4,551 research outputs found

    Global deposition of total reactive nitrogen oxides from 1996 to 2014 constrained with satellite observations of NO2 columns

    Get PDF
    Reactive nitrogen oxides (NOy) are a major constituent of the nitrogen deposited from the atmosphere, but observational constraints on their deposition are limited by poor or nonexistent measurement coverage in many parts of the world. Here we apply NO2 observations from multiple satellite instruments (GOME, SCIAMACHY, and GOME-2) to constrain the global deposition of NOy over the last two decades. We accomplish this by producing top-down estimates of NOx emissions from inverse modeling of satellite NO2 columns over 1996–2014, and including these emissions in the GEOS-Chem chemical transport model to simulate chemistry, transport, and deposition of NOy. Our estimates of long-term mean wet nitrate (NO3−) deposition are highly consistent with available measurements in North America, Europe, and East Asia combined (r = 0.83, normalized mean bias = −7 %, N = 136). Likewise, our calculated trends in wet NO3− deposition are largely consistent with the measurements, with 129 of the 136 gridded model-data pairs sharing overlapping 95 % confidence intervals. We find that global mean NOy deposition over 1996–2014 is 56.0 Tg N yr−1, with a minimum in 2006 of 50.5 Tg N and a maximum in 2012 of 60.8 Tg N. Regional trends are large, with opposing signs in different parts of the world. Over 1996 to 2014, NOy deposition decreased by up to 60 % in eastern North America, doubled in regions of East Asia, and declined by 20 % in parts of Western Europe. About 40 % of the global NOy deposition occurs over oceans, with deposition to the North Atlantic Ocean declining and deposition to the northwestern Pacific Ocean increasing. Using the residual between NOx emissions and NOy deposition over specific land regions, we investigate how NOx export via atmospheric transport has changed over the last two decades. Net export from the continental United States decreased substantially, from 2.9 Tg N yr−1 in 1996 to 1.5 Tg N yr−1 in 2014. On the other hand, export from China more than tripled between 1996 and 2011 (from 1.0 Tg N yr−1 to 3.5 Tg N yr−1), before a striking decline to 2.5 Tg N yr−1 by 2014. We find that declines in NOx export from some Western European countries have counteracted increases in emissions from neighbouring countries to the east. A sensitivity study indicates that simulated NOy deposition is robust to uncertainties in NH3 emissions with a few exceptions. Our novel long-term study provides timely context on the rapid redistribution of atmospheric nitrogen transport and subsequent deposition to ecosystems around the world.https://www.atmos-chem-phys-discuss.net/acp-2016-1100/acp-2016-1100.pdfhttps://www.atmos-chem-phys-discuss.net/acp-2016-1100/acp-2016-1100.pdfhttps://www.atmos-chem-phys-discuss.net/acp-2016-1100/acp-2016-1100.pdfPublished versionPublished versio

    Global deposition of total reactive nitrogen oxides from 1996 to 2014 constrained with satellite observations of NO2 columns

