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19 ABSTRACT Ammonia (NH3) is the predominant alkaline gas in the atmosphere 

20 contributing to formation of fine particles - a leading environmental cause of increased 

21 morbidity and mortality worldwide. Prior findings suggest that NH3 in the urban 

22 atmosphere derives from a complex mixture of agricultural (mainly livestock production 

23 and fertilizer application) and non-agricultural (e.g., urban waste, fossil fuel-related 

24 emissions) sources; however, a citywide holistic assessment is hitherto lacking. Here 

25 we show that NH3 from non-agricultural sources rivals agricultural NH3 source 

26 contributions in the Shanghai urban atmosphere. We base our conclusion on four 

27 independent approaches: (i) a full-year operation of a passive NH3 monitoring network 
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28 at 14 locations covering urban, suburban, and rural landscapes; (ii) model-

29 measurement comparison of hourly NH3 concentrations at a pair of urban and rural 

30 supersites; (iii) source-specific NH3 measurements from emission sources; and (iv) 

31 localized isotopic signatures of NH3 sources integrated in a Bayesian isotope mixing 

32 model to make isotope-based source apportionment estimates of ambient NH3. Results 

33 indicate that non-agricultural sources and agricultural sources are both important 

34 contributors to NH3 in the urban atmosphere. These findings highlight opportunities to 

35 limit NH3 emissions from non-agricultural sources to help curb PM2.5 pollution in urban 

36 China.

37 1 Introduction

38 Atmospheric ammonia (NH3) is the predominant alkaline gas in the atmosphere and 

39 actively involved in atmospheric chemistry. In reactions with sulphuric acid and nitric 

40 acid, formed via the oxidation of SO2 and NOx, respectively, NH3 contributes to the 

41 formation of NH4+ salts, which typically make up from 20 to 80% of atmospheric 
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42 particulate matter with an aerodynamic diameter less than 2.5 micrometers (PM2.5).1-5 

43 This fine particle formation has led to huge health and economic costs.6-10

44 There is an increasing importance of NH3 emissions relative to SO2 and NOx 

45 worldwide due to relatively slow reduction of NH3 emissons.11-17 Over 90% of NH3 

46 emissions in China, the United States and many European countries result from 

47 agriculture, mainly including livestock production and NH3-based fertilizer application;6,

48 13, 15, 18-22 thus, agricultural NH3 emissions are often blamed for high levels of 

49 ammonium-containing PM2.5.1, 6, 7, 23, 24 However, in urban areas where agricultural 

50 activities are mostly absent, a growing body of evidence suggests that non-agricultural 

51 activities like wastewater treatment,25 coal combustion,26 solid garbage,27 vehicular 

52 exhaust,28 and urban green space29 also contribute to NH3 emissions.30 For example, 

53 large vehicular NH3 emissions from noble metal-based three-way catalysts (TWCs) 

54 have been detected in chassis dynamometer vehicle experiments, road tunnel tests, 

55 and ambient air measurements dating back to the 1980s.31-42 Nevertheless, Yao et al.43 

56 and Teng et al.29 suggest that vehicular NH3 emissions can be neglected and proposed 

Page 4 of 50Environmental Science & Technology



5

57 urban green spaces as the dominant contributor to urban atmospheric NH3 in North 

58 America and Northern China. There remains a long-standing and on-going controversy 

59 regarding the relative contribution of agricultural and non-agricultural NH3 emissions in 

60 the urban atmosphere.44-46 

61 In China, while there have been no long-term and nationwide NH3 monitoring studies 

62 like the U.S. passive Ammonia Monitoring Network (AMoN, 

63 http://nadp.sws.uiuc.edu/amon) affiliated with the National Atmospheric Deposition 

64 Program (NADP),47-49 numerous researchers have measured NH4+ concentrations in wet 

65 deposition (i.e., precipitation) for more than 30 years.50, 51 The data show that the annual 

66 flux of NH4+ in wet deposition in China has increased in conjunction with the growth in 

67 animal production and fertilizer application.17, 50, 52, 53 Further, China’s recent economic 

68 boom has been coupled with accelerated urbanization.54, 55 In 1978 less than 20% of 

69 Chinese residents lived in cities. The population of its cities has quintupled over the past 

70 40 years, reaching 813 million or nearly 60% of the total population.56 At present, there 

71 are three super-regions or city clusters in China: the Pearl River Delta (PRD), next to 
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72 Hong Kong; the Yangtze River Delta (YRD), which surrounds Shanghai; and Jing-jin-ji 

73 (J3), centered on Beijing.57 In particular, the YRD region is arguably the most concentrated 

74 set of adjacent urban conurbations in the world.58 Huge cities place huge demands on 

75 resource consumption and associated non-agricultural NH3 emissions.44 For example, 

76 the region has continuously experienced double-digit growth in auto sales since 2009.36 

77 The expanding motor vehicle population in its cities, in turn, is reshaping the urban 

78 atmospheric composition.59, 60 Meanwhile, the vast rural areas of the YRD region are 

