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Chapter 1

Introduction

“As a reader I loathe introductions. Introductions inhibit pleasure, they kill the joy
of anticipation, and they frustrate curiosity.”

– Harper Lee, To Kill a Mockingbird

D
RIVEN by environmental and technical motivations, restructuring the clas-
sical power networks has been under vast attention during the recent
decades. Among the goals are decreasing energy losses by moving towards

distributed generation and preventing fault propagation through building up smart
microgrids. Microgrids are small power network areas which can be seen as single
entities from the large power grids. Considering such a network as a building block
of the power grid is mainly motivated by preventing blackouts. A microgrid is
capable of disconnecting itself from the main grid in case of a fault in the main grid,
and reconnecting when the fault is resolved. This leads to an increase in the reliability
of the system. Other advantages of microgrids are improving local energy delivery,
optimizing energy costs, generating revenue, and reducing carbon emissions.

In classical networks, electrical energy sources were mainly synchronous generators
(SG). Currently, however, we take advantage of storage systems and renewable
energies such as wind, solar, geothermal, etc. . For most of these sources, an interface
for power regulation or conversion from Direct Current (DC) to Alternating Current
(AC) is necessary. These interfaces are called power converters or inverters. A microgrid
typically includes both synchronous generators and inverters.

In such small-scale networks, the energy consumption and production uncer-
tainty increases to a great extent according to the fewer number of consumers and
unpredictable fluctuations in energies captured from nature. This issue calls for an
accurate analysis of the control methods, and rethinking about the accuracy of the
models that were used in the classical networks. This dissertation investigates control
methods and modeling of the power systems in a microgrid.
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1.1 Overview and contributions of the thesis

In this thesis, different aspects of the building components of a microgrid is investi-
gated, as introduced briefly through the following lines.

1.1.1 Distribution lines

Many control methods and strategies have been proposed for control of power
converters, e.g., droop controllers [29, 118, 124], quadratic droop [126], reactive power con-
sensus dynamics [119], averaging reactive power controller [110], and dispatchable virtual
oscillator control [32]. The performance, stability, and efficiency of these methods
highly depend on the power line characteristics. In this regard, different assumptions
are made to guarantee the performance of the inverters, e.g., inductive [74, 118, 124],
resistive [60, 145, 146], or homogeneous [18, 76, 100, 127] lines. The inductivity of the
lines can be regarded as the inductivity of the network as well, if all the lines share the
same ratio between their resistance and inductance values. These networks are called
homogeneous [22, 24]. However, power loads, together with the output impedances
that are inherent elements of the power sources, destroy this homogeneity, and hence
the definition of the network inductivity becomes unclear. In other words, loads and
output impedances add new (internal) nodes to the network. Therefore, a model
reduction is necessary to eliminate these nodes, and investigate the characteristics
of the resulting network. The problem is, as shown in [149], that the obtained de-
scription after a model reduction of an RLC network, is not necessarily a description
of another RLC network. Despite the crucial importance, few articles have investi-
gated the characteristics of the distribution lines after a model reduction; see, e.g.,
[22, 24, 138, 149], and in general, the problem of characterizing Schur complements
of a complex Laplacian matrix seems largely open [139]. As a (partial) solution to
this problem, in the third chapter of this thesis, a measure is proposed to define the
inductivity of the resulting network, and it is shown that the impact of the output
impedances on the network is highly dependent on the connectivity of the network.
In particular, it can be deducted that the more connected the network is, the more
output impedance diffuses into the network. Furthermore, through a numerical
simulation, it is observed that the optimization of such a measure, leads to a better
performance in droop controlled inverters, which are believed to perform better in
inductive networks [57, 58, 59, 60, 61]. This shows that, through modifying (virtual)
output impedances, one can tune the inductivity of the network to guarantee perfor-
mance of the droop controlled inverters. The validity of the measure is demonstrated
through a comparison with a model reduction in phasor domain. The results show
that the overall behavior of the lines of the reduced network, can be predicted by the
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proposed measure.

1.1.2 Network architecture

Despite the extensive advances in development of harvesting green energies, and
because of the unpredictable nature of the green sources, there is still the need to
have synchronous generators present in microgrids; see, e.g., [120, 131, 151]. Hence,
the consistency of the power converters with the synchronous generators is of crucial
importance, in stability and safe operation of the overall network. A widely accepted
approach to deal with this issue is the control scenarios for power converters that
mimic the behavior of the synchronous generators [29, 69, 158]. In Chapter 6, a
recently proposed inverter control method is discussed, which uses the inherent
capacitive elements to mimic the inertia of a synchronous generator [69]. Another
way to tackle the problem, as proposed in Chapter 4, is to regard the generator as the
master and the inverter as the slaves. This idea originates from the current electrical
system, where usually the gas generators are in charge of balancing the power
demand and supply, while the power converters inject a determined or maximum
capacity of electrical power into the grid, and their frequency follow that of the
network. The proposed approach adopts a similar but different scheme, in the
sense that the inverters power injection is adjusted by the controllers to respond
appropriately to power imbalances. In case of an increase in the loads, the main
generator slightly drops the frequency of the generated voltage. Since the rest of
the sources are following this frequency, the frequency of the network decreases.
The inverters then measure this deviation, and tune their output power until the
power imbalance is eliminated, and the frequency goes back to the nominal value
(50/60 Hz). In this scheme, these devices act as current-controlled sources instead
of the widely used voltage-controlled source. Current-controlled sources, despite
their many benefits [35], are rarely investigated in the literature over microgrids. It
appears that further research is necessary over the dynamics of these devices, since
they are useful tools to deal with the problems that are difficult to resolve by voltage
sources.

1.1.3 Modeling synchronous generators

A classical model of synchronous generators, is elaborated in [50], where the dy-
namics consists of six state variables:1 two stator fluxes, three rotor fluxes, and
the momentum of the rotor (and prime mover). In Chapter 7, using this model,

1The model consists of eight state variables before the dq transformation.
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and through a systematic approach, we derive conditions for the stability of a syn-
chronous generator connected to a resistor. A simplified third order model can be
derived from the sixth-order model, which is known as the First Principle (FP) [25]2.
The existence and stability of the equilibrium of a synchronous generator with the FP
model, connected to an infinite bus, is investigated in several articles and sufficient
conditions have been introduced [10, 23, 101, 102]. However, the stability of two or
more synchronous generators connected to each other remains an open problem3.

Due to the complexities in analyzing the interconnection of the FP and higher
order models, the so called Swing Equation is widely used (also in Chapter 4 of
this thesis), which is a first order model that can be derived from the FP model
by several simplifying assumptions [25, 143]. An important simplifying, while
contradictory approximation is that the frequency is assumed to be identical to the
nominal frequency [25]. In Chapter 5, we go back to the mechanical equation of
the FP model without considering this assumption, and derive an improved model
which is called the Improved Swing Equation (ISE). We show passivity properties
of this model, and provide a region of attraction for the case where the generator
is connected to an infinite bus. While this model is still easy-to-use, simulations
demonstrate that, in many cases, the ISE model is a good approximate model and the
behavior is very similar to the FP model [148]. Furthermore, unlike the FP model, the
stability of a network of generators modeled with the ISE is guaranteed as explained
in Chapter 6. Hence, the improved swing equation can act as an approximate model,
providing a balance between precision and utility.

1.1.4 Inverters and the problem of low inertia

A major blackout in south Australia in September 2016 has drawn attention to
the problem of low inertia in inverter dominated networks. In classical networks,
the kinetic energy of the large synchronous machines played an important role in
stabilizing the network. If there is an imbalance between the generation and load,
the kinetic energy of synchronous generators can be released into or absorbed from
the network. However, since power converters do not posses any rotational mass,
the networks that are dominated by inverters are vulnerable to abrupt changes, and
the consequent rapid fluctuations in frequency might lead to power outages, and at
larger scales to blackouts. In the report of the Australian Energy Market Operator
(AEMO) in December 2016, it is stated that inertia and system strength may have
played a role in the system collapse, and amended a secure technical envelope to

2Note that, as it will be seen later, this model is different with the third order model containing three
state variables corresponding to the angular velocity, rotor angle, and stator voltage, as in [78, Ch.11].

3This problem is addressed in [152] for two synchronous generators, under the restrictive assumption
that the two machines are precisely identical, and are driven by identical prime movers.
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require that a minimum capacity (300MW) of synchronous generating units must be
on-line at all times. Obviously, this is an important obstacle in the development and
usage of renewable energies.

Although a number of articles have introduced controllers that mimic the inertia
of the synchronous generator, known as the virtual inertia, this scheme is slow due to
delays in power measurements [43]. Hence, there is the need to a physical element in
the system that can release or absorb the energy immediately. Capacitors, that are
inevitable stabilizing elements on the DC-side of the power converters, can act as this
reservoir [5, 146, 147].Without the need to any programming or control scheme, the
capacitors inject or absorb power immediately, when there is a mismatch between
the (DC) current injected to and extracted from the capacitor. The main difference is
that while any change in the kinetic energy of the synchronous generators is reflected
in the frequency of the network, information about the changes in voltage level
of the DC-side capacitors remains local. There are two approaches to resolve this
problem. First is to transmit the measurement data of the capacitor voltage level
through a communication network [147]. However, this method leads to higher
costs, larger time delays, and lower reliability. The second approach is to generate a
frequency deviation proportional to the difference of the voltage of the capacitor from
its nominal value. A third order model of such an inverter is provided in [34, 69], but
the network of these inverters is not studied. In Chapter 6, we investigate the network
of these converters, propose controllers, and provide a nonlinear stability analysis.
Numerical results also show that the method successfully avoids rapid changes in
frequency, in response to abrupt load changes. As it is expected, larger capacitors
provide larger inertia, and facilitate the stabilization of the network. Note that, as
mentioned before, the results also apply to networks of synchronous generators
modeled with the improved swing equation.

1.1.5 Port-Hamiltonian framework and its applications in power
systems

In any control design, and especially in the nonlinear case, it is widely recognized
that physical properties of the system should be exploited [141]. In this regard, Port-
Hamiltonian (pH) modeling provides a natural starting point for control of power
systems. Recently, a large number of articles have used the pH framework to model,
control, and analyze power systems; see, e.g., [9, 13, 33, 50, 69, 90, 91, 117, 118, 130].
Although showing a pH system to be passive and stable around an equilibrium
in the origin is straightforward, one of the bottlenecks in using pH systems is to
show passivity with respect to a non-zero equilibrium. We refer to this property as
shifted passivity (see Section 2.3). This property paves the way to design appropriate
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controllers, and derive Lyapunov functions for stability analysis. In Chapter 7 of this
thesis, we investigate shifted passivity of two classes of pH systems:

• Conventional pH systems: Here, using monotonicity properties, we derive
sufficient conditions for shifted passivity of pH systems. Using this condition,
one is able to design a controller or the necessary damping (in case of lack of
passivity) to achieve (global) stability. In case of a quadratic affine Hamiltonian,
this condition is not dependent on the state variables. Since many pH systems
fall into this category, this is a powerful tool to guarantee stability of physical
systems such as synchronous motors and generators. In particular, we show
that the results can be exploited to obtain a sufficient condition for stability of a
synchronous generator, modeled by the sixth-order model, and connected to a
linear resistive element.

• pH systems with power control input/disturbance: In a conventional pH sys-
tem, the control input/disturbance is acting on the flow, i.e., the time derivative
of the states. However, in many physical systems, only the rate of energy
injected or extracted from the system is tunable. In Section 7.2, we propose a
pH framework to model such systems and determine a domain within which
the system is shifted passive. Using this result, the (non-zero) equilibrium
can be regulated with simple PI controllers. Moreover, when the system is
connected to a constant power load/source, the stability of the equilibrium
can be established. Interestingly, in case that the Hamiltonian is quadratic, an
estimate of the region of attraction can be characterized. We apply these results
to two cases of interest: i) Electrical DC circuits with constant power loads, and
ii) Synchronous generator modeled by the improved swing equation connected
to a constant power load. In the latter case, the results are consistent with
the results of Chapter 5. Finally, numerical results illustrate that the derived
estimates of the region of attraction are good approximations, and bound the
least conservative invariant region.

1.2 Outline of the thesis

This thesis is organized as follows. Chapter 2 starts with the preliminaries on graph
theory, pH systems, and stability theory. In Chapter 3, we propose a measure for the
inductivity of a power network, and, using this measure, investigate how output
inductances affect the inductivity of the network. A novel architecture for microgrids
is established in Chapter 4, where a synchronous generator (as the master) and a
number of inverters (as the slaves) share power without the need to any commu-
nication. Chapter 5 introduces the improved swing equation model for synchronous
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generators and includes stability analysis and frequency regulation. In Chapter 6,
inverters with capacitive inertia are studied, and methods for stability and frequency
regulation are developed. Finally, Chapter 7 looks into the usage of port-Hamiltonian
modeling in power systems.

1.3 Origins of the chapters

Chapter 3 is based on [95] which has been submitted to IEEE Transactions on Power
Systems. The origin of Chapter 4 is [92], which has been published in the proceedings
of American Control Conference (ACC 2016). Chapters 5 and 6 are based on the
papers [93] and [96], which have been published at the 55th and 56th IEEE Conference
on Decision and Control (CDC2016, CDC2017), respectively. Finally, Chapter 7
contains two papers, [89] and [94], which both have been submitted for journal
publication.