    Get PDF
    Reactive nitrogen oxides (NOy) are a major constituent of the nitrogen deposited from the atmosphere, but observational constraints on their deposition are limited by poor or nonexistent measurement coverage in many parts of the world. Here we apply NO2 observations from multiple satellite instruments (GOME, SCIAMACHY, and GOME-2) to constrain the global deposition of NOy over the last 2 decades. We accomplish this by producing top-down estimates of NOx emissions from inverse modeling of satellite NO2 columns over 1996–2014, and including these emissions in the GEOS-Chem chemical transport model to simulate chemistry, transport, and deposition of NOy. Our estimates of long-term mean wet nitrate (NO3−) deposition are highly consistent with available measurements in North America, Europe, and East Asia combined (r = 0.83, normalized mean bias  = −7%, N = 136). Likewise, our calculated trends in wet NO3− deposition are largely consistent with the measurements, with 129 of the 136 gridded model–data pairs sharing overlapping 95% confidence intervals. We find that global mean NOy deposition over 1996–2014 is 56.0TgNyr−1, with a minimum in 2006 of 50.5TgN and a maximum in 2012 of 60.8TgN. Regional trends are large, with opposing signs in different parts of the world. Over 1996 to 2014, NOy deposition decreased by up to 60% in eastern North America, doubled in regions of East Asia, and declined by 20% in parts of western Europe. About 40% of the global NOy deposition occurs over oceans, with deposition to the North Atlantic Ocean declining and deposition to the northwestern Pacific Ocean increasing. Using the residual between NOx emissions and NOy deposition over specific land regions, we investigate how NOx export via atmospheric transport has changed over the last 2 decades. Net export from the continental United States decreased substantially, from 2.9TgNyr−1 in 1996 to 1.5TgNyr−1 in 2014. Export from China more than tripled between 1996 and 2011 (from 1.0 to 3.5TgNyr−1), before a striking decline to 2.5TgNyr−1 by 2014. We find that declines in NOx export from some western European countries have counteracted increases in emissions from neighboring countries to the east. A sensitivity study indicates that simulated NOy deposition is robust to uncertainties in NH3 emissions with a few exceptions. Our novel long-term study provides timely context on the rapid redistribution of atmospheric nitrogen transport and subsequent deposition to ecosystems around the world.This work was supported by NSERC and Environment and Climate Change Canada. We acknowledge the free use of tropospheric NO2 column data from the GOME, SCIAMACHY, and GOME-2 sensors from www.temis.nl. We further acknowledge the NADP, CAPMoN, EMEP, and EANET regional monitoring networks as well as the World Data Centre for Precipitation Chemistry for access to wet deposition data. (NSERC; Environment and Climate Change Canada)https://www.atmos-chem-phys.net/17/10071/2017/acp-17-10071-2017.pdfhttps://www.atmos-chem-phys.net/17/10071/2017/acp-17-10071-2017.pdfhttps://www.atmos-chem-phys.net/17/10071/2017/acp-17-10071-2017.pdfPublished versionPublished versio

