4,009 research outputs found

    PI-based controller for low-power distributed inverters to maximise reactive current injection while avoiding over voltage during voltage sags

    Get PDF
    This paper is a postprint of a paper submitted to and accepted for publication in IET Power Electronics and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at the IET Digital Library.In the recently deregulated power system scenario, the growing number of distributed generation sources should be considered as an opportunity to improve stability and power quality along the grid. To make progress in this direction, this work proposes a reactive current injection control scheme for distributed inverters under voltage sags. During the sag, the inverter injects, at least, the minimum amount of reactive current required by the grid code. The flexible reactive power injection ensures that one phase current is maintained at its maximum rated value, providing maximum support to the most faulted phase voltage. In addition, active power curtailment occurs only to satisfy the grid code reactive current requirements. As well as, a voltage control loop is implemented to avoid overvoltage in non-faulty phases, which otherwise would probably occur due to the injection of reactive current into an inductive grid. The controller is proposed for low-power rating distributed inverters where conventional voltage support provided by large power plants is not available. The implementation of the controller provides a low computational burden because conventional PI-based control loops may apply. Selected experimental results are reported in order to validate the effectiveness of the proposed control scheme.Peer ReviewedPostprint (updated version

    Suppression of line voltage related distortion in current controlled grid connected inverters

    Get PDF
    The influence of selected control strategies on the level of low-order current harmonic distortion generated by an inverter connected to a distorted grid is investigated through a combination of theoretical and experimental studies. A detailed theoretical analysis, based on the concept of harmonic impedance, establishes the suitability of inductor current feedback versus output current feedback with respect to inverter power quality. Experimental results, obtained from a purpose-built 500-W, three-level, half-bridge inverter with an L-C-L output filter, verify the efficacy of inductor current as the feedback variable, yielding an output current total harmonic distortion (THD) some 29% lower than that achieved using output current feedback. A feed-forward grid voltage disturbance rejection scheme is proposed as a means to further reduce the level of low-order current harmonic distortion. Results obtained from an inverter with inductor current feedback and optimized feed-forward disturbance rejection show a THD of just 3% at full-load, representing an improvement of some 53% on the same inverter with output current feedback and no feed-forward compensation. Significant improvements in THD were also achieved across the entire load range. It is concluded that the use of inductor current feedback and feed-forward voltage disturbance rejection represent cost–effect mechanisms for achieving improved output current quality

    Grid-Forming Converter Control Method to Improve DC-Link Stability in Inverter-Based AC Grids

    Get PDF
    As renewable energy sources with power-electronic interfaces become functionally and economically viable alternatives to bulk synchronous generators, it becomes vital to understand the behavior of these inverter-interfaced sources in ac grids devoid of any synchronous generation, i.e. inverter-based grids. In these types of grids, the inverters need to operate in parallel in grid-forming mode to regulate and synchronize their output voltage while also delivering the power required by the loads. It is common practice, therefore, to mimic the parallel operation control of the very synchronous generators that these inverter-based sources are meant to replace. This practice, however, is based on impractical assumptions and completely disregards the key differences between synchronous machines and power electronic inverters, as well as the dynamics of the dc source connected to the inverter. This dissertation aims to highlight the shortcomings of conventional controllers and derive an improved grid-forming inverter controller that is effective in parallel ac operation without sacrificing dc-link stability. This dissertation begins with a basis for understanding the control concepts used by grid-forming inverters in ac grids and exploring where existing ideas and methods are lacking in terms of efficient and stable inverter control. The knowledge gained from the literature survey is used to derive the requirements for a grid-forming control method that is appropriate for inverter-based ac grids. This is followed by a review and comparative analysis of the performance of five commonly used control techniques for grid-forming inverters, which reveal that nested loop controllers can have a destabilizing effect under changing grid conditions. This observation is further explored through an impedance-based stability analysis of single-loop and nested-loop controllers in grid-forming inverters, followed by a review of impedance-based analysis methods that can be used to assess the control design for grid-forming inverters. An improved grid-forming inverter controller is proposed with a demonstrated ability to achieve both dc-link and ac output stability with proportional power-sharing. This dissertation ends with a summary of the efforts and contributions as well as ideas for future applications of the proposed controller

    Modeling and control of power systems in microgrids

    Get PDF

    LMI-based control design to enhance robustness of synchronous power controller

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Synchronous power controller (SPC) has emerged as a suitable technique to equip grid-connected inverters with grid supporting functionalities such as inertial emulation and frequency/voltage support by mimicking the behavior of synchronous machines. Although the feasibility of the SPC has been experimentally verified under various operating conditions, parameter tuning for the SPC to ensure a stable inverter system has not been adequately addressed in the literature. To fill this gap, this paper presents a robust control design for the SPC to ensure its stable operation under the grid impedance variation. The proposed design procedure consists of system modelling and robust optimal parameter selection by using linear matrix inequality approach. The effectiveness of the proposed control design is proven by means of simulations and experiments.Peer ReviewedPostprint (author's final draft

    Small-signal modeling of grid-supporting inverters in droop controlled microgrids

    Get PDF
    An approach to modeling externally controlled inverters in droop controlled microgrids is presented. A generic three-phase grid-tied inverter and control system model is derived in synchronous reference frame. The structure of this inverter is intended to be similar in composition to other three-phase inverters whose models and dynamics are well understood. This model is used as a starting point in the development of a more comprehensive model, which is capable of representing the coupling between complex power, bus voltage, and frequency that occurs in a microgrid. This new model is a combination of the generic inverter and an autonomous, grid-forming inverter with a local load. The accuracy of the new model is verified through comparisons of small-signal dynamic predictions, simulations, and experimental results from a microgrid testbed. The proposed procedure of modifying an existing small-signal model for use in a microgrid system retains the information of the original model while successfully enabling the prediction of dynamic interactions with other generating units in the microgrid. The process is scalable for any number of inverters at the same point of connection, allowing accurate predictions of full system dynamics during distributed control actions, such as black start or grid-resynchronization. Traditional linear control techniques may be used to improve the performance and stability of the microgrid system. This is a demonstrated in an analysis of the system\u27s eigenvalues. Drawing from the insights provided by this analysis, hardware and control parameters are selected to improve the response of the generic inverter --Abstract, page iii
    • …
    corecore