey system theory and other system-describing theories. These 

models include the grey Verhulst model (Wen & Huang, 2004), grey fuzzy model 

(Huang & Huang, 1996), and support vector regression grey model (Chang & Tsai, 

2008).  

3.2.4 Comparisons between Time Series Prediction Models 
Statistical models, ANN models and grey models have all been approved to be 

successful in describing and predicting time series. However, as the time series data in 

the real world vary significantly in terms of type, volume, frequency etc., the accuracy 

of these models is highly dependent on the characteristics of the target data.  
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As the most widely used model in statistical analysis on time series, ARIMA tries to 

describe time series with pre-determined modelling structure, i.e. linear regression 

and/ or moving average. With the Box-Jenkins methodology which can assist in 

determining the orders of the model, ARIMA is quite flexible in modelling different 

types of time series based on auto-regression on past data, moving average of 

previous data or a combination of auto-regressive and moving average (Zhang, 2003). 

However, when the time series reveals certain non-linear pattern, the accuracy of 

ARIMA drops. In the real life, most of the data series are not purely linear 

(Aslanargun, et al., 2007). Thus, it is not always sufficient to use only ARIMA to 

describe the time series. 

Compared to ARIMA, ANN is capable of modelling non-linear time series through its 

flexible model structure which does not have any fixed form but is derived from the 

application of the learning function on the data itself, resulting in a much better 

adaptability in modelling data with different features (Zhang, 2003). Comparisons of 

performances between ARIMA and ANN have been undertaken in numerous papers. 

It appears that based on empirical research results, ANN outperforms ARIMA models 

(Chin & Arthur, 1996) (Kohzadi, et al., 1996) (Prybutok, et al., 2000), particularly in 

capturing unexpected sudden changes within time series (Chen & Lai, 2011). 

Although ARIMA and ANN are still dominating the time series modelling and 

forecasting, grey models have attracted significant academic attention recently and 

have been widely implemented in practice. Compared to ARIMA and ANN, grey 

models have relative strength in the following areas: 

• Time series with limited data availability. Both the ARIMA and ANN require 

large volume of data in order to establish reliable models. However, grey 

models can still work well with only a few data points (Deng, 1989). 

• As grey models always adapt to the new observations available in the time 

series, it has better performance in real-time prediction than other methods 

(Kayacan, et al., 2010). Especially for systems with unknown factors or 

unknown relationships between influential factors, grey models are more 

robust against noises (Kayacan, et al., 2010). 
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3.3 Time Series Models in Subsidence Prediction 

3.3.1 ARMA Models 
As the most prominent time series prediction approach, ARMA has been bought into 

different types of subsidence modelling and forecasting.  

(1) ARMA in mining area subsidence prediction 

ARMA was used in land subsidence and movement prediction in a mining area in 

China. In the project, the autocorrelation function and partial autocorrelation function 

was firstly applied to confirm the suitability of ARMA model. Then EViews, a 

statistical research tool, was utilised to estimate the parameters and establish the 

ARMA model. Movement observations from 2001 to 2010 in the mining area were 

selected in the simulation. According to the comparison between the results of 

forecasting estimated from ARMA model and the actual data, ARMA model revealed 

high accuracy, particularly within short prediction period (Zhang, et al., 2011).  

(2) ARMA in railway subsidence prediction  

ARMA was also used to predict the ground subsidence during the construction of 

urban underground railway in China. The raw subsidence data were transformed 

through the first order differencing in order to produce a stationary time series data. 

The order of the model was determined by Akaike Information Criterion algorithm, 

while the parameters of the model were optimised based on least squares method. The 

model was then adopted to forecast the subsidence of Shenzhen Metro Line 2 in 

China, which eventually appeared to be reliable in the subsidence prediction (Yang, et 

al., 2009).  

3.3.2 Artificial Neural Network 
Since the development of most subsidence is usually non-linear, an Artificial Neural 

Network (ANN) approach has become widely used in this field.  

(1) Prediction of maximum surface subsidence resulting from earth pressure balance 

(EPB) tunnelling in the Bangkok Mass Rapid Transit Authority (MRTA) project 
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A multiple-layer neural network model was employed for subsidence prediction, 

which consists of 1 input layer, n hidden layers and 1 output layer. Factors which have 

an impact on the settlement were categorised into 3 main classes, namely tunnel 

geometry, geological conditions and shield operation factors. There were 2 factors in 

tunnel geometry, 3 factors in geological conditions and 5 factors in shield operation. 

Therefore the input layer was comprised of 10 neurons which corresponded with the 

10 factors. The output layer only contains 1 neuron which produced the predicted 

maximum subsidence caused by EPB. The classical backpropagation algorithm was 

used to determine the weights for each neuron.  

The sample data included the subsidence data of the 20 km of twin tunnels in 

Bangkok, which were further divided into the training set and the validation set as per 

the standard practice in time series prediction. In order to decide the number of hidden 

layers and neurons on each hidden layer, the project established 18 different structures 

of ANN, varying in terms of numbers of hidden layers, nodes on each hidden layer 

and data points used in the training set. Root mean square error (RMSE) was used to 

assess the performance of these models. After the models were tested both with the 

train set and validation set, the RMSE suggested that the neural network model with 1 

hidden layer and 20 neurons in the hidden layer performed the best and the optimal 

number of data points for the training set was 2,000. Finally, the selected model was 

implemented for the whole tunnel and it was concluded that the ANN model was 

capable of producing reliable prediction of the surface subsidence for the project 

(Suwansawat & Einstein, 2006). 

(2) Railway track deterioration prediction with ANN 

In the railway industry, a research by the Turkish State Railways used ANN in 

forecasting railway track geometry deterioration where subsidence is one of the major 

influential factors. In the study, the ANN model was a multi-layer one which had 4 

layers, including 2 hidden layers. The input layer contained 12 neurons, representing 

12 inputs that can be grouped into 4 categories, i.e. load factors, material factors, soil 

factors and environmental factors. Among these factors, five were quantitative 

variables, such as traffic loads, speed, curvature, gradient and cross level, while others 

were qualitative variables, including sleeper type, rail type, rail length, falling rock, 
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land-slide, snow, and flood. All the qualitative variables were described with dummy 

values, i.e. 1 or 0. Two hidden layers had 8 and 6 neurons respectively and were 

activated with a hyperbolic tangent function. The final output was the deterioration 

rate.  

The sample data were selected from observations on 820 segments on a 180 km 

railway between Arifiye and Eskisehir in Turkey from 2009 to 2011. The ANN model 

was identified and assessed through a SPSS package. According to the modelling 

results, the study found that the ANN model had a solid performance in predicting the 

track deterioration rate, provided that R2 (coefficient of determinations) for all 

parameters was above 70%. It was also concluded that the ANN model had significant 

potential for assisting maintenance and repair planning (Guler, 2013). 

3.3.3 Grey Theory based Prediction 
In the real world, subsidence data are sometimes not sufficient enough for statistical 

analysis or ANNs modeling. In these situations, a grey model is an effective 

alternative approach, which requires much less data and does not need to identify all 

key factors in order to develop the prediction model. 

A study on land subsidence in Shanghai used the GM (1, 1) to estimate the land 

subsidence around a skyscraper in the Lujiazui Area. As it was relatively difficult to 

monitor the land subsidence for a long period and there were various factors which 

contributed to the subsidence, the available data for modeling were quite limited and 

had different intervals between observations. Therefore, the study made further 

transformation on the raw data by using the average interval between observations, 

changing the raw data points into a new time series with equal time interval, which 

could then be modeled with the standard GM (1, 1). After a comparison between the 

prediction results from GM (1, 1) and the actual subsidence data, as well as the 

prediction produced by the adaptive neuro-fuzzy inference system (ANFIS), which 

was another widely used approach in subsidence forecasting, the study concluded that 

the GM (1, 1) can produce reliable forecasts with similar accuracy as the ones made 

by ANFIS, while the GM (1, 1) requires much less data volume. However, the 

performance of GM (1, 1) was much better in a short period, indicating that the model 

should continuously be adjusted and re-established with the newly available data 
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being incorporated to replace old data, in order to ensure the accuracy of the model 

(Tang, et al., 2007). 

3.4 Summary 
As described above, due to the importance of railway subsidence monitoring, time 

series techniques have been widely applied in this field. The main time prediction 

models include ARMA which is based on traditional statistical theories, artificial 

neural network models inspired by artificial intelligence and a grey model which is 

derived from system theory.  

There is no approach that is definitely superior to others. Each of them has their 

relative strength in a particular area. Generally speaking, ARMA is more suitable for 

time series with large data volume and clear developing trend, while artificial neural 

network performs well when there are fewer observations with an un-linear trend. 

Compared to these two approaches, a grey model requires the least volume of data 

and specifically works for systems with partially unknown parameters. At the end of 

this section, a few practical cases were given with regard to the application of time 

series models in subsidence prediction, which include the utilisation of an ARMA 

model in the subsidence monitoring of a mining area in China, the neural network 

model in tunnel surface subsidence detection in Bangkok and the grey model in land 

subsidence around a skyscraper in Shanghai. All of these projects have been proved to 

produce satisfactory performance in subsidence prediction and can therefore provide 

significant support in future maintenance planning and scheduling as well as safety 

assessment in subsidence-related areas such as the railway industry.
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Chapter 4 Railway Subsidence Monitoring 

with InSAR 

4.1 Introduction 
Interferometric Synthetic Aperture Radar (InSAR) has been widely applied in various 

research areas, such as topography mapping, DEM (Digital Elevation Model) 

generation, ocean currents mapping and landscape deformation measurement. In this 

chapter, the author aims to introduce the methodology of InSAR to railway 

subsidence monitoring.  

Firstly, the difference between Real Aperture Radar (RAR) and Synthetic Aperture 

Radar (SAR) will be discussed. Following a description of the principle of SAR, the 

principle of DEM generation by InSAR is provided. In order to measure real ground 

deformation which has occurred over a long time period, D-InSAR (Differential 

InSAR) is applied. This chapter describes the principle of D-InSAR and the main 

procedures for D-InSAR processing. Lastly, as an enhancement of D-InSAR, the 

process of PS-InSAR, which is able to obtain more robust ground deformation results, 

is introduced.  

4.2 Real Aperture Radar 
In order to obtain topography and deformation information for a landscape, two or 

more images captured by a radar system are required (Lu, et al., 2007). There are two 

radar systems which can be used for the acquisition of radar images, which are Real 

Aperture Radar (RAR) and Synthetic Aperture Radar (SAR).  

4.2.1 Principle of Real Aperture Radar Operation 

The principle for the acquisition of radar images by RAR is presented in Figure 4.1. A 

radar antenna transmits a beam of microwave pulses to the ground at regular intervals 

and illuminates a footprint of the beam on the ground. The radar pulses are then 
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backscattered from scatterers on the ground to the same radar antenna, which are then 

recorded by the radar antenna (Bamler & Hartl, 1998). The moving radar system 

continuously transmits beams of radar pulses to the ground and illuminates a wide 

swath on the ground, which presents the area imaged by the radar. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Principle of radar imaging 

The image captured by the radar indicates the reflectivity of the illuminated ground 

and records amplitude and phase of the radar echo. The topography of the landscape, 

such as ground slope and roughness of the ground surface, affects the amplitude and 

phase of the radar echo. 

4.2.2 Resolution of Radar Image 
The radar image can be considered as a mosaic consisting of image pixels which are 

arranged in rows and columns (Ferretti, et al., 2007). Each pixel represents a 

resolution cell of the radar image and the size of the pixel indicates the ground 

resolution of the image, which enables targets to be distinguished targets in the image. 
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For instance, two scatterers on the ground cannot be discriminated on the radar image 

if they are captured in the same image pixel. 

In addition, each resolution cell of the radar image indicates an area on the ground. 

The topography of this area is represented by the terrain slope in the azimuth direction 

and the terrain slope in the ground range resolution. The azimuth direction is the 

direction along the track parallel to the direction of the movement of the radar, while 

the ground range direction refers to the across track direction, perpendicular to the 

direction of radar movement.  

As pixels of the radar image are arranged in rows and columns, rows and columns of 

the image refer to azimuth locations and ground range locations respectively. 

Accordingly, azimuth resolution and ground range resolution contribute to the ground 

resolution of the radar image. The ground range resolution is the projection of the 

spatial resolution which is the resolution in the slant range direction (see Figure 4.3). 

The slant range direction is the Line of Sight (LOS) direction, which connects the 

radar antenna and the scatterer on the ground.  

The resolution of the radar image is then represented by the slant range resolution, 

ground range resolution and azimuth resolution (Chen, et al., 2000) and it depends on 

the radar pulse duration T, look angle θ, the elevation of the radar antenna H and 

width of radar antenna L (Ferretti, et al., 2007) (see Figure 4.2). 
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Figure 4.2: Geometry of real aperture radar 

(1) Slant range resolution 

The slant range resolution is the capability to distinguish between scatterers in the 

slant range direction (see Figure 4.3). Due to the out and back propagation of the radar 

pulse, the pulse duration should be divided by two (McCandless & Jackson, 2004).  

∆R = CT
2

                                                             (4.1) 

Where,  

ΔR: slant range resolution; 

C: speed of light (300,000 km/s); 

T: pulse duration (shown as a time). 

(2) Ground range resolution 

The ground range resolution is the capability to distinguish scatterers in the ground 

range direction and it is the projection of the spatial resolution. 
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Figure 4.3: Relationship between slant range resolution and ground range resolution 

Accordingly, the ground range resolution can be calculated by dividing the slant range 

resolution by the sine of the look angle. 

∆Y = ∆R
sinθ

= CT
2 sinθ

                                                (4.2) 

Where,  

 ΔY: ground range resolution; 

 θ: look angle of the radar. 

The ground range resolution ΔY is only affected by the look angle θ. The smaller the 

look angle, the worse the ground range resolution of the radar image. As a result, the 

radar antenna must fly with a side looking angle.  

(3) Azimuth resolution 

The azimuth resolution represents the capability to distinguish scatterers in the 

azimuth direction. The dimension of the azimuth beam width at any range determines 

the azimuth resolution at the corresponding range (Cutrona, et al., 1966). The azimuth 

beam width of the radar is determined by the ratio of the radar wavelength and the 

along-track antenna length of the radar (Xia, 2010) (Ulady, et al., 1986) (see Figure 

4.2). Accordingly, the azimuth resolution is calculated by the equation below 

(McCandless & Jackson, 2004). 

∆X = Rβ = Rλ
L

= Hλ
cosθL

                                               (4.3) 

Where, 

Ground rang resolution 

θ 

θ 

Slant Range Resolution 
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ΔX: azimuth resolution; 

R: slant range; 

β: azimuth beam width of radar antenna; 

λ: wavelength; 

L: length of the radar antenna; 

H: elevation of the radar track. 

As indicated by the equation 4.3, the azimuth resolution of the radar image can be 

improved by increasing the length of radar antenna. This is a limitation of the RAR 

system because the length of the antenna is limited by the space available at the 

launch time.  

4.3 Synthetic Aperture Radar 
As stated in Section 4.2.2, the azimuth resolution of a radar image can be improved by 

increasing the length of the radar antenna. However, a very long antenna is not 

feasible. Synthetic Aperture Radar (SAR) can be applied to obtain a radar image with 

a good azimuth resolution by a radar arrangement with a relatively short physical 

antenna. 

Beams of radar pulses are transmitted to the scatterers on the ground from the moving 

radar antenna and then the radar echoes are backscattered to the same antenna. Due to 

the relative motion between the radar antenna and the scatterer on the ground, there is 

a frequency change of the radar echo, which refers to Doppler Frequency Shift 

(Bürgmann, et al., 2000). The azimuth resolution can be improved based on the 

detection of Doppler Frequency Shift. If the echoes from the scatterer on the ground 

can be recorded continuously by the moving radar antenna, they can be composed into 

one beam of radar echoes. The composed beam of radar echoes can be considered as 

the echo is backscattered from the scatterer to a linear array of virtual radar antennas. 

The linear array of virtual radar antennas refers to the synthetic aperture.  

For instance, as shown in Figure 4.4, the radar antenna is transmitting microwave 

pulses to A on the ground while it is moving along the track from position 1 to 

position n. Accordingly, radar echoes from A are received by the radar antenna at 

time 1, time 2, until time n continuously. When the radar is moving along the linear 
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array Lsa, echoes from A can always be observed by the moving radar antenna. Then 

the echoes are composed into one beam of radar echoes. Synthesized linear array Lsa 

is considered as the azimuth antenna length of the SAR, which replaces the physical 

length of the radar antenna in the azimuth direction. Thanks to the application of the 

SAR, the antenna length of the ERS satellite was increased from 10 m to a synthetic 

aperture of 4 km (Liew, 2001). 

 

 

 

 

 

 

 

 

 

Figure 4.4: Principle of synthetic aperture radar 

4.4 DEM Generation by InSAR 
SAR images with a good resolution can be used to produce a DEM of the imaged area.  

Information about the terrain surface can be analysed using the DEM (Perski, et al., 

2009). InSAR, a further development of SAR, is a technique used to produce radar 

interferograms based on a pair of SAR images captured by the two radar antennas 

mounted on the same satellite, which are used to generate a DEM of the imaged area 

(see Figure 4.5). 
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4.4.1 Principle 
In Figure 4.5, Radar antenna S1 and S2 transmit radar pulses to the scatterer P on the 

ground and receive different echoes from P. The radar pulse and its echo in a SAR 

system are recorded as a complex number with amplitude and phase information and 

can be represented as a pixel of a Single Look Complex (SLC) image. The SLC image 

refers to a SAR image generated by a synthetic aperture. A synthetic aperture is 

regarded as a single look. 

 

 

 

 

 

 

 

 

Figure 4.5: Geometry for DEM generation 

For radar antennas S1 and S2 operating at different elevations, propagation distances 

R1 and R2 of the radar pulses between the two radar antennas and P are different, 

which induces a phase difference between the corresponding pixels in the two SAR 

images. ∆𝜑𝜑 is assumed as the phase difference of two radar echoes caused by the 

different radar propagation paths R1 and R2. 
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Due to the phase difference between the corresponding pixels in the SLC image pair, 

an interferogram can be generated. Based on the interferogram, the DEM of the 

imaged area can be produced. If ground deformation occurred during the acquisition 

of the image pairs, the ground deformation can also be extracted from the 

interferogram.  

4.4.2 Phase Difference 

In order to generate the DEM of the imaged area and measure the deformation of the 

scatterers, the phase of the interferogram is measured first. Radar echoes received by 

the radar antenna are recorded in a complex number format and represented by a SLC 

image. As a result, each pixel of the SLC image is represented by a complex number 

with the amplitude and phase information of the radar echo backscattered from the 

scatterer in the pixel (Ortiz, 2007). The amplitude of the complex number represents 

the strength of the echo, while its phase indicates the argument of the complex 

number (Samiei-Esfahany, 2008). For instance, in Figure 4.5, the radar echoes from 

scatterer P to S1 and S2 can be represented by complex numbers S(R1) and S(R2) 

respectively.  