    Characterizing ammonia concentrations and deposition in the United States

    Get PDF
    Includes bibliographical references.2015 Fall.Rapid development of agricultural activities and fossil fuel combustion in the United States led to a great increase of reactive nitrogen (Nr) emissions in the second half of the twentieth century. These emissions have been linked to excess nitrogen (N) deposition in natural ecosystems through dry and wet deposition pathways that can lead to adverse environmental impacts. Furthermore, as precursors of ozone and fine particles, reactive nitrogen species impact regional air quality with resulting effects on human health, visibility, and climate forcing. In this dissertation, ambient concentrations of reactive nitrogen species and their deposition are examined in the Rocky Mountain region and across the country. Particular emphasis is placed on ammonia, a currently unregulated pollutant, despite its important contributions both to nitrogen deposition and fine particle formation. Continuous measurements of the atmospheric trace gases ammonia (NH3) and nitric acid (HNO3) and of fine particle (PM2.5) ammonium (NH4+), nitrate (NO3-) and sulfate (SO42-) were conducted using a denuder/filter system from December 2006 to December 2011 at Boulder, Wyoming, a region of active gas production. The average five year concentrations of NH3, HNO3, NH4+, NO3- and SO42- were 0.17, 0.19, 0.26, 0.32, and 0.48 ”g/m3, respectively. Significant seasonal patterns were observed. The concentration of NH3 was higher in the summer than in other seasons, consistent with increased NH3 emissions and a shift in the ammonium nitrate (NH4NO3) equilibrium toward the gas phase at higher temperatures. High HNO3 concentrations were observed both in the summer and the winter. Elevated wintertime HNO3 production appeared to be due to active local photochemistry in a shallow boundary layer over a reflective, snow-covered surface. PM2.5 NH4+ and SO42- concentrations peaked in summer while NO3- concentrations peaked in winter. Cold winter temperatures drove the NH3-HNO3-NH4NO3 equilibrium toward particulate NH4NO3. A lack of NH3, however, frequently resulted in substantial residual gas phase HNO3 even under cold winter conditions. Concentrated agricultural activities and animal feeding operations in the northeastern plains of Colorado represent an important source of atmospheric NH3 that contributes to regional fine particle formation and to nitrogen deposition to sensitive ecosystems in Rocky Mountain National Park (RMNP) located ~80 km to the west. In order to better understand temporal and spatial differences in NH3 concentrations in this source region, weekly concentrations of NH3 were measured at 14 locations during the summers of 2010 to 2014 using Radiello passive NH3 samplers. Weekly average NH3 concentrations ranged from 2.8 ”g/m3 to 41.3 ”g/m3 with the highest concentrations near large concentrated animal feeding operations (CAFOs). The annual summertime mean NH3 concentrations were stable in this region from 2010 to 2014, providing a baseline against which concentration changes associated with future changes in regional NH3 emissions can be assessed. Vertical profiles of NH3 were also measured on the 300 m Boulder Atmospheric Observatory (BAO) tower throughout 2012. The highest NH3 concentration along the vertical profile was always observed at the 10 m height (annual average concentration is 4.63 ”g/m3), decreasing toward the surface (4.35 ”g/m3 at 1 m) and toward higher altitudes (1.93 ”g/m3 at 300 m). Seasonal changes in the steepness of the vertical concentration gradient were observed, with the sharpest gradients in cooler seasons when thermal inversions restricted vertical mixing of surface-based emissions. The NH3 spatial distributions measured using the passive samplers are compared with NH3 columns retrieved by the Infrared Atmospheric Sounding Interferometer (IASI) satellite and concentrations simulated by the Comprehensive Air quality Model with extensions (CAMx), providing insight into the regional performance of each. U.S. efforts to reduce NOx emissions since the 1970s have substantially reduced nitrate deposition, as evidenced by strongly decreasing trends in long-term wet deposition data. These decreases in nitrate deposition along with increases in wet ammonium deposition have altered the balance between oxidized and reduced nitrogen deposition. Across most of the U.S., wet deposition has evolved from a nitrate dominated situation in the 1980s to an ammonium dominated situation in recent years. Recent measurements of gaseous NH3 concentrations across several regions of the U.S., along with longer-established measurements of gas phase nitric acid, fine particle ammonium and nitrate, and wet deposition of ammonium and nitrate, permit new insight into the balance of oxidized and reduced nitrogen in the total (wet + dry) U.S. reactive nitrogen deposition budget. Utilizing observations from 37 monitoring sites across the U.S., we estimate that reduced nitrogen contributes, on average, approximately 65 percent of the total inorganic N deposition budget. Dry NH3 deposition plays an especially key role in N deposition compared with other N deposition pathways, contributing from 19% to 65% in different regions. With reduced N species now dominating the wet and dry reactive N deposition budgets in much of the country and future estimates suggesting growing ammonia emissions, the U.S. will need to consider ways to actively reduce NH3 emissions if it is to continue progress toward reducing N deposition to sustainable levels defined by ecosystem critical loads

    Dust-wind interactions can intensify aerosol pollution over eastern China.