79 dominated by fluvial plains with fertile soil, and abundant production of rice and tea.22 

80 According to Huang et al.,22 livestock production, N-fertilizer application, and non-

81 agricultural sources (including sewage treatment, waste landfills, and human discharge) 

82 in the YRD region in 2007 comprise 48%, 40%, and 12% of the total 459 kt NH3 emissions, 

83 respectively. The interplay of agricultural and non-agricultural NH3 emissions in the region 

84 provides an ideal study area to investigate their impact on ambient NH3 concentrations 

85 over time. 
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86 Taking Shanghai as an example, the present study aims to systematically elucidate 

87 the role of non-agricultural NH3 emissions contributing to ambient NH3 in the urban 

88 atmosphere through (1) investigating the spatial and temporal variability of NH3 

89 concentrations across various land use categories, (2) interpreting the consistency or 

90 discrepancy of NH3 concentrations between field measurements and chemical transport 

91 model simulations, and (3) using stable isotopes as a tool to quantify source category 

92 contributions to ambient NH3 concentrations in the rural and urban atmospheres.

93  2 Materials and methods

94 2.1 Site description 

95 The Yangtze River Delta or YRD region encompasses the nation’s largest population 

96 center, Shanghai, and major agricultural fields in eastern China. In order to obtain 

97 information regarding the spatial and temporal variability of NH3 concentrations in 

98 Shanghai, we established a regional monitoring network of fourteen sites covering 

99 urban (FD, HK, YP, HP, PT, JA, LW, XH, and PD), suburban (ZJ and CJ), and rural 

100 (DH, SY and CM) landscapes (Fig. 1). Of particular importance are PD and DH, which 
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101 also serve as supersites intended to represent urban and rural settings, respectively. In 

102 Shanghai, all ten state-control stations (SCS) of China’s Ministry of Environmental 

103 Protection were utilized. The advantages of selecting these SCS sites include (i) their 

104 deliberate locations away from point and local sources of pollution, such as 

105 transportation corridors, agricultural fields, livestock operations, and industrial 

106 emissions; (ii) they have well-trained staff with long-term employment to sustain 

107 continuous measurements; and (iii) they are equipped with refrigerators so that the 

108 collected samples can be quickly stored to prevent potential contamination or sample 

109 degradation. More detailed site descriptions can be found elsewhere.36, 61 The 

110 meteorology in Shanghai is typical of a subtropical monsoon system with four distinct 

111 seasons. A summary of the average meteorological conditions can be found in SI Fig. 

112 S1. 

113 2.2 Field sampling

114 In order to obtain the spatial distributions of NH3 concentrations over the Shanghai 

115 region, from May 2014 to June 2015, weekly Ogawa PSDs (passive sampling devices, 
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116 Ogawa, FL, USA) were deployed at each site (from March 2017 to March 2018 for CM 

117 and SY sites) under the protection of an opaque shelter for collecting ambient NH3. 

118 Between June and August of 2014, two Ogawa PSDs were deployed for monthly 

119 collection at the urban PD site and the rural DH site for N isotopic analysis of NH3. The 

120 Ogawa PSD consists of a solid cylindrical polymeric body (2 cm diameter, 3 cm long) 

121 housing a citric acid-coated glass fiber disk at each end as a duplicate to trap NH3.48 All 

122 PSD components (including filters) were purchased from Ogawa USA, and sampling 

123 procedures provided by the manufacturer (http://www.ogawausa.com) were strictly 

124 followed throughout the campaign. After exposure, the filters were transferred with 

125 tweezers into plastic vials (15 mL) and stored at -18 °C immediately. The samples were 

126 delivered to the analytical laboratory monthly. The average relative percent difference 

127 between duplicate Ogawa PSD samples was 5.5%.

128 In order to relate temporal variations of NH3 concentrations to potential NH3 sources, 

129 the PD (urban) and DH (rural) sites were equipped with a Monitor for AeRosols and 

130 Gases (MARGA, Applikon B.V., NL), allowing continuous characterization of the 
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131 inorganic components of PM2.5 (NH4+, NO3-, SO42-, Cl-, Na+, K+, Ca2+, Mg2+) and water-

132 soluble gases (NH3, SO2, HCl, HONO and HNO3) at hourly resolution.62 This effort 

133 builds upon our earlier effort36 to look at the influence of on-road traffic on ambient NH3 

134 variability with different meteorology at the PD site. Details of the MARGA instrument 

135 and its performance can be found elsewhere.36 To complement the information obtained 

136 from the MARGA monitoring campaign, additional measurements of tailpipe-emitted 

137 NH3 from 19 different vehicles equipped with three-way catalytic converters were carried 

138 out in Nanjing, a megacity in the western Yangtze River Delta region, during April 2016, 

139 following a method described elsewhere63 and briefly summarized in SI Text S1.