Propagation path R1 

Radar antenna S1 

Phase 𝜑𝜑 

P 

Radar antenna S2 P 

Propagation path R2 

Phase difference 
∆𝜑𝜑 

Figure 4.6: Radar propagation path and phase of radar pulse 
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S(R1) = A(R1)e[iφ(R1)]                                              (4.4) 

S(R2) = A(R2)e[iφ(R2)]                                              (4.5) 

Where, 

S(R1), S(R2): complex number for the radar echo; 

φ(R1), φ(R2): phase of the radar echo; 

A(R1), A(R2): amplitude of the radar echo. 

The interferogram is produced pixel by pixel, therefore it is necessary to ensure that 

the scatterer P is in the corresponding pixels of the two SLC images by coregistration 

of the image pair (Ferretti, et al., 2007). Coregistration is carried out by multiplying 

the complex number of radar echo S(R1) and the conjugate complex number of radar 

echo S(R2). 

S(R1)S∗(R2) = A(R1)e[iφ(R1)]A(R2)e[−iφ(R2)]                          (4.6) 

Where, 

S∗(R2): conjugate complex number of S(R2). 

By the application of coregistration, the amplitude of the interferogram is obtained by 

multiplying the amplitude of the two echoes, while the phase of the interferogram is 

the phase difference between the two echoes (Ferretti, et al., 2007).  

S(R1)S∗(R2) = A(R1)A(R2)ei[φ(R1)−φ(R2)]                           (4.7) 

The phase of the interferogram is the argument of the complex number. 

Then,  

φp = arg[S(R1)S∗(R2)] = arc tan � I[S(R1)S∗(R2)]
R[S(R1)S∗(R2)]� =φ(R1) − φ(R2)      (4.8) 

Where, 

φp: phase of the interferogram; 

arg[S(R1)S∗(R2)]: argument of the complex number; 

R[S(R1)S∗(R2)]: real part of the complex number; 

            I[S(R1)S∗(R2)]: imaginary part of the complex number. 

For electromagnetic waves, the propagation length within a cycle is a wavelength λ 

and the phase of the electromagnetic wave for a cycle is 2π. Accordingly, the phase 
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difference of the two radar echoes can be obtained based on the propagation length 

(Ferretti, et al., 2007).  

2π
φ(R1)−φ(R2) = λ

R1−R2
                                                   (4.9) 

Where, 

λ: wavelength of the radar pulse;  

R1, R2: propagation distances from the radar antenna to the target scatterer; 

φ(R1),φ(R2): phase of the radar pulse. 

Additionally, the propagation of the radar pulse is an out and back journey, therefore 

the propagation distance of the two radar echoes should be doubled.  

2π
φ(R1)−φ(R2) = λ

2(R1−R2)                                             (4.10) 

φp = φ(R1) − φ(R2) = 4π
λ

(R1 − R2)                                (4.11) 

Where, 

φp: phase difference of the two radar pulses. 

4.4.3 DEM generation 
According to the geometry of the DEM generation in Figure 4.5 and the phase 

φp represented above, the elevation of the scatterer P can be obtained (Liang, et al., 

2012).  

h = H − R1 cos θ                                               (4.12) 

Where, 

h: elevation of the scatterer P; 

H: elevation of the radar antenna S1. 

According to the cosine theorem, 

R2
2 = R1

2 + B2 − 2R1B cos �π
2
− θ + α� = R1

2 + B2 − 2R1B sin(θ − α) (4.13) 

And, 

φp = 4π
λ

(R1 − R2)                                           (4.14) 

R2 = R1 −
φpλ
4π

                                                (4.15) 
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Then,  

 �R1 −
φpλ
4π
�
2

= R1
2 + B2 − 2R1B cos �π

2
− θ + α�                    (4.16) 

R1
2 + �φpλ

4π
�
2
− 2 × φpλ

4π
R1 = R1

2 + B2 − 2R1B sin(θ − α)              (4.17) 

R1 �2B sin(θ − α) − φpλ
2π
� = B2− �φpλ

4π
�
2
                          (4.18) 

R1 =
B2−�

φpλ
4π �

2

2Bsin(θ−α)−
φpλ
2π

                                           (4.19) 

Accordingly,  

h = H − R1 cos θ = H −
B2−�

φpλ
4π �

2

2Bsin(θ−α)−
φpλ
2π

cosθ                     (4.20) 

If no ground deformation has occurred between the acquisitions of the SLC image 

pair, the elevations of the points on the ground represent the topography information. 

A DEM of this area can be generated based on the topography of the imaged area.  

4.5 Ground Deformation Monitoring by D-InSAR 
InSAR, as a topography measurement technique, is highly sensitive to ground 

deformation. As a result, D-InSAR performs particularly well in ground deformation 

monitoring by removing topography information from the interferogram. As reviewed 

in Chapter 2, D-InSAR can be categorised into two-pass D-InSAR, three-pass D-

InSAR and four-pass D-InSAR based on the number of SLC images used in 

differential interferometry (Lubis, et al., 2011).  

4.5.1 Principle 
For this research, two-pass D-InSAR was adopted to monitor ground deformation. 

Two sets of SLC images, captured before and after ground deformation respectively 

by the same radar antenna, are used to generate one interferogram which contains the 

topography and ground deformation information. Orbit parameters of the radar and 

external DEM created by Shuttle Radar Topography Mission (SRTM) are used to 

simulate an interferogram which is presented by a magnitude image of the area. The 

magnitude image only contains topography information. Accordingly, topography 
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information can be removed by undertaking differential interferometry, and the 

ground deformation results can be extracted from the differential interferogram. 

4.5.2 Conditions for a Robust Result 
In order to obtain a robust result of ground deformation using D-InSAR, the SLC 

image pair should meet the following criteria. 

(1) SLC image with amplitude and phase information 

The two interferograms to be used in the differential interferometry are generated 

from a SLC image pair. Each pixel of the SLC images must be represented by a 

complex number with the amplitude and phase information of the radar echo 

backscattered from scatterer in this pixel (see equation 4.4). 

(2) Small baseline  

In order to avoid spatial decorrelation, the baseline between the two acquisitions of 

the image pair should be no longer than the critical baseline. For instance, a 

perpendicular baseline of less than 800 m was defined for the selection of the 

interferometric pairs in the time series analysis of Mexico City’s subsidence using 

InSAR (Yan, et al., 2012). For the subsidence monitoring in Murcia in Spain, 800 m 

was also chosen as the critical perpendicular baseline for the selection of the 

interferometric pair (Herrera, et al., 2009).  

(3) Interferograms with good coherence 

Amplitude and phase of the radar echo represent the strength of the radar echo and the 

argument of the complex number respectively (Samiei-Esfahany, 2008). If the 

amplitude and phase of radar echoes from the corresponding pixels of the SLC image 

pair are similar, the interferogram generated from this image pair has a good 

coherence. 

Interferograms with good coherence are essential for the acquisition of a robust 

ground deformation result. Coherence of the interferograms is normally in the range 

of 0 to 1, where coherence of 0 indicates complete decorrelation of the D-InSAR 

result and coherence of 1 represents a very robust result. In the PS-InSAR data 

processing tool StaMPS, a coherence threshold of 0.3 is applied to define a pixel in 
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the interferogram with good coherence (Hooper , et al., 2013). Figure 4.7 shows the 

coherent phase image and incoherent phase image of the mountain area (European 

Space Agence, 2015).  

       

Figure 4.7: Coherent phase image of the mountain (left) and incoherent phase image 

of the mountain (right) 

4.5.3 Procedure for Ground Deformation Monitoring 
As stated, ground deformation results can be extracted by D-InSAR based on a pair of 

SLC images and external DEM. Figure 4.8 represents the procedure for applying two-

pass D-InSAR in ground deformation monitoring. 
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The steps of the procedure can be summarised as follows. 

• Read SLC images 

A pair of SLC images, captured before and after ground deformation by synthetic 

aperture radar, is selected. One SLC image is considered as the master image while 

the other image is the slave image. Due to random amplitude and phase information in 

the radar echoes from the individual scatterer, speckle noise appears in the SLC image 

(Moreira, 1991).  

A multi-looking approach is applied to reduce the speckle noise by partitioning the 

beam of the synthetic aperture radar in the azimuth direction and generating more 

individual SAR images (Moreira, 1991). The SAR images are processed individually 

and composed pixel by pixel to generate a final multi-looking image. By the 

Master Image Slave Image 

Coregistration 

 Resampling 

 Interferogram Generation 

 Baseline Estimation 

Removal of Flat Earth Phase  

Removal of Topographic phase 

 

Generation of Differential Interferogram  

 Geocoding 

 

 

Phase Unwrapping 

External DEM Orbital Trajectory 

Simulated Topography Information 

Figure 4.8: Ground deformation monitoring by two-pass D-InSAR 
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application of multi-looking, the Signal to Noise Ratio (SNR) of the radar image is 

improved by reducing the azimuth resolution of the image.  

• Coregistration and resampling 

Coregistration to match the image pair, which involves coarse coregistration and fine 

coregistration, is applied to ensure the scatterer on the ground contributes to the 

corresponding pixels in master and slave images. 

Coarse coregistration, a pair of SLC images is matched with an accuracy of one or 

two pixels. In the first step, tie points, which are features on the ground and 

corresponding pixels in the image pair, are selected. Theoretically, the more tie points 

are selected the more reliable is the result. However, a large number of tie points 

increases the calculation of the data processing. 

After selecting tie points within the imaged area, the corresponding pixels in the 

image pair are matched by the cross-correlation method which is the most widely used 

approach for coarse coregistration (Franceschetti & Lanari, 1999) (Li & Bethel, 2008). 

A window which represents a part of the master image is selected. Pixels in the master 

image within this window are matched with the windows of the same size on the slave 

image. The window on the slave image, which has the highest cross-correlation 

coefficient, is selected as the matching window. Accordingly, azimuth and ground 

range offsets of the corresponding pixels are obtained. After matching all the pixels 

within the windows, average azimuth and range offsets of the pixels can be calculated. 

Based on the calculation result, the slave image can be shifted to match the position of 

the master image (Li & Bethel, 2008). 

Coarse azimuth and range offset values for the corresponding pixels are essential for 

fine coregistration of the image pair. The acceptable accuracy for fine coregistration is 

1 out of 10 pixels (Hanssen & Bamler, 1999). It has been demonstrated that there are 

certain rules to estimate the coordinate offsets of the corresponding pixels. Generally, 

the coordinate offsets can be fitted by higher order polynomials (Li & Bethel, 2008). 

On the master and slave images, a large number of corresponding pixel pairs are 

selected. Based on the azimuth and range coordinates of the pixels on the master 

image and the coarse coordinate offsets of the paired pixel on the slave image, a 

second order polynomial can be established for the estimation of a more precise 
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coordinate offset of the pixel pair. For instance, the precise coordinate offset can be 

fitted by a second order polynomial based on the least squares method. As a result, 

instead of the average azimuth and range offsets of the pixels in coarse coregistration, 

a coordinate transformation equation is generated for the fine coregistration of the 

SLC image pair (Li & Bethel, 2008).  

By the application of the coordinate transformation equation, the slave image is 

resampled to the master image by transferring pixels from the grid of the slave image 

to the grid of master image (Slacikova & Potuckova, 2011). 

• Interferogram generation 

After coregistration and resampling, pixels in the slave image have the same 

coordinates as the corresponding pixels in the master image. Because each pixel is 

recorded as a complex number, an interferogram can be generated by multiplying the 

complex number of pixels in the master image and the conjugate complex number of 

the corresponding pixels in the slave image. 

• Baseline estimation 

In order to remove the flat earth phase and the topography phase from the 

interferometric phase and obtain the real ground deformation results, a baseline 

estimation is a critical step. This estimates the distance between the two radars for the 

acquisitions of the SLC image pair. The baseline can be estimated by an analysis of 

the orbit file if a precise orbit file is available.  

• Addressing the flat earth effect 

Due to the curvature of the Earth, points on the ground with the same elevation would 

have a phase difference for the two radar antennas. The phase difference results in the 

additional flat earth phase component to the phase of the interferogram. As shown in 

Figure 4.9, in repeat-pass D-InSAR, S1 and S2 are two radar antennas which transmit 

radar pulses to the scatterers on the ground and receive radar echoes.  P and P’ are two 

scatterers with the same elevation on the ellipsoid surface of the Earth.  
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Figure 4.9: Geometry of flat earth effect 

The phase of the radar pulses S1P and S2P is represented below. 

φs1p = 4π
λ

R1                                                   (4.21) 

φs2p = 4π
λ

R2 = 4π
λ

(R1 + ∆R)                                   (4.22) 

Where, 

φp1, φp2: phase of radar pulse S1P and S2P; 

R1, R2: propagation distance from S1, S2 to P; 

            ∆R: difference between propagation distances R1, R2. 

∆φp = φs2p − φs1p = 4π
λ
∆R                                        (4.23) 

Where, 

            ∆φp: phase difference between φp1and φp2. 

According to cosine theorem,  

R2
2 = R1

2 + ∆R2 + 2R1∆R                                              (4.24) 

                                                  = R1
2 + B2 − 2R1B cos �π

2
− θ + α� 

                                                 = R1
2 + B2 − 2R1B sin(θ − α) 

Where, 

            B: baseline between S1 and S2. 
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For spaceborne radar,  

∆R < 𝐵𝐵 ≪ R1                                                           (4.25) 

Therefore, ∆R2 can be ignored. 

2R1∆R = B2 − 2R1B sin(θ − α)                                      (4.26) 

∆R = B2

2R1
− B sin(θ − α) ≈ − B sin(θ − α)                             (4.27) 

Thus,  

∆φp = 4π
λ
∆R = −4π

λ
B sin(θ − α)                                   (4.28) 

Similarly, 

∆φp′ = −4π
λ

B sin(θ0 − α)                                    (4.29) 

Where, 

           ∆φp′: phase difference between radar pulses S1P’ and S2P’. 

Accordingly, the flat earth phase ∆φflat can be calculated. 

∆φflat = ∆φp − ∆φp′                                                                                      (4.30) 

           = �− 4π
λ

B sin(θ − α)� − �− 4π
λ

B sin(θ0 − α)� 

           = −4π
λ

B[sin(θ0 + ∆θ − α) − sin(θ0 − α)] 

     = −
4π
λ

B[sin(θ0 − α) cos∆θ + cos(θ0 − α) sin∆θ − sin(θ0 − α)] 

In a spaceborn radar system, ∆θ→0. 

sin∆θ ≈ tan∆θ ≈ ∆θ                                            (4.31) 

cos∆θ ≈ 1                                                       (4.32) 

Therefore, 

∆φflat == −4π
λ

B cos(θ0 − α)∆θ = −4π
λ

B⊥∆θ                       (4.33) 

In order to obtain a good D-InSAR result, the interferometric phase component caused 

by the flat earth effect must be removed by means of the precise orbit data of the radar 

(Li, et al., 2004). 

• Addressing the topography effect 
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After removing flat earth phase, the Earth’s surface can be considered as a plain. 

However, a topographic phase component results from the undulating topography of 

the Earth and will also contribute to the phase of the interferogram.  

As shown in Figure 4.10, in repeat-pass D-InSAR, S1 and S2 are the two radar 

antennas which transmit radar pulses to the scatterers on the ground and receive radar 

echoes. P and P’ are two scatterers with the same terrain height and different 

elevations 

 

 

 

 

 

 

 

Figure 4.10: Geometry of the topography effect 

The phases of radar pulse S1P and S2P are represented below. 

φs1p = 4π
λ

R1                                                   (4.34) 

φs2p = 4π
λ

R2 = 4π
λ

(R1 + ∆R)                                      (4.35) 

∆φp = φs2p − φs1p = 4π
λ
∆R                                             (4.36) 

Where, 

φp1, φp2: phase of the radar pulse S1P and S2P; 

∆φp: phase difference between φp1and φp2. 

Similar to the calculation for the flat earth phase. 

∆φp = 4π
λ
∆R = −4π

λ
B sin(θ − α)                                   (4.37) 
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∆φp′ = −4π
λ

B sin(θ0 − α)                                     (4.38) 

Where, 

∆φp′: phase difference between radar pulses S1P’ and S2P’; 

B: Baseline between radar antennas S1 and S2. 

Topographic phase ∆φtopo can be calculated. 

∆φtopo = ∆φp − ∆φp′ = −4π
λ

B cos(θ0 − α)∆θ                    (4.39) 

The topographic phase component can be removed by the external DEM or the DEM 

generated by InSAR (Tomás, et al., 2005). 

• Phase unwrapping 

On the interferogram, colour change of the interferometric fringe starts from the pixel 

where ground deformation is 0 to a pixel which has the same fringe colour as the 

starting pixel after completing a whole cycle. The phase difference between the two 

pixels is defined as 2π, which is a cycle of the interferometric fringe.  Accordingly, 

after n completed colour cycles, the phase difference between the pixel with same 

colour as the starting pixel is 2π multiplied by n. Thus, the phase estimated on the 

interferogram is ambiguous. The multiples of 2π are called the phase integer cycle 

ambiguity. Therefore, the real phase of the pixel on the interferogram is calculated by 

the equation below.  

φreal = φest + 2πn                                              (4.40) 

Where, 

φreal: real phase of the pixel; 

φest: estimated phase of the pixel; 

n: n ∈ Z, Z is a set of integers . 

The interferometric phase of the interferogram starts to be wrapped modulo 2π. As a 

result, phase unwrapping should be applied to obtain the real phase of the 

interferogram by estimating the phase difference between neighbouring pixels on the 

interferogram (Klees & Massonnet, 1998).  

• Simulated topography information  
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In order to remove the topographic phase and to obtain information of the real ground 

deformation, external DEM and precise orbital files are used to simulate a magnitude 

image of the DEM. The magnitude image with amplitude and phase information of 

the pixels contains only topography information. (Eineder & Adam, 2005).  

• Generation of differential interferogram  

By applying differential interferometry to the inteferogram generated from the SLC 

image pair and the simulated magnitude image of the DEM, the topographic phase is 

removed and a differential interferogram is generated.  

• Geocoding 

Geocoding aims to convert the unwrapped phase of the pixels in the differential 

interferogram from a radar coordinate system (range and azimuth) into a terrain map 

with the height information in the earth coordinate system (Schwabisch, 1998).  

4.6 Ground Deformation Monitoring by PS-InSAR 
Due to the limitations of the D-InSAR technique, such as temporal decorrelation 

caused by long time intervals between the image pair acquisition and spatial 

decorrelation caused by the long baseline between two radars, the reliability of the D-

InSAR result is reduced. These limitations are addressed by means of Pesistent 

Scatterer InSAR (PS-InSAR), whereby more reliable ground deformation results can 

be obtained.  