1.4 Notation

For i ∈ {1, 2, ..., n}, by col(ai) we denote the column vector [a1 a2 · · · an]>. For a
given vector a ∈ Rn, the diagonal matrix diag{a1, a2, · · · , an} is denoted in short
by 〈a〉. The function sin a represents the element-wise sine function, i.e., sin a =

col(sin(ai)). The symbol 1 denotes the vector of ones with an appropriate dimension,
and In is the identity matrix of size n× n. An n×m matrix of zeros is denoted by
0nm or 0(n) (m). The set of nonnegative real numbers is denoted by R>0.

For differentiable mappings H : Rn → R and C : Rn → Rn we denote the
transposed gradient as ∇H :=

(
∂H
∂x

)>
and the transposed Jacobian matrix as ∇C :=(

∂C
∂x

)>
. The Jacobian (∇C(·))> is simply denoted by ∇C(·)>. For a vector x ∈ Rn,

we denote its Euclidean norm by ‖x‖. For the distinguished vector x̄ ∈ Rn we
define the constant vectors H̄ := H(x̄) and ∇H̄ := ∇H(x̄); and for the mapping
F : Rn → Rn×m, we define the constant matrix F̄ := F(x̄). The largest and smallest
eigenvalues of the square, symmetric matrix A are denoted by λM{A}, and λm{A},
respectively.
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1.5 List of abbreviations
SG Synchronous Generator
FP First Principle
ISE Improved Swing Equation
pH Port-Hamiltonian
NIR Network Inductivity Ratio
NRR Network Resistivity Ratio
VSI Voltage Source Inverter
CSI Current Source Inverter
GAS Globally Asymptotically Stable
PLL Phase Locked Loop
CPL Constant Power Load
SMIB Single Machine Infinite Bus
ICI Inverters with Capacitive Inertia
RCOF Rate of Change of Frequency
PWM Pulse Width Modulation
PwH Power-controlled Hamiltonian
ROA Region of Attraction



Chapter 2

Preliminaries

“Learning to see — accustoming the eye to calmness, to patience, to letting things
come up to it; postponing judgment, learning to go around and grasp each individ-
ual case from all sides. That is the first preliminary schooling for spirituality: not
to react at once to a stimulus, but to gain control of all the inhibiting, excluding
instincts.”

– Friedrich Nietzsche, Twilight of the Idols

T
HIS chapter provides the preliminaries for the remainder of this thesis
on graph theory, port-Hamiltonian systems, and passivity and stability
analysis. The graph theory in Section 2.1 is used to model the interconnec-

tion topology of the network studied in chapters 3 and 6. The nodes of the graph
correspond to the sources and loads, while the edges of the graph correspond to the
power lines interconnecting them. Port-Hamiltonian framework is introduced in 2.2,
and is used in Chapter 7, where power systems are modeled as input-state-output
port-Hamiltonian systems. Section 2.3 introduces the properties of passivity and
shifted passivity which is employed in Chapters 5 and 7. Finally, Section 2.4 provides
tools for the stability analysis of the studied systems which is used in chapters 4-7.

2.1 Graph Theory

This section provides some essentials from the field of graph theory. Graphs are
(mathematical) structures to model the pairwise interaction between objects. They are
used to model many types of systems in physical, biological, social, and information
systems. Examples are power networks, spreading of diseases amongst animal
populations, rumor spreading, and social networks. Graph theory provide powerful
tools for the modeling, analysis, and design of complex networks.

In this thesis, graphs are used to model the interaction amongst a group of sources
and loads. The nodes of the graph correspond to the sources and loads, while the



10 2. Preliminaries

edges correspond to the power distribution lines. The definitions below are distilled
from [16, 52, 86].

Throughout the thesis, a graph is denoted by G = (V,E,Γ) consisting of a node set
V and an edge set E ⊆ V×V. The node set V = {1, · · · , n} has n = |V| elements, while
the edge set has m = |E| elements. The edge weights are collected in the diagonal
matrix Γ, and will be specified later.

There exists an edge {i, j} ∈ E if and only if the source/load at node i can
transfer power to the source/load at node j. Since the graph models the physical
interconnection structure, except for a minor case study, only undirected graphs
are considered throughout this thesis. For undirected graphs the edge set E is an
unordered pair of nodes {i, j} of vertices i, j ∈ V. Furthermore, self-loops are not
considered (i.e., {i, i} /∈ E).

For graph G, there exists an undirected path from node ni to node nj if there
exists a sequence of distinct edges e1, . . . , eK such that ek ∈ E for k = 1, . . . ,K and
e1 = {i, ∗}, eK = {∗, j}. A graph is connected if there exists a path from every node to
every other node. A cycle is a path that starts and ends with the same node.

Graphs admit a straightforward representation in terms of matrices. For an
undirected graph, one can arbitrarily assign an orientation to each edge [86], by
assigning a positive sign to one end (the head) and a negative sign to the other end
(the tail). Then the incidence matrix B ∈ Rn×m associated to G is defined as

bik =


+1 if node i is the head of edge ek,

−1 if node i is the tail edge ek,

0 otherwise.

The n rows of B correspond to the nodes of G, while the m columns correspond the
the edges of G. Another matrix considered here is the Laplacian matrix, L ∈ Rn×n,
which its elements `ij are defined as

`ij =

{∑n
j=1 wk if i = j,

−wk if i 6= j,

where wk is the weight of the kth edge with k ∼ {i, j}. The Laplacian matrix can also
be expressed as L = BΓB> where Γ := diag{w1, · · · , wm}. Note that the Laplacian
matrix is independent of the orientation.

Example 2.1.1 [Incidence and Laplacian matrices]
Consider the undirected graph G(V,E) shown in 2.1 with all edge weights equal to 1.
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Figure 2.1: Graph for Example 2.1.1.

The node set and edge set are given by given by

V = {n1, n2, n3, n4}
E = {{n1, n2}, {n1, n3}, {n2, n3}, {n2, n4}}.

Since there is a path from every node to every other node the graph is connected.
The incidence matrix B, and Laplacian matrix L associated to G are given by

B =


−1 −1 0 0

1 0 1 −1

0 1 −1 0

0 0 0 1

 , L =


2 −1 −1 0

−1 3 −1 −1

−1 −1 2 0

0 −1 0 1

 .

2.2 Port-Hamiltonian Systems

The port-Hamiltonian framework was introduced in [83] as an energy-based frame-
work for modeling (nonlinear) systems in different domains (mechanical, electrical,
etc.). The name comes from two key ingredients of the framework: power ports to
interconnect (sub)systems and the Hamiltonian, which is the total energy stored in
the system.

Power ports provide an interface for the sub-models within the model to interact
with each other. In physical systems, these interactions are related to the exchange (or
flow) of energy (i.e., power) [45]. Each power port has two power-conjugate variables
called flow and effort. The flow vector f belongs to the flow space F, while the effort
vector e belongs to the effort space E which is the dual of the flow space E := F∗. The
total space of flows and effort F × F∗ is called the space of port-variables. On the
total space of port-variables power is defined as P = 〈e|f〉, where 〈e|f〉 denotes the
duality product (i.e., the product of flows and efforts has the dimension of power). In
the remainder F = Rn and f and e are written as column vectors, which implies that
P = 〈e|f〉 = e>f .

Let x ∈ X denote the state of the system to be modeled, where X denotes the state
space X ⊆ Rn. The input-state-output port-Hamiltonian system can be written into the
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following form :
ẋ = (J(x)−R(x))∇H(x) +G(x)u,

y = G>(x)∇H(x),
(2.1)

with skew-symmetric interconnection matrix J(x) = −J>(x), positive semi-definite
dissipation matrix R(x) = R>(x) > 0, input matrix G(x), and the continuous and
differentiable Hamiltonian H(x) [141]. We will use the dynamics (2.1) in Chapter 7
to model electrical systems, and study their properties.

2.3 Passivity and Shifted Passivity

Passive systems are a class of dynamical systems where the rate at which the energy
flows into the system is not less than the increase in storage. In other words, starting
from any initial condition, only a finite amount of energy can be extracted from a
passive system. This, together with the invariance under negative feedback intercon-
nection, has promoted passivity as a basic building block for control of dynamical
and interconnected systems; see [8, 107, 140] for the applications of passivity in
control theory.

Passivity has been used as a key tool for stability analysis and design of large
scale systems and dynamic networks [107, 129, 140, 153]. The reason for this mainly
lies in the intriguing relation of passivity with the physics of the system, and its
invariance under negative feedback. These properties promote the physical energy
of the system as the cornerstone of Lyapunov functions verifying stability of large
scale interconnected passive systems. In a similar vein, passivity can be exploited
as a powerful design tool regulating the behavior of a system to a desired one
[6, 107, 109, 112, 140].

Passivity of state-space systems is commonly defined as an input-output property
for systems whose desired equilibrium state is the origin and the input and output
variables are zero at this equilibrium [107, 140, 153]. If several of such systems are
interconnected—for instance, a plant with a controller—the origin is an equilibrium
point of the overall system whose stability may be assessed using the tools of passivity
theory.

Definition 1 [Passivity [141]]
A system ẋ = f(x, u), y = h(x, u), where x ∈ X, X ⊆ Rn, and u, y ∈ Rm, is called
passive if there exists a differentiable storage function S : X → R>0, satisfying the
differential dissipation inequality

Ṡ 6 u>y, (2.2)
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along all solutions x ∈ X. �

For physical systems, the right-hand side u>y is usually interpreted as the supplied
power, and S(x) as the stored energy of the system when being in state x. Hence, a
passive system cannot store more energy than it is supplied with.

Remark 2.3.1 [Passivity of pH systems]
It is easily verified that the pH system (2.1) is always passive with respect to port-
variables (u, y) with storage function H(x) since

Ḣ = ∇H(x)>ẋ

= ∇H(x)> (J(x)−R(x))∇H(x) +∇H(x)>G(x)u

= −∇H(x)>R(x)∇H(x) + y>u

6 y>u.

(2.3)

The interpretation of (2.3) is that the increase in stored energy H is always smaller
than or equal to the power y>u supplied through the control port. �

In many applications, however, the desired equilibrium is not at the origin and
the input and output variables of the system take nonzero values at steady-state. A
standard procedure to describe the dynamics in these cases is to generate a so-called
incremental model with inputs and outputs the deviations with respect to their value
at the equilibrium. A natural question that arises is whether passivity of the original
system is inherited by its incremental model, a property that we refer in this thesis as
shifted passivity.1 Thus shifted passivity is in fact passivity with respect to the shifted
signals, as formalized below.

Definition 2 [Shifted passivity]
Consider the system ẋ = f(x, u), y = h(x, u), where x ∈ X, X ⊆ Rn, and u, y ∈ Rm.
Define the steady-state relation

E := {(x, u) ∈ X× Rm | f(x, u) = 0}.

Fix (x̄, ū) ∈ E and the corresponding output ȳ := h(x̄, ū). The system is shifted passive
if the mapping (u− ū)→ (y − ȳ) is passive, i.e., there exists a function S : X→ R>0

such that
Ṡ 6 (u− ū)>(y − ȳ) (2.4)

along all solutions x ∈ X. �
1This property is called passivity of the incremental model in [68]. Notice that shifted passivity

is defined with respect to a given pair (x, u) ∈ E. If (2.3) holds for all (x, u) ∈ E, then the (shifted)
passivity property becomes independent of the steady-state values u and x [21, 66, 123] where the term
“equilibrium-independent passivity” has been used.
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Remark 2.3.2 [Shifted passivity and incremental passivity]
Shifted passivity is different from the classical incremental passivity property [38].
In fact, the latter is much more demanding as the word “incremental” refers to
two arbitrary input-output pairs of the system, whereas in the former only one
input-output pair is arbitrary and the other one is fixed to a constant.

Shifted passivity is defined with respect to a given pair (x̄, ū)E. If (2.4) holds for all
(x̄, ū), then the (shifted) passivity property becomes independent of the steady-state
values ū and x̄ [66]. �

Interestingly, under certain conditions, pH systems are shifted passive.

Theorem 2.3.3 [Shifted passivity of pH systems [68]]
The pH system (2.1) with a convex Hamiltonian H , is shifted passive, if the intercon-
nection, dissipation, and control input matrices are all constant.

Proof. The proof is straightforward using the storage function

H(x) = H(x)− (x− x̄)>∇H(x̄)−H(x̄). (2.5)

�

Throughout the thesis, we refer to the storage function (2.5) as the Shifted Hamiltonian.
As will be shown in chapter 7, showing shifted passivity for the pH systems with
state dependent matrices J(x), R(x), or G(x) is nontrivial.