140 2.3 Laboratory analysis

141 NH4+ concentrations in the H2SO4 absorbing solutions were measured using a 

142 DionexTM ICS-5000+ system (Thermo Fisher Scientific, Sunnyvale, USA) at the clean 

143 laboratory (class 1000) of Yale-NUIST Center on Atmospheric Environment. The IC 

144 system was equipped with an automated sampler (AS-DV). NH4+ in solutions was 

145 measured using an IonPac CG12A guard column and CS12A separation column with 

146 an aqueous methanesulfonic acid (MSA, 30 mM L-1) eluent at a flow rate of 1 mL min-1. 
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147 For the Ogawa passive samples, each filter pad was soaked in 8 mL deionized water 

148 (18 MΩ·cm) in a 15 mL vial for 30 min with occasional shaking. Concentrations of NH4+ 

149 in extracts were analyzed using an ion chromatography system (883 Basic IC plus, 

150 Metrohm Co., Switzerland) equipped with a Metrosep C4/4.0 cation column. The eluent 

151 was 1.0 mmol L-1 HNO3 + 1.0 mmol L-1 2,6-pyridine dicarboxylic acid. The detection limit 

152 for NH4+ was 2.8 μg L-1, corresponding to an ambient NH3 concentration of 0.1 ppb for a 

153 seven-day sample. 

154 For isotopic analysis, a robust and quantitative chemical method was used to 

155 determine δ15N-NH4+ based on the isotopic analysis of nitrous oxide (N2O),64 as detailed 

156 and successfully applied in our previous studies.61, 65 One of the advantages of this 

157 method is that it is more suitable for low volume samples including those with low 

158 nitrogen concentration. The standard deviation of δ15N measurements determined from 

159 the replicates is less than 0.3‰.

160 2.4 Ammonia modeling
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161 The Community Multiscale Air Quality (CMAQ, v5.0.1) chemical transport model was 

162 used to simulate hourly NH3 and NH4+ concentrations in Shanghai with a 12 × 12 km2 

163 grid resolution.66 Meteorological inputs were generated with the Weather Research and 

164 Forecasting (WRF v3.6.1) model and the National Centers for Environmental Prediction 

165 FNL Operational Model Global Tropospheric Analyses. The tropospheric analyses 

166 dataset was used to provide initial and boundary conditions. A multi-resolution emission 

167 inventory for China developed by Tsinghua University (http://www.meicmodel.org) was 

168 used to define monthly anthropogenic emissions from China. Anthropogenic emissions 

169 in 2012 including NH3, SO2, NOx, volatile organic compounds, and PM were re-gridded 

170 to the model grids. Open biomass burning emissions were generated from the Fire 

171 INventory from NCAR, which is based on satellite observations.66 Dust and sea salt 

172 emissions were generated online during the CMAQ simulations. Biogenic emissions 

173 were generated using the Model for Emissions of Gases and Aerosols from Nature 

174 (v2.1). 66 The model configurations of CMAQ and WRF are similar to those utilized in a 

175 previous nationwide study.66  
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176 2.5 Bayesian mixing model

177 Isotopic mixing models allow us to estimate the proportional contributions of multiple 

178 sources (emission sources of NH3 in this study) within a mixture (the ambient NH3 in this 

179 study).67 By explicitly reflecting the uncertainties associated with multiple sources, 

180 isotope fractionation, and isotopic signatures, the application of Bayesian methods to 

181 stable isotope mixing models is able to generate robust probability estimates of source 

182 proportions, being more appropriate in natural systems than simple linear mixing 

183 models.68, 69 Here a novel Bayesian methodology for analyzing mixing models 

184 implemented in the software package SIAR (Stable Isotope Analysis in R)70 was used to 

185 resolve multiple NH3 source categories by generating potential solutions of source 

186 apportionment as true probability distributions. The generation of such source 

187 contribution probability distributions is helpful in estimating likely ranges of source 

188 contributions when the system solution is under-constrained (i.e., the number of sources 

189 exceeds the number of different isotope system tracers + 1). The SIAR package is 

190 available to download from the packages section of the Comprehensive R Archive 
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191 Network site (CRAN) - http://cran.r-project.org/, and has been widely applied in a 

192 number of fields.71-75 Model frame and computing methods are detailed in SI Text S2. 

193 A comprehensive pool of isotopic source signatures of NH3 (IS_NH3) has been 

194 established in our previous work65 with the exception of “NH3 slip from coal-fired power 

195 plant”.76 These IS_NH3 are typically found to lie between -50‰ and -10‰, with 

196 occasional overlap between signatures from different source types.65, 77 The NH3 

197 emissions were defined by four distinct source categories (Table 1): livestock breeding 

198 (-29.1 ± 1.7‰), N-fertilizer application (-50.0 ± 1.8‰; urea application), combustion-

199 related sources (-14.0 ± 2.7‰; on-road traffic, NH3 slip from coal-fired power plants), 

200 and urban waste volatilized sources (-37.8 ± 3.6‰; wastewater treatment, municipal 

201 solid waste, and human excreta).