4.6.1 Selection of Master Image 
In PS-InSAR, SAR images of the area to be observed are captured at different times 

by the radar and used to form image pairs for the generation of the time series 

interferograms. One master image is selected among all the SAR images based on the 

minimization of the temporal baseline, spatial baseline and mean Doppler centroid 

frequency difference (Hooper, et al., 2004); the rest of the images are defined as the 

slave images.  
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4.6.2 Interferogram Generation  
Once the master image has been selected, interferometric pairs which consist of a 

master image and a slave image can be generated. For instance, N+1 SAR images are 

able to form N interferometric pairs and generate N interferograms. 

The slave image of each interferometric pair is coregistered and resampled with the 

master image by transferring pixels from the grid of the slave image to the grid of the 

master image (Slacikova & Potuckova, 2011). Then, N time series interferograms are 

generated. After removing the flat earth phase from the interferograms, external DEM 

is applied to remove the topography information from the interferograms by carrying 

out differential interferometry, and a stack of time series differential interferograms is 

generated. 

4.6.3 Phase Noise Estimation 
The stack of differential inteferograms contains phase information of each pixel in the 

interferograms. After the flat earth removal and topography removal in D-InSAR, not 

only ground deformation but also phase noises, such atmospheric delay, orbit error, 

DEM error and other noise, contribute to the residual phase of each pixel in the 

interferogram.  

φx,i = φdef,x,i + φatm,x,i + φorb,x,i + φdem,x,i + φn,x,i                 (4.41) 

Where,  

φx,i: phase of the pixel x in the ith interferogram; 

φdef,x,i: ground deformation phase; 

φatm,x,i: atmospheric delay phase; 

φorb,x,i: orbit error phase; 

φdem,x,i : residual topographic phase caused by DEM error; 

φn,x,i: noise phase. 

The residual phase noise of the pixel is defined as the original phase minus the 

average phase of the pixels within a circle with a specific radius (Hooper, et al., 2004) 

(Hooper , et al., 2013). Accordingly, the phase noise of the pixel x in the 

interferogram i is represented as below.  
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∆φ = φx,i − φ�x,i                                                                                          (4.42) 

      = (φdem,x,i − φ�dem,x,i + φn,x,i − φ�n,x,i) + (φdef,x,i − φ�def,x,i) + (φatm,x,i −

                  φ�atm,x,i) + (φorb,x,i− φ�orb,x,i) 

Where,  

 ∆φ: phase noise of the pixel x; 

 φ�x,i: average phase of the pixels; 

 φ�def,x,i: average ground deformation phase of the pixels; 

 φ�atm,x,i: average atmospheric delay phase of the pixels; 

 φ�orb,x,i: average orbit error phase of the pixels; 

 φ�dem,x,i: average DEM error phase of the pixels; 

 φ�noise,x,i: average noise phase of the pixels. 

Within the selected circle, φdef,x,i , φatm,x,i  and φorb,x,i  are assumed to be spatially 

correlated over a specific distance while φdem,x,i  and φn,x,i  are assumed to be 

spatially-uncorrelated (Hooper, et al., 2004). For spatially correlated items over a 

small distance, the phase change of the pixels is small and can be ignored. For 

spatially uncorrelated items, the average phase of the pixels within the selected 

circular area is estimated as zero. In addition, the noise phase results from variable 

scattering from the pixel, errors in coregistration and thermal noise, and it is small 

enough not to affect the phase stability of the pixel. As a result, the phase caused by 

DEM error φdem,x,i is the only contributor to the phase noise of the pixel ∆φ. 

∆φ = φx,i − φ�x,i ≈ φdem,x,i                                        (4.43) 

In addition, the DEM error phase is proportional to the perpendicular baseline. 

φdem,x,i = B⊥x,iKdem,x                                         (4.44) 

Where, 

 B⊥x,i: perpendicular baseline of pixel x in the ith interferogram; 

 Kdem,x,: proportionality constant for pixel x in the ith interferogram. 

Accordingly,  

φx,i − φ�x,i = B⊥x,iKdem,x                                      (4.45) 
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φx,i and φ�x,ican be obtained from the interferogram while B⊥x,i can be acquired from 

the precise knowledge of the radar orbit. Therefore, the proportionality constant for 

pixel x can be estimated based on the least squares method. As a result, the DEM 

error phase of pixel x in the ith  interferogram can be estimated sufficiently well by 

B⊥x,i and Kdem,x. 

φ�dem,x,i = B⊥x,iKdem,x                                        (4.46) 

Where, 

φ�dem,x,i: estimated DEM error phase of pixel x of the ith interferogram. 

The phase stability of the pixel can be estimated by Υ which is a measure for the 

coherence of the pixel based on the estimated phase noise of the pixel.  

Υx = 1
N
�∑ exp�√−1�φx,i − φ�x,i − φ�dem,x,i��N

i=1 �                   (4.47) 

Where, 

Υx: coherence of the pixel x in the stack of the interferograms; 

N:  the number of interferograms. 

4.6.4 Selection of the Persistent Scatterer 
In order to eliminate phase noise and obtain a robust ground deformation result, only 

pixels with a dominating scatterer are selected as the persistent scatterer (PS) pixels. 

The selected PS pixels have good coherence even over a long time period.  

The scattering signal of a pixel can be considered as a beam of signals from individual 

scatterers within this pixel. Random scatterers with variable amplitude and phase 

information within a pixel result in random phase distribution between –π and π while 

a persistent scatterer is the main contributor to the amplitude and phase of the pixel. 

As a result, a PS pixel has stable phase and amplitude.  

Figure 4.11 (Hooper, 2006) depicts the phase distribution of the corresponding pixel 

in 100 SAR images. Red arrows indicate the scattering signal of an individual 

scatterer within the pixel. Blue plots represent the simulated phase of the pixel in the 

100 SAR images. The distribution of blue plots is random for the pixel without PS 

and is centralised in the PS pixel (Hooper, 2006). A PS pixel not only has stable 
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amplitude and phase information but also has a good coherence with the 

corresponding pixel on other SAR images.  

 

Figure 4.11: Simulated phase for a pixel without PS (a) and a pixel with PS (b)  

An approach based on pixel amplitude stability is applied to select the PS from the 

stack of differential interferograms. An amplitude dispersion index threshold is 

defined for PS candidate (PSC) selection (Ferretti, et al., 2001).  

DA ≡
σA
μA

                                                        (4.48) 

Where, 

DA: amplitude dispersion index of the pixel; 

σA : standard deviation of the pixel amplitude;  

μA: mean of the pixel amplitude. 

The scatterer within this pixel is selected as a PSC if DA of this pixel is smaller than 

the amplitude dispersion index threshold. Accordingly, the larger the threshold value, 

the better the choice of the PSC. A threshold value of 0.4 was selected for measuring 

volcanic deformation by Hooper and his colleagues (Hooper, et al., 2004). 

However, most of the PSC selected based on the amplitude dispersion index threshold 

are not PS. For scatterers with low SNR, the relationship between phase stability and 

amplitude dispersion will break down. As a result, PS selection based on amplitude 
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stability for an area with vegetation coverage does not work as well as when it is 

implemented for an urban area with many man-made structures, due the low SNR of 

the scatterers in an area of vegetation (Hooper, et al., 2004). A further PS selection 

will be applied on the selected PSC based on the phase stability of the pixel.  

As described in the phase noise estimation step, the phase stability of the pixel can be 

estimated by Υ, a measure for the coherence of the pixel (see equation 4.47). The 

larger the coherence of the pixel, the more likely the scatterer within this pixel is the 

PS. A coherence threshold γthresh for the pixel is set for the selection of the PS. The 

coherence of a random phase pixel will not be high. Normally, if the coherence of a 

pixel is less than 0.3, the probability of the PS being present in this pixel is almost 

zero (Hooper, et al., 2004).  

In addition, the signal contribution from neighbouring pixels may result in phase noise 

of the signal for the PSC.  As a result, PSC with signal contributions from 

neighbouring pixels should be eliminated. The PSC will be dropped if the standard 

deviation of the phase noise for all its neighbouring pixels for the stack of differential 

interferograms is greater than 1 (Hooper , et al., 2013).  

4.6.5 Dem Error Correction and Phase Unwrapping 
As described in the phase noise estimation step, the DEM error phase of the pixel can 

be estimated from the perpendicular baseline and the proportionality constant for the 

pixel (see equation 4.46). Based on the estimated DEM error, the phase error caused 

by the DEM error can be corrected. In the equation below, φx,i minus φ�dem,x,i refers 

to the phase noise of the pixel after the DEM error correction.  

φx,i − φ�dem,x,i = φdef,x,i + φatm,x,i + φorb,x,i + (φdem,x,i−φ�dem,x,i) + φn,x,i  (4.49) 

                       =φdef,x,i + φatm,x,i + φorb,x,i + φdem,x,i
′ + φn,x,i 

Where, 

φx,i: phase of the pixel x in the ith interferogram; 

φdef,x,i: ground deformation phase; 

φatm,x,i:  atmospheric delay phase; 

φorb,x,i:  orbit error phase; 
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φdem,x,i : residual topographic phase caused by DEM error; 

φn,x,i: noise phase;  

φ�dem,x,i:  estimated DEM error phase of pixel x;  

φdem,x,i
′  : residual DEM error phase of pixel x. 

The Estimated DEM error φ�dem,x,i is almost the same as φdem,x,i , therefore, the 

residual DEM error phase can be ignored.  

After the DEM error correction stage, the ambiguous phase of each pixel is recovered 

by phase unwrapping. Goldstein filtering is adopted to filter the corrected phase of the 

pixel and to reduce its phase noise before phase unwrapping (Goldstein & Werner, 

1998). Different from conventional InSAR, a time series analysis is carried out in PS-

InSAR. Therefore, apart from the phase wrapped in the azimuth and range dimensions, 

time is the third dimension in phase unwrapping. Three dimensional (3D) phase 

unwrapping is simulated as two dimensional (2D) phase unwrapping by removing the 

phase difference of the pixel in the time dimension which refers to the phase 

difference caused by the time interval between the acquisitions of the master image 

and each slave image (Hooper & Zebker, 2007). As a result, the real phase of each 

pixel across the interferogram can be obtained by calculating the phase difference 

between the neighbouring pixels based on the statistical-cost, network-flow algorithm 

for phase unwrapping (SNAPHU) (Chen & Zebker, 2001) (Hooper , et al., 2013). 

This is a complicated method, which is integrated in the software StaMPS used for the 

PS-InSAR data processing and will not be discussed further. 

4.6.6 Phase Filtering for Spatially Correlated Error 
Even after phase unwrapping, it is still difficult to extract the ground deformation 

phase from the phase of the interferogram, due to the phase contribution of the four 

phase errors which are atmospheric phase, orbit phase, residual DEM error phase and 

noise phase. The spatially correlated items, such as atmospheric phase and orbit phase, 

are assumed to be temporally uncorrelated terms. High-pass filtering in time and low-

pass filtering in space can be carried out to estimate the phase of the spatial correlated 

items (Hooper, et al., 2004). 
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Spatially correlated terms can be removed based on the estimation result. Only the 

ground deformation phase, residual DEM error phase and noise phase exist in the 

phase of the pixel. As both the residual DEM error phase and noise phase are small 

enough to be ignored, the ground deformation phase of the pixel can be obtained 

(Hooper, et al., 2004). 

4.6.7 Extraction of Ground Subsidence 
The phase caused by the ground deformation can be extracted from the phase of the 

pixel in the interferogram and the ground deformation result in the LOS direction can 

be obtained. In order to obtain the real ground deformation, the ground deformation 

value in the LOS direction is projected on the direction perpendicular to the ground. 

4.7 Summary 
This chapter introduced the methodologies used for subsidence monitoring, and their 

relevance for the railway. Section 4.2 described the concept of Real Aperture Radar 

(RAR) and its imaging principle. In order to improve the resolution of the radar image, 

an approach using Synthetic Aperture Radar (SAR) was introduced in Section 4.3. 

This is able to obtain a radar image with good resolution with a short radar antenna. 

Based on the principle of SAR, Section 4.4 presented a method for DEM generation 

by InSAR. Once ground deformation has occurred, a DEM generated by InSAR 

contains not only topography information but also ground deformation information. 

Section 4.5 introduced the principle and procedures of applying D-InSAR in ground 

deformation extraction. Moreover, the conditions required for a good D-InSAR result 

were illustrated. Following the introduction of D-InSAR, the principle of PS-InSAR 

was introduced in Section 4.6. PS-InSAR overcomes some of some the limitations of 

D-InSAR, such as temporal decorrelation and spatial decorrelation and is able to 

obtain a robust ground deformation result. Section 4.6 indicated the approaches for PS 

selection and the main procedures for ground deformation monitoring.  
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Chapter 5 Railway Subsidence Prediction 

with Time Series Prediction Models 

5.1 Introduction 
The aim of the overall study is to check the suitability of prediction models and their 

performance in subsidence forecasting. In order to select the most reliable model, all 

three types of models mentioned in Chapter 3 will be applied and the performance of 

these models will then be compared. 

This section firstly introduces a method based on the auto-regressive and moving 

average (ARMA). The ARMA model is based on traditional statistical theories and it 

is suitable for time series with a large data volume and clear developing trend. 

Specifically, the auto-regressive integrated moving average (ARIMA) model, which is 

a generalised version of ARMA based on the Box-Jenkins approach, is introduced. 

Then the detailed procedure of the Box-Jenkins approach is described, ranging from 

data transformation to model validation. Compared to the fully standardised processes 

of the approach using the ARIMA model, the methodology when using an artificial 

neural network (ANN) model may vary, depending on the type of ANN chosen for the 

research. The ANN model was inspired by artificial intelligence and it works well 

when the system has fewer observations than traditional statistical model with an un-

linear trend. A multi-layer neural network equipped with the learning algorithm of 

gradient descent backpropagation, is selected in this study since it is applied widely. 

This chapter will illustrate the rationale of constructing input, hidden and output 

layers, the critical functions to produce the output of the neural network as well as the 

detailed working processes of the gradient descent backpropagation algorithm. At the 

end, the main steps of grey modeling are described, which include grey sequence 

generating, A grey modeling and grey forecasting. Grey model is able to analyse the 

system with limited observations, partly unknown parameters and inter-relationships. 
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5.2 Railway Subsidence Prediction Models 

5.2.1 ARIMA (p,d,q) Model 
The Box-Jenkins methodology is the most popular approach to developing an ARIMA 

model. In general, there are 5 major steps to establish an ARIMA model: transforming 

raw data, determining the order of differencing, and the auto-regressive and moving 

average, estimating the parameters for the model, testing the suitability and accuracy 

of the model and using the model for forecasting. 

(1) Data transformation 

As an ARIMA model is only applicable for a stationary data series all the trend and 

seasonality features must be removed from the raw data, if they exist. In order to 

detrend the raw data, the trend parameter can be divided by fitting the raw data with a 

linear trend line which is then subtracted from the raw data. Sometimes, the raw time 

series data can show a pattern of non-linear trend. In this situation, the data must be 

transformed first in order to convert the non-linear trend to a linear trend. The most 

frequently adopted algorithm is a logarithm which can transform compounding 

growth into a linear growth and which can also convert the multiplicative relationship 

into an additive relationship. Seasonality can be removed by incorporating seasonal 

adjustments which can be either additive or multiplicative, as mentioned earlier.  

(2) Determining the order of the model 

The first step in establishing an ARIMA model is to decide the order of differencing, 

which can further remove any non-stationary pattern from the data. An Auto 

Correlation Function (ACF) is usually used to determine the order of differencing. It 

is the correlation between different periods of the time series data, where the time 

difference is referred to as the ‘lag’.  

The Auto correlation function (ACF) at lag t is:  

ρs(t) = Corr(ST+t, ST) ≡ γs(t)
γs(0)                                      (5.1) 

Where, 

            ρs(t): correlation at lag t (correlation between ST and ST+t ); 
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            ST, ST+t: actual data at the periods T and T+t; 

             γs(0): variance of the time series data. 

The Auto covariance function (ACVF) at lag t is: 

γs(t) = Cov(ST+t, ST)                                               (5.2) 

Where, 

             γs(t): covariance at lag t (covariance between ST and ST+t). 

The determining rules can be summarised as follows (Duke University, n.d.): 

• If the time series data shows continuously significant positive autocorrelation, 

further differencing is required (Figure 5.1); 

• If the time series shows significant negative autocorrelation, particularly at lag 

1, the order of differencing should be decreased (Figure 5.2). 

      

Figure 5.1: Significant positive autocorrelation (no cut off) 
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Figure 5.2: Significant negative autocorrelation  

After obtaining a stationary time series through trend and seasonal adjustments as 

well as differencing, the next step is to decide the order of the AR and the order of the 

MA. According to the Box-Jenkins approach, the auto correlation function (ACF) and 

partial auto correlation function (PACF) can be used to find the value of p and q (Box 

& Jenkins, 1976). 

Slightly different from ACF, PACF is a type of conditional ACF which is the 

autocorrelation between ST and ST+t after removing their dependence on ST+1 through 

to ST+t-1.  

PACF(t) =  Corr(ST+t − Lt(ST+t), ST − Lt(ST))                    (5.3) 

Where, 

 ST, ST+t: actual data at the periods T and T+t; 

 Lt(ST+t): projection of 𝑆𝑆𝑇𝑇+𝑡𝑡 based on n ST+1 , ST+2 … ST+t-1 

 Lt(ST): projection of 𝑆𝑆𝑇𝑇 based on n ST+1 , ST+2 … ST+t-1 

The first step is to have plots of ACF and PACF for the time series with lags. Then 

the pattern of the plots can be used to determine a suitable type of ARIMA models for 

the time series (Duke University, n.d.).  

• If the ACF plots do not cut off, but the PACF plots cut off after lag p, then the 

ARIMA (p,d,0) should be adopted (Figure 5.3); 

1         2        3         4         5         6        7         8        9         10      11 

1 

0 

-1 

ACF 



Chapter 5 Railway Subsidence Prediction 
 

78 

 

• If the ACF plots cut off after lag q, but the PACF plots do not cut off, then the 

ARIMA (0,d,q) are preferred (Figure 5.4); 

• If neither of the ACF and PACF plots cut off, then the ARIMA (p,d,q) model 

should be chosen. 

In the third scenario listed above, it is usually quite difficult to guess the p and q. One 

of the best approaches is to apply a trial and error approach, where the engineer 

guesses the values of p and q first and then adjusts the values until there is no 

significant auto correlation of the residuals. 

 

Figure 5.3: ACF plots do not cut off (upper); PACF plots cut off at p=4 (lower) 
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Figure 5.4: ACF plots cut off at q=3 (upper); PACF plots do not cut off (lower) 

(3) Estimating the parameters of the model 

After determining the orders for the ARIMA model, the final stage of constructing the 

model is to estimate the parameters of the AR terms and the MA terms. Depending on 

the values of p and q, there are different methods for the estimation.  