Remark 2.3.4 [Bregman distance]
The shifted function (2.5) is closely related to the notion of availability function used
in thermodynamics [7, 8], and the Bregman distance with respect to an equilibrium of
the system [20]. In Chapters 4, 5, and 6 of this thesis, we use this technique to shift
the candidate Lyapunov function V , to a non-zero equilibrium

Vs(x) = V (x)− (x− x̄)>∇V (x̄)− V (x̄) . (2.6)

By construction, Vs is positive definite locally, and takes its minimum at x = x̄, if the
function V is strictly convex around x̄ [20]. �

2.4 Stability of Nonlinear Systems

This section presents a brief recall of Lyapunov stability theory for nonlinear systems
(see [70] for more details). Let x ∈ Rn denote the state of the system of interest and
consider the time-invariant system

ẋ = f(x), (2.7)
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where f : D→ Rn is a locally Lipschitz map from a domain D ⊂ Rn intoRn. Suppose
that x∗ is an equilibrium point of (2.7), i.e., f(x∗) = 0. Without loss of generality,
assume that x∗ = 0. The stability of the origin x∗ = 0 is defined as follows.

Definition 3 [Stability [70]]
The equilibrium point x∗ = 0 of (2.7) is

• stable if, for each ε > 0 there exists a δ1 = δ1(ε) > 0 such that

‖x(0)‖ < δ1 ⇒ ‖x(t)‖ < ε, ∀t > 0.

• unstable if it is not stable.

• asymptotically stable if it is stable and additionally δ2 can be chosen such that

‖x(0)‖ < δ2 ⇒ lim
t→∞

x(t) = 0.

�

Stability of system (2.7) in the sense of Definition 3 can be assessed using Lyapunov’s
stability theorem, which is stated next.

Theorem 2.4.1 [Lyapunov’s direct method [70]]
Let x = 0 be an equilibrium point for (2.7) (without loss of generality) and D ⊂ Rn
be an open subset containing x = 0. Let V : D→ R be a continuously differentiable
function such that

V (0) = 0 and V (x) > 0 in D− {0}, (2.8)

V̇ (x) 6 0 in D. (2.9)

Then, x = 0 is stable. Moreover, if

V̇ (x) < 0 in D− {0}, (2.10)

then x = 0 is asymptotically stable. Furthermore, if D = Rn, and together with (2.10),
V is radially unbounded, i.e.,

‖x‖ → ∞⇒ V (x)→∞ ,

then x = 0 is globally asymptotically stable (GAS).

A continuously differentiable function V (x) satisfying (2.8) and (2.9) is called a
Lyapunov function. Many (physical) systems fail to meet condition (2.10), because V̇
is only negative semi-definite (V̇ 6 0) in D− {0}. In this case, LaSalle’s invariance
principle can be invoked to assess the stability of (2.7). In order to state LaSalle’s
invariance principle, first the definition of an invariant set is needed.
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Definition 4 [Invariant Set [70]]
A set M is said to be invariant if

x(0) ∈M⇒ x(t) ∈M, ∀t,

and positively invariant if

x(0) ∈M⇒ x(t) ∈M, ∀t > 0 .

�

LaSalle’s invariance principle is now stated as follows.

Theorem 2.4.2 [LaSalle’s invariance principle [70]]
Let Ω ⊂ D be a compact set that is positively invariant with respect to (2.7). Let
V : D→ R be a C1 function satisfying (2.9). Let F be the set of all points in D where
V̇ (x) = 0. Let M be the largest invariant set in F. Then every solution starting in Ω

approaches M as t→∞.

Interestingly, under additional conditions, the corresponding equilibrium of shifted
passive systems with constant inputs are stable, as formalized in the following
proposition.

Remark 2.4.3 [Stability of shifted passive systems]
Suppose that the system ẋ = f(x, ū), y = h(x, ū), is shifted passive with respect to
the equilibrium pair (x̄, ū), and the storage function is a Lyapunov function, i.e., is
positive definite, and have a strict minimum at x = x̄. Then the equilibrium (x̄, ū) of
the system ẋ = f(x, ū), y = h(x, ū) is stable. �

In many cases, we are interested in determining how far from the equilibrium the
trajectory can be and still converge to the equilibrium as time approaches∞. This
gives rise to the definition of the region (domain) of attraction:

Definition 5 [Region of attraction (ROA)[70]]
Let ϕ(t;x) be the solution of ẋ = f(x), that starts at initial state x at time t = 0.
Assume that there exists an equilibrium x̄, s.t. f(x̄) = 0. Then, the region of attraction
of the equilibrium x̄ is defined as the set of all points x such that ϕ(t;x) is defined for
all t > 0 and lim

t→∞
ϕ(t;x) = x̄. �

Finding the exact region of attraction analytically might be difficult or even impossi-
ble. However, Lyapunov functions can be used to estimate the region of attraction,
that is, to find sets contained in the region of attraction. In particular, if there is a Lya-
punov function that satisfies the conditions of asymptotic stability over a domain D
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and, if Ωc = {x ∈ Rn|V (x) 6 c} is bounded and contained in D, then Ωc is positively
invariant, and every trajectory starting in Ωc approaches the equilibrium as t→∞
[70].





Chapter 3

Power Network Characteristics:
Output Impedance Diffusion Into Lossy Power
Lines

“Almost all absurdity of conduct arises from the imitation of those whom we cannot
resemble.”

– Samuel Johnson, The Rambler

O
UTPUT impedances are inherent elements of power sources in the electrical
grids. In this chapter, we give an answer to the following question: What is
the effect of output impedances on the inductivity of the power network?

To address this question, we propose a measure to evaluate the inductivity of a
power grid, and we compute this measure for various types of output impedances.
Following this computation, it turns out that network inductivity highly depends
on the algebraic connectivity of the network. By exploiting the derived expressions
of the proposed measure, one can tune the output impedances in order to enforce a
desired level of inductivity on the power system. Furthermore, the results show that
the more connected the network is, the more the output impedances diffuse into the
network. Finally, using Kron reduction, we provide examples that demonstrate the
utility and validity of the method.

3.1 Introduction

Output impedance is an important and inevitable element of any power producing
device, such as synchronous generators and inverters. Synchronous generators
typically possess a highly inductive output impedance according to their large
stator coils, and are prevalently modeled by a voltage source behind an inductance.
Similarly, inverters have an inductive output impedance, at the nominal frequency,
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Figure 3.1: Inductive outputs are typically added to the sources in order to assume inductive
lines for the resulting network.

due to the low pass filter in the output, which is necessary to eliminate the high
frequencies of the modulation signal.

There are numerous motivations to add an impedance to the inherent output
impedance of the inverters, one of the most important of which is to enhance the
performance of droop controllers in a lossy network. Droop controllers show a better
performance in a dominantly inductive network (or analogously in dominantly re-
sistive networks for the case of inverse-droop controllers) [57, 58, 59, 60, 61, 74, 98]
(see Figure 3.1). The additional output impedance is also employed to improve
stability and correct the load sharing error [61, 80, 103],[79, 99], supply harmonics to
nonlinear loads [18],[59], [84], share current among sources resilient to parameters
mismatch and synchronization error [31], decrease sensitivity to line impedance
unbalances [60, 63],[56], reduce the circulating currents [154], limit output current
during voltage sags [150], minimize circulating power [71], and damp the LC reso-
nance in the output filter [74]. In most of these methods, to avoid the costs and large
size of an additional physical element, a virtual output impedance is employed, where
the electrical behavior of a desired output impedance is simulated by the inverter
controller block.

Although an inductive output impedance, either resulting from the inherent
output filter or the added output impedance, is considered as a means to regulate
the inductive behavior of the resulting network, there is a lack of theoretical anal-
ysis to verify the feasibility of this method and to quantify the effect of the output
impedances on the network inductivity/resistivity. Note that the output impedance
cannot be chosen arbitrarily large, since a large impedance substantially boosts
the voltage sensitivity to current fluctuations, and results in high frequency noise
amplification [74]. Furthermore, there is the fundamental challenge of quantifying
inductivity/resistivity of a network, which is nontrivial unless the overall network
has uniform line characteristics (homogeneous). This is not the case here as the
augmented network will be nonuniform (heterogeneous) even if the initial network
is. Note that, to investigate the characteristics of the direct connections between
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sources, a model reduction (e.g., Kron) is necessary to eliminate the (internal) nodes
added by the output impedances. However the resulting network might not be a
description of an RLC network [149].

In this chapter, we examine the effect of the output impedances on a homogeneous
power distribution grid by proposing a quantitative measure for the inductivity of the
resulting heterogeneous network. Similarly, a dual measure is defined for its resistiv-
ity. Based on these measures, we show that the network topology plays a major role
in the diffusion of the output impedance into the network. Furthermore, we exploit
the proposed measures to maximize the effect of the added output impedances on
the network inductivity/resistivity. We demonstrate the validity and practicality of
the proposed method on various examples and special cases.

The structure of the chapter is as follows: In Section 3.2, the notions of Network
Inductivity Ratio (ΨNIR) and Network Resistivity Ratio (ΨNRR) are proposed. In
Section 3.3, the proposed measures are analytically computed for various cases of
output inductors and resistors. In Section 3.4 the proposed measure is evaluated
with the Kron reduction in the phasor domain. Finally, Section 3.5 is devoted to
conclusions.

3.2 Measure Definition

Consider an electrical network with an arbitrary topology, where we assume that
all the sources and loads are connected to the grid via power converter devices
(inverters) [132]. later in Section 3.3, we show how to relax this assumption. The
network of this grid is represented by a connected and weighted undirected graph
G(V,E,Γ), as defined in Section 2.1. Recall that the nodes V = {1, ..., n} represent the
inverters, and the edge set E accounts for the distribution lines. The total number
of edges is denoted by m, i.e., |E| = m, and the edge weights are collected in the
diagonal matrix Γ.

We start our analysis with the voltages across the edges of the graph G. We restrict
this analysis to the low/medium voltage networks with short line lengths,1 where
the shunt capacitance of the line (pi) model can be neglected [54, Ch.13], [27, App.1],
[53, Ch.6]. Let Re ∈ Rm×m and Le ∈ Rm×m be the diagonal matrices with the line
resistances and inductances on their diagonal, respectively. We have

ReIe + Leİe = B>V , (3.1)

where Ie ∈ Rm denotes the current flowing through the edges. The orientation of the
currents is taken in agreement with that of the incidence matrix. The vector V ∈ Rn

1A power line is defined as a short-length line if its length is less than 80 km [54].
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indicates the voltages at the nodes. Let τk denote the physical distance between nodes
i and j, for each edge k ∼ {i, j}. We assume that the network is homogeneous, i.e.,
the distribution lines are made of the same material and possess the same resistance
and inductance per length:2

r =
Rek
τek

, l =
Lek
τek

, k = {1, · · · ,m} .

Now, let the weight matrix Γ be specified as

Γ = diag(γ) := diag(τ−1
1 , τ−1

2 , · · · , τ−1
m ) . (3.2)

We can rewrite (3.1) as [24]

rIe + `İe = ΓB>V.

Hence, rBIe + `Bİe = BΓB>V, and

rI + `İ = LV , (3.3)

where I := BIe is the vector of nodal current injections. As shown in Chapter 2, the
matrix L = BΓB> is the Laplacian matrix of the graph G(V,E,Γ) with the weight
matrix Γ.

Remark 3.2.1 [Homogeneity assumption]
The homogeneity assumption is ubiquitous in the literature of power network anal-
ysis (see, e.g., [22, 24, 76, 100, 110, 127, 157]). The main obstacle to investigate the
case of a network with arbitrary impedances is that the network dynamics cannot be
described by the nodal currents vector I . This is essential to our analysis, which is
based on the nodal representation in (3.4). �

Note that, as the network (3.3) is homogeneous, its inductivity behavior is simply
determined by the ratio `

r . However, clearly, network homogeneity will be lost once
the output impedances are augmented to the network. This makes the problem
of determining network inductivity nontrivial and challenging. To cope with the
heterogeneity resulting from the addition of the output impedances, we need to
depart from the homogeneous form (3.3), and develop new means to assess the
network inductivity. To this end, we consider the more general representation

RI + Lİ = LVo , (3.4)

2The homogeneity assumption is ubiquitous in the literature of power network analysis; see, e.g.,
[22, 24, 76, 100, 110, 127, 157].
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Figure 3.2: Worst cases are selected for inductivity and resistivity measures.

where Vo ∈ Rn is the vector of voltages of the augmented nodes (black nodes in
Figure 3.1), and R ∈ Rn×n and L ∈ Rn×n are matrices associated closely with the
resistances and inductances of the lines, respectively. We will show that the overall
network after the addition of the output impedances, can be described by (3.4).
Note that this description cannot necessarily be realized with passive RL elements.
Therefore, while the inductivity behavior of the homogeneous network (3.3) is simply
determined by the ratio `

r , the one of (3.4) cannot be trivially quantified.
Recall that in a single RL circuit, the current is damped with the rate R

L . The
idea here is to promote this rate of convergence of the currents as a suitable metric
quantifying the inductivity/resistivity of the network. For the network dynamics in
(3.3), the rate of convergence of the solutions is determined by the ratio r

` . The more
inductive the lines are, the slower the rate of convergence is. Now, we seek for a sim-
ilar property in (3.4). Notice that the solutions of (3) are damped with corresponding
eigenvalues of L−1R. Throughout the chapter, we assume the following property:

Assumption 3.2.2 [Positive real damping ratios]
The eigenvalues of the matrix L−1R are all positive and real.

It will be shown that Assumption 3.2.2 is satisfied for all the cases considered in this
chapter.

Figure 3.2 sketches the behavior of homogeneous solutions of (3.4). Among all the
solutions, we choose the fastest one as our measure for inductivity, and the slowest
one for resistivity of the network. Opting for these worst case scenarios allows us
to guarantee a prescribed inductivity or resistivity ratio by proper design of output
impedances. These choices are formalized in the following definitions.