202 2.6 Ancillary information

203 Hourly meteorological parameters (MSO Weather Sensor, MetOne Instruments, USA; 

204 including wind direction, wind speed, relative humidity or RH, and temperature or T) in 

205 Shanghai were provided by the Shanghai Meteorological Bureau. Bivariate polar plots 
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206 (BPP) were used to demonstrate how NH3 concentrations vary with wind direction and 

207 wind speed in polar coordinates, an effective diagnostic technique for discriminating 

208 different source regions.78-81 For creating BBPs, the open-source software “openair” in 

209 R was used.79

210 3 Results and discussion

211 3.1 Spatially-revolved sampling reveals urban areas as a hot spot of atmospheric NH3 

212 A total of 702 duplicate passive samples were collected in this study. The passive 

213 sampling sites are divided into three types: urban (461 samples), suburban (108 

214 samples), and rural (133 samples), based on local land use and economic activities. 

215 Weekly variations of atmospheric NH3 concentrations at each observation site, and 

216 annual and seasonal average NH3 concentrations (mean ± 1 σ) among different sites 

217 and site categories are plotted in Fig. 2 and Fig. 3, respectively. The observations from 

218 the Ogawa passive samplers are mainly used to illustrate spatial distributions rather 

219 than temporal variations of NH3, due to their relatively coarse time resolution.
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220 Taking the results of all weekly samples as a whole, atmospheric NH3 concentrations 

221 in Shanghai range from 1.2 to 23.1 ppb, with a mean (± 1σ) and median value of 7.3 (± 

222 3.1) and 6.8 ppb, respectively. Domestically, the annual average NH3 concentrations in 

223 northern China (e.g., Beijing (23.5 ± 18.0 ppb)82 and Xi’an (18.6 ppb on average)83) are 

224 much higher than our observations in Shanghai (Table 2). This can be partly explained 

225 by a higher soil pH in the North China Plain and the Guanzhong Plain where Beijing and 

226 Xi’an are located, respectively,84 which promotes loss of NH3.85 Instead, the Yangtze 

227 River Delta region (including Shanghai) is dominated by acid soils of paddy fields.86 

228 Internationally, the average NH3 level we measured in Shanghai is generally similar to 

229 observations in developed cities like Seoul in S. Korea87 and Houston in the U.S.,88 but 

230 much lower than in some cities in developing countries. This is particularly true when 

231 comparing with cities in South Asia (e.g., Delhi in India;89 Table 2), where there is a lack 

232 of basic sanitation facilities (e.g., public flush toilets), and significant animal populations 

233 (such as cows) coexist with people in urban areas.90 The high NH3 concentrations 

234 measured at surface sites in South Asia are consistent with the spatial patterns 

235 determined from recent satellite remote sensing observations.91, 92 It is worth noting that 
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236 from measurements in the Shanghai Jinshan chemical industry park (Fig. 2), Wang et 

237 al.93 showed a much higher NH3 concentration (17.6 ± 9.5 ppb) with abrupt 

238 concentration changes on an hourly basis, a result of the strong influence of variable 

239 industrial emissions in the vicinity.

240 NH3 levels were found to exhibit modest gradients across the study region, with mean 

241 NH3 concentrations ranging from 4.8 (CM rural site) to 9.7 ppb (HP urban site) (Fig. 2 

242 and Fig. 3c). As discussed above, on a regional scale, NH3 is mainly emitted from 

243 animal housing, manure storage, and land-spread manure, and to a smaller extent from 

244 mineral fertilizer application. The emission strengths of these sources are primarily 

245 determined by the activity of microbes, which is highly dependent on temperature.94 

246 Hence, rural areas with strong agricultural sources, are expected to experience 

247 increased emissions in summertime. Indeed, in our study, the average NH3 

248 concentrations in summer are higher than in other seasons for each land use category 

249 (Fig. 3b) and site (Fig. 3d), signifying the importance of volatilized NH3 sources in the 

250 region (see discussion later). Somewhat surprisingly, however, the lowest average 
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251 ambient NH3 concentrations are found at rural sites such as CM (4.8 ± 2.6 ppb) and SY 

252 (6.3 ± 4.1 ppb), which are in active agricultural areas (Fig. 3c). Although the average 

253 NH3 concentration at the rural DH site (7.4 ± 4.1 ppb) is higher than 7 of the other 13 

254 sites (Fig. 3c), the overall average NH3 concentration observed at urban sites (7.8 ± 2.9 

255 ppb) is significantly higher than at suburban (6.8 ± 3.1 ppb, p < 0.01) and rural (6.2 ± 

256 3.8 ppb, p < 0.01) sites (Fig. 3a). In fact, urban enrichment of NH3 in Shanghai is not 

257 unique. In Table 2 we compile previous studies in which urban NH3 concentrations are 

258 comparable with or higher than suburban and rural NH3 concentrations. In brief, our 

259 results demonstrate that urban areas, without agricultural activities, can also be an 

260 important source of NH3 emissions.