• If there are only AR terms in the ARIMA model, meaning q is equal to 0, the 

ARIMA model is a pure linear regression model. In this case, the standard 

least squares method can be used to fit the parameters.  
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• For an ARIMA model with both AR and MA terms, the least squares 

estimation is not applicable, as the MA terms bring in a non-linear relationship. 

Instead, the maximum likelihood estimation approach should be chosen, which 

can solve the parameters (Box & Jenkins, 1976). 

(4) Testing the ARIMA model and forecasting the future 

Once the ARIMA model has been established, the residuals between the actual 

historical time series data and the data estimated by the model should be checked. If 

the distribution of the residuals is random and stationary, the proposed model is 

appropriate. Otherwise, the model needs to be adjusted (Makridakis & Hibon, 1997). 

5.2.2 Artificial Neural Network Model 
To develop a basic ANN model, there are three main steps: 

(1) Choose the input and output data 

As a typical ANN model comprises of one input layer, one output layer and certain 

hidden layers, the first step is to determine the structures of the input and output layers, 

i.e., the number of neurons placed thereon. 

The number of nodes on the input layer usually depends on the number of factors 

which will be considered in the analysis and that will contribute to the final output. 

Sometimes, the input data contains not only quantifiable elements but also some 

qualitative factors. In this situation, category values can be used for the qualitative 

data. For instance, qualitative descriptions low, median and high can be presented as 

quantitative expression 0.1, 0.5 and 0.9 respectively. In order to avoid over-fitting 

weights of neurons in the learning process of an ANN, some researchers suggested 

normalising the original input data into data with the same range (Haykin, 1994).  

The output layer usually contains only 1 neuron which produces the required outcome. 

In this thesis, the purpose is to predict subgrade subsidence. Therefore, the output can 

be either the forecasted subsidence or the subsidence changes in the future. 

(2) Data learning process 

As mentioned earlier, there are several popular approaches for the ANN to learn the 

historical data and to adjust neuron weights automatically. For the present study, the 
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gradient descent backpropagation algorithm is chosen to determine these weights. 

Back propagation means that an error signal will be generated first at the output layer 

and it will then be propagated back to the prior layers, which enables the ANN to 

learn from the error and activate automatic adjustments. 

The main procedure starts with assigning random weights to all the input and hidden 

neurons, which produces an initial output. Then the initial output is compared with the 

expected output. If the error between the initial output and the expected output is 

significant, the ANN will then adjust the weights of each input and the hidden neurons. 

This iteration will continue until the error is minimum. The definition and threshold 

for the minimum error may vary in practice. In the ‘nnet’ package from R, it looks to 

minimise least squares and the threshold is set to 1.0 ∗ 𝑒𝑒−4. 

The outputs of the ANN depend on the inputs and the activation function, which 

produce values passed to the output function. The activation function can be 

illustrated as follows: 

Ak = ∑ xiwki
n
i=0                                                     (5.4) 

Where,  

            Ak:  activation function of the neuron k; 

            n: the number of the inputs for the neuron k; 

 xi:   the ith input for the neuron k; 

 wki: weight of the ith input for the neuron k. 

Usually 𝑥𝑥0  is assumed to be 1 and the activation function is thus changed to the 

following equation:  

Ak = ∑ xiwki
n
i=1 + bk                                              (5.5) 

Where, 

            bk: x0wk0, and this is known as the bias term. 

Therefore, the actual inputs for neuron k are x1, x2, … ,xn. The reason to have a bias 

term is that it can bring more flexibility into the learning process of the ANN and 

achieve the required output, which otherwise cannot be obtained without a bias term. 

As the bias term is actually equal to wk0, it can be learned exactly like the other 

weights. 
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The output function can be the same as the activation function. However, the most 

widely used output function is a sigmoid function: 

Ok =  1
1+eAk

                                                            (5.6) 

Where, 

            Ok: output from the neuron k. 

Then the prediction errors are calculated as: 

Ek = (Ok − Tk)2                                                      (5.7) 

Where, 

            Ek: error of the output from the neuron k; 

 Tk: expected output from the neuron k. 

The error is the square of the difference between the output and the expected output as 

it will always be positive and represents the degree of discrepancy.  

The total prediction error is: 

E =  ∑ (Ok − Tk)2n
k=1                                                 (5.8) 

The ANN adjusts the weights of the input and hidden neurons in order to decrease the 

total prediction error. The adjustments will be based on the dependency of the total 

error on each weight, which is given as a gradient as follows: 

△ wki = −η ∂E
∂wki

                                                     (5.9) 

Where, 

           △ wki: the adjustment on wki; 

           η:  known as the learning rate which determines the size of each adjustment. 

To obtain the derivative of E in respect to 𝑤𝑤𝑘𝑘𝑘𝑘, partial derivatives can be used.  

∂E
∂wki

= ∂E
∂Ok

∗ ∂Ok
∂wki

                                                   (5.10) 

Where: 

∂E
∂Ok

= 2(Ok − Tk)                                               (5.11) 

∂Ok
∂wki

= ∂Ok
∂Ak

∗ ∂Ak
∂wki

= Ok(1 − Ok)xi                                   (5.12) 
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Therefore,  

∂E
∂wki

= 2(Ok − Tk)Ok(1 − Ok)xi                                  (5.13) 

△ wki = −η ∗ 2(Ok − Tk)Ok(1− Ok)xi                            (5.14) 

Similarly, if there are multiple layers in the ANN (see Figure 5.5), 𝑥𝑥𝑖𝑖  will be 

generated from the previous layer and the same process can be applied to obtain the 

changes in the weights for the input for the previous layer: 

△ wij = −η ∂E
∂wij

= −η ∂E
∂xi

∗ ∂xi
∂wij

                                  (5.15) 

Where, 

           △ wij: the adjustment on wij; 

           wij: weight of the input for neuron i on the previous layer, which produces xi   

           for the next layer. 

       

Figure 5.5: ANN model with multilayers 

 Then the adjustment of the weights (△ 𝑤𝑤𝑖𝑖𝑖𝑖) can be obtained as follows: 

∂E
∂xi

= 2(Ok − Tk)Ok(1 − Ok)wki                               (5.16) 

∂xi
∂wij

= xi(1 − xi)uj                                           (5.17) 

Where,  

Input Layer Hidden Layers Output Layer 

neuron k 

neuron i 

neuron j 
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            uj: the jth input for the neuron i. 

Sometimes, a momentum term will also be introduced in the calculation of the weight 

adjustments in order to avoid the weight adjustment being terminated at a local 

minimum of the prediction error. The adjustment with a momentum term is in the 

form of: 

△ wki(t) = −η ∂E
∂wki

+ m △ wki(t − 1)                              (5.18) 

Where, 

            m: the momentum term that has a value between 0 and 1.  

The equation means that the adjustment of the weight also considers the impact of the 

adjustment made in the previous iteration. The momentum term represents the degree 

of this impact, which has been demonstrated to be effective in avoiding the local 

minimum and find the global minimum of the prediction error. If the value of m is set 

to too high, then the risk of skipping the global minima will be increased. On contrary, 

if m is too small, it might not be large enough to avoid local minima. Usually it will 

be set to a relatively small value at first and adjusted later depending on the change of 

prediction errors. 

Based on the algorithm illustrated above, all the weights of the neurons can be 

decided when the prediction error reaches its minimum level. 

(3) Model testing 

As there are no established criteria to determine the optimal structure of the ANN 

model, the performance of the ANN model can vary even with the same back 

propagation algorithm. In order to obtain a reliable ANN model, the last step is to 

check and compare the accuracy and reliability of models with various structures, 

including different numbers of hidden layers, numbers of nodes on each hidden layer 

and numbers of data points in the training set (Suwansawat & Einstein, 2006). 

The most common measure to assess the performance of an ANN model is the root 

mean square error (RMSE), which can be calculated as follows: 

RMSE =�∑ (Ok−Tk)2n
k=1

n
                                           (5.19) 
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Where, 

            Ok: the output from neuron k; 

 Tk:  the actual observation for neuron k; 

            n: the number of output neurons. 

Usually, an ANN model with more layers and more nodes on the hidden layers will 

have a smaller RMSE with the training set. However, this will also increase the risk of 

over-fitting, in other words, the performance of the model will drastically drop when 

being used in actual forecasting. Hence, the optimal model should have relatively 

small RMSE for both the training set and the validation set in order to avoid over-

fitting. 

5.2.3 Grey Model 
As there is only one variable in the time series prediction for this study, which is the 

observation of the subsidence at various time points, a GM (1, 1) model will be 

suitable for the prediction. Generally, grey theory-based modelling and forecasting 

can be divided into 3 steps: 

(1) Grey sequence generation 

The raw data from a grey system does not usually have clean patterns in a time series 

data set, leading to the difficulty of extracting governing laws from the data. The grey 

system theory attempts to transform the raw data into a more regular series whose 

pattern can be captured through grey analysis. This process is known as grey sequence 

generating (Deng, 1989), which is achieved though Accumulated Generating 

Operation (AGO). 

Assuming that we have a series of settlement observations as: 

x(0) = �x(0)(1),  x(0)(2),  x(0)(3), … , x(0)(n)�  , n ≥ 4,              (5.20) 

Where, 

            x(0)(n): the original time series data at time n. 

 The AGO will then generate the new grey data as follows: 

x(1)(k) = ∑ x(0)(i)k
i=1                                           (5.21) 
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This means that x(1)(k), as the kth data point in the grey sequence, is the sum of all 

original data before the kth position. Clearly, the AGO establishes a relationship 

between the new grey data through cumulative summation. The new grey time series 

data obtained are as follows: 

x(1) = �x(1)(1),  x(1)(2),  x(1)(3), … , x(1)(n)�  , n ≥ 4             (5.22) 

Where, 

            x(1)(n): the grey time series data at time n. 

(2) Grey modelling 

After generating the grey sequence, a first order differential equation of a grey GM (1, 

1) model can be built (Deng, 1989). 

dx(1)(t)
dt

+ ax(1)(t) = b                                                   (5.23) 

Where, 

            a: the developing coefficient;  

            b: the grey input. 

The equation then can be transformed through the following steps: 

dx(1)(t) +  ax(1)(t)dt = bdt                     (5.24) 

∫ dx(1)(t)k+1
k + a∫ x(1)(t)dtk+1

k = b∫ dtk+1
k              (5.25) 

Where, 

 ∫ dx(1)(t)k+1
k  = x(1)(k + 1) −  x(1)(k) = x(0)(k + 1)         (5.26) 

 a∫ x(1)(t)dtk+1
k  = a(x(1)(k + 1) + x(1)(k))/2           (5.27) 

Letting z(1)(k + 1) = (x(1)(k + 1) + x(1)(k))/2 , also known as the mean of the 

neighbouring data , then 

a∫ x(1)(t)dtk+1
k =  az(1)(k + 1)                                   (5.28) 

 b∫ dtk+1
k = b                                                   (5.29) 

Therefore, the final grey model can be defined as (Deng, 1989): 

x(0)(k + 1) + az(1)(k + 1) = b                                     (5.30) 
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Based on the least squares method, the value of a and b can be obtained as follows: 

[a, b]T = (BTB)−1BTY                                           (5.31) 

Where, 

            B = �
−z(1)(2) 1

⋯ ⋯
−z(1)(n) 1

�; 

             Y = �
x(0)(2)…
x(0)(n)

�. 

Therefore, the solution of the equation 5.23 is as follows: 

x(1)(t) = �x(0)(1) − b
a
� e−at + b

a
                                  (5.31) 

The time response series of the differential equation is defined as follows: 

xF
(1)(k + 1) = �x(0)(1) − b

a
� e−ak + b

a
                             (5.32) 

(3) Grey forecasting 

In order to obtain the real data at time (𝑘𝑘 + 1), the Inverse Accumulated Generating 

Operation (IAGO) can be used, which is calculated as follows: 

xF
(0)(k + 1) = xF

(1)(k + 1) − xF
(1)(k)                                (5.33) 

xF
(0)(k + 1) = �x(0)(1) − b

a
� e−ak(1 − ea)                           (5.34) 

For prediction at any time (k + n), it can be obtained as: 

xF
(0)(k + n) = �x(0)(1) − b

a
� e−a(k+n−1)(1 − ea)                      (5.35) 

However, as the accuracy of the grey model decreases when making predictions for a 

longer period into the future, usually the above equation for prediction at time (k + n) 

is not used. Instead, a rolling GM (1, 1) model has been developed for long-term 

prediction (Kayacan, et al., 2010).  

Generally, the rolling model will produce a prediction sequence based on the forward 

data. For instance, assuming that the forecast at time k,xF
(0)(k) has been obtained 

based on xF
(0)(k − 1) , xF

(0)(k − 2) , xF
(0)(k − 3) , xF

(0)(k − 4) , when making the 

forecast for the next period, xF
(0)(k + 1), the data points used in the model will be 
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shifted by 1 period forward, namely xF
(0)(k), xF

(0)(k − 1), xF
(0)(k − 2), xF

(0)(k − 3), 

keeping the next forecast as always based on the most recent 4 data points. 

Furthermore, a grey model is also capable of handling time series observations with 

unequal intervals. Assuming an interval is ∆tk, unequal time intervals mean that times 

∆t1,∆t2,⋯ ,∆tn−1 are not always the same. To model an unequal grey sequence, the 

following steps are taken. 

• Obtaining average interval; 

l = (kn)
n−1

                                                      (5.36) 

         Where, 

         kn: total time interval of the time series at time n. 

• Calculating the time difference between the actual and average time intervals; 

dk = (k − 1) ∗ l − (tk − t1)                                  (5.37) 

• Transforming the original unequal sequence into a regular series with equal 

time interval. 

x1
(0)(k) = x(0)(k) + dk

(tk−t1)
∗ �x(0)(k) − x(0)(k − 1)�                (5.38) 

Through the above 3 steps, a standardised equal interval time series can be created. 

x1
(0) = �x1

(0)(1), x1
(0)(2), x1

(0)(3), … , x1
(0)(n)�  , n ≥ 4,                (5.39) 

The previously discussed processes GM (1, 1) modelling can be applied to the 

standardised data. After making the prediction on x1
(0)(k), the forecast original time 

series data x(0) can also be obtained by reversing the transformation steps. 

xF
(0)(k) = x1F

(0)(k) − dk
l
∗ (x1F

(0)(k) − x1F
(0)(k − 1))                    (5.40) 

Where, 

            x1F
(0)(k): the forecast of x1

(0) at time k. 

5.3 Summary 
In this section, the main principles and procedure of the ARIMA model, multi-layer 

ANN model and grey model have been introduced in detail. For the ARIMA approach, 
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the Box-Jenkins method is the core component of the whole methodology. It provides 

guidance on the initial data preparation and a transformation that ensures that the 

input data can meet the requirements of the model. It also provides several rules for 

determining the orders of the ARIMA model as well as the parameters of the model, 

which will be used in the subsidence simulation in the following section when 

establishing the ARIMA model based on historical data. However, as these rules are 

only indicative principles, some judgement will be involved in the process.  

In the artificial neural network model, the initial step of determining the structure of 

the neural network is relatively straightforward and there has been no clear evidence 

that the number of input neurons, hidden layers and hidden neurons on each hidden 

layer will have a significant impact on the performance of the model. The key part of 

the ANN model is the learning algorithm that it applies in determining the weights of 

each neuron. The working flow of gradient descent backpropagation has been 

explained in this chapter, which is mainly a process of minimising the prediction error 

through iterations and trials. This can provide a deep insight into the way in which the 

ANN model works. However, researchers do not really need to build up the algorithm 

by themselves, as it is already provided as a package in many statistical tools and the 

whole process can be run automatically.  

The last model introduced in this section is the grey model. The method starts with 

grey sequence generation which is also the most critical part of this approach. It 

transforms the initial data into an inter-related sequence by means of the Accumulated 

Generating Operation, which can be modelled by the grey differential model. Then 

according to the solutions of the grey differential model, the grey sequence can be 

modelled and predicted, which finally leads to the prediction of the original data. 

Compared to the other two models, one notable advantage of the grey model is that it 

can handle time series with varying intervals. An example will be given in the 

subsidence simulation section below. 
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Chapter 6 Railway Subsidence Monitoring 

Case Study 

6.1 Introduction 
A case study based on the infrastructure of the High Speed One (HS1) railway in 

Britain is described in this chapter. The case study was conducted to assess the 

application of PS-InSAR in railway subsidence monitoring. This chapter begins with 

route configuration of the study area. The route of HS1 was selected for subsidence 

monitoring due to the tunnelling works which took place during construction, the 

geology and the weather of the study area. Later, this chapter presents the procedures 

for ordering radar data covering a period from June 2007 to September 2010. 

Following the data collection section, a tool for PS-InSAR processing is introduced. 

The subsidence monitoring result for HS1 is then presented in this chapter, including 

a time series analysis of selected PS along HS1 and the deformation profile of HS1. 

Based on the monitoring result, the subsidence status of HS1 will be assessed and 

railway sections with the potential for subsidence will be indicated. 

6.2 Route Configuration 
HS1, previously known as the Channel Tunnel Rail Link (CTRL), is a 109 km railway 

line from London St. Pancras International Station through Kent to the end of the 

Channel Tunnel in the UK (see Figure 6.1 (HS1, 2013)). HS1 is a ballasted railway 

and its design speeds are up to 230 km/h for domestic services and 300 km/h for 

international services (HS1, 2013). 
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Figure 6.1: Route configuration of HS1 

On 30 July 2003, the first Euro star train ran on Section 1 of HS1. Section 1 of HS1 

runs 70 km from the Southfleet Junction near Ebbsfleet International Station in Kent 

to the UK end of the Channel Tunnel. As an extension of Section 1, Section 2 of HS1, 

which is 39 km from Southfleet Junction to London St. Pancras International Station, 

was put into operation in November 2007. HS1 enables passengers to travel from 

London to Paris in 2 hours and 15 minutes (Alstom, 2010).  

Of the HS1 infrastructure,  85% is in the tunnel or next to a domestic railway, such as 

the Chatham Main Line and North Kent Line, or a trunk road, for example the M20 

and M26 (The Committees of Public Accounts, 2012). As in any tunnel construction, 

the tunnelling work of HS1 and the adjacent infrastructure created a risk of subsidence 

for HS1. In addition, ground movement data collected from the North Downs Tunnel 

area which has a geology of chalk indicates the potential for larger ground movement 

compared with the movement of similar soft or hard rock conditions in the Midlands 

and North of England (High Speed Two (HS2) Limited, 2013).  