    Get PDF
    Eastern China has experienced severe and persistent winter haze episodes in recent years due to intensification of aerosol pollution. In addition to anthropogenic emissions, the winter aerosol pollution over eastern China is associated with unusual meteorological conditions, including weaker wind speeds. Here we show, based on model simulations, that during years with decreased wind speed, large decreases in dust emissions (29%) moderate the wintertime land-sea surface air temperature difference and further decrease winds by -0.06 (±0.05) m s-1 averaged over eastern China. The dust-induced lower winds enhance stagnation of air and account for about 13% of increasing aerosol concentrations over eastern China. Although recent increases in anthropogenic emissions are the main factor causing haze over eastern China, we conclude that natural emissions also exert a significant influence on the increases in wintertime aerosol concentrations, with important implications that need to be taken into account by air quality studies

    Synthesis of satellite (MODIS), aircraft (ICARTT), and surface (IMPROVE, EPA-AQS, AERONET) aerosol observations over eastern North America to improve MODIS aerosol retrievals and constrain surface aerosol concentrations and sources

    Get PDF
    We use an ensemble of satellite (MODIS), aircraft, and ground-based aerosol observations during the ICARTT field campaign over eastern North America in summer 2004 to (1) examine the consistency between different aerosol measurements, (2) evaluate a new retrieval of aerosol optical depths (AODs) and inferred surface aerosol concentrations (PM2.5) from the MODIS satellite instrument, and (3) apply this collective information to improve our understanding of aerosol sources. The GEOS-Chem global chemical transport model (CTM) provides a transfer platform between the different data sets, allowing us to evaluate the consistency between different aerosol parameters observed at different times and locations. We use an improved MODIS AOD retrieval based on locally derived visible surface reflectances and aerosol properties calculated from GEOS-Chem. Use of GEOS-Chem aerosol optical properties in the MODIS retrieval not only results in an improved AOD product but also allows quantitative evaluation of model aerosol mass from the comparison of simulated and observed AODs. The aircraft measurements show narrower aerosol size distributions than those usually assumed in models, and this has important implications for AOD retrievals. Our MODIS AOD retrieval compares well to the ground-based AERONET data (R = 0.84, slope = 1.02), significantly improving on the MODIS c005 operational product. Inference of surface PM2.5 from our MODIS AOD retrieval shows good correlation to the EPA-AQS data (R = 0.78) but a high regression slope (slope = 1.48). The high slope is seen in all AOD-inferred PM2.5 concentrations (AERONET: slope = 2.04; MODIS c005: slope = 1.51) and could reflect a clear-sky bias in the AOD observations. The ensemble of MODIS, aircraft, and surface data are consistent in pointing to a model overestimate of sulfate in the mid-Atlantic and an underestimate of organic and dust aerosol in the southeastern United States. The sulfate overestimate could reflect an excessive contribution from aqueous-phase production in clouds, while the organic carbon underestimate could possibly be resolved by a new secondary pathway involving dicarbonyls

    Assessing contributions of agricultural and nonagricultural emissions to atmospheric ammonia in a Chinese megacity

    Get PDF
    Ammonia (NH3) is the predominant alkaline gas in the atmosphere contributing to formation of fine particles—a leading environmental cause of increased morbidity and mortality worldwide. Prior findings suggest that NH3 in the urban atmosphere derives from a complex mixture of agricultural (mainly livestock production and fertilizer application) and nonagricultural (e.g., urban waste, fossil fuel-related emissions) sources; however, a citywide holistic assessment is hitherto lacking. Here we show that NH3 from nonagricultural sources rivals agricultural NH3 source contributions in the Shanghai urban atmosphere. We base our conclusion on four independent approaches: (i) a full-year operation of a passive NH3 monitoring network at 14 locations covering urban, suburban, and rural landscapes; (ii) model-measurement comparison of hourly NH3 concentrations at a pair of urban and rural supersites; (iii) source-specific NH3 measurements from emission sources; and (iv) localized isotopic signatures of NH3 sources integrated in a Bayesian isotope mixing model to make isotope-based source apportionment estimates of ambient NH3. Results indicate that nonagricultural sources and agricultural sources are both important contributors to NH3 in the urban atmosphere. These findings highlight opportunities to limit NH3 emissions from nonagricultural sources to help curb PM2.5 pollution in urban China