261 Temperature is the key driver of NH3 emissions from volatility-driven sources; 

262 observations of NH3 volatilization by Sommer et al.98 found that NH3 emissions after 6 h 

263 of surface applied cattle slurry were exponentially related to temperature (r2 > 0.80). As 

264 shown in Fig. 2 and Fig. 3d, the average NH3 concentrations are higher in summer and 

265 lower in winter. This is particularly true at rural sites, consistent with dominant, 
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266 temperature-sensitive emission of NH3 from agricultural sources like livestock waste and 

267 fertilizer application. There are also other temperature-sensitive sources in urban areas 

268 like wastewater, household garbage, golf turf, and human excreta; the latter two are 

269 often overlooked but important NH3 sources in urban China.44, 99 Although still 

270 recognized as a luxury sport by most Chinese people, golf is increasingly popular.44 In 

271 contrast to Western industrialized countries, golf courses in China tend to operate in 

272 urban areas, which are closer to the affluent consumer.44 Also different from other 

273 developed countries, human excreta in urban China is typically first stored in a three-

274 grille septic tank beneath the building.61 After a series of anaerobic decomposition 

275 processes, a substantial amount of odors (including NH3) will be generated and emitted 

276 through a ceiling duct.61

277 From a climate perspective, differences in temperature and other meteorological 

278 parameters (e.g., precipitation, wind speed, planetary boundary layer) over the 

279 Shanghai region are minor.36 Interestingly, the lowest NH3 concentrations at urban 

280 Shanghai sites were not observed in the winter, while the NH3 difference between 
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281 summer and winter is much lower at urban sites than at rural sites in our dataset (Fig. 

282 3). These observations suggest that there may be some other temperature-independent 

283 NH3 sources present in urban areas.

284 3.2 Significant influences of non-agricultural NH3 emissions in the urban atmosphere

285 The analysis of weekly NH3 samples collected from our network of sites spanning 

286 various land use categories indicates that the enhancement of atmospheric NH3 at 

287 urban sites reflects a mix of agricultural and non-agricultural NH3 emissions. To further 

288 explore and compare the influences of various NH3 sources on ambient NH3 in urban 

289 and rural atmospheres, we can examine the year-round, hourly observations of NH3 at 

290 the urban PD and rural DH sites (Fig. 1). By combining hourly concentration, wind 

291 speed, and wind direction measurements, bivariate polar plots (BPP) can be 

292 constructed to identify source regions of near-ground pollutants like NH3, an approach 

293 that has proven to be a more suitable tool than back trajectory-based methods.78, 80, 81

294 As illustrated in Fig. 4a, there are large temporal variations in NH3 concentrations at 

295 the urban PD and rural DH site, with their hourly NH3 concentrations ranging from 0.1 to 

296 36.4 μg m-3 (mean ± 1σ = 5.9 ± 4.5 μg m-3; median = 4.8 μg m-3; n = 7897; 90.1% data 
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297 availability) and 0.1 to 33.0 μg m-3 (mean ± 1σ = 6.6 ± 4.1 μg m-3; median = 5.9 μg m-3; 

298 n = 8204; 93.7% data availability), respectively. The NH3 concentration spikes at both 

299 sites are concentrated in summer (June, July, and August), and their smoothed trends 

300 are generally consistent with the variation of temperature. These findings suggest that 

301 volatilized NH3 emissions are a regionally important NH3 source in Shanghai. 

302 Also included in Fig. 4 are, to help further identify specific sources, the diurnal profiles 

303 of NH3 and temperature at DH and PD. At the rural DH site, diurnal variations of NH3 

304 concentrations are highly correlated with temperature (r2 = 0.98, p < 0.01; Fig. 4b), 

305 indicating the predominant role of volatilization-related NH3 sources in rural areas. In 

306 eastern China (including Shanghai), agricultural sources (livestock feeding and N-

307 fertilizer application) make up nearly 90% of the total NH3 emissions.22 Indeed, in Fig. 

308 5a, the BPP analysis shows that high NH3 concentrations at DH are associated with air 

309 flows from the southwest and the southeast but infrequently from the northwest. This 

310 can be explained by the large lake Dianshanhu in the northwest, which has negligible 

311 NH3 emission potential.44, 45 The south and east side of the lake is covered by intensive 

312 cultivation areas, with modern agriculture facilities.61 The areas to the southeast of the 
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313 sampling site have been described as the "backyard garden" of Shanghai, renowned for 

314 its idyllic scene, and are a regional hot spot of agricultural NH3 emissions.22, 61

315 At the urban PD site, however, distinctly different pictures of the diurnal profiles of NH3 

316 and temperature are observed (see Fig. 4c and 4d), suggesting a complex mix of NH3 

317 source contributions. Specifically, there is no correlation between NH3 concentration 

318 and temperature on a diurnal basis (Fig. 4d). The average concentrations of NH3 show 

319 a well-marked bimodal pattern, which is generally similar to the diurnal evolution of 

320 urban traffic flow in Shanghai.17 Previous observations have also shown coincident 

321 enhancements of NH3 and carbon monoxide (CO) in the Shanghai urban atmosphere.36 