The annual average rainfall for the area traversed by Section 1 of HS1 is more than 

700 mm per year (NERC, 2008), which may also result in subsidence. For the reasons 

stated, Section 1 of HS1 is selected as the study area in this research. 
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Figure 6.2: Annual average rainfall for the period 1961-1990 

6.3 Data Collection 
After considering the time to acquire the data, coverage, resolution and price of SAR 

images, Envisat Advanced Synthetic Aperture Radar (Envisat ASAR) data was 

selected for this research. The ASAR antenna of the Envisat satellite has five working 

modes which are image mode, alternating polarisation mode, wide swath mode, 

global monitoring mode and wave mode. The image mode of the ASAR antenna is 

able to obtain the SLC images with a 30 m spatial resolution and a 100 km swath 

width (GRAS, 2014). Due to the high spatial resolution and large image coverage, 

SAR images obtained by the image mode can be applied in ground subsidence 

monitoring. 

6.3.1 Data Availability 
The availability of Envisat ASAR data can be checked by the means of EOLI-SA. 

EOLI-SA is a free tool which enables users to check the availability of ESA’s 

achieved earth observation data, and to order the data.  

Users are able to refine the data request by defining the category of the data, the time 

interval of the data and the coverage. In this study, the category of the data is Envisat 

ASAR Image Mode. In addition, Section 1 of HS1 was put into operation on 30 July 

2003. Therefore, the availability of the Envisat ASAR data captured after this date 

was checked in the EOLI-SA. 



Chapter 6 Railway Subsidence Monitoring Case Study 
 

93 

 

A part of Section 1 of HS1 was selected for subsidence monitoring. The length of this 

railway section is about 53 km. In terms of the data coverage, a quadrilateral area with 

a width of 35.13 km and a length of 48.90 km, which covers the relevant railway 

section, was selected. The coordinates of the corners of this quadrilateral are 

51.460N0.301E, 51.143N0.301E, 51.460N0.875E and 51.143E0.875E respectively. 

The red curve in Figure 6.3 represents the selected HS1 railway and the purple 

rectangle indicates the Envisat ASAR data coverage in this research.  

 

Figure 6.3: Location of the study railway route and Envisat ASAR data coverage 

Once the study area was chosen, the data availability could be checked in EOLI-SA. 

The user interface of EOLI-SA is represented in Figure 6.4.  
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Figure 6.4: User interface of EOLI-SA 

The pink rectangle indicates the defined study area while the green quadrilateral 

represents the coverage of the available Envisat ASAR data. 48 Envisat ASAR data 

which are all captured on track 51, are available to apply. A list of the 48 Envisat 

ASAR data sets can be found in Appendix A. 

6.3.2 Data Ordering 
To order data for an academic purpose, a research proposal which describes the 

research background and research plan must be submitted to the European Space 

Agency (ESA). After assessing the research proposal, the Envisat ASAR data ordered 

by the author of the proposal was supplied by ESA.   

In addition to the spatial decorrelation caused by the long perpendicular baseline, long 

time intervals between two acquisitions of data will result in temporal decorrelation in 

the interferogram. For instance, the time interval for the two successive data sets 

which were captured on 02 December 2005 and 11 May 2007 respectively is 525 days, 

and vegetation changes on the ground during this period lead to temporal decorrlation. 

Accordingly, available data with appropriate temporal baseline and spatial baseline 

will be selected for railway subsidence monitoring.  
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In this study, Envisat ASAR data obtained after 11 May 2007 was selected for PS-

InSAR processing. The data captured on 26 December 2008 was selected as the 

master image, based on the minimization of the temporal baseline and the spatial 

baseline, as well as the mean Doppler centroid frequency difference. The rest of the 

images are the slave images. 

Once the master image was chosen, the perpendicular baseline of the image pairs 

could be checked. A perpendicular baseline of 800 m was applied for the image pair 

selection, as robust results were obtained with this dimension in previous research 

(Yan, et al., 2012) (Herrera, et al., 2009). Therefore, interferometric pairs with a 

perpendicular baseline of less than 800 metres were are selected in this research.  

Accordingly, 21 SLC images obtained by the Envisat ASAR antenna during the 

period of 15 June 2007 to 17 September 2010 were ordered from ESA in this study.  

No. Track Orbit 
Acquisition Date 

(dd/mm/yy) 

Temporal 

Baseline (days) 

Perpendicular 

Baseline (m) 

1 51 27660 15/06/2007 -560 81.1 

2 51 28161 20/07/2007 -525 119 

3 51 28662 24/08/2007 -490 356 

4 51 29664 02/11/2007 -420 372.3 

5 51 31668 21/03/2008 -280 318.6 

6 51 32670 30/05/2008 -210 102.4 

7 51 33171 04/07/2008 -175 263.6 

8 51 33672 08/08/2008 -140 432.9 

9 51 34173 12/09/2008 -105 -448.9 

10 51 34674 17/10/2008 -70 284.8 

11 51 35175 21/11/2008 -35 -271.7 

12 51 35676 26/12/2008 0 0 

13 51 36177 30/01/2009 35 -306 

14 51 36678 06/03/2009 70 471.2 

15 51 37680 15/05/2009 140 176.1 

16 51 40185 06/11/2009 315 369.8 

17 51 41688 19/02/2010 420 -111.9 
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18 51 42189 26/03/2010 455 418.1 

19 51 43692 09/07/2010 560 -126 

20 51 44193 13/08/2010 595 103.1 

21 51 44694 17/09/2010 630 511.1 

Table 6.1: Envisat ASAR data from ESA 

6.4 Data Processing Tool 
The Stanford Method for Persistent Scatterers (StaMPS) is a free software package 

which was originally developed by Hooper and his colleagues at Stanford University 

in 2004. StaMPS was developed further at the University of Iceland, Delft University 

of Technology, and at the University of Leeds (Hooper , et al., 2013) (Hooper, et al., 

2012).  

StaMPS aims to monitor ground deformation over a large coverage area based on the 

time series analysis of PS selected within the monitoring area (Hooper, et al., 2012). 

Some free software, such as Doris, ROI_PAC, Triangle and SNAPHU, are integrated 

in StaMPS for SAR image processing, and users are able to apply them by using these 

programmes in StaMPS. Table 6.2 shows the function of each of the free software 

packages integrated in StaMPS. 

Software in 

StaMPS 
Functions 

ROI_PAC 
Generate SLC data with standard Committee on Earth 

Observation Satellites (CEOS) format from raw data 

 

Doris 

 

Read and coregistration of SLC data;  

DEM phase conversion; 

Interferogram generation 

Triangle Generate Delaunay Triangulation by persistent scatterers 

SNAPHU Phase unwrapping  

MATLAB PS-InSAR processing 

Table 6.2: Function of each free software integrated in StaMPS 
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The raw data captured by ERS, Envisat and ALOS satellites is focused by means of 

ROI_PAC and can then be processed in StaMPS. For data processing starting with 

SLC images, the step of focusing can be skipped and the SLC images can be directly 

applied in Doris for interferogram generation. StaMPS is able to process SLC images 

acquired from ERS, Envisat, RADARSAT-1/2, TerraSAR-X and COSMO-SkyMed 

satellites (Hooper , et al., 2013). Envisat ASAR data obtained from ESA are SLC 

images, therefore the SLC images can be processed in StaMPS. 

6.5 Railway Subsidence Monitoring Process 
PS-InSAR processing for railway subsidence monitoring starts with the SLC data 

obtained from the Envisat ASAR antenna. A directory for SLC data is built and the 

data are stored in it for data processing. In addition, master SLC data is selected and 

all the SLC data are cropped based on the coverage of the study area.  

Two-pass D-InSAR is then applied to the cropped master image and slave images, 

and interferograms are generated. In order to remove topography information from the 

interferogram, an external DEM obtained from SRTM is used to simulate the 

topographic phase in the interferogram. As a result, a stack of differential 

interferograms can be generated by differential interferometry of the interferograms 

generated from the SAR images and simulated magnitude image of the external DEM 

provided by Shuttle Radar Topography Mission 3 (SRTM 3).   

In order to obtain a more reliable ground deformation result, PSC with good 

coherence over a long time period are selected from the interferograms based on the 

amplitude stability and phase stability. The signal contribution from neighbouring 

pixels of the PSC result in noisy PS pixel, therefore the noisy PSC must be dropped 

by PS weeding. In addition, DEM phase correction can be undertaken based on the 

estimated DEM errors. After phase unwrapping and phase filtering for spatially 

correlated error, ground deformation information can be extracted from the stack of 

differential interferograms. Figure 6.5 represents the ground deformation monitoring 

process by StaMPS based on PS-InSAR. The monitoring process is divided into the 

data pre-processing process, the D-InSAR process and the PS-InSAR process. 
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In this case study, 21 SLC images captured by Envisat ASAR antenna are applied in 

StaMPS for PS-InSAR data processing. The 21 SLC images which were obtained 

during the period from 15 June 2007 to 17 September 2010 are listed in Table 6.1.  

6.5.1 Data Pre-processing Process 
In the data pre-processing step, the SLC image captured on 26 December 2008 was 

selected as the master image while the rest of the SLC images were considered as 

slave images. After cropping all the SLC images based on the study area, the 21 SLC 

images were ready for the D-InSAR process.  

Data pre-processing 

D-InSAR process 

Build a directory for SLC data 

 Choose master SLC data 

 Crop SLC data based on study area 

 

Stack of differential interferograms 

PS selection based on amplitude stability and phase stability 

Phase unwrapping 

 Phase filtering for spatially correlated error 

 

 

DEM error correction 

 

Phase noise estimation 

PS weeding  

 

Data pre-processing 

D-InSAR process 

PS-InSAR process Extract ground subsidence 

 
Figure 6.5: Railway subsidence monitoring process by StaMPS 
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Figure 6.6 represents the cropped magnitude images for the selected dates. The 

magnitude image represents the topography of the study area, and contains the 

amplitude and phase information for each pixel of the SLC image. The magnitude 

image was generated at the time of reading the SLC image. In order to reduce speckle 

noise in the SLC image, a 4:1 multi-looking was applied to the image.  The bright 

pixels on the magnitude image have the high signal to noise ratio (SNR) while the 

dark pixels have the low SNR.  

           

Figure 6.6: Cropped magnitude images of the master date 26/12/2008 (left) and slave 

date 01/30/2009 (right)  

6.5.2 D-InSAR Process 
Differential interferometry is carried out to remove topography information from the 

interferograms generated from the interferometric image pairs. One master image and 

20 slave images were selected in this case study to form 20 image pairs and generate 

20 interferograms. Figure 6.7 illustrates the 20 image pairs with temporal baseline and 

perpendicular baseline information.  
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Figure 6.7:  Temporal and perpendicular baselines of the image pairs 

In this case study, a DEM provided by the SRTM 3 was adopted to the simulated 

topographic phase of the interferogram and remove topography information. The 

coordinates of the border points of the area covered by the downloaded DEM are 

1.5W, 1.9E, 50.1S and 51.9N. Figure 6.8 is the simulated magnitude image of the 

DEM. It can be used for the coregistration with the SLC image.  
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Figure 6.8: Simulated magnitude image of the DEM  

After the coregistration, the simulated magnitude image of the DEM contains the 

topographic phase. As a result, topographic information can be removed from the 

interferogram generated from the SLC image pair by undertaking differential 

interferometry. Before removing the topographic phase, the flat earth phase was 

removed from the interferogram by precise orbit data of the radar. Figure 6.9 

represents the interferograms after flat earth removal and topographic phase removal 

based on the interferometric image pair 26/12/2008 and 21/11/2008.  
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Figure 6.9: Flattened interferogram (left) and interferogram after topographic phase 

removal (right) 

Based on the interferograms generated from the 20 selected interferometric image 

pairs and the topographic phase simulated by external DEM, 20 differential 

interferograms were created. 
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Figure 6.10: The 20 differential interferograms created in the D-InSAR process 

6.5.3 PS-InSAR Process 
(1) Selection of the Persistent Scatterer 

As mentioned in Chapter 4, each pixel in the interferogram is represented by a 

complex number with amplitude and phase information. Amplitude and phase 

information indicates the strength of the radar echo and argument of the complex 

number. As a result, the radar echo of each PS pixel has stable amplitude and phase.  

An approach based on the pixel amplitude stability is applied for the PS selection. A 

reasonable amplitude dispersion index is between 0.4 and 0.42, and 0.4 is selected for 

the amplitude dispersion index threshold in this case study. The scatterer within a 

pixel is selected as a PSC if its amplitude dispersion index is smaller than the 

threshold. Due to low SNR of scatterers (e.g. SNR<10 (Hooper, et al., 2004)) in 

vegetation areas, the relationship between the phase stability and amplitude dispersion 

will break down. As a result, the selected PSC is further selected based on the phase 

stability of the pixel. A coherence threshold of 0.3 is set for the PSC refinement in this 

research. 

(2) Phase unwrapping result 
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Following the PS selection, 3D phase unwrapping is carried out based on the 

SNAPHU algorithm to obtain the real interferometric phase of each pixel in the 

interferogram. After removing the DEM error and orbital ramps, the unwrapped phase 

of each interferogram is represented in Figure 6.11. It is clear to see that the 

unwrapped phase of the second interferogram has a much wider range of radian, 

which means that the second interferogram has more errors in the phase unwrapping. 

To ensure the reliability of the time series deformation monitoring, the second 

interferogram with significant errors in phase unwrapping should be removed from 

the stack of differential interferograms.  

 

Figure 6.11: Unwrapped phase of each differential interferograms 

Figure 6.12 shows the unwrapped phases of each differential interferograms after 

removing the second interferogram. Compared with Figure 6.11, the ranges of radian 

for each interferogram are more consistent. The 19 differential interferograms are then 

applied in time series deformation monitoring. 
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Figure 6.12: Unwrapped phase of each differential interferograms after removing the 

second interferogram 

(3) Generation of the annual average deformation velocity map 

High-pass filtering in time and low-pass filtering in space are applied to the pixels in 

the interferogram to remove the spatial correlated phase, such as atmospheric phase 

and orbit phase. After phase filtering, the ground deformation in the line of sight 

(LOS) direction can be extracted from the interferogram. Based on the stack of 

differential interferograms generated from the 19 image pairs, an annual average 

deformation velocity map of the study area is generated. 

 

 



Chapter 6 Railway Subsidence Monitoring Case Study 
 

106 

 

 

Figure 6.13: Annual average deformation velocity map 

Figure 6.13 represents the annual average deformation velocity of the study area. On 

this map, a total of 179,745 PS were selected. Different colours refer to different 

deformation velocities. During the monitoring period, some PS rose and some PS fell. 

The deformation colour range for the PSs is from -5.5 to 5.4 mm per year. For 

example, the red PS means that this PS subsided 5.5 mm per year.  

The deformation velocity data of the PS along the HS1 route indicates that no large 

scale deformation occurred on the selected section of HS1 during the monitoring 

period.  

(4) Time series analysis of the selected PS 
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For any PS within the study area, a time series deformation analysis can be carried out 

based on the historical records of the PS deformation during the monitoring period. 

Three PS, which are PS1, PS2 and PS3, are selected to show the results of the time 

series deformation analysis.  

In order to eliminate the error in the deformation monitoring result, a square centred 

on the selected PS with a width of 600 m was created. As well as the selected PS, 

other PS may be located within this square. Accordingly, the time series deformation 

records of the selected PS can be estimated based on the mean of the time series 

deformation records of all the PS within this square.  

Figure 6.14, Figure 6.15 and Figure 6.16 show the time series deformation analysis 

for the three selected PS. The small circles indicate the time series deformation 

records of the PS during the monitoring period. The position of the PS in the LOS 

direction on the date when the first SLC image was captured is considered as 0 mm. 

Accordingly, the slope of the line between the two circles is negative if the PS 

subsided and vice versa.   

 

Figure 6.14: Time series deformation analysis of selected PS1 
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Figure 6.15: Time series deformation analysis of selected PS2 

 

Figure 6.16: Time series deformation analysis of PS3 

Figure 6.14, Figure 6.15 and Figure 6.16 for the three PS have revealed three typical 

deformation trends occurring along the target railway. A common feature among 

these trends is that the deformation is relatively significant during the beginning 

period and then becomes to stable at later stages. For the area around the PS1, the 

general trend is subsiding, while the ground of PS3 is slightly uplifting. Unlike these 
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two PS, there is no consistent trend for PS2. It has experienced both subsiding and 

uplifting during the observation period. The deformation levels of the three PS at the 

end of the selected period were all within the range of -4 mm to 4 mm. 

(5) Deformation monitoring results on Google Earth 

Deformation monitoring results of the study area can be represented on Google Earth.  

Figure 6.17 illustrates all the PS within the study area with the information of their 

annual average deformation velocities and locations. The annual average deformation 

velocity has the same colour scale as the Figure 6.13. 

 

Figure 6.17: Annual average deformation velocity map on Google Earth 

PS along HS1 can be easily found by zooming in the map above. In Figure 6.18, 

several PS along HS1 are represented on a Google Earth image. The annual average 

deformation velocity of the PS and its coordinates can be obtained by clicking on 

these PS. For instance, the selected PS subsided 3.3 mm per year during the 

monitoring period.  
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Figure 6.18: Annual average deformation velocity of PS on Google Earth 

According to the annual average deformation velocity and coordinates of this PS, 

deformation records can be extracted from the deformation monitoring result and a 

time series deformation analysis can be conducted.  

6.5.4 Railway Subsidence Monitoring Result  
Table B. 1 in Appendix B represents the annual average deformation velocities of the 

PS along HS1. A positive result means the PS rose while the negative result means the 

PS fell during the monitoring period. Deformation velocities of HS1 sections shown 

in red are the areas which have potential subsidence.   

Based on the deformation velocity and coordinates of the PS along HS1, a 

deformation profile of HS1 can be created.  
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Figure 6.19: Deformation profile of selected sections of HS1 

This deformation profile indicates that deformation velocities of the PS along HS1 in 

LOS direction are between -4.4 mm per year and 3.9 mm per year. This range of 

deformation identifies that HS1 was generally stable during the monitoring period and 

that a safe operation of HS1 could be ensured by the stable railway infrastructure. 

However, potential subsidence should be monitored. For instance, the North Downs 

tunnel area has a subsidence velocity in LOS of up to 4.4 mm per year (see Table 6.3) 

while the subsidence velocity in LOS for the railway section between Hockers Lane 

Overbridge and Water Lane Underbridge is up to 3.2 mm per year (see Table 6.4).  

The ground deformation results obtained from PS-InSAR were showed in the LOS 

direction. In order to obtain ground deformation in vertical direction, the ground 

deformation value in the LOS direction should be projected on the vertical direction. 

The look angle of the Envisat ASAR data used in this case study is 23.3◦. Based on 

ground deformation results and the geometry of radar imaging (see Figure 4.2), 

vertical ground deformation results can be obtained. 

PS 

No. 