    Earth Observations and Integrative Models in Support of Food and Water Security

    Get PDF
    Global food production depends upon many factors that Earth observing satellites routinely measure about water, energy, weather, and ecosystems. Increasingly sophisticated, publicly-available satellite data products can improve efficiencies in resource management and provide earlier indication of environmental disruption. Satellite remote sensing provides a consistent, long-term record that can be used effectively to detect large-scale features over time, such as a developing drought. Accuracy and capabilities have increased along with the range of Earth observations and derived products that can support food security decisions with actionable information. This paper highlights major capabilities facilitated by satellite observations and physical models that have been developed and validated using remotely-sensed observations. Although we primarily focus on variables relevant to agriculture, we also include a brief description of the growing use of Earth observations in support of aquaculture and fisheries

    Relationships of trace gases and aerosols and the emission characteristics at Lin'an, a rural site in eastern China, during spring 2001

    Get PDF
    We present measurements of trace gases and fine aerosols obtained from a rural site in eastern China during 18 February to 30 April 2001. The field program aimed to characterize the variations in aerosol and gaseous pollutant concentrations and the emission signatures from the inland region of eastern China in the spring season. The data included O3, CO, NO, NOy*, SO2, methane, C2-C8 nonmethane hydrocarbons (NMHCs), C 1-C2 halocarbons, and the chemical composition of PM2.5. The average hourly mixing ratios (±standard deviation) of CO, SO2, and NOy* were 677 (±315) ppbv, 15.9 (±14.6) ppbv, and 13.8 (±7.2) ppbv, respectively. The mean daytime ozone mixing ratio was 41 (± 19) ppbv. The most abundant NMHC was ethane (3189 ± 717 pptv), followed by ethyne (2475 ± 1395 pptv), ethene (1679 ± 1455 pptv), and toluene (1529 ± 1608 pptv). Methyl chloride was the most abundant halocarbon (1108 ± 653 pptv). The average concentrations of particulate organic matter (POM, as organic carbon, OC, times 1.4) and elemental carbon (EC) in PM2.5 were 21.5 (±7) Όg/m3 and 2.5 (±0.7) Όg/m3, respectively, and sulfate and nitrate levels were 17.3 (±6.6) and 6.5 (±4) Όg/m3, respectively. CO showed moderate to good correlation with NOy* (r2 = 0.59), OC (r2 = 0.65), CH3Cl (r2 = 0.59), soluble potassium (r2 = 0.53), and many NMHCs, indicating contributions from the burning of biofuel/biomass. CO also correlated with an industrial tracer, C2Cl4, indicative of some influence from industrial sources. SO2, on the other hand, correlated well with EC (r2 = 0.56), reflecting the contribution from the burning of coal. Ammonium was sufficiently abundant to fully neutralize sulfate and nitrate, indicating that there were strong emissions of ammonia from agricultural activities. Silicon and calcium had poor correlations with iron and aluminum, revealing the presence of source(s) for Si and Ca other than from soil. Examination of C2H2/CO, C3H8/C 2H6, nitrate/(nitrate + NOy* , and sulfate/(SO2 + sulfate) suggested that relatively fresh air masses had been sampled at the study site in the spring season. Comparison of the observed ratios/slopes with those derived from emission inventories showed that while the observed SO2/NO y* ratio (1.29 ppbv/ppbv) in March was comparable (within 20%) to the inventory-derived ratio for the study region, the measured CO/NOy* slope (37 ppbv/ppbv) was about 200% larger. The observed slope of CO relative to NMHC (including ethane, propane, butanes, ethene, and ethyne) also indicated the presence of excess CO, compared to the ratios from the inventories. These results strongly suggest that emissions of CO in eastern China have been underrepresented. The findings of this study highlight the importance of characterizing trace gases and aerosols within source regions of the Asian continent. The springtime results were also compared with data previously collected at the site in 1999-2000 and with those obtained on the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft and from a coastal site in South China for the same study period. Copyright 2004 by the American Geophysical Union
    • 

    corecore