322 Following a stable period of NH3 concentrations between 22:00 and 5:00 (5.7 ± 0.1 μg 

323 m-3), the maximum NH3 concentration occurs in the morning rush hour (7.0 μg m-3, 

324 10:00), 22% higher than the overnight level. In Fig. 5b, the Shanghai metropolitan area 

325 to the southwest and the suburban Pudong District to the southeast are indicated as two 

326 prominent NH3 source regions. The metropolitan area is densely populated with intense 

327 traffic, representing an important source region of non-agricultural NH3 emissions 

328 (including vehicles). The suburban Pudong District, for long stretches, serves as the 
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329 primary animal feeding operation region in Eastern China, where almost all livestock 

330 farms are focused on hog rearing.61 

331 To further examine the NH3 emissions potential from vehicles, we measured NH3 

332 concentrations emitted from tailpipe exhaust of 19 different vehicles equipped with 

333 TWCs. The average NH3 concentration of the total 57 samples (10.2 ppm) is four orders 

334 of magnitude higher than the ambient NH3 concentrations. Considering the huge 

335 automobile inventory in Shanghai (nearly 3.3 million in 2015),36 our study strongly 

336 suggests that on-road traffic is an important NH3 source in the urban atmosphere. 

337 3.3 NH3 from non-agricultural rival agricultural emissions in the urban atmosphere

338 Figure 6 compares model simulations and measurements of hourly NH3 concentration 

339 at the rural DH and urban PD sites. The average measured and predicted NH3 

340 concentrations at DH are similar, although the variability in the model predictions is 

341 much larger than the observations, perhaps reflecting the coarse time resolution of the 

342 emission inventory used. It is noteworthy that the average NH3 concentration at the rural 

343 DH site is accurate without any non-agricultural NH3 emissions being included in the 
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344 model, consistent with our conclusion above that agricultural activities are the 

345 predominant NH3 source in rural areas. At the urban PD site, the simulation with only 

346 agricultural NH3 emissions yields an average predicted NH3 concentration (3.6 μg m-3) 

347 that is 47% lower than the average measured concentration (6.7 μg m-3), suggesting 

348 that (non-simulated) emissions from non-agricultural activities are important contributors 

349 to urban NH3. Although other factors could contribute to under-prediction of urban NH3 

350 (e.g., incorrectly modeled transport from rural agricultural sources or overestimation of 

351 the rate of dry deposition of NH3 emitted by agricultural sources), past studies suggest 

352 that ambient NH3 concentrations most strongly depend on NH3 emissions rather than 

353 atmospheric processes,100, 101 suggesting that ignoring non-agricultural NH3 emissions 

354 is likely one of the most important reasons for the low concentration model bias at PD.

355 A quantitative and accurate assessment of NH3 sources in the urban atmosphere is 

356 difficult to obtain solely using the approach described above. Below we demonstrate the 

357 complementary use of N isotopes to better constrain NH3 source contributions at the PD 

358 site. Although there is generally not a compelling need to differentiate agricultural vs. 

359 non-agricultural emissions contributions in rural areas, the relative contributions of N-
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360 fertilizer application and livestock feeding are certainly of interest and isotopic 

361 signatures are also used to constrain these source contributions at the rural DH site.

362 Isotope-based source apportionment of atmospheric NH3 requires a well-established 

363 pool of NH3 isotopic source signatures (δ15N-NH3) to allow a separation of different 

364 sources. From a total of 44 NH3 source samples in our previous study,65 we have 

365 established a pool of isotopic signatures for the major NH3 emission sources in Eastern 

366 China (Table 1). The NH3 concentrations and δ15N values of these samples ranged from 

367 33 to 6211 µg m-3 and -52.0 to -9.6‰, respectively. Recently, NH3 slip from coal-fired 

368 power plants equipped with selective catalytic reduction (SCR) technology was reported 

369 as an important source of NH3; thus, its isotopic signature, as reported by Felix et al.76, 

370 is also considered in this study. Table 1 shows that these NH3 sources can be clearly 

371 classified into four categories by specific isotope signatures: NH3 emitted from 

372 combustion-related sources has relatively high δ15N values, allowing them to be 

373 distinguished from NH3 emitted from volatilization processes. The δ15N values (mean ± 

374 1σ) of the Shanghai urban PD site environmental samples collected in July and August 
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375 of 2015 were -31.72 ± 3.36‰ (ranging from -36.01‰ to -25.40‰, n = 10), close to the 

376 δ15N-NH3 values observed in Beijing (-34.0‰ to -27.2‰, n = 4; a period without strict air 

377 quality control measures)65 and higher than at the rural DH site (-41.03‰, -36.53‰), 

378 suggesting a stronger influence of combustion-related sources in the urban atmosphere.

379 At the rural DH site, our earlier analysis demonstrated that rural NH3 concentrations 

380 can be solely attributed to agricultural NH3 emissions, i.e., livestock breeding (LB) and 

381 fertilizer application (FA). Therefore, the isotopic signatures of two sources, i.e., LB and 

382 FA, are used as input into the SIAR Bayesian mixing model. The results suggest that on 

383 average, LB and FA contribute 51.9% and 48.1% to the measured NH3 concentrations, 

384 respectively (not shown). From the perspective of the emissions inventory, the NH3 

385 emissions from LB and FA contribute 48% and 40% to the total in Eastern China, 

386 respectively,22 in general agreement with our results.