Deformation velocity (mm/y) Coordinates 

LOS Vertical North (N) East (E) 

North Downs Tunnel (Entrence) 

44 -2.4 -2.2 51°20'26.01"N 0°30'7.10"E 

45 -1.4 -1.3 51°20'18.57"N 0°30'8.31"E 

46 -3.7 -3.4 51°20'9.83"N 0°30'25.01"E 

47 -2.4 -2.2 51°20'8.80"N 0°30'21.99"E 



Chapter 6 Railway Subsidence Monitoring Case Study 
 

112 

 

48 -2.0 -1.8 51°20'3.67"N 0°30'16.59"E 

49 -2.0 -1.8 51°20'1.66"N 0°30'23.09"E 

50 -4.4 -4.0 51°19'58.75"N 0°30'20.01"E 

51 -3.0 -2.8 51°19'56.96"N 0°30'20.27"E 

52 -2.8 -2.6 51°19'55.44"N 0°30'25.20"E 

53 -1.5 -1.4 51°19'54.30"N 0°30'20.18"E 

54 -1.8 -1.7 51°19'50.03"N 0°30'27.37"E 

55 -1.2 -1.1 51°19'16.87"N   0°30'22.67"E 

56 -1.4 -1.3 51°19'13.45"N   0°30'25.91"E 

North Downs Tunnel (Exit) 

Table 6.3: Summary of the railway deformation in North Downs Tunnel area 

PS 

No. 

Deformation velocity (mm/y) Coordinates 

LOS Vertical North (N) East (E) 

Hockers Lane Overbridge 

64 -2.7 -2.5 51°17'3.95"N 0°34'43.17"E 

65 -2.5 -2.3 51°16'58.56"N 0°34'54.30"E 

Thurnham Lane Underbridge 

66 -1.4 -1.3 51°16'58.89"N 0°34'55.72"E 

67 -3.2 -2.9 51°16'39.89"N 0°35'30.91"E 

Water Lane Underbridge 

Table 6.4: Summary of the railway deformation between Hockers Lane Overbridge 

and Water Lane Underbridge 

In addition, as it is an important transportation junction of HS1, the stability of 

Ashford International Station is critical to the safe operation of HS1. The railway 

subsidence monitoring result obtained from this case study also indicates some of the 

ground movement of Ashford International Station. According to Table 6.5, the 

deformation velocities of all the PS around Ashford International Station are positive 

and there is no obvious fluctuation in the data. Accordingly, although the ground 
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movement of Ashford International Station is rising slowly, it is generally stable as 

indicated by the railway subsidence monitoring result in this case study.  

PS 

No. 

Deformation velocity (mm/y) Coordinates 

LOS Vertical North (N) East (E) 

Ashford International Station (Entrance) 

113 1.7 1.6 51° 8'55.61"N 0°51'42.83"E 

114 1.9 1.7 51° 8'52.86"N 0°51'48.56"E 

115 2.2 2.0 51° 8'49.95"N 0°51'52.75"E 

116 1.4 1.3 51° 8'41.64"N 0°52'21.26"E 

117 1.6 1.5 51° 8'38.84"N 0°52'28.30"E 

118 2.2 2.0 51° 8'36.89"N 0°52'31.40"E 

119 1.8 1.7 51° 8'35.45"N 0°52'32.06"E 

120 1.2 1.1 51° 8'32.51"N 0°52'36.40"E 

121 1.8 1.7 51° 8'29.07"N 0°52'41.43"E 

122 0.9 0.8 51° 8'26.87"N 0°52'50.69"E 

123 1.9 1.7 51° 8'20.30"N 0°52'56.81"E 

124 2.4 2.2 51° 8'16.80"N 0°53'3.10"E 

125 0.8 0.7 51° 8'15.15"N 0°53'7.77"E 

Table 6.5: Summary of the railway deformation at Ashford International Station 

PS-InSAR is able to detect millimetre vertical ground deformation in both precision 

and accuracy. However, due to limitations of D-InSAR, precision and accuracy of PS-

InSAR will be affected. The main errors of PS-InSAR results come from phase noise 

of the interferogram, such as flat earth effects, topographic effects, atmospheric delay, 

orbit error and random phase noises. In addition, temporal and spatial decorrelation 

also contributes the precision and accuracy of PS-InSAR results. 

In addition, historical levelling survey data or GPS data which recorded the 

deformation of HS1 can be used to assess the accuracy of the subsidence monitoring 

results conducted by PS-InSAR. However, Network Rail (High Speed) who operates 

and maintains HS1 on behalf of HS1 Ltd have not maintained any levelling or GPS 

records for HS1 since the start of its operation. Although the subsidence monitoring 
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results can not be assessed by historical deformation records, High Speed Two (HS2) 

Ltd have stated that a larger ground movement occurred in the North Downs Tunnel 

area based on the ground movement data compared with the movement of the similar 

rock conductions in Midlands and North of England (High Speed Two (HS2) Limited, 

2013). In addition, the Network Rail (High Speed) Outside Parties Development 

Handbook indicated that except for minor settlement which occurred in the 

construction period of HS1, there was no settlement throughout the HS1 route 

(Network Rail (High Speed) Ltd, 2013). These two reports can support the 

conclusions of the case study.  

The results of this case study showed ground subsidence in North Downs tunnel area 

and railway section between Hockers Lane Overbridge and Water Lane Underbridge, 

and ground heave at Ashford International Station. Adjacent infrastructures, geology 

and weather conditions are main contributors to different deformation results in HS1 

railway sections. Although no large scale subsidence has occurred on HS1, in order to 

ensure safe the operation of HS1 in the future and reduce life cycle costs, more 

frequent subsidence monitoring work and maintenance work should be conducted, 

especially on the sections of HS1 with potential subsidence. A proper maintenance 

plan for HS1 can be made based on the prediction results for the subsidence trends of 

HS1 in the future. A case study which predicts the subsidence trends of HS1 by time 

series prediction models will be undertaken in Chapter 7.  

6.6 Summary 
A case study which assessed the subsidence status of the HS1 route was conducted in 

this chapter. A 53 km long railway section of HS1, which is from Southfleet Junction 

near Ebbsfleet International Station to Ashford International Station, was chosen as 

the study railway.  Envisat ASAR data obtained between June 2007 and September 

2010 were used for railway subsidence monitoring.   

After conducting PS-InSAR based on Envisat data, the deformation profile of the 

selected railway was generated. According to the railway subsidence monitoring 

result, large scale ground movement did not occur on HS1 and this railway is still 

stable after over 10 years of operation. Although the infrastructure of HS1 is generally 

stable, some areas indicated the potential for subsidence compared with the rest of the 
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HS1 route.  For instance, vertical subsidence velocities of the North Downs Tunnel 

and the railway between Hockers Lane Overbridge and Water Lane Underbridge were 

up to 4.0 mm per year and 2.9 mm per year respectively. In addition, the results of 

railway subsidence monitoring also indicate good ground stability around Ashford 

International Station, although the land is generally rising.  

Based on the subsidence monitoring result, frequent monitoring work should be 

conducted on the railway sections with potential subsidence. In addition, a railway 

subsidence prediction model which indicates the trend of railway subsidence can be 

used for subsidence prediction on the HS1 route. Moreover, a maintenance plan 

should be made for HS1 based on the prediction result to ensure the safe operation of 

HS1 and to reduce maintenance costs.  
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Chapter 7 Railway Subsidence Prediction 

Case Study 

7.1 Introduction 
In the prediction section, the subsidence data obtained from PS-InSAR will be used as 

the input data for the time series models discussed previously. The prediction 

simulation will be divided into two parts. The first part is to model the time series 

based on equal intervals, while the other is to work on an uneven time series. R is 

employed as the statistical tool to conduct the simulation. The subsidence data will 

need to be imported into R, as they are originally stored in a MATLAB data file. 

For the subsidence time series with equal intervals, the simulation will be carried out 

with the Auto-Regressive Integrated Moving Average (ARIMA) model, an artificial 

neural network (ANN) model and a grey model. The modelling procedure introduced 

in Chapter 5 will be implemented through specific packages in R. A comparison 

between the performances of the three models will then be provided after the 

simulation is finished, where the root mean square error (RMSE) is adopted as the 

measure to assess the simulation results of these models. 

The second part of the simulation only involves a grey model as it is the only model 

of the three that is capable of handling time series with unequal intervals. The main 

procedure is similar to that for the equal-interval time series, with one additional step 

at the beginning to transform the original data from the unequal interval series to an 

equal interval one with the algorithm mentioned in the Chapter 5. 

7.2 Input Data 
All the time series prediction models mentioned earlier only work for observations 

with equal intervals. If the time series has unequal intervals, it will usually need to be 

transformed into an equal-interval series before being modelled. For this simulation, 

125 persistent scatters (PS) were selected and each of them had 19 valid observations 
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over 3 years. The standard time interval for these observations was 35 days. However, 

only the time series sequence from the 5th observation to the 12nd observation has a 

constant interval of 35 days, while the intervals between the other observations are not 

always 35 days. Therefore, the sub subsidence series, which includes 9 observations 

ranging from the 5th observation to the 12nd observation plus the benchmark point, 

was chosen to be the input for the first simulation on the equal interval time series. 

In the second simulation, all 19 observations are selected and the whole series will be 

transformed into a new time series with equal intervals, where the subsidence data are 

weighted based on the size of their original intervals. 

Usually, the best practice in time series prediction is to divide the input data into the 

training set and the validation set. However, as insufficient observations could be 

obtained for this research, all the input data are used as the training set and only the 

performance of the training set is assessed and compared. 

7.3 Equal Interval Subsidence Series Simulation 

7.3.1 ARIMA Model 
The package ‘forecast’ in R can be used to perform the ARIMA modelling. According 

to the typical process, the first step is to check the auto correlation function (ACF) and 

partial auto correlation function (PACF) in order to determine the orders of the 

ARIMA model. Taking the 25th PS as an example, which exhibits one of the most 

significant subsidence values, its ACF and PACF plots are shown in Figure 7.1. The 

dotted line is the 95% confidence interval by default. 

         

Figure 7.1: ACF and PACF Plots 
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According to the ACF plot, there are no significant positive autocorrelations within a 

high number of lags. Therefore, no further differencing needs to be made. Moreover, 

in both the ACF and PACF plots, there is no spike among the lags, meaning the time 

series is already quite random and close to white noise. This might be due to the fact 

that either there are not enough data points available for the model or the series itself 

is close to white noise. In this case, the ARIMA model is not perfectly suitable for 

modelling. However, in order to evaluate the suitability among various modelling 

methods, the ARIMA model is still used and the most applicable type of model is 

ARIMA (1,0,0). The results of the simulation are shown as follows: 

 

Figure 7.2: Actual subsidence vs. predicted subsidence in ARMA 

For some of the time points, the performance of the ARIMA model is not entirely 

satisfactory, particularly when the subsidence value changes dramatically. The root 

mean square error (RMSE) is 2.9304.  

Ideally, the same process should be applied to each of the PSs. However, when there 

are too many PSs, it is impossible to undertake the process manually. The Forecast 

package in R provides an automatic ARIMA function that can determine the order of 

ARIMA automatically, based on certain criteria. After applying the automated 

ARIMA modeling for all the remaining PSs, the total RMSE is 454.847. 
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7.3.2 Neural Network Model 
The package ‘nnet’ in R is one of the most widely used tools for artificial neural 

network modelling. As introduced in Chapter 5, the structure of the ANN is the 

primary factor that needs to be determined. For the time series, the input neurons are 

previous observations. Based on the number of available observations, 3 input 

neurons are chosen. Numerous studies have revealed that the number of hidden 

neurons will not impact the performance of the model significantly. It should usually 

be smaller than the total number of input and output neurons. Therefore, 3-hidden 

neurons are also selected. Sometimes, in order to determine the optimal number of 

input and hidden neurons, a sensitivity analysis can be undertaken based on the varied 

number of input and hidden neurons in order to minimise the total prediction errors. 

After determining the structure of the ANN model, the ‘nnet’ function is utilised to 

train the model. The maximum number of iterations is set to 1000. As there are 3 

input neurons, the ANN model can produce fitted values for the 4th time point to the 

9th time point. The plot below shows both the actual subsidence and the fitted 

subsidence value produced by the ANN model for the 25th PS. 

 

Figure 7.3: Actual subsidence vs. predicted subsidence in neural network 
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Compared to the ARIMA model, the neural network model fitted much better with its 

RMSE amounting to 0.0035. The same training process was then applied to the 

remaining PSs and the total RMSE result was 110.966. 

7.3.3 Grey Model 
There is no package specifically for grey modelling in R. However, the algorithm can 

be constructed using basic R codes. A great feature in R is that apart from the basic 

functions originally embedded in R, users can also define their own functions. In grey 

modelling, the first step is to create 2 important functions, i.e. the Accumulated 

Generating Operation (AGO) and the operation to obtain the means between adjacent 

data points generated by AGO. Then these 2 functions are applied to the subsidence 

data, which produces the grey data for modelling. For the 25th PS, the performance of 

the grey model is shown below: 

 

Figure 7.4: Actual subsidence vs. predicted subsidence in grey model 

The RMSE is 2.8622. As carried out for the ARIMA and NNS models, the same 

modelling process is applied to all the PSs and the total RMSE is 531.316. 

7.4 Unequal Interval Subsidence Series Simulation 
As mentioned earlier, the whole subsidence series is not an equal interval time series. 

Its intervals are as follows: 
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Interval 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Days 70 70 140 70 35 35 35 35 35 35 35 35 70 175 105 35 105 35 35 

Table 7.1: Time intervals 

According to the transformation technique provided by the grey model, the original 

series was transformed into a new series with equal intervals as the first step. The 

average interval over the whole simulation period is 62.6 days. The subsidence data 

for each PS from the original series was weighted with the ratio of its time interval 

against the average interval, which created the time series with equal intervals. Taking 

the 45th PS as an example, the original subsidence data series is as follows: 

No. 1 2 3 4 5 6 7 8 9 10 

Subsidence (mm) 5.20 5.21 2.89 (1.47) 1.55 2.22 8.93 7.19 (0.85) 2.26 
 
No. 11 12 13 14 15 16 17 18 19 20 

Subsidence (mm) 0.00 (1.44) (1.67) 2.78 1.06 (0.78) (4.46) (3.79) 2.29 6.52 

Table 7.2: Original subsidence data 

After the transformation, the new subsidence data series is as follows: 

No. 1 2 3 4 5 6 7 8 9 10 

Subsidence (mm) 5.20 5.21 3.14 (0.04) 0.69 2.09 8.22 7.25 (1.03) 2.49 
 
No. 11 12 13 14 15 16 17 18 19 20 

Subsidence (mm) (0.27) (1.67) (1.72) 3.51 1.06 (0.70) (4.41) (3.82) 2.14 6.52 

Table 7.3: New subsidence data 

Then the standard grey modelling process was applied to the new series to generate 

the predictions which were transformed back into the unequal series later. Below are 

the plots of the simulation results for the 45th PS: 
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Figure 7.5: Unequal interval actual subsidence vs. unequal interval predicted 

subsidence 

Then the same process was again carried out for all the PSs. The total RMSE was 

558.761. 

7.5 Simulation Results 
A comparison of performance among the three models is listed in Table 7.4. 

Model No. of the Observations RMSE 

ARIMA 9 454.847 

Neural Network 9 110.996 

Grey Model 9 531.316 

Table 7.4: RMSE comparison for equal interval time series  

According to the simulation results, the estimated data produced by ARIMA shows a 

generally similar trend as the actual series. However, due to the regressive nature of 

ARIMA, the values estimated by ARIMA changed slower than the actual data with 

time lags between them, which can be clearly seen from the ARIMA plot. In addition, 

the estimated fluctuation among the data series was also much lower than the actual 

fluctuation. Therefore, the performance of the ARIMA model was not quite 

satisfactory. By contrast, the grey model worked better than ARIMA in the aspect of 
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trend modelling with smaller time lags between the fitted and actual curves. 

Nevertheless, the grey model is less capable of reflecting the significant changes 

among the data series, leading to huge prediction errors. Compared to these two 

models, the ANN model captured both the trend and the fluctuation within the 

subsidence series through its learning process. As a result, the RMSE of the ANN 

model is significantly lower than that of the other two models.  

However, high performance of models on the training set does not necessary mean 

that they will achieve the same high performance in future prediction. In order to 

further check the performance of the three models, the prediction models established 

previously were used to try to predict the subsidence of the 25th PS at the 14th time 

point, which was not used in the simulation. The result is shown in Table 7.5. 

Actual Subsidence 
ARIMA 

Predicted 

Neural Network 

Predicted 

Grey Model 

Predicted 

-4.554 -0.210 -2.928 -6.923 

Table 7.5: Subsidence prediction comparison 

According to the above results, the ANN model produced the closest prediction result, 

while the result generated by the grey model is also quite close to the actual value, 

which shows a huge improvement when compared to its performance on the training 

set. However, the forecast from the ARIMA model still deviated significantly from 

the actual subsidence, which to some extent demonstrates that the ARIMA model 

might not be suitable for subsidence data series modelling and forecasting. 

Furthermore, as these time series models were established based on the historical data, 

assuming that the historical trend will continue in the future, if the level of subsidence 

significantly changed at some point with unexpected changes, the forecast model 

should always be re-adjusted or re-trained.  

In addition, the grey model was also used on a larger set of subsidence series with 

unequal time intervals. The total RMSE for the test is 558.761 and the RMSE per time 

point is 27.938. Compared to the RMSE per time point for the grey model built on 



Chapter 7 Railway Subsidence Prediction Case Study 
 

124 

 

equal interval subsidence series which amounts to 59.035, the grey model for the 

unequal series shows a better simulation performance. 

7.6 Summary 
In this chapter, ARIMA, ANN and grey models have been used to fit the subsidence 

series. The first part of the simulation aimed to model the subsidence data with equal 

time intervals. Among the three models, both the ARIMA model and grey model 

obtained similar large RMSEs, which means that their performance was not quite 

satisfactory. Relatively speaking, ARIMA worked better in reflecting fluctuation 

within the series, while the grey model is able to capture the main trend more 

accurately with no obvious time lags. The ANN model is the one with the smallest 

RSME, benefitting from its learning algorithm. This is also justified by the result of 

an additional prediction test with the data outside the previous data set. However, due 

to the lack of available data, this simulation can only perform data modelling without 

the validation step, which limits the quality of the simulation assessment. Additionally, 

the grey model was also applied to the unequal subsidence series. With the 

transformation algorithm applied on the series, the simulation result has demonstrated 

that the grey model is able to generate reliable predictions even on subsidence time 

series that are not recorded with the same intervals, which sheds light on a broader 

application of time series for techniques on time series with various characteristics. 
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Chapter 8 Conclusions and Future Work 

8.1 Main Achievements  
In order to ensure good performance and to reduce the life cycle cost impact caused 

by railway subsidence, the author of this thesis has provided an integrated approach to 

assess railway performance. The main achievements of this research are as follows. 

(1) Ability to monitor railway subsidence by using InSAR technique 

InSAR is a technique which has been applied in various areas, such as topography 

mapping, DEM generation, ocean currents mapping and landscape characterization 

(Lu, et al., 2007). Based on this existing technique, the author of this thesis analysed 

the feasibility of using InSAR in railway subsidence monitoring and carried out a case 

study to apply InSAR in the railway subsidence monitoring context.  

(2) Ability to predict railway subsidence by using time series prediction models 

The author reviewed several prediction models which can be used for time series data 

and compared the railway subsidence prediction results obtained by using the 

traditional statistical auto-regressive moving average (ARMA) model, an artificial 

neural network (ANN) model and the grey model in the case study. The ANN model, 

which is able to handle the time series data with fewer observations with a non-linear 

trend, performed best in predicting railway subsidence.  

(3) Development of an integrated approach for railway performance assessment 

The results of the two case studies conducted in Chapter 6 and 7 provide the 

foundation for an integrated approach for railway performance assessment. Based on 

the time series railway deformation data obtained by means of PS-InSAR, a railway 

subsidence prediction can be carried out based on the three time series prediction 

models provided in this thesis. This integrated approach ensures better knowledge 

about the performance of the railway foundation and is able to reduce its life cycle 

costs, if it is integrated into a robust maintenance strategy.  
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8.2 Summary of Contents 
This thesis is divided into the following three main sections. 

(1) Review of railway subsidence monitoring and time series railway subsidence 

prediction. 

(2) Applications of PS-InSAR in railway subsidence monitoring and time series 

prediction models for railway subsidence. 

(3) Case study using PS-InSAR and time series prediction models for performance 

assessment of HS1. 

The first section reviewed three approaches for railway subsidence monitoring and 

selected InSAR as the most suitable approach to monitor the subsidence of railways in 

this research. InSAR is a technique which is capable of topography measurement. In 

order to extract real ground deformation data from the InSAR result, D-InSAR was 

applied. However, the limitations of D-InSAR reduce the reliability of the ground 

deformation monitoring result. As an enhanced D-InSAR, PS-InSAR which 

overcomes the limitations of D-InSAR performance well in ground deformation 

monitoring, was adopted in this research. This thesis reviewed the development of 

InSAR and its applications in various research areas. In addition, to prove the 

feasibility of using PS-InSAR in railway subsidence monitoring, three successful 

examples were described. For railway subsidence prediction, three time series 

prediction models were introduced, which were traditional statistical models, an 

artificial neural network model and a grey model which is able to handle a system 

with partially known parameters.  

The second section consists of the methods of using PS-InSAR in railway subsidence 

monitoring and time series prediction models for railway subsidence prediction. After 

presenting the principle for topography measurement by InSAR and ground 

deformation monitoring by PS-InSAR, detailed procedures for extracting deformation 

results for the railway were illustrated. Based on the historical deformation records of 

railway obtained by PS-InSAR, time series subsidence prediction was applied. The 

methods of the predicting time series subsidence of railway by statistics prediction 

model ARIMA, a neural network model based on artificial intelligence and a grey 

model were described.  
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For assessment of railway performance, two case studies were described in the third 

section, which were a case study of subsidence monitoring of HS1 and a case study of 

subsidence prediction of HS1. A 53 km railway which is located on the route of HS1 

was selected for the study. Based on subsidence monitoring results of HS1 obtained 

by PS-InSAR, a time series analysis of selected PS along HS1 was carried out and a 

deformation profile of HS1 was generated. The subsidence results of HS1 provide the 

input data for time series prediction models. In the case study of railway subsidence 

prediction, two simulations for time series with equal interval and unequal interval 

were conducted. ARIMA, the neural network model and grey model were applied in 

the first simulation respectively while only the grey model, which is capable of 

dealing with unequal interval time series, was used in the second simulation. 

8.3 Conclusions  
The main findings of this thesis are concluded as follows.   

8.3.1 Railway Subsidence Monitoring 
Rapid development of the railway has brought about better railway capability, which 

has further led to heavier axle loads and higher speed lines. As a result, unstable 

railway subgrade has become a threat to good railway performance. In order to ensure 

good performance, safe operation and to reduce the life cycle costs of the railway, 

railway subsidence monitoring was carried out in this research. The major findings of 

the subsidence monitoring are illustrated below.  

(1) Railway subsidence monitoring not only requires precise monitoring result but it 

also requires large monitoring coverage and a long monitoring period. As a result, 

the InSAR technique is able to monitor the subsidence of the railway.  

(2) Based on the principle of InSAR, a ground deformation result can be extracted 

from the radar interferogram generated from a pair of radar images. If ground 

deformation occurred during the acquisition of the image pair, topography 

information should be removed from the ground deformation result by using D-

InSAR, then the real ground deformation result can be obtained. In order to 

overcome the limitations of D-InSAR and obtain a reliable ground deformation 

result, PS-InSAR was applied to monitor railway subsidence in this research.  
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(3) The feasibility of applying PS-InSAR for railway subsidence monitoring in this 

research was proved by the applications of railway subsidence monitoring by 

SNCF High Speed Rail Network, Jubilee Extension Line in London and Jinshan 

Railway in China. 

8.3.2 Railway Subsidence Prediction 
Historical deformation records for the railway obtained by PS-InSAR are considered 

as a discrete time series. In order to predict trends of the deformation time series and 

provide maintenance guidance for the railway, time series prediction models were 

applied.  Major findings of railway subsidence prediction are concluded as follows.  

(1) A discrete time series is composed by historical railway deformation records. 

Three main time series prediction models which are traditional statistical model 

ARMA, ANN model based on artificial intelligence and a grey model were 

adopted for railway subsidence prediction in this thesis.  

(2) All of the three time series prediction models are able to predict the subsidence of 

the railway and each of them has its own specialist area of expertises. ARMA is 

suitable for time series with a large data volume and a stable developing trend, 

whereas the ANN model is capable of the prediction for the time series with 

fewer observations and an un-linear developing trend. For time series systems 

with partially unknown parameters and limited observations, the grey model 

performs well.  

8.3.3 Case Study of Railway Performance Assessment 
In order to assess railway performance, two case studies, which are subsidence 

monitoring and subsidence prediction of HS1, were carried out. A deformation profile 

of HS1 was created based on the deformation monitoring result of HS1 obtained from 

the subsidence monitoring case study while the time series prediction model which is 

the most suitable one for prediction of railway subsidence was determined after 

carrying out the railway subsidence prediction case study. The major findings and 

conclusions are indicated as follows.  

(1) The deformation profile of HS1 indicates that no significant subsidence has 

occurred on HS1 and HS1 is stable after being in operation for 10 years.  
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(2) Although HS1 is generally stable, potential subsidence was detected on some 

sections of HS1 compared with the other railway sections. For example, a vertical 

subsidence velocity of up to 4.0 mm per year was detected in the North Downs 

Tunnel.  In addition, the railway section between Hockers Lane Overbridge and 

Water Lane Underbridge had a vertical subsidence velocity of up to 2.9 mm per 

year. More frequent subsidence monitoring work should be carried out on the 

sections of HS1 with potential subsidence.  

(3) As one of the important railway stations of HS1, ground stability of Ashford 

International Station is an important criterion for the safe operation of HS1. The 

subsidence monitoring result of this case study proved the stability of Ashford 

International Station. 

(4) The results of railway subsidence prediction indicated that the ARIMA model and 

the grey model did not have a satisfactory performance in subsidence prediction of 

HS1 as both of them obtained similar larger RMSEs. ARIMA was good in 

reflecting fluctuation within the series while the grey model worked well in 

capturing the main trend more accurately with no obvious time lags. Compared 

with the ARIMA model and the grey model, ANN model performed best and 

obtained the lowest RMSEs. The case study also demonstrated that a reliable 

prediction result could be generated by the grey model even on subsidence time 

series that are not recorded at the same interval. 

8.4 Future Work 

8.4.1 SBAS-InSAR in Railway Subsidence Monitoring 
PS-InSAR was adopted in the case study of railway subsidence monitoring. In PS-

InSAR data processing, one master image is selected based on the minimization of the 

temporal baseline and spatial baseline and the mean Doppler centroid frequency 

difference, while the rest of the images are the slave images. In order to reduce spatial 

decorrelation of the interferograms, only the image pair with a perpendicular baseline 

smaller than 800 m should be selected for PS-InSAR processing.  

Interferograms with better spatial correlation can be created by applying a shorter 

critical perpendicular baseline in the selection of the image pairs. In addition, 
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temporal baselines of some image pairs are long because only one SLC image is 

selected as the master image in PS-InSAR. As a result, to ensure temporal correlation 

of the interferogram, less image pairs are identified for interferogram generation. Not 

only spatial correlation, but also temporal correlation of the interferogram is essential 

for a robust railway subsidence result. As a result, a shorter perpendicular baseline 

and temporal baseline are key parameters in railway subsidence monitoring by InSAR.  

SBAS-InSAR (Small Baseline Subset InSAR), which is able to select more 

interferometric image pairs with shorter perpendicular baseline from less SLC images, 

has been applied for ground deformation monitoring by Berardino et al. in 2002 

(Berardino, et al., 2002).  

Different from PS-InSAR, any SLC images can be considered as the master image of 

the image pair if the temporal baseline and perpendicular baseline of the image pair 

are below a certain hurdle. An image pair with a perpendicular baseline smaller than 

400m can be selected for interferogram generation (Li, et al., 2009). As a result, more 

interferograms with good spatial and temporal correlation are generated for time 

series subsidence analysis by less SLC images.  

Based on the deformation result of HS1 obtained by PS-InSAR, a deformation profile 

of HS1 was created and the stability of HS1 was demonstrated. For future research, in 

order to have a more reliable subsidence monitoring result of HS1, a deformation 

profile of HS1 generated by SBAS-InSAR can be compared with the one obtained by 

PS-InSAR or historical levelling survey data.   

8.4.2 Railway Safety Assessment  
In order to ensure good railway performance, not only railway subsidence monitoring 

and prediction but also a safety assessment of railway infrastructure should be 

considered in an intergraded railway performance assessment approach in future work. 

Recently, the stability of railway and highway infrastructure in the UK has been 

threatened by the wet weather. For instance, a 15 ft-deep sinkhole was found on the 

M2 motorway near Sittingbourne in Britain due to wet weather.  In addition, water 

extraction resulted in ground subsidence of the London Jubilee Tube Extension Line. 
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A railway safety assessment should consider all the factors which might threaten the 

stability of railway infrastructures. The safety factors can be categorised into physical 

factors, environmental factors and maintenance factors. Physical factors, such as train 

speed, axle load, subgrade stiffness, track corrugation, welds, joints and defects, and 

initial construction, are the main contributors to bearing and bending stresses 

concentrated on the railway. Environmental factors include rain fall, drainage, 

subgrade soil and over steepened slopes, while railway maintenance work is 

considered as the maintenance factor.  

After identifying the safety factors which are related to railway subsidence, a safety 

assessment is required to assess the risk level of these factors. The risk level of these 

safety factors can be assessed through a fuzzy logic model (An, et al., 2013) and 

neural network (Guler, 2013). Generally, the risk level of a safety factor depends on 

its frequency of occurrence and consequence severity.  However, the frequency and 

severity of some safety factors are uncertain. In order to overcome the uncertainty, a 

fuzzy logic model is applied in railway safety assessment through indicating risk level 

and risk degree of each safety factor. Accordingly, the corresponding weight of each 

safety factor in the overall degree of risk of railway subsidence is evaluated. Based on 

the weight and risk degree of each safety factor, the overall degree of risk of railway 

subsidence can be calculated. In addition, a neural network model based on artificial 

intelligence has also been demonstrated to be capable of determining the weight of 

safety factors through various learning algorithms. 
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Appendix A Available Envisat Data Sets 

No. Track Orbit Acquisition Date (dd/mm/yy) 

1 51 7620 15/08/2003 

2 51 8622 24/10/2003 

3 51 9123 28/11/2003 

4 51 9624 01/02/2004 

5 51 11127 16/04/2004 

6 51 11628 21/05/2004 

7 51 12630 30/07/2004 

8 51 13632 08/10/2004 

9 51 14133 12/11/2004 

10 51 14634 17/12/2004 

11 51 15135 21/01/2005 

12 51 15636 25/02/2005 

13 51 16137 01/04/2005 

14 51 16638 06/05/2005 

15 51 17139 10/06/2005 

16 51 17640 15/07/2005 

17 51 18141 19/08/2005 

18 51 18642 23/09/2005 

19 51 19143 28/10/2005 

20 51 19644 02/12/2005 

21 51 27159 11/05/2007 

22 51 27660 15/06/2007 

23 51 28161 20/07/2007 

24 51 28662 24/08/2007 

25 51 29163 28/09/2007 

26 51 29664 02/11/2007 
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27 51 30165 07/12/2007 

28 51 31668 21/03/2008 

29 51 32670 30/05/2008 

30 51 33171 04/07/2008 

31 51 33672 08/08/2008 

32 51 34173 12/09/2008 

33 51 34674 17/10/2008 

34 51 35175 21/11/2008 

35 51 35676 16/12/2008 

36 51 36177 30/01/2008 

37 51 36678 06/03/2009 

38 51 37680 15/05/2009 

39 51 40185 06/11/2009 

40 51 41688 19/02/2010 

41 51 42189 26/03/2010 

42 51 42690 30/04/2010 

43 51 43692 09/07/2010 

44 51 44193 13/08/2010 

45 51 44694 17/09/2010 

Table A. 1: Available Envisat ASAR image mode data sets
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Appendix B Deformation Velocities of the 

PS along HS1 

PS 

No. 

Deformation velocity in LOS 

(mm/y) 

Coordinates 

North (N) East (E) 

M25 QE II Bridge 

1 -3.4 51°28'11.50"N 0°16'21.22"E 

2 -1.5 51°28'9.64"N 0°16'25.80"E 

Thames Tunnel North Portal 

Thames Tunnel South Portal 

3 -0.2 51°27'7.24"N 0°18'46.35"E 

A226 Galley Hill Road 

4 1.4 51°26'58.45"N 0°18'58.03"E 

5 -0.5 51°26'56.91"N 0°18'57.56"E 

6 1.0 51°26'54.41"N 0°19'1.01"E 

North Kent Line Overbridge 

7 1.5 51°26'50.18"N 0°19'4.28"E 

Pedestrian Access 

8 0.3 51°26'34.95"N 0°19'15.96"E 

9 -0.2 51°26'30.51"N 0°19'18.04"E 

10 1.6 51°26'28.94"N 0°19'18.63"E 

11 0.5 51°26'24.68"N 0°19'19.31"E 

A2260 Lind Road 

12 -2.8 51°25'56.60"N 0°19'29.94"E 

Pepper Hill Tunnel (Entrance) 

13 -0.5 51°25'31.59"N 0°19'49.92"E 

Pepper Hill Tunnel (Exit) 

14 0.0 51°25'29.17"N 0°19'53.71"E 
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15 -0.5 51°25'26.64"N 0°19'58.19"E 

Southfleet Tunnel (Entrance) 

16 -0.4 51°25'18.12"N 0°20'9.95"E 

Southfleet Tunnel (Exit) 

17 -1.1 51°25'9.49"N 0°20'33.51"E 

Downs Road Overbridge 

18 -1.6 51°25'7.81"N 0°20'34.98"E 

19 0.4 51°25'8.28"N 0°20'38.14"E 

20 0.1 51°25'1.07"N 0°21'1.15"E 

21 -2.3 51°24'57.85"N 0°21'5.01"E 

22 -0.4 51°24'58.03"N 0°21'10.27"E 

23 -1.3 51°24'53.67"N 0°21'26.51"E 

Wrotham Road Underbridge 

24 0.4 51°24'47.10"N 0°21'50.69"E 

Watling Street Footbridge 

25 -4.2 51°24'44.76"N 0°21'59.43"E 

26 -0.6 51°24'42.08"N 0°22'4.97"E 

27 -2.1 51°24'36.54"N 0°22'23.91"E 

Church Road Footbridge 

28 1.1 51°24'29.27"N 0°22'46.37"E 

29 0.0 51°24'27.20"N 0°22'57.01"E 

30 0.1 51°24'23.68"N 0°23'12.94"E 

Henhurst Road Overbridge 

31 -0.7 51°24'13.44"N 0°23'40.20"E 

32 -1.4 51°24'11.88"N 0°23'49.05"E 

33 0.0 51°24'6.97"N 0°24'11.98"E 

Scotland Lane bridge Overline 

34 0.1 51°24'4.81"N 0°24'25.92"E 

35 0.7 51°24'3.78"N 0°24'35.82"E 

36 -0.5 51°24'3.42"N 0°24'40.18"E 

Halfpence Lane Tunnel 
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Brewers Road Overbridge 

Park Pale Underbridge 

37 -0.3 51°23'56.81"N 0°26'1.13"E 

38 -0.1 51°23'52.03"N 0°26'22.01"E 

Knights Place Accomodation Bridge 

39 0.4 51°23'48.13"N 0°26'38.76"E 

Knights Place Footbridge 

Temple Wood Lane Bridge 

Great Wood Landridge 

40 -0.7 51°23'4.10"N 0°28'0.18"E 

Merral Shaw Pedestrain Subway 

Merral Shaw Underbridge 

A228 Cuxton Road Bridge HS1 

Shakehole Bridge (Intersection Bridge over Network Rail) 

Medway Viaduct 

North Down Way Bridge 

41 -0.6 51°21'48.76"N 0°29'11.48"E 

42 -0.6 51°21'46.65"N 0°29'13.08"E 

43 -1.5 51°21'26.07"N 0°29'33.55"E 

Stoney Lane Bridge 

North Down Tunnel (Entrence) 

44 -2.4 51°20'26.01"N 0°30'7.10"E 

45 -1.4 51°20'18.57"N 0°30'8.31"E 

46 -3.7 51°20'9.83"N 0°30'25.01"E 

47 -2.4 51°20'8.80"N 0°30'21.99"E 

48 -2.0 51°20'3.67"N 0°30'16.59"E 

49 -2.0 51°20'1.66"N 0°30'23.09"E 

50 -4.4 51°19'58.75"N 0°30'20.01"E 

51 -3.0 51°19'56.96"N 0°30'20.27"E 

52 -2.8 51°19'55.44"N 0°30'25.20"E 

53 -1.5 51°19'54.30"N 0°30'20.18"E 
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54 -1.8 51°19'50.03"N 0°30'27.37"E 

55 -1.2 51°19'16.87"N   0°30'22.67"E 

56 -1.4 51°19'13.45"N   0°30'25.91"E 

North Down Tunnel (Exit) 