Definition 6 [Network inductivity ratio]
Let I(t, I0) denote the homogeneous solution of (3.4) for an initial condition I0 ∈ imB.
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Let the set ML ⊆ R+ be given by

ML := {σ ∈ R+ | ∃µ s.t.

‖I(t, I0)‖ > µe−σt‖I0‖, ∀t ∈ R+, ∀I0 ∈ imB}.

Then we define the Network Inductivity Ratio (NIR) as

ΨNIR :=
1

inf(ML)
.

�

Definition 7 [Network resistivity ratio]
Let I(t, I0) denote the homogeneous solution of (3.4) for an initial condition I0 ∈ imB.
Let the set MR ⊆ R+ be given by

MR := {σ ∈ R+ | ∃µ s.t.

‖I(t, I0)‖ 6 µe−σt‖I0‖, ∀t ∈ R+, ∀I0 ∈ imB}.

We define the Network Resistivity Ratio (NRR) as

ΨNRR := sup(MR).

�

Note that the set ML is bounded from below and MR is bounded from above by
definition and Assumption 3.2.2. Interestingly, in case of the homogeneous network
(3.3), i.e., without output impedances, we have ΨNIR = `

r and ΨNRR = r
` , which are

natural measures to reflect the inductivity and resistivity of an RL homogeneous
network.

3.3 Calculating the Network Inductivity/Resistivity Mea-
sure (ΨNIR/ΨNRR)

In this section, based on Definitions 1 and 2, we compute the network inductiv-
ity/resistivity ratio for both cases of uniform and nonuniform output impedances.

3.3.1 Uniform Output Impedances

In most cases of practical interest, the output impedance consists of both inductive
and resistive elements. We investigate the effect of the addition of such output
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Figure 3.3: The injected currents at the nodes of the original graph pass through the added
output impedance.

impedances on the network inductivity ratio. The change in network resistivity ratio
can be studied similarly, and thus is omitted here. Consider the uniform output
impedances with the inductive part `o and the resistive component ro (in series),
added to the network (3.3). Note that the injected currents I now pass through the
output impedances, as shown in Figure 3.3. Clearly, we have

V = Vo − roI − `oİ . (3.5)

Having (3.3) and (3.5), the overall network can be described as

(roL + rI)I + (`oL + `I)İ = LVo , (3.6)

where I ∈ Rn×n denotes the identity matrix, and L is the Laplacian matrix of G as
before. In view of equation (3.4), the matrices R and L are given by R = roL+ rI and
L = `oL + `I, respectively. As both matrices are positive definite, the eigenvalues
of the product L−1R are all positive and real, see [67, Ch. 7]. Hence, Assumption
3.2.2 is satisfied. To calculate the measure ΨNIR for the inductivity of the resulting
network, we investigate the convergence rates of the homogeneous solution of (3.6).
This brings us to the following theorem:

Theorem 3.3.1 [Computing NIR: Uniform output impedances]
Consider a homogeneous network (3.3) with the resistance per length unit r and
inductance per length unit `. Suppose that an output resistance ro and an output
inductance `o are attached in series to each node. Assume that ro

`o
< r

` . Then the
network inductivity ratio is given by

ΨNIR =
`oλ2 + `

roλ2 + r
, (3.7)

where λ2 is the algebraic connectivity of the graph G(V,E,Γ).3

3The algebraic connectivity of either a directed or an undirected graph G is defined as the second
smallest eigenvalue of the Laplacian matrix throughout the chapter. Note that the smallest eigenvalue is 0.
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Proof. The homogeneous solution is

I(t) = e−(roL+rI)(`oL+`I)−1tI0 .

The Laplacian matrix can be decomposed as L = U>ΛU. Here, U is the matrix
of eigenvectors and Λ = diag{λ1, λ2, · · · , λn} where λ1 < λ2 < · · · < λn are the
eigenvalues of the matrix L. Note that λ1 = 0. We have

I(t) = e−U(roΛ+rI)U>
(
U(`oΛ+`I)U>

)−1
tI0

= Ue−(roΛ+rI)(`oΛ+`I)−1tU>I0

=
[

1√
n
1 Ũ

]
e

−

 r
` 0

0(n−1) 1 Λ̃

t [ 1√
n
1>

Ũ>

]
I0 ,

where Λ̃ = diag{ roλ2+r
`oλ2+` , · · · ,

roλn+r
`oλn+` }. Noting that U is unitary and by the Kirchhoff

Law, 1>I0 = 0, we have

I(t) = Ũe−Λ̃t Ũ>I0 = (

n−1∑
i=1

e−λ̃it ŨiŨ
>
i )(

n−1∑
i=1

αiŨi)

=

n−1∑
i=1

αie
−λ̃it Ũi ,

where Ũi denotes the ith column of Ũ, and we used again 1>I0 = 0 to write I0 as the
linear combination

I0 =

n−1∑
i=1

αiŨi .

Hence

‖I(t)‖2=

n−1∑
i=1

α2
i e
−2λ̃it . (3.8)

Having ro
`o
< r

` , it is straightforward to see that

roλ2 + r

`oλ2 + `
>
roλi + r

`oλi + `
, ∀i .

and bearing in mind that ‖I0‖2=
∑n−1
i=1 α

2
i , we conclude that

‖I(t)‖> e−
roλ2+r
`oλ2+` t‖I0‖ , (3.9)
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which yields ΨNIR = `oλ2+`
roλ2+r . Note that (3.9) holds with equality in case I0 belongs to

the span of the corresponding eigenvector of the second smallest eigenvalue of the
Laplacian matrix L. This completes the proof. �

Theorem 3.3.1 provides a compact and easily computable expression which quan-
tifies the network inductivity behavior. Moreover, the expression (3.7) is an easy-
to-use measure that can be exploited to choose the output impedances in order to
impose a desired degree of inductivity on the network. The only information required
is the line parameters r, and `, and the algebraic connectivity of the network.

Algebraic connectivity is a measure of connectivity of the weighted graph G,
which depends on both the density of the edges and the weights (inverse of the lines
lengths). Hence, Theorem 3.3.1 reveals the fact that: “The more connected the network
is, the more the output impedance diffuses into the network.”.

The algebraic connectivity of the network can be estimated through distributed
methods [51], [75]. Furthermore, line parameters (resistance and inductance) can be
identified through PMUs (Phase Measurement Units) [155] [44] [121]. Therefore, our
proposed measure can be calculated in a distributed manner.

Remark 3.3.2 [Magnitude of the resistive output]
In case the resistance part of the output impedance is negligible, i.e, ro = 0, the
network inductivity ratio reduces to

ΨNIR =
`oλ2 + `

r
.

In case ro
`o
> r

` , the network inductivity ratio will be given by

ΨNIR =
`oλM + `

roλM + r
,

where λM is the largest eigenvalue of the Laplacian matrix of G. Furthermore, if
ro
`o

= r
` , then Λ̃ = r

` I and ΨNIR = r
` . However, the condition ro

`o
< r

` assumed
in Theorem 3.3.1 is more relevant since the resistance ro of the inductive output
impedance is typically small. �

As mentioned in Section 3.1, in low-voltage microgrids where the lines are domi-
nantly resistive, the inverse-droop method is employed. In this case, a purely resistive
output impedance is of advantage [60].

Corollary 3.3.3 [Computing NRR: Uniform output impedances]
Consider a homogeneous distribution network with the resistance per length unit r,
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inductance per length unit `, and output inductors `o. Then the network resistivity
ratio is given by

ΨNRR =
roλ2 + r

`
,

where λ2 is the algebraic connectivity of the graph G(V,E,Γ).

Proof. The proof can be constructed in an analogous way to the proof of Theorem
3.3.1 and is therefore omitted. �

Remark 3.3.4 [Plug-and-play capability]
One of the main desired features in microgrids is plug-and-play capability for plan-
ning and connection of the new sources. In most cases, a new node connects to
the network initially through few edges. This results in a decrease in the algebraic
connectivity of the overall network, e.g., as shown in [55], adding a pendant vertex
and edge to a graph does not increase the algebraic connectivity. Therefore, for plug-
and-play capability, larger output impedances should be employed in the network
to compensate the possible drop in the algebraic connectivity, and thus the network
inductivity ratio, resulting from attaching new nodes to the network. In some special
cases, such as uniform line lengths, the additional required output impedances can
be estimated using lower bounds on the algebraic connectivity; see [88] and [36] for
more details on algebraic connectivity and its lower and upper bounds in various
graphs. �

Case Study: Identical Line Lengths

Recall that the notion of network inductivity ratio allows us to quantify the inductiv-
ity behavior of the network, while the model (3.6), in general, cannot be synthesized
with RL elements only. A notable special case where the model (3.6) can be realized
withRL elements is a complete graph with identical line lengths. Although such case
is improbable in practice, it provides an example to assess the validity and credibility
of the introduced measures. Interestingly, ΨNIR matches precisely the inductance to
resistance ratio of the lines of the synthesized network in this case:

Theorem 3.3.5 [Verification of NIR in complete graphs with identical line lengths]
Consider a network with a uniform complete graph where all the edges have the
length τ . Suppose that the lines have inductance `e ∈ R and resistance re ∈ R.
Attach an output inductance `o in series with a resistance ro to each node. Then
the model of the augmented graph can be equivalently synthesized by a new RL

network with identical lines, each with inductance `c := n`o + `e and resistance
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rc := nro + re, where n denotes the number of nodes. Furthermore, the resulting
network inductivity ratio ΨNIR is equal to `c

rc
.

Proof. The nodal injected currents satisfy rI + `İ = LV. In this network, r = re
τ ,

` = `e
τ , and L = n

τ Π where Π := I− 1
n11

>. Hence,

reI + `eİ = nΠV . (3.10)

By appending the output impedance we have V = Vo − roI − `oİ . Hence (3.10)
modifies to

(nroΠ + reI)I + (n`oΠ + `eI)İ = nΠVo ,

which results in

(n`oΠ + `eI)
−1(nroΠ + reI)I + İ = n(n`oΠ + `eI)

−1ΠVo .

Since (n`oΠ + `eI)
−1 = 1

`e+n`o
I + `o

`e(`e+n`o)11
>, we obtain

(nroΠ + reI)I + (n`o + `e)İ = nΠVo , (3.11)

where we used 1>I = 0 and 1>Π = 0. Similarly we have

I + `c(nroΠ + reI)
−1İ = n(nroΠ + reI)

−1ΠVo ,

and hence rcI + `cİ = nΠVo. This equation is analogous to (3.10) and corresponds to
a uniform complete graph with identical line resistance rc = nro + re and inductance
`c = n`o + `e.

Note that the algebraic connectivity of the weighted Laplacian L is n
τ . By Theorem

3.3.1, the inductivity ratio is then computed as

ΨNIR =
n
τ `o + `
n
τ ro + r

=
`c
rc
.

�

Case Study: Constant Current Loads

So far, we have considered loads which are connected via power converters. The
same definitions and results can be extended to the case of loads modeled with
constant current sinks. Consider the graph G(V,E,Γ) divided into source (S) and
load nodes (L), and decompose the Laplacian matrix accordingly as

L =

[
LSS LSL

LLS LLL

]
.
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We have

rIS + `İS = LSSVS + LSLVL (3.12)

rIL + `İL = LLSVS + LLLVL . (3.13)

Suppose that the load nodes are attached to constant current loads IL = −I∗L. Then
from (3.13) we obtain

−rI∗L = LLSVS + LLLVL ,

and therefore

−rL−1
LLI

∗
L − L−1

LLLLSVS = VL . (3.14)

Substituting (3.14) into (3.12) yields

rIS + `İS = LredVS − rLSLL−1
LLI

∗
L .

Here the Schur complement Lred = LSS − LSLL
−1
LLLLS is again a Laplacian matrix

known as the Kron-reduced Laplacian [72], [138]. Bearing in mind that VG = Vo −
`oİS − roIS , the system becomes

(rI + roLred)IS + (`I+`oLred)İS

= LredVo − rLSLL−1
LLI

∗
L ,

(3.15)

and one can repeat the same analysis as above working with Lred instead of L.
Note that (3.15) matches the model (3.4) with the difference of a constant. As this
constant term does not affect the homogeneous solution, the network inductivity and
resistivity ratios are obtained analogously as before, where the algebraic connectivity
is computed based on the Kron reduced Laplacian. �

3.3.2 Non-uniform Output Impedances

In this section we investigate the case where output inductances with different
magnitudes are connected to the network, and we quantify the network inductivity
ratio ΨNIR under this non-uniform addition. The case with non-uniform resistances
can be treated in an analogous manner.

For the sake of simplicity, throughout this subsection, we consider the case where
the resistive parts of the output impedances are negligible (see Remark 3.3.7 for
relaxing this assumption). Let D = diag(`o1 , `o2 , · · · , `on), where `oi is the (nonzero)
output inductance connected to the node i. We have

rI + `İ = LV, V = Vo −Dİ,
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Figure 3.4: Output inductances appear as weights in the corresponding directed graph, with
the Laplacian DL.

and hence

rI + (`I + LD)İ = LVo . (3.16)

Note that LD is similar to D
1
2LD

1
2 and therefore has nonnegative real eigenvalues.