387 At the PD urban site with its more complex NH3 sources, normal distributions and 

388 variation ranges (within 5 and 95 percentiles) of the relative contribution fractions of 

389 each source to the ambient NH3 concentrations were estimated and are depicted in Fig. 
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390 7. As a reminder, the availability of only a single isotopic tracer vs. four hypothesized 

391 source types, means that there is no unique solution for the system;102, 103 however, we 

392 can identify all possible sets of source contributions that reproduce the observed 

393 isotopic signature. The utility of this analysis will depend, to a large extent, on how 

394 narrow the source contribution ranges are for each source.  In our analysis, fossil fuel-

395 related sources (FF) and fertilizer application (FA) have relatively low variation ranges 

396 (Fig. 7), indicating that they are better constrained than livestock breeding (LB; -31.7% 

397 to -27.1%) and urban waste volatilized (UW; -41.9% to -29.9%) sources. This is 

398 because the isotopic signatures of LB and UW are distributed in the middle of the 

399 source pool, where their contributions to the δ15N values of the ambient NH3 (-36.01‰ 

400 to -25.40‰) are less well constrained. The pie chart in Fig. 7 illustrates the overall mean 

401 contribution proportions.. While estimates of the mean values are inherently 

402 uncertain,102 the four source contribution distribution estimates strongly suggest that all 

403 four source types make substantial contributions to the NH3 concentrations measured at 

404 the urban PD site. Further, this isotopic analysis lends further confidence to our earlier 

405 conclusion from the WRF-CMAQ model vs. observations comparison that non-
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406 agricultural sources rival agricultural sources in terms of contributing to ambient NH3 in 

407 the urban atmosphere.

408 Fossil fuel-related sources are identified as an important contributor to ambient NH3 

409 concentrations at PD. Although NH3 emissions from coal and biomass burning are 

410 observed,26, 30 they are not comparable with the magnitude of vehicular NH3 emissions 

411 and NH3 slip from SCR-equipped coal-fired power plant (CFPP).30, 37 Recently, a five-

412 year plan was introduced in China to slash coal consumption from CFPP and household 

413 sectors.77 For example, in 2016, all CFPPs in Beijing were replaced with gas-fired 

414 power plants to cut pollution.77 The replacement by the four gas-fired power plants will 

415 help cut emissions by 10000 tons of SO2 and 19000 tons of NO annually.77 Although 

416 NH3 slip is a common issue with SCR technology used in CFPP for the removal of NO, 

417 the mass concentration of NH3 (typically 3-5 mg NH3 m-3) in flue gases is two or three 

418 orders of magnitude smaller than that of NOx.77 Therefore, we suspect that the share of 

419 NH3 emissions from SCR-equipped CFPP in urban areas is relatively small and will 

420 decrease continuously in China. In the US, it is estimated that 5% of the national NH3 
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421 emissions are derived from motor vehicles, while this figure is estimated at 12% for the 

422 UK, with almost all the remaining NH3 coming from agricultural processes.45 In China, 

423 all new light-duty vehicles were required to install TWC since 2009.44 In Table S1, we 

424 have provided direct evidence that TWC-equiped vehicles are an important urban 

425 source of NH3. Thus expanding vehicular NH3 emissions in urban China can be 

426 expected. Indeed, the average contribution of fossil fuel-related sources derived from 

427 the Bayesian isotopic mixing model (28.6%) is close to the share of on-road traffic 

428 (22.3%) we estimated above based on NH3 concentration analysis at PD. This suggests 

429 that fossil fuel-derived NH3 concentrations in urban Shanghai are primarily emitted from 

430 on-road traffic.

431 4 Implications and outlook

432 The present study outlines a framework to integrate NH3 concentration 

433 measurements, atmospheric transport modeling, and isotope-based source 

434 apportionment to address a long-standing and ongoing controversy regarding sources 

435 of NH3 in the urban atmosphere. We validate the feasibility of this approach by 
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436 application to the Yangtze River Delta region, with a focus on the megacity of Shanghai. 

437 Results from a Shanghai passive NH3 monitoring network (14 locations) reveal a 

438 broadly homogeneous distribution of NH3 concentrations throughout the region and 

439 pinpoint urban areas as a hot spot of NH3. The acquired data also provide a baseline 

440 toward tracking future NH3 emissions changes. The year-round online measurements of 

441 NH3 at an urban and rural site, and a comparison against concentrations simulated by 

442 the WRF-CMAQ chemical transport model, demonstrate that NH3 in the rural 

443 atmosphere can be attributed to emissions from agricultural sources, while there is a 

444 significant contribution from non-agricultural NH3 emissions, particularly vehicular NH3 

445 emissions, in the urban atmosphere. Isotope-based source apportionment of NH3 in the 

446 urban atmosphere further indicates that non-agricultural NH3 emissions, missing from 

447 the current emission inventory, could well rival agricultural NH3 emissions in terms of 

448 contributing to ambient NH3.

449 Given the central role of NH3 in the formation of secondary inorganic aerosols and 

450 resulting haze, our results are of critical importance for China as it seeks to curb its 
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451 severe PM2.5 pollution. Additional useful investigative steps could include: (1) sensitivity 

452 analyses with the WRF-CMAQ model to further diagnose the importance of non-

453 agricultural NH3 emissions through developing a gridded non-agricultural NH3 emissions 

454 inventory with high time resolution; (2) collecting NH3 and aerosol NH4+ for 

455 simultaneously determining the mass concentrations and isotopic compositions at high 

456 time resolution; and (3) improving the pool of isotopic source signatures of NH3 from 

457 fuel-related sources.
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746

747 Figure 1. Shanghai passive ammonia monitoring network. The natural-

748 color satellite image in the left panel shows the urban area of Shanghai in 2016, along 

749 with its major island Chongming. The right panel presents the population density in 

750 Shanghai, which was retrieved from a newly released high-resolution (100 m × 100 m 

751 per pixel) population map of China in 2010 (worldpop.org.uk).

752

753

754

755

756

Page 39 of 50 Environmental Science & Technology

http://pubs.acs.org/action/showImage?doi=10.1021/acs.est.8b05984&iName=master.img-001.jpg&w=340&h=148


40

757

758 Figure 2. Sample-specific and group-averaged mixing ratios of ambient NH3 

759 measured with Ogawa passive samplers at fourteen surface locations in Shanghai. 

760 Excepting the green color in the map (indicating rural areas), the color scheme is 

761 population density with the scale the same as that in Fig. 1 (retrieved from 

762 worldpop.org.uk).
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763

764

765

766

767 Figure 3. Comparison of the ambient NH3 concentrations (mean ± 1σ) among (a) 

768 different site types (urban/suburban/rural), (b) different seasons 

769 (spring/summer/fall/winter) within a specific site type, (c) different individual sites, and 

770 (d) different seasons (spring/summer/fall/winter) within a specific site.

771
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780 Figure 4. (a) Hourly variations of temperature (red) in Shanghai and NH3 

781 concentrations at the PD urban site (blue) and DH rural site (green), along with 500-

782 point Savitzky-Golay smoothed records from 1 January to 31 December 2015. (b) 

783 Diurnal variation of NH3 concentration and temperature and their correlation at DH rural 

784 site in 2015. (c) Diurnal variation of NH3 concentration (colored by temperature) at the 

785 urban PD site in 2015. (d) Scatter plot of diurnal temperature and NH3 concentration at 

786 the urban PD site in 2015. 
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792

793 Figure 5. Bivariate polar plots (BPP) of the percentiles of NH3 concentrations at (a) 

794 rural DH site and (b) urban PD site. The natural-color satellite images below are the 

795 land use maps corresponding to each site.
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803

804

805

806 Figure 6. Comparison of hourly observed and simulated NH3 concentrations at (a) DH 

807 rural site and (b) PD urban site.
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819 Figure 7. Isotope-based source apportionment of atmospheric NH3 at PD urban site 

820 with the normal distribution and variation range (within 5 and 95 percentiles).

821

822

823

824

825

826

827

828

829

830 Table 1. Mass concentrations and isotopic signatures (δ15N) of major NH3 sources.
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Category sub-category NH3 (μg m-3) δ15N-NH3 (‰) N reference

livestock breeding (LB) pig breeding 462.2 to 1502.8 -31.7 to -27.1 7 65

N-fertilizer application 
(FA)

urea 165.6 to 623.7 -52.0 to -47.6 5 65

solid waste 271.2 to 542.4 -37.6 to -29.9 8 65

wastewater 127.2 to 258.5 -41.9 to -39.2 8 65

urban waste (UW)
human excreta 3238.0 to 

6211.0
-39.6 to -37.3 8 61

vehicle (road tunnel) 33.2 to 87.4 -17.8 to -9.6 8 65

fossil fuel-related (FF) power plant (NH3 
slip)

not available -14.6, -11.3 2 76

831
832

833

834

835

836

837

838

839

840

841

842
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843

844

845

846

847

848 Table 2. Comparison of atmospheric NH3 concentrations (in ppb) between urban and 

849 suburban/rural areas in different regions.

location period average NH3 concentration reference

urban suburban/rural

Shanghai, CN 2014.5-2015.6 7.8 6.8/6.2 this study

Xi’an, CN 2006.4-2007.4 18.6 20.3 83

Beijing, CN 2007.1-2010.7 22.8 10.2 82

Hong Kong, CN 2003.10-
2006.5

10.2 0.2 95

Delhi, IN 2012.10-
2013.9

52.8 65.6 90

Rome, IT 2001.5-2002.3 5.3 3.5 96

Toronto, CA 2003.7-2011.9 2.3-3.0 0.1-4 97

850
851
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