57 -0.4 51°18'51.93"N 0°30'49.13"E 

Pilgrims Way Bridge 

58 1.0 51°18'51.37"N   0°30'51.17"E 

59 -0.5 51°18'49.90"N 0°30'52.07"E 

60 -3.3 51°18'46.85"N 0°30'53.59"E 

61 0.0 51°18'39.66"N 0°31'2.45"E 

Boarley Lane Overbridge 

Boxely Tunnel 

Boxley Valley AccomodationOverbridge 

Workhouse AccomodationOverbridge 

A249 Sittingbourne Road Overbridge 

62 -1.2 51°17'24.36"N 0°33'45.54"E 

63 -1.6 51°17'21.42"N 0°33'55.48"E 

Hockers Lane Overbridge 
 

64 -2.7 51°17'3.95"N 0°34'43.17"E 

65 -2.5 51°16'58.56"N 0°34'54.30"E 

Thurnham Lane Underbridge 

66 -1.4 51°16'58.89"N 0°34'55.72"E 

67 -3.2 51°16'39.89"N 0°35'30.91"E 

Water Lane Underbridge 
 

68 3.9 51°16'32.60"N 0°35'43.88"E 

69 0.5 51°16'23.77"N 0°35'56.44"E 

Longham Wood Underpass 

Crismill Lane Underbridge 

70 -2.2 51°16'13.09"N 0°36'18.89"E 

Maidstone Ashford Railway Underbridge 

71 1.2 51°16'4.54"N   0°36'34.96"E 
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72 -2.6 51°15'59.94"N   0°36'37.96"E 

M20 Motorway Service Utilities Underbridge 

M20 Motorway Service Area Overbridge 

73 0.8 51°15'51.03"N 0°36'57.40"E 

74 1.0 51°15'49.10"N 0°37'0.56"E 

Eyhorne Street Tunnel 

75 -0.3 51°15'27.39"N 0°37'43.03"E 

Ash Wood Footbridge 

Hospital Road Overbridge 

A20 Ashford Road Underbridge 

76 -0.5 51°15'3.43"N 0°38'23.44"E 

77 1.3 51°14'57.93"N 0°38'38.90"E 

Chegworth Lane Underpass 

78 1.1 51°14'49.06"N   0°39'1.68"E 

79 -1.5 51°14'42.28"N 0°39'20.20"E 

80 -0.5 51°14'37.75"N 0°39'32.77"E 

81 0.9 51°14'36.49"N 0°39'38.55"E 

82 0.5 51°14'35.19"N 0°39'40.14"E 

83 0.6 51°14'33.43"N 0°39'47.48"E 

Harrietsham Tunnel 

Fairbourne Lane Overbridge 

84 0.9 51°14'25.34"N 0°40'14.94"E 

Bell Farm Access Under bridge 

Runham Lane Overbridge 

Sandway Road Overbridge 

Old Ham Lane Overbridge 

Sandway Tunnel 

Boughton Road Overbridge 

Lenham Heath Road Overbridge 

85 0.6 51°13'26.23"N 0°42'48.23"E 

86 -2.1 51°13'10.04"N 0°43'17.63"E 
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Bowley Lane Overbridge 

87 0.2 51°13'8.32"N 0°43'21.94"E 

88 -0.8 51°13'6.33"N 0°43'23.63"E 

89 -2.3 51°13'3.38"N 0°43'30.86"E 

90 -0.4 51°12'59.95"N 0°43'36.73"E 

Hubbards Farm Accomodation Overbridge 

91 -3.5 51°12'46.16"N 0°44'8.98"E 

92 0.3 51°12'44.87"N 0°44'11.30"E 

93 -0.5 51°12'40.57"N 0°44'22.19"E 

94 -2.2 51°12'34.71"N 0°44'36.31"E 

95 -2.0 51°12'34.35"N 0°44'38.71"E 

Burnt Mills Footbridge 

96 -1.4 51°12'30.48"N 0°44'46.64"E 

Egerton Road Overbridge 

97 -0.6 51°12'23.66"N 0°45'5.42"E 

98 -2.3 51°12'9.46"N 0°45'34.02"E 

99 -0.8 51°12'8.65"N 0°45'41.23"E 

Newlands Road Overbridge 

100 -1.9 51°11'49.21"N 0°46'27.92"E 

101 0.5 51°11'47.56"N 0°46'34.42"E 

Pluckley Road Overbridge 

102 2.4 51°11'40.68"N 0°46'59.87"E 

103 -0.1 51°11'39.16"N 0°47'10.15"E 

Leacon Lane Underbridge 

Broad Mead Access Bridge Overline 

WestwellLeacon Tunnel 

A20 Maidstone Road West Bridge Overline 

104 -1.3 51°11'25.84"N 0°48'48.48"E 

105 0.4 51°11'23.69"N 0°48'56.52"E 

M20 Tutt Hill Underbridge 

Westwell Lane Overbridge(Over HS1&Network Rail) 
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106 0.1 51°10'58.78"N 0°49'43.49"E 

Station Road Underbridge 

107 0.0 51°10'27.18"N 0°50'9.55"E 

108 -2.0 51°10'24.38"N 0°50'11.26"E 

109 -2.3 51°10'17.60"N 0°50'16.09"E 

A20 Maidstone Road East Overbridge 

110 -0.4 51°10'14.19"N 0°50'17.32"E 

111 1.1 51° 9'50.85"N 0°50'32.20"E 

Godinton Lane Rial Underbridge 

112 1.2 51° 9'41.89"N 0°50'39.00"E 

Lodge Wood Foorbridge 

Long Walk Access Road Overbridge 

Ashford International Station (Entrance) 

113 1.7 51° 8'55.61"N 0°51'42.83"E 

114 1.9 51° 8'52.86"N 0°51'48.56"E 

115 2.2 51° 8'49.95"N 0°51'52.75"E 

116 1.4 51° 8'41.64"N 0°52'21.26"E 

117 1.6 51° 8'38.84"N 0°52'28.30"E 

118 2.2 51° 8'36.89"N 0°52'31.40"E 

119 1.8 51° 8'35.45"N 0°52'32.06"E 

120 1.2 51° 8'32.51"N 0°52'36.40"E 

121 1.8 51° 8'29.07"N 0°52'41.43"E 

122 0.9 51° 8'26.87"N 0°52'50.69"E 

123 1.9 51° 8'20.30"N 0°52'56.81"E 

124 2.4 51° 8'16.80"N 0°53'3.10"E 

125 0.8 51° 8'15.15"N 0°53'7.77"E 

Table B. 1: Annual average deformation velocities of the PS along HS1 
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Appendix C MATLAB Script for PS-InSAR 

Data Processing 

1. Data pro-processing 
$ cd /media/ HS1/ 

$ mkdir Envisat 

   # Create a folder ‘Envisat’ for Envisat ASAR data 

   # Paste all the Envisat ASAR data to ‘Envisat’  

$ link_slcs /media/HS1/Envisat  

   # Create a folder ‘SLC’ in ‘/media/ HS1/’ 

   # SLC files ‘image.slc’, which have symbolic links with the Envisat data, are created 

$ cd /media/ HS1/SLC/20081226 

   #In order to minimise spatial baselines, temporal baselines and Doppler centroid   

    frequency difference, data ‘20081226’ are  chosen to generate a master image  

$ step_read_whole_Envisat 

   # Read ‘20081226’ and generate the master image 

$ cp $MY_SCR/master_crop.in . 

   # Crop the research area by the line and pixel number 

$ vi master_crop.in  

   # Edit ‘master_crop.in’ to identify area of interest 

   # First_l:7800, last_l:24000, first_p:10 and last_p:2800   

$ step_master_read  

   # Crop the master image  

   # Generate folder’INSAR_20081226’ 

$ cd /media/ HS1/SLC 

$ make_read   

   # Crop all SLC images 

2. D-InSAR process 
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$ cd /media/HS1/ 

$ mkdir DEM 

   # Create a folder ‘DEM’ for DEM data 

   # Download DEM from SRTM3 for the research area  

$ cd /media/HS1/INSAR_20081226 

$ vi timing.dorisin 

   # Update the following fields based on the downloaded DEM 

      The updated information is shown as follows 

      ***************************************************************** 

      SAM_IN_FORMAT   real4 

      SAM_IN_DEM      /media/HS1/DEM/HS1/final_HS1.dem 

     SAM_IN_SIZE     2401 4801               // rows cols 

     SAM_IN_DELTA    0.000833333333333    // in degrees        

     SAM_IN_UL       52  -2      // lat and lon of upper left 

     SAM_IN_NODATA   -32768 

    ******************************************************************* 

$ step_master_timing 

   # Correct DEM offset  

$ make_orbits  

   # Extract precise orbit data from orbit files  

$ make_coarse 

   # Coarse coregistration 

$ make_coreg 

   # Precise coregistration 

$make_dems 

   # Build topographic phase for each interferogram based on downloaded DEM and  

     create the simulated magnitude image of the DEM  

$make_resample 

   # Resample slave images into master geometry 

$make_ifgs 

   # Generate a stack of differential interferograms (flat phase and topographic phase   

      are removed by orbit files and the simulated magnitude image of the DEM  
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      respectively)  

$ cd /media/HS1/INSAR_20081226/20081017 

   # Choose only one of the slave directories  

$ step_geo  

   # Calculate the latitude and longitude of each pixel in the interferogram for  

      geocoding 

3. PS-InSAR process  
$ cd /media/HS1/INSAR_20081226/ 

$ mt_prep 0.4 3 3 50 200  

   # Divide the interferogram into 3 patches in range and 3 patches in azimuth to  

      reduce required data processing memory 

   # Amplitude dispersion is 0.4  

   # Overlaping pixels between patches in azimuth and range are 200 and 50 (default) 

In MATLAB 

$ ＞＞cd /media/HS1/INSAR_20081226/ 

$ ＞＞getparm 

   # Check the default values for PS processing 

$ ＞＞setparm 

   # Modify parameters with the default values 

$ ＞＞stamps 

   # PS processing (step 1-8) by stamps  

   # Step 1: Load input data, such as baselines information, amplitude dispersion, and  

      store the data in workspaces) 

   # Step 2: Phase noise estimation for all PSC  

  # Step 3: PS selection based on amplitude stability and phase stability 

  # Step 4: Drop noisy PS pixels by PS weeding 

  # Step 5: Phase correction for spatially-uncorrelated look angle error (DEM error) 

  # Step 6: Phase unwrapping 

  # Step 7: Estimate spatially-correlated look angle error (atmospheric error and 

orbit error)   

  # Step 8: Estimate other spatially correlated noise and phase filtering 
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4. PS-InSAR result plotting 
$ ＞＞cd /media/HS1/INSAR_20081226/ 

$ ＞＞help ps_plot 

   # View different plotting methods 

$ ＞＞plot_all_ifgs 

   # Plot all interferograms 

$ ＞＞ps_plot ('v',1) 

   # Plot mean LOS velocity map  

$＞＞ps_plot (‘v-d’,1) 

   # Plot mean LOS velocity map by removing DEM error   

$＞＞ps_plot (‘v-do’,1) 

   # Plot mean LOS velocity map by removing DEM error and orbital ramps 

$＞＞ps_plot ('v-do',1,0,0,[],'ts')  

   # Plot mean LOS velocity map for PS with time series information  

   # A time series analysis result of any PS can be represented by clicking the PS on  

     mean LOS velocity map  

5. Visualising PS results on Google Earth 
$ ＞＞ps_plot('v-do',-1) 

   # Save velocity estimation of PS 

$ ＞＞load ps_plot_v-do ph_disp 

   # Retrieve velocity estimation of PS as an input to ‘ps_gescatter’ 

$ ＞＞ps_gescatter('HS1_PS.kml',ph_disp,10,0.4) 

   # Generate a kml file for the visualisation on Google Earth  
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Appendix D R Modules Script for Time 

Series Prediction  

1. Data preparation 
# Import mat file 

library("R.matlab") 

library("xlsx") 

mat.file <- file.path(getwd(),"Data/ps_plot_ts_v-do.mat") 

mat.data <- readMat(mat.file) 

# Convert the original phase data to subsidence data 

ts.sub <- -mat.data$ph.uw*as.numeric(mat.data$lambda)*1000/(4*pi) 

ts.sub <- as.data.frame(ts.sub) 

ts.data <- data.frame(mat.data$ref.ps,mat.data$lonlat,ts.sub) 

colnames(ts.data) <- c("ref","longitude","latitude",paste("sb_",1:20,sep = "")) 

# Import selected PS information 

coordinates.file <- file.path(getwd(),"Data/Railway Coordinates.xlsx") 

coordinates.data <- read.xlsx(file = coordinates.file,sheetIndex = 1,colIndex = 

c(1,2,3,4)) 

colnames(coordinates.data) <- c("no.","annual sb","latitude","longitude") 

p.length <- nrow(coordinates.data) 

t.length <- nrow(ts.data) 

# Obtain subsidence data for the selected PS 

target.ref <- vector(length = p.length) 

for (x in 1:p.length) { 

  target.ref[x]  <- ts.data[which((ts.data$latitude=coordinates.data$latitude[x]) & 

(ts.data$longitude=coordinates.data$longitude[x])),1] 

} 

coordinates.data <- cbind(coordinates.data,target.ref) 

for (y in 1:p.length){ 
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  if (coordinates.data$target.ref[y] != 0) { 

    sb.temp <- ts.data[which(ts.data$ref==coordinates.data$target.ref[y]),4:23]} 

  else {sb.temp <- rep(0,20)} 

  ifelse(y==1,sb.data <- sb.temp,sb.data <- rbind(sb.data,sb.temp)) 

} 

rownames(sb.data) <- NULL 

coordinates.data <- cbind(coordinates.data,sb.data) 

# Add the master point data into the data series 

ts.interpolation <- rep(0,120) 

sb_11.5 <- ts.interpolation 

sb_12 <- coordinates.data$sb_12 

sb_13 <- coordinates.data$sb_13 

ts.valid <-

data.frame(coordinates.data[,1:5],coordinates.data[,11:16],sb_11.5,sb_12,sb_13) 

rm(sb_11.5,sb_12,sb_13) 

2. ARIMA model 
# Manually select ARIMA model orders 

library("forecast") 

ts1 <- ts(as.numeric(ts.valid[25,6:14])) 

par(mfrow=c(1,2),cex = 0.8) 

# Plot ACF and PACF functions 

Acf(ts1,main = "") 

Pacf(ts1,main = "") 

par(mfrow=c(1,1),cex = 0.8) 

# Fit data with ARIMA(1,0,0) model 

fit1 <- Arima(ts1,c(1,0,0)) 

plot(fit1$x,col="red",xlab = "Time",ylab = "Subsidence") 

lines(fitted(fit1),col="blue") 

legend("topright",c("actual","fitted"),col=c("red","black"),lty = c(1,1)) 

accuracy(fit1) 

# Predict the following 2 subsidence data 
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forecast(fit1,2) 

3. Artificial neural network model 
# Generate lagged time series for modelling 

sbs_series <- as.numeric(ts.valid[which(ts.valid[,1]==25),6:14]) 

len <- length(sbs_series) 

twindow <- 3 

offsetsbs <- lapply(0:(twindow-1),function(x){ 

  sbs_series[(twindow-x):(len-x-1)]}) 

newtm <- Reduce(cbind,offsetsbs) 

# Establish and train the neural network model 

sample.size <- nrow(newtm) 

library("nnet") 

nns <- nnet(newtm[1:sample.size,],sbs_series[(twindow+1):(length(sbs_series))],size 

= 3, maxit = 1000, linout = TRUE) 

ts.error <- sbs_series[(twindow+1):(length(sbs_series))]-c(nns$fitted.value) 

ts.rmse <- sqrt(sum(ts.error^2)/sample.size) 

ts.rmse 

# Predict time series 

no.of.predict <- 2 

predictions <- vector(length = no.of.predict,mode="numeric") 

input <- c(sbs_series[length(sbs_series)],newtm[sample.size,1:2]) 

for (n in 1:no.of.predict){ 

  predictions[n] <- predict(nns,input) 

  input <- c(predictions[n],input[1:(length(input)-1)])} 

predictions 

4. Grey model 
# Functions used in the module 

ago <- function(x){ 

  len <- length(x) 

  x.ago <- vector(length = len) 
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  x.ago[1] <- x[1] 

  for (n in 2:len){ 

    x.ago[n] <- x[n] + x.ago[n-1] 

  } 

  x.ago} 

avo <- function(y){ 

  len <- length(y) 

  y.avo <- vector(length=len-1) 

  for (n in 2:len){ 

    y.avo[n-1] <- mean(c(y[n-1],y[n])) 

  } 

  y.avo} 

# Transform the original series to grey series 

ts.grey <- ts.valid[which(ts.valid[,1]==25),] 

no.of.training <- 9 

  sbs_series <- as.numeric(ts.grey[,6:14]) 

  inputs <- sbs_series[1:no.of.training] 

  len.tm <- length(inputs) 

  newtm <- ago(inputs) 

  z.series <- avo(newtm) 

# Solve the grey differential model 

  B <- matrix(c(-z.series,rep(1,len.tm-1)),ncol = 2) 

  Y <- matrix(inputs[-1]) 

  a.b <- solve(t(B)%*%B)%*%t(B)%*%Y 

  a <- a.b[1,1] 

  b<- a.b[2,1] 

  newtm.fitted <- vector(length=len.tm) 

  newtm.fitted[1]=inputs[1] 

  for (i in 2:len.tm){ 

    newtm.fitted[i] <- (inputs[1]-b/a)*exp(-a*(i-1))*(1-exp(a)) 

  } 

errors <- inputs - newtm.fitted 
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rmse <- sqrt(sum((errors)^2)/len.tm) 

rmse 

 

5. Unequal time series transformation 
# Obtain the date series for the subsidence data 

sub_t <- c(mat.data$day[1:10],mat.data$master.day,mat.data$day[11:19]) 

# Calculate the average interval for the date series 

interval_ave <- (sub_t[length(sub_t)]-sub_t[1])/(length(sub_t)-1) 

# Calculate the ratio between the original interval and the average interval 

d <- vector(length=length(sub_t)-1) 

for (n in 1:(length(sub_t)-1)){ 

  d[n] <- (n*interval_ave-(sub_t[n+1]-sub_t[1])) / (sub_t[n+1]-sub_t[1]) 

} 

dr <- vector(length=length(sub_t)-1) 

for (m in 1:(length(sub_t)-1)){ 

  dr[m] <- (m*interval_ave-(sub_t[m+1]-sub_t[1])) / interval_ave 

} 

# Transform the unequal time series into equal interval series 

ts.valid <- ts.original[,1:6] 

for (k in 1:length(d)){ 

  ts.temp <- ts.original[,k+6]+d[k]*(ts.original[,k+6]-ts.original[,k+5]) 

  ts.valid <- data.frame(ts.valid,ts.temp) 

  colnames(ts.valid)[k+6] <- paste("sb","_",as.character(k+1),sep = "") 

} 
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