In view of equation (3.4), here R = rI and L = `I + LD. Hence, the matrix L−1R

possesses positive real eigenvalues, and Assumption 3.2.2 holds.
The matrix LD is also similar toDL, which can be interpreted as the (asymmetric)

Laplacian matrix of a directed connected graph noted by Ĝ(V, Ê, Γ̂) with the same
nodes as the original graph V = {1, ..., n}, but with directed edges Ê ⊂ V × V. As
shown in Figure 3.4, in this representation, for any (i, j) ∈ Ê, there exists a directed
edge from node i to node j with the weight `oiτ

−1
ij (recall that τ−1

ij is the weight of
the edge {i, j} ∈ E of the original graph G). Hence, the weight matrix Γ̂ ∈ R2m×2m is
the diagonal matrix with the weights `oiτ

−1
ij on its diagonal. Note that the edge set Ê

is symmetric in the sense that (i, j) ∈ Ê ⇔ (j, i) ∈ Ê, and its cardinality is equal to
2m. We take advantage of this graph to obtain the network inductivity ratio ΨNIR, as
formalized in the following theorem.

Theorem 3.3.6 [Computing NIR: Non-uniform output impedances]
Consider a homogeneous network with the resistance per length unit r, inductance
per length unit `, edge lengths τ1, · · · , τn, and output inductors `o1 , `o2 , · · · , `on . Then
the network inductivity ratio is given by

ΨNIR =
λ2 + `

r
,

where λ2 is the algebraic connectivity of the graph Ĝ(V, Ê, Γ̂) defined above.
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Proof. Let L′ = D
1
2LD

1
2 . The homogeneous solution to (3.16) is

I(t) = e−r(`I+LD)−1tI0

= D−
1
2 e−rD

1
2 (`I+LD)−1D−

1
2 tD

1
2 I0

= D−
1
2 e−r(`I+L′)−1tD

1
2 I0 .

Note that L′ is positive semi-definite and thus `I + L′ is invertible. Bearing in
mind that 0 is an eigenvalue of the matrix L′ with the corresponding normalized
eigenvector U1 = (1>D−11)−

1
2D−

1
21, and by the spectral decomposition L′ =

UΛU>, we find that

I(t) = D−
1
2 e−r

(
U(`I+Λ)U>

)−1
tD

1
2 I0

= D−
1
2Ue−r(`I+Λ)−1tU>D

1
2 I0

= D−
1
2

[
U1 Ũ

]
e

−r

 1
` 0

0(n−1) 1 Λ̃

t [
U>1
Ũ>

]
D

1
2 I0 ,

where Λ̃ = diag{ 1
λ2+` ,

1
λ3+` , · · · ,

1
λn+`} and 0 < λ2 < λ3 < · · · < λn are nonzero

eigenvalues of the matrix L′. Let Ĩ(t) = D
1
2 I(t). Noting that by the Kirchhoff Law,

1>I0 = 0, we have

Ĩ(t) = Ũe−rΛ̃t Ũ>Ĩ0 .

Since U>1 Ĩ0 = 0 we can write Ĩ0 as the linear combination Ĩ0 = ŨX, X ∈ R(n−1)×1.
Now we have

Ĩ(t) = Ũe−rΛ̃tX, ‖Ĩ(t)‖2= X>e−2rΛ̃tX .

Hence

‖Ĩ(t)‖2 > e−
2r
λ2+` t‖Ĩ0‖2,

I>(t)DI(t) > e−
2r
λ2+` tI>0 DI0,

‖I(t)‖ > µe−
r

λ2+` t‖I0‖,

where

µ :=

√
mini(`oi)

maxi(`oi)
.

This yields ΨNIR = λ2+`
r . Note that the eigenvalues of L′ and DL are the same. This

completes the proof. �
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Remark 3.3.7 [Output impedance with non-negligible resistances]
The results of Theorem 3.3.6 can be generalized to the case of non-uniform output
impedances, each containing a nonzero resistor ro and a nonzero inductor `o in series.
In this case, the network can be modeled by

(rI + LDr)I + (`I + LD`)İ = LVo , (3.17)

where Dr := diag(ro1 , ro2 , · · · , ron) and D` := diag(`o1 , `o2 , · · · , `on). Analogously
to the proof of Theorem 3.3.6, it can be shown that the network inductivity ratio is
calculated as

ΨNIR = min
i∈{2,3,··· ,n}

λ`i + `

λri + r
,

where λ`i denotes the ith eigenvalue of the matrix LD`, and λ`1 = 0. Similarly, λri
denotes the ith eigenvalue of the matrix LDr, and λr1 = 0. �

Exploiting the results of [85], bearing in mind that L and D are both positive
semi-definite matrices, we have

λ2(L) min
i
`oi 6 λ2(DL) 6 λ2(L) max

i
`oi . (3.18)

These bounds can be used to ensure that the network inductivity ratio lies within
certain values, without explicitly calculating the algebraic connectivity of the directed
graph associated with the Laplacian DL.

Optimizing the network inductivity ratio: The results proposed can be also exploited
to maximize the diffusion of output impedances into the network. This can be
achieved by an optimal distribution of the inductors among the sources such that
the network inductivity ratio is maximized. Below is an example illustrating this
point on a network with a star topology. Another example using Kron reduction and
phasors will be provided in Section 3.4.

Example 3.3.8 [Maximizing the algebraic connectivity of a star graph]
Consider the graph G with the Laplacian L, consisting of four nodes in a star topology.
The line lengths are 5pu, 7pu, and 9pu, as depicted in Figure 3.5. Note that here
again, the weights of the edges are the inverse of the distances. Attach the output
impedances D = diag{`o1 , `o2 , `o3 , `o4} to each inverter, and assume that we have
limited resources of inductors, namely 4

∑
i

`oi = c, c ∈ R+. (3.19)

4Note that the budget constraint (3.19) can also be used to reflect any disadvantage resulting from a
large output impedance, e.g., the voltage drop.
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Figure 3.5: Algebraic connectivity of the directed graph associated with the Laplacian DL,
where L is the Laplacian of the star graph shown in top left corner. The budget constraint
is
∑
i `oi = c = 5mHz. On the right, the algebraic connectivity is plotted as a function of `o1

and `o2 for different values of `o4 . Note that `o3 = c − `o1 − `o2 − `o4 . On the left, all the
four subplots are merged. Clearly, the optimal algebraic connectivity is achieved where no
output impedance is used for node 4 (the middle node), and `o1 = 2.20mHz, `o2 = 1.23mHz,
`o3 = 1.57mHz are used for nodes 1, 2, and 3 respectively.

Figure 3.5 shows different values of the second smallest eigenvalue of the matrix
DL. We obtain that the maximal algebraic connectivity is achieved when no output
impedance is used (wasted) for the node in the middle. Interestingly, the optimal
value of output inductor for each node is proportional to its distance to the middle
node.

Next we compare the performance of the droop controlled inverters in two
different cases: i) the network with the optimized output impedances as above, and
ii) the network with evenly distributed output impedances. To this end, suppose that
a source is connected to the middle node (node 4 in Figure 3.5), and three constant
power loads are connected to the outer nodes (nodes 1, 2, and 3 in Figure 3.5) via
droop-controlled power converters with the parameters given by Table 7.1. Here, all
the distribution lines are assumed to have the same reactance per length equal to
ω` = 1.0 Ω

km and resistance per length equal to r = 0.1 Ω
km . At time t = 0, the loads are

increased with 10% of their nominal value. The frequency of the inverters are shown
in Figure 3.6. It is evident that the droop controllers perform better in the network
with the optimized network inductivity ratio ΨNIR (top), compared to the case of
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Table 3.1: Simulation Parameters
Load1 Load2 Load3 Source

Measurement Delay (ms) 6 6 5 8

Droop Coefficient (pu) 0.07 0.14 0.14 0.28

Distance from the Source (m) 90 50 70 -

Voltage (pu) 1.05 1.10 0.95 0.96

Nominal Active Power (pu) -0.9 -0.8 -1.2 1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
49.8

49.9

50

50.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
45

50

55

Figure 3.6: Comparison of droop controllers performance between the network with the
optimized ΨNIR (top), and a network with evenly distributed output inductances (below).

evenly distributed output inductances (below), where the solutions fail to converge.
�

The results of this subsection for non-uniform output impedances allow for the
analysis of the networks containing non-tunable output impedances, e.g., constant
impedance loads and synchronous generators/motors which can be modeled as a
voltage source/sink behind a reactance. The optimization (and maximization of the
algebraic connectivity) in this case involves only tuning the diagonal elements of the
matrices Dr and Dl in (3.17) associated with the tunable output impedances.

3.4 Kron Reduction in Phasor Domain and the Network
Inductivity Ratio

By leveraging Kron reduction, to eliminate the internal nodes (empty nodes in Figure
3.7), and using the phasor domain, it is sometimes possible to synthesize anRL circuit
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Figure 3.7: Kron reduction of an arbitrary graph with added output impedances.

for the augmented network model (3.4); see [149] for more details. As depicted in
Figure 3.7, in the Kron reduced graph some of the edges coincide with the lines of
the original network into which the output impedances were diffused, while others
(dotted line) are created as a result of the Kron reduction. We refer to the former as
physical and to the latter as virtual lines. To derive the Kron-reduced model, we first
write the nodal currents as[

I

0

]
=

[
yoI −yoI
−yoI yoI + y`L

] [
Vo
V

]
,

where

yo =
1

jω`o
, y` =

1

r + jω`
.

The Kron-reduced model is then obtained as

Yred = yo[I− (I +
y`
yo

L)−1] . (3.20)

Since every path between the outer nodes of the graph passes only through internal
nodes (see Figure 3.7), the resulting Kron-reduced network is a complete graph [40].
In the following example, we compare the line phase angles

θij := arctan
Im(1/Yredij

)

Re(1/Yredij)

for the line {i, j}, to the phase angles suggested by ΨNIR, namely

θNIR := arctan(ωΨNIR) . (3.21)

Note that the term ω in the above is included to obtain reactance to resistance ratio
from inductance to resistance ratio.
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Figure 3.8: (a) Complete graph. The initial phase angle of the lines is π
4

and the line lengths
are the following 4 cases (from top to bottom): [τ12, τ13, τ14, τ23, τ24, τ34]= [5, 6, 9, 7, 4, 6];
[20, 19, 20, 21, 20, 22]; [40, 37, 35, 49, 46, 38]; [100, 105, 93, 87, 110, 89]; (b) Path graph.
Virtual lines are shown by dots. The initial phase angle of the lines is π

4
and the line lengths

are equal to 5.

Example 3.4.1 [Line angles of a Kron-reduced Graph with uniform output impedances]
(a) Consider a 4-node complete graph with different distribution line lengths. As
shown in Figure 3.8a, the proposed measure matches with the overall behavior of the
line angles as the added output inductance increases. (b) Consider a 4-node uniform
path graph. Figure 3.8b shows that the least inductivity behavior is observed for the
virtual lines. Hence the less virtual lines the reduced graph contains, the more output
impedance diffuses in the network, which is consistent with our results in Section
3.3. Also note that the inductance and resistance possess negative values at some
edges for certain values of the output impedance. Therefore, it is difficult to extract a
reasonable inductivity ratio for those edges from the Kron reduced phasor model.
On the contrary, the proposed inductivity measure remains within the physically
valid interval arctan(ωΨNIR) ∈ [0 π/2]. �

Example 3.4.1 shows that θNIR can be used as a measure that estimates the phase of
the lines of the overall network. A desired amount of change in this measure can
be optimized by appropriate choices of output impedances. The following example
illustrates this case.

Example 3.4.2 [Output impedance optimization on the IEEE 13 node test feeder]
Figure 3.9 depicts the graph of the islanded IEEE 13 node test feeder. Here, all
the distribution lines are assumed to have the same reactance per length equal
to ω` = 1.2 Ω

mile and resistance per length equal to r = 0.7 Ω
mile , derived from the
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Figure 3.9: Schematic of the islanded IEEE 13 node test feeder graph. Power sources are
connected to the (white) nodes 1, 3, and 7.

configuration 602 [39]. We consider the case where three inverters are connected to
the nodes 1, 3, and 7, and the rest of the nodes are connected to constant current
loads. After carrying out Kron reduction, the algebraic connectivity of the resulting
Laplacian matrix is equal to 3.1. Before adding the output inductances, θNIR is equal
to arctanω`r = 2π

3 . Based on the results of Theorem 3.3.1, for a 10% increase in θNIR,
a uniform inductor of 3.21mH should be attached to the outputs of all the sources.
However, in case non-uniform output inductors are to be used, by using the result of
Theorem 3.3.6, the same increase in the network inductivity ratio can be achieved
(optimally) with 0.95mH, 0.95mH, and 4.35mH inductors, for the nodes 1, 3, and 7

respectively. Both cases are feasible in practice since the typical values for inverter
output filter inductance and implemented output virtual inductance range from
0.5mH to 50mH [18, 60, 62, 65, 71, 74, 84, 87]. However, note that the total inductance
used in the (optimal) non-uniform case is considerably smaller than the one used in
the uniform scheme. �

3.5 Conclusion

In this chapter, the influence of the output impedance on the inductivity and resistiv-
ity of the distribution lines has been investigated. Two measures, network inductivity
ratio and network resistivity ratio, were proposed and analyzed without relying on
the ideal sinusoidal signals assumption (phasors). The analysis revealed the fact
that the more connected the graph is, the more output impedance diffuses into the
network, and the larger its effect will be. We have provided examples on how the
impact of inductive output impedances on the network can be maximized in specific
network topologies. We compared the proposed measure to the phase angles of the
lines in a phasor-based Kron reduced network. Results confirm the validity and the
effectiveness of the proposed metrics.



Chapter 4

Power Network Architecture:
A communication-less master-slave microgrid

“The single biggest problem in communication is the illusion that it has taken place.”
– George Bernard Shaw

N
ETWORK architecture plays an important role in stability and reliability of
a power network. In this chapter, a design of a master-slave microgrid
consisting of grid-supporting current source inverters and a synchronous

generator is proposed. The inverters follow the frequency of the grid that is imposed
by the synchronous generator. Hence, the proposed structure of the microgrid is
steadily synchronized. We show that this method achieves power sharing without the
need of any communication. Furthermore, no change in operation mode is needed
during transitions of the microgrid, between islanded and grid-connected modes.

4.1 Introduction

As discussed in Chapter 1, a microgrid typically includes both synchronous gener-
ators and inverters. Inverters are divided into three categories. The first category,
grid-forming inverters, act as voltage sources with fixed frequency and amplitude. In
case the microgrid disconnects from the main grid and goes to the so-called islanded
mode, these inverters can provide a reference for the voltage frequency. However, an
islanded microgrid consisting of only grid-forming inverters suffers from poor power
sharing and destructive interference (antiphases). In particular, one voltage source
might bear a high percentage of the load, while the others provide a lower share of
power. Furthermore, phase differences might lead to extreme voltage attenuation.
Grid-feeding inverters form the second category, working as current sources following
the frequency of the network. These sources are capable of injecting either a constant
or a time-varying power regardless of the network load, e.g., by the Maximum Power
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Point Tracking (MPPT) method. Inverters of this type are extensively used in the
wide area electrical power networks. The third category contains sources that are de-
signed to contribute to the regulation and stability of the microgrid, which are called
grid-supporting. This category includes both the Voltage Source Inverter (VSI) and
the Current Source Inverter (CSI). Grid-supporting VSIs measure the active and reac-
tive power they inject to the grid and determine the output voltage amplitude and
frequency according to these measured values. Counter-wise, grid-supporting CSIs
measure the voltage amplitude and frequency, in order to inject a desired amount of
active and reactive power accordingly. Figure 1 depicts the inverter categories (for
further discussion see [114]).

Controlling the grid-supporting inverters acting as VSI is mostly carried out
by the design of a controller such that the sources artificially mimic the behavior
and dynamics of a synchronous generator; i.e., in case of a mismatch between the
measured electrical output power and its nominal value, the frequency of the inverter
deviates from the nominal value. In particular, droop controllers are well known
to generate such a behavior. Similar to synchronous generators, these inverters
are capable of self-regulation and therefore the network consisting of these inverters
synchronize in frequency [124], [118], [91]. Furthermore, the power injection of such
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Figure 4.2: The proposed structure consists of a synchronous generator (SG) and a number of
inverters (I) and power loads (L), with any arbitrary (connected) topology.

sources are shared proportional to the droop coefficients.
While a large number of articles have focused on VSI, few have investigated the

deployment of the grid-supporting inverters acting as a CSI [114], [108], [113], which
are the key components in our proposed microgrid design. These devices are capable
of injecting, dynamically, the electrical power, while they are following the frequency
of the grid. Current source inverters inject active and reactive currents according
to the rotating frame of the grid voltage at their point of connection. Therefore
they need a voltage source online in the grid to follow its frequency. Controlling a
grid with such a scheme has been first suggested by [30] for operation of parallel
uninterruptible power systems. However, the approach is not considered suitable for
distributed generation (microgrid) mainly due to high communication requirements
and the needs for supervisory control and extra cabling [64].

In this chapter, we propose a microgrid structure, consisting of one synchronous
generator, or equivalently a droop-controlled VSI, as the main power source, and
a number of grid-supporting CSIs; see Figure 4.2. During the islanded mode, in-
verters follow the frequency of the grid which is determined by the synchronous
generator. Such a system design is close to a master-slave architecture yet without
communication. Furthermore, using this architecture, no switching is needed to go
through the transition from grid-connected to islanded mode and vice versa, and
merely synchronizing the synchronous generator phase with the main grid suffices
for going back to the grid-connected mode. In the case of the main generator failure,
the so-called tertiary control can switch the master to another generator, similar to
high-crest current method; see [56]. We show that our proposed system is stable
and maintains power sharing, in an optimized manner. As a step towards practical
applicability, an implementation of the proposed inverter is provided.

There are three main advantages of the proposed architecture over conventional
droop-controlled VSIs. First, the voltage frequency of all sources are synchronized at
all times, while droop-controlled VSIs located at different nodes, generate different



42 4. Power Network Architecture

frequencies. Second, secondary control can be achieved without the need to any
communication. In fact, we take advantage of the information embedded in frequency
deviation as a result of the intrinsic droop characteristic of a synchronous generator
avoiding further communication. Finally, there are physical advantages of using
current source inverters over voltage source inverters such as smoother DC-side
current, longer lifetime of energy storage, inherent voltage boosting capability, and
lower costs [35].

This chapter is organized as follows: In Section 4.2, the structure and the control
technique are elaborated. A model is suggested for the proposed microgrid and the
system stability with the designed controller is investigated. Next, power sharing of
the sources and cost optimization are discussed. In Section 4.3, an implementation of
the proposed grid-supporting inverter is provided. Section 4.4 provides simulation
results of the implemented model, and finally, Section 4.5 concludes this chapter.

4.2 Proposed Architecture and Control Technique

We propose an architecture for the microgrid, which contains a synchronous machine
and multiple CSI inverters. This network is represented by a connected and undi-
rected graph G(V,E). The nodes V = {1, ..., n} represent grid supporting inverters, a
synchronous generator, and constant power loads, and the edges E ⊂ V× V account
for distribution lines. The nodes are partitioned as V = VG ∪ VI ∪ VL, where VG, VI ,
and VL correspond to the synchronous generator, inverters, and loads respectively.
We also denote the cardinality of VL and VI with nI and nL.

4.2.1 Model

We use the classical swing equation as the model of the synchronous generator [78]1

Mω̇ +Dω = Pm − Pe , (4.1)

where M > 0 is the moment of inertia,2 ω ∈ R is the frequency deviation from
the nominal frequency, D > 0 is the damping coefficient, and Pm and Pe are the
mechanical (input) and electrical (output) power respectively. The model (4.1) indi-
cates that in case of a mismatch between mechanical power and electrical power, the
synchronous generator rotor speed, as well as the voltage frequency, deviates from
the nominal value.

1Droop-controlled voltage source inverter can be modeled with similar dynamics; see [118].
2To be more precise, M is not the moment of inertia, but the angular momentum at the nominal frequency;

see Section 5.2 later on.
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Let PIi , PLi > 0 denote the injected power of the inverter and the power consump-
tion of the load at node i. We propose the following model for the aforementioned
microgrid structure:

Mω̇ +Dω = P ∗G + u− Pe
PIi = P ∗Ii + Υi (4.2)

PLi = P ∗Li + δLi

together with the coupling equality

Pe +

nI∑
i=1

PIi −
nL∑
i=1

PLi = 0 , (4.3)

where u ∈ R is the control input of the synchronous generator, Υi ∈ R is the control
input of the inverter at node i, and δLi ∈ R, is the (constant) deviation from the
nominal power consumption. We assume that voltage magnitudes at each node in
the network are constant and the reactive power injection at each node is identically
zero. We also assume that all line reactances are assumed to be sufficiently low, that
the network can be treated as a supernode. Note that the internal dynamics of Pe, PI ,
and PL are not crucial for our analysis and their coupling equality (4.3), represents the
law of conservation of energy. Here, the distribution lines are assumed to be purely
inductive implying that there is no active power dissipation in the distribution lines.
We opt for nominal power values P ∗G,P ∗Ii , and P ∗Li that satisfy the power balance, i.e.,

P ∗G +

nI∑
i=1

P ∗Ii −
nL∑
i=1

P ∗Li = 0 . (4.4)

The system (4.2) can be written in compact form as

Mω̇ +Dω = P ∗G + u− Pe (4.5)

PI = P ∗I + Υ (4.6)

PL = P ∗L + δL , (4.7)

where Υ ∈ RnI and δL ∈ RnL are the inverter control input and load power, and rep-
resent the deviations from the nominal power values. We consider the power sharing
vector ξ ∈ RnI to set the power injections of inverter controllers proportionally, i.e.,
Υi
Υj

= ξi
ξj

. Without any loss of generality we assume that

1>ξ = 1 . (4.8)

Hence, we rewrite Υ as

Υ = vξ , (4.9)
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where v ∈ R is the common control signal for all inverters and is to be designed later.
Bearing in mind (4.6), (4.7), and (4.9), from (4.3) we have

Pe = 1>(P ∗L + δL)− 1>(P ∗I + vξ) .

By substituting this into (4.5), and using (4.8) we have

Mω̇ +Dω = P ∗G + u− 1>(P ∗L + δL) + 1>P ∗I + v .

Finally, according to (4.4)

Mω̇ +Dω = u+ v − 1>δL . (4.10)

This indicates that the controllers at the inverter nodes are aligned with the action of
the synchronous generator controller. Note that the delays in the Phase Locked Loop
(PLL) and Pulse Width Modulation (PWM) switchings are ignored and hence the
frequency following feature of inverters is assumed to be instantaneous. Therefore,
the frequency ω has the same value at all nodes.

4.2.2 Controller Design

Using an integral controller for the synchronous generator and proportional integral
controllers for the inverters,3 we have:4

χ̇ = ω, u = −αχ, v = −γω − βχ . (4.11)

Now, the system (4.10) can be described as

Mω̇ + (D + γ)ω = ũ− 1>δL
χ̇ = ω, ũ = −(α+ β)χ .

(4.12)

Proposition 4.2.1 [Stability]
For any α, β, γ > 0, the equilibrium (ω, χ) = (0,−(α+ β)−1(1>δL)) of system (4.12)
is globally asymptotically stable (GAS).

Proof. Consider the (shifted) candidate Lyapunov functionW = 1
2Mω2+ 1

2 (α+β)(χ−
χ̄)2. We have Ẇ = −(D + γ)ω2. Observe that W is radially unbounded and has a
strict minimum at (0,−(α+ β)−1(1>δL)). By invoking LaSalle’s invariance principle,
the solutions converge to the largest invariant set for the system (4.12) s.t. ω = 0. On

3A proportional controller for the synchronous generator can be included in D.
4Although the integral of the voltage frequency can be interpreted as the voltage phase, we avoid

denoting it by θ, since here χ is a control variable and is not bounded to [0, 2π).
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this set, we have χ = −(α + β)−1(1>δL). This shows that all the solutions on the
invariant set converge to the equilibrium (0,−(α+ β)−1(1>δL)). This completes the
proof. �

Note that in the sense of architectural control, the goals of primary and secondary
controls are achieved simultaneously. Contrary to the presented architecture, using
integral controllers in the secondary control layer of a microgrid with conventional
droop-controlled VSIs, fails to maintain load sharing [41] and is not considered a
long time stable solution [56]. Here, the output power is regulated according to the
frequency deviation of the grid, while in a droop-controlled voltage source inverter,
the frequency is regulated according to the deviation from the nominal output power
value. The advantage here is that the power network remains synchronized at all
times. �

4.2.3 Power Sharing

Between Synchronous Generator and Inverters

Proposition 4.2.1 shows that, in the steady state, the deviations from the nominal
power will be shared according to the ratio α/β ratio between the synchronous
generator and the inverters:

ū = (
α

α+ β
)1>δL, v̄ = (

β

α+ β
)1>δL,

ū

v̄
=
α

β
.

Hence, if the ratio α/β is set equal to the ratio of the nominal power of the syn-
chronous generator to the sum of the inverter nominal power values, i.e., αβ =

P∗G
nI∑
i=1

P∗I,i

,

we have
P ∗G + ū

nI∑
i=1

P ∗I,i + v̄

=
α

β
,

which implies that the total power injections remain proportional in the steady state.

Between Inverters

The proposed inverters increase/decrease the power injection till the frequency of
the microgrid is regulated and hence reach the steady state ω = 0. The changes in
power injections are shared according to the sharing vector ξ. Provided that some
costs are assigned to the power injections of the inverters, optimization methods can
be employed to minimize the energy cost. Here, we show that by a proper choice of
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sharing vector ξ cost optimization can be achieved. We consider the quadratic cost
function

C(Ῡ) =
1

2
Ῡ>ΛῩ ,

where Λ ∈ RnI is a diagonal matrix of cost coefficients assigned to each node (in-
verter). By Proposition 4.2.1, at steady-state we have

Ῡ =
β

α+ β
1>δLξ.

Bearing in mind that 1>ξ = 1, we have 1>Ῡ = β
α+β1

>δL. To minimize the La-
grangian function

L =
1

2
Ῡ>ΛῩ + µ(1>Ῡ− β

α+ β
1>δL) ,

we have

µ = − β

α+ β

1>δL
1>Λ−11

.

Hence,

Ῡ =
β

α+ β

1>δL
1>Λ−11

Λ−11.

In accordance with (4.9), the vector Ῡ can be rewritten as

Ῡ = (
β

α+ β
1>δL)ξopt (4.13)

where

ξopt =
1

1>Λ−11
Λ−11. (4.14)

Noting that (4.14) satisfies (4.8), any solution to system (4.12) is such that the corre-
sponding inverter power injection Υ = vξopt asymptotically converges to the optimal
power injection (4.13). Note that various parameters can be interpreted as cost: Nom-
inal power values (power ratings) [29], State of Charge (Soc) in storage systems [57],
insolation level in photovoltaic (PV) systems, or wind power in wind turbines. Alike
the established droop methods, these values can be transmitted to the nodes via a
low-bandwidth communication (tertiary control).
Provided that the inverse of nominal power values are considered as cost coefficients,
i.e., P ∗I = Λ−11, we have

ξ∗opt =
P ∗I

nI∑
i=1

P ∗I

.
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Figure 4.3: Implementation of the Proposed Grid-Supporting Inverter

Therefore

PIi
PIj

=
P ∗Ii + Υi

P ∗Ij + Υj
=
ξ∗opti

ξ∗optj

.

This implies that in this case, the total power injections (nominal+deviation) of
inverters remain proportional.

4.3 Implementation

Figure 2 depicts an implementation of the proposed grid-supporting current source
inverter. The structure is similar to the CSI schematic provided in [114] with modifi-
cations in order to accommodate generating the desired current value (denoted by
i∗).

The instantaneous power delivered by the inverter can be written as [1]

P = vdid + vqiq , (4.15)

where vd, vq and id, iq are the direct and quadrature components of output current and
voltage, in result of the dq0 transformation. Since the rotating frame is synchronized
with the voltage by the phase locked loop (PLL), the quadrature component vq is
kept zero. Hence, (4.15) reads as

P = vdid . (4.16)
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Figure 4.4: Simulation Schematic and Results

Bearing in mind that the output voltage vd is assumed to be constant, the output
power can be tuned by id:

The PLL measures the frequency, and the deviation from the nominal frequency
is given as an input to the PI controller. The output is then added to the nominal
power value P ∗, assigned a gain proportional to the power sharing, and divided by
vd to generate the desired current i∗d = 1

vd
(P ∗Ii + Υi). PI controllers are used in the

current controller block to set the output current id to i∗d.

4.4 Simulation

The performance of the implementation model is simulated in SimPowerSystems.
A synchronous generator is connected to two current source inverters in series via
inductive lines. Here, the control input of the main generator is assumed to be
constant (α = 0). Figure 4.4 depicts output frequencies and output power of the
sources. At t = 0 the load increases by 10% of its nominal value and again goes back
to the nominal at t = 5. It can be observed that the inverters modify their output
power proportional to the sharing vector xi, and the frequency is regulated to the
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nominal value.
The parameters (per unit) used in this simulation are as follows: Synchronous

Generator: M = 0.1, D = 0.05, P ∗G = 1, u = 3 ; Inverters: γ = 0.15, β = 1.5, P ∗I = 1.5,
ξ1 = 1

3 , ξ2 = 2
3 ; Load: P ∗L = 5.5, δL = 0.55 ; Line Reactance: X = 0.12.

4.5 Conclusion

A microgrid with a master-slave architecture was proposed in which a synchronous
generator acts as the master and grid-supporting current source inverters act as the
slaves. A model is provided for this system and its stability is guaranteed by PI
controllers. Furthermore, an implementation for the proposed inverter is provided.
Results show that the proposed architecture achieve (optimized) power sharing and
frequency regulation without the need to any communication.





Chapter 5

Power Sources I: Modeling Synchronous Gen-
erators with Improved Swing Equation

“Life swings like a pendulum backward and forward, between pain and boredom.”
– Arthur Schopenhauer

I
N this chapter, we investigate the properties of an improved swing equation
model for synchronous generators. This model is derived by omitting the
main simplifying assumption of the conventional swing equation. We carry

out a nonlinear analysis for the stability and frequency regulation, and provide region
of attraction estimates for two scenarios. First we study the case where a synchronous
generator is connected to a constant power load. Second, we inspect the case of a
single machine connected to an infinite bus. Finally, the different behaviors of the
conventional and improved swing equations are depicted by numerical simulations.

5.1 Introduction

As mentioned in Chapter 1, a major challenge for control of microgrids is the un-
predictable sudden variations in power demand and supply. Hence designing con-
trollers for the electrical sources that bear such perturbations, calls for rethinking of
the accuracy of the models that were (mostly) valid for the classical electrical systems.

Despite the extensive advances in extracting energy from renewable sources,
synchronous generators are still the main supplier of the implemented microgrids;
see, e.g., [120, 131, 151]. Therefore, to assure stability and frequency regulation of
the power grid, it appears crucial to investigate the accuracy of the electrical and
dynamical models of these machines. While a large number of articles have exploited
the classical swing equation as the model for the synchronous generator, a few have
recently brought up doubts about its accuracy and validity, and proposed models of
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higher accuracy [24, 25, 50, 101, 102, 143, 160]. Although some promising models are
provided [50], [101], the use of such models in power networks is rather complicated.

In this chapter, we provide a nonlinear analysis for an improved yet easy-to-use
swing equation to fulfill higher accuracy in analysis and modeling of the synchronous
generator that can also be exploited in small-scale networks. We first explicate
the contradicting assumptions in obtaining the conventional swing equation, and
elaborate deriving the improved model. In Section III, as the first scenario, we look
into the properties of the model when the generator is connected to a Constant Power
Load (CPL), and provide an estimate of the region of attraction through nonlinear
analysis. Further in Section IV, the second scenario, which is mainly referred to as
Single Machine Infinite Bus (SMIB), is investigated. We provide analytical estimates of
the region of attraction for both conventional and improved swing models in this
case. Finally, simulations are provided to compare the models.

5.2 Conventional and Improved Swing Equations

The mechanical dynamics of the synchronous generator reads as [78]

Jω̇ +Dd(ω − ω∗) = τm − τe , (5.1)

where ω ∈ R>0 is the rotor shaft velocity (mechanical rad/s), J > 0 is the total
moment of inertia of the turbine and generator rotor (kgm2), ω∗ > 0 is the angular
velocity associated with the nominal frequency (50or60Hz),1 τm ∈ R>0 is the net
mechanical shaft torque (N m), τe ∈ R>0 is the counteracting electromagnetic torque
(N m), and Dd > 0 is the damping-torque coefficient (N ms). The mechanical rota-
tional loss due to friction is ignored. Bearing in mind that τm = Pm

ω and τe = Pe
ω we

can model the synchronous generator as

Jωω̇ +Ddω(ω − ω∗) = Pm − Pe , (5.2)

where Pm and Pe are the mechanical (physical input) and electrical (physical output)
power respectively.

In the conventional swing equation, Jω and Ddω are approximated by constants
M = Jω∗ and A = Ddω

∗.

Mω̇ +A(ω − ω∗) = Pm − Pe , (5.3)

where M > 0 is the angular momentum associated with the nominal frequency, and
A > 0 is the (new) damping coefficient. In other words, the swing equation is derived

1The assumption here is that ω∗ is fixed by the network.
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supposing that ω = ω∗. Such an assumption is in contradiction with the proof of
stability and frequency regulation of the synchronous generator. Therefore we adhere
to the equation (5.2) and try to investigate the stability and frequency regulation
through a nonlinear approach. This model has been first suggested by [160], where
however, the stability of the synchronous generator (connected to an infinite bus)
was analyzed with the small-signal (linearization) techniques. Consistently with
[160], we refer to (5.2) as the improved swing equation.

5.3 Synchronous Generator Connected to
a Constant Power Load (CPL)

In this scenario, we assume that both the injected and extracted power (Pm and Pe)
are constant.

5.3.1 Stability

Let ω̄ ∈ R be an equilibrium of (5.2). Then, clearly

Ddω̄(ω̄ − ω∗) = Pm − Pe . (5.4)

The equation above admits two (distinct) real solutions if and only if

Pm − Pe > −
1

4
Ddω

∗2 , (5.5)

which will be a standing assumption in this section. Under this assumption, we
obtain the following two equilibria for system (5.2):

ω̄s =
ω∗ +

√
∆

2
, ω̄u =

ω∗ −
√

∆

2
, (5.6)

where
∆ := ω∗2 + 4

Pm − Pe
Dd

. (5.7)

Note that ∆ > 0 by (5.5). Observe that

ω̄s > ω̄u , (5.8)

ω̄u = ω∗ − ω̄s . (5.9)

First, we show that ω̄s is locally stable and ω̄u is locally unstable. For the moment,
we assume that the set R>0 is positive invariant for the system (5.2), and ω(0) > 0.
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We will relax this assumption later, once a Lyapunov argument is provided. Now, let
dynamics (5.2) be rewritten as ω̇ = f(ω), where

f(ω) =
1

J

(
−Dd(ω − ω∗) +

Pm − Pe
ω

)
.

We have

∂f

∂ω
=

1

J
(−Dd −

Pm − Pe
ω2

) .

By using (5.4) and (5.9), we find that

∂f

∂ω
=
Dd

J
(
ω̄sω̄u
ω2
− 1). (5.10)

Bearing in mind inequality (5.8), it is easy to check that ∂f
∂ω > 0 around ω = ω̄u, and

∂f
∂ω < 0 around ω = ω̄s. Hence ω = ω̄u is repulsive. Now, the following theorem
addresses the stability of the equilibrium ω̄s in (5.6).

Theorem 5.3.1 [Stability of an SG connected to a CPL]
Let ∆ be given by (5.7) and assume that (5.5) holds. Then the set Ωs = {ω ∈ R>0 :

ω > ωu} is the region of attraction of the asymptotically stable equilibrium ω = ω̄s,
where ω̄u and ω̄s are given by (5.6).

Proof. Consider the (shifted) candidate Lyapunov function

V (ω) =
1

2
J(ω − ω̄s)2 .

We have

V̇ = ω−1(ω − ω̄s)
(
Pm − Pe −Ddω(ω − ω∗)

)
.

The fact that ω stays away from zero will be made clear later. According to (5.4) this
leads to

V̇ = ω−1(ω − ω̄s)
(
Ddω̄s(ω̄s − ω∗)−Ddω(ω − ω∗)

)
= −ω−1Dd(ω − ω̄s)

(
ω2 − ωω∗ + ω̄sω

∗ − ω̄2
s

)
= −Ddω

−1(ω − ω̄s)
(

(ω − ω̄s)(ω + ω̄s − ω∗)
)

= −Dd(ω − ω̄s)2(1− ω̄u
ω

) ,

where we have used ω̄u = ω∗ − ω̄s. Hence V̇ is negative definite on the set Ωs. Note
that since the term (ω − ω̄s)2 = 2JV (ω) is strictly decreasing in Ωs, ω stays away
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from ω = max{0, ωu} as time goes by. This proves that ω(t) > max{0, ωu}, ∀t > 0,
and hence Ωs is positively invariant. Furthermore as (ω − ω̄s)2 = 2JV (ω) is strictly
increasing for all ω < ωu, all other trajectories starting from any initial condition
outside the set Ωs, stay away from the equilibrium ωs. Note that if the initial condition
is ω(0) = ωu, then V̇ = 0, and hence ω = ωu for all t > 0. This completes the proof.

�

Note that the Lyapunov function V (ω) = 1
2J(ω − ω̄s)2 is a shifted version of the

actual kinetic energy of the physical system, whereas the commonly used Lyapunov
function for the swing equation, 1

2M(ω − ω̄s)2 = 1
2Jω

∗(ω − ω̄s)2, does not have a
physical interpretation.

Remark 5.3.2 [Taking mechanical losses into account]
We can add the viscous damping coefficient Dm accounting for the mechanical losses
(N ms), modifying the dynamics (5.1) as

Jω̇ +Dmω +Dd(ω − ω∗) = τm − τe ,

which can be rewritten as

Jωω̇ + (Dm +Dd)ω(ω − Dd

Dm +Dd
ω∗) = Pm − Pe .

Defining D := Dm +Dd and ω̃∗ := Dd
Dm+Dd

ω∗ we obtain

Jωω̇ +Dω(ω − ω̃∗) = Pm − Pe ,

which is analogous to the improved swing equation (5.2). Therefore the stability
results extend to the case with mechanical losses. �

5.3.2 Shifted Passivity Property

To facilitate the control design, in this section we investigate the shifted passivity of
the system (5.2), with the control input u (controllable mechanical power) and the
output y written as

Jωω̇ +Ddω(ω − ω∗) = u+ Pm − Pe

y =
ω − ω∗

ω
.

(5.11)

Note that here the output y is dimensionless. Therefore, yu has the dimension of
physical power, which is consistent with the energy dissipation inequality (see (5.16)
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later on). This does not hold for the conventional swing equation where ω is taken as
the output and thus yu does not have a meaningful physical dimension.

Now, let the triple (ū, ω̄, ȳ) be an input-state-output solution of (5.11) with

Ddω̄(ω̄ − ω∗) = ū+ Pm − Pe

ȳ =
ω̄ − ω∗

ω̄
.

(5.12)

Assume that

ū+ Pm − Pe > −
1

4
Ddω

∗2 . (5.13)

Then the dynamics (5.11) possesses the equilibria

ω̄s =
ω∗ +

√
∆

2
, ω̄u =

ω∗ −
√

∆

2
(5.14)

where with a little abuse of the notation

∆ := ω∗2 + 4
ū+ Pm − Pe

Dd
. (5.15)

Now, we have the following proposition:

Proposition 5.3.3 [Shifted Passivity]
Consider the (shifted) candidate Lyapunov function

W (ω) =
1

2
J(ω − ω̄s)2ω

∗

ω̄s

and assume that (5.13) holds. Then, W (ω) computed along any solution to (5.11)
satisfies

Ẇ < (y − ȳ)(u− ū) , (5.16)

as long as the solution stays within the set Ωk = {ω ∈ R>0 : W (ω) 6 1
2J∆ω∗

ω̄s
}. This

amounts to an shifted passivity property with respect to (ū, ω̄, ȳ).
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Proof. We have

Ẇ =(
1

ω
)(
ω∗

ω̄s
)(ω − ω̄s)

(
u+ Pm − Pe −Ddω(ω − ω∗)

− ū− Pm + Pe +Ddω̄s(ω̄s − ω∗)
)

=(
ω − ω∗

ω
− ω̄s − ω∗

ω̄s
)(u− ū)

−Dd

(ω∗(ω − ω̄s)
ωω̄s

)(
(ω − ω̄s)(ω + ω̄s − ω∗)

)
=(y − ȳ)(u− ū)

−Dd(ω − ω̄s)2(1− ω̄u
ω

)(
ω∗

ω̄s
) . (5.17)

Hence the inequality (5.16) holds as long as the solutions evolve in the set Ω′k = {ω ∈
R>0 : ω > ω̄u}. The fact that Ωk ⊆ Ω′k follows analogously to the proof of Theorem
5.3.1. �

5.3.3 Frequency Regulation

In this section, we investigate the frequency regulation of the system by an integral
controller. Motivated by Proposition 5.3.3, we propose the controller for system (5.11)
as

ξ̇ = y =
ω − ω∗

ω

u = −ξ .
(5.18)

Note that for the purpose of frequency regulation, the solution (equilibrium) of
interest for the system (5.11), (5.18), is given by

ū = −ξ̄ = −(Pm − Pe), ω̄ = ω∗, ȳ = 0, (5.19)

which trivially satisfies the inequality (5.13). In addition, for the solution above, the
quantities in (5.14) and (5.15) are computed as ω̄s = ω∗, ω̄u = 0, ∆ = ω∗2. Therefore,
the dissipation equality (5.17) in this case reduces to

Ẇ =(y − ȳ)(u− ū)−Dd(ω − ω̄s)2. (5.20)

The following theorem establishes the convergence of the solutions to the desired
equilibrium associated with the nominal frequency regulation.
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Figure 5.1: Region of attraction for the system (5.11), (5.18) is estimated with the oval charac-
terized by (7.46).

Theorem 5.3.4 [Frequency regulation]
Consider the candidate Lyapunov function

U(ξ, ω) = Wc(ξ) +W (ω)

where Wc = 1
2 (ξ − ξ̄)2 and W = 1

2J(ω − ω∗)2. Then the solutions of the closed loop
system (5.11), (5.18), starting from any initial condition in the set O = {(ξ, ω) ∈ R2 :

U < 1
2Jω

∗2} converge asymptotically to the equilibrium (Pm − Pe, ω∗).

Proof. First note that for all x ∈ O, we have W < 1
2Jω

∗2, and hence ω > 0. Hence
the system is well-defined in the set O. Now observe that Ẇc = ω−1(ω − ω∗)(ξ − ξ̄).
Hence, by (5.20) we find that

U̇ =−Dd(ω − ω∗)2. (5.21)

As the right hand side of the above equality is nonpositive, we conclude that the
set O is forward invariant along the solution (ξ, ω), and thus (5.21) is valid for all
time. Now, observe that U is radially unbounded and has a strict minimum at
(ξ, ω) = (Pm−Pe, ω∗). Then by invoking LaSalle’s invariance principle, the solutions
converge to the largest invariant subset of O, in which ω = ω∗ and ū = Pe − Pm. The
latter shows that all the solutions on the invariant set O converge asymptotically to
the equilibrium (ξ, ω) = (Pm − Pe, ω∗). We can rewrite the set O as

(ω − ω∗
ω∗

)2
+
( ξ − ξ̄√

Jω∗

)2
< 1. (5.22)

This set guarantees ω to remain in the positive half-line R>0 for ω (see Figure 5.1). �
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5.4 Synchronous Generator
Connected to an Infinite Bus

In this scenario we consider the case of SMIB, where the synchronous generator is
connected to an infinite bus through an inductive line. An infinite bus is a node with
fixed voltage and frequency (50 or 60Hz).

5.4.1 Stability of the Improved Swing Model

It can be shown that the power delivered by the synchronous generator to the bus is
γ sin(δ) where δ is the voltage angle relative to the infinite bus, and γ :=

VgVb
X . Here,

the voltages (Vg, Vb) and the reactance of the line (X) are assumed to be constant. The
dynamics of an SMIB system modeled with the improved swing equation (5.2) is

δ̇ = ω − ω∗

Jωω̇ +Ddω(ω − ω∗) = Pm − γ sin(δ) ,
(5.23)

where the mechanical input Pm > 0 is considered constant. It is easy to check that
(δ, ω) = (arcsinPmγ , ω

∗) is the equilibrium of the system (5.23).

Theorem 5.4.1 [Stability of an SMIB with the improved swing model]
Consider the (shifted) candidate Lyapunov function

V (δ, ω) = Vk(ω) + Vp(δ) ,

where

Vk(ω) =
1

2
J(ω − ω∗)2 , Vp(δ) =

γ

ω∗
[− cos δ + cos δ̄ − (δ − δ̄) sin δ̄)]

are associated with the kinetic and potential energy,2 and δ̄ = arcsinPmγ . Assume that

ω∗ >

√
γ

Dd
(5.24)

and

Pm
γ

<
2

π
. (5.25)

Let c := min(ck, cp), where

ck :=
1

2
J(ω∗ − γ

Ddw∗
)2 , cp := Vp(

π

2
) .

2The shifted functions are constructed using Bregman distance; see Remark 2.3.4.
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Then the solutions of the system (5.23) starting from any initial condition in the set
Ω = {(δ, ω) ∈ [−π, π]× R : V (δ, ω) 6 c} converge asymptotically to the equilibrium
(δ, ω) = (arcsinPmγ , ω

∗).

Proof. Observe that Vp(δ) has a minimum at δ̄ and is convex within the set Ωp = {δ ∈
[−π2 ,

π
2 ]}. We here show that Ω ⊂ Ωp. Having Vk(ω) > 0, the inequality V (δ, ω) < c

results in Vp(δ) < cp and reads as

cos δ > (
π

2
− δ) sin δ̄ . (5.26)

The inequality (5.26) contains a unique subset of Ωp. More precisely, under the
criterion 0 < δ̄ < arcsin 2

π as a result of (5.25), there exists δ− ∈ (−π2 ,
π
2 ) such that

(5.26) holds for all δ ∈ [δ− π
2 ]. Figure 6.3 shows an example interval for δ that satisfies

(5.26) and consequently the energy function VP remains convex (Ω ⊂ Ωp).
Now, it remains to prove that V̇ < 0. We have

V̇ =−Dd(ω − ω∗)2 − γ

ω
[(ω − ω∗)(sin δ − sin δ̄)]

+
γ

ω∗
[(ω − ω∗)(sin δ − sin δ̄)]

=− (ω − ω∗)2
(
Dd −

γ

ωω∗
(sin δ − sin δ̄)

)
.

Note that sin δ − sin δ̄ < 1. Hence V̇ < 0 on the set Ωk = {ω ∈ R : ω > γ
Ddω∗

}. Here
we show that Ω ⊂ Ωk. In the set Ω we have V (δ, ω) < c which leads to Vk(ω) < ck.
Therefore

(ω − ω∗)2 < (ω∗ − γ

Ddw∗
)2 ,

and using (5.24),

γ

Ddw∗
< ω < 2ω∗ − γ

Ddw∗
. (5.27)

The left hand side of the inequality (5.27) shows that Ω ⊂ Ωk.
Observe that U has a strict minimum at ω = ω∗ and δ = δ̄, and the solutions

are bounded to γ
Ddw∗

< ω < 2ω∗ − γ
Ddw∗

and δ− < δ < π
2 . By invoking LaSalle’s

invariance principle, the solutions converge to the largest invariant subset of Ω for
(5.23) s.t. ω = ω∗. On this set, the solution to (5.23) satisfy δ = arcsinPmγ . This shows
that all the solutions on the invariant set converge asymptotically to the equilibrium
(arcsinPmγ , ω

∗). �
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|
δ¯-π

2
_π π

Figure 5.2: The estimate of the system (5.23) region of attraction (Vp(δ) < cp) for δ̄ = arcsin0.1

confines δ in [−0.4π + 0.5π] (green). On such an interval, Vp(δ) remains positive and convex.

Remark 5.4.2 [Is the assumption (5.25) restrictive?]
The assumption Pm

γ < 2
π results in δ̄ < arcsin 2

π , which means that, at the steady state,
the angle between the synchronous generator and the infinite bus should be less
than about 40◦. In practice, the steady state angle is much lower (see, e.g., [156]).
Note that this assumption is made merely for characterizing the region of attraction,
otherwise, it is not necessary for the proof of local stability, since V is convex around
the equilibrium (∂

2V
∂δ2 |δ=δ̄ = cos δ̄ > 0). �

5.4.2 Comparison with the Swing Equation

In this subsection, we compare the results of the improved model with the swing
equation. The dynamics of a synchronous generator modeled by the swing equation
and connected to an infinite bus is

δ̇ = ω − ω∗

Mω̇ +A(ω − ω∗) = Pm − γ sin(δ) ,
(5.28)

where the mechanical input Pm > 0 is considered constant. It is straightforward to
see that the equilibrium of the system (5.28) is (δ, ω) = (arcsinPmγ , ω

∗).

Corollary 5.4.3 [Stability of an SMIB with the swing model]
Consider the candidate Lyapunov function V (δ, ω) = Vk(ω) + Vp(δ), where

Vk(ω) =
1

2
M(ω − ω∗)2

and
Vp(δ) = γ[− cos δ + cos δ̄ − (δ − δ̄) sin δ̄)].

Assume that Pm
γ < 2

π and let c := Vp(
π
2 ). Then the solutions of the SMIB system

described by the swing equation (5.28) starting from any initial condition in the set
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Ω = {(δ, ω) ∈ [−π, π]× R : V (δ, ω) < c} converge asymptotically to the equilibrium
(δ, ω) = (arcsinPmγ , ω

∗).

Proof. The proof is similar to the proof of the Theorem 5.4.1 and therefore omit-
ted. Note that here, V̇ = −A(ω − ω∗)2, and hence to prove stability, the condition
V < Vp(

π
2 ) suffices. �

Corollary 5.4.3 and Theorem 5.4.1 characterize similar estimates for region of attrac-
tion of both models (improved swing and the conventional one) if ck > cp (and as a
result c = cp).

5.5 Numerical Simulation

Here we provide examples depicting the mismatch between the behavior of the two
models, swing and improved swing equations. In all simulations, the parameters
are set as follows: M = 0.2, A = 0.04, ω∗ = (2π)60, and γ = 2. Note that J = M

w∗ and
Dd = A

ω∗ .

5.5.1 CPL: Example 1

As described in Subsection 5.3.1, the steady state value of the frequency differs for
the swing equation and the improved swing model under similar CPLs. Figure 5.3(a)
illustrates this issue. In this example, we set Pm = 1pu and Pe = 2pu, and start from
the initial condition f(0) = 60Hz. The steady state value of the frequency is 56.02Hz

for the swing equation, and 55.72Hz for the improved swing model.

5.5.2 CPL: Example 2

The region of attraction for the improved swing equation, when connected to a CPL,
was provided in Subsection 5.3.1 (Ωs in Theorem 5.3.1). Figure 5.3(b) illustrates a
solution that initiates outside this domain, and becomes unstable. However, the
conventional swing equation is falsely depicting that the system remains stable.
Here, we set Pm = 1pu and Pe = 4.65pu, and start from f(0) = 24Hz. According to
Theorem 5.3.1, the region of attraction allows for f > 25Hz.

5.5.3 CPL: Example 3

According to Subsection 5.3.1, real equilibria exist, only if the condition (5.5) is
satisfied. Figure 5.3(c) shows that the system becomes unstable if the inequality (5.5)
is violated. Note that the stability of the swing equation, connected to a CPL, does
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Figure 5.3: Simulation results for the examples of Section 5.5.

not require any condition. In this example, we set Pm = 1pu and Pe = 4.90pu. With
these values, the discriminant ∆, as defined in (5.7), possesses a negative value.

5.5.4 SMIB: Different Behavior

The behaviors of both systems, conventional and improved, are similar when con-
nected to an infinite bus. However still with some specific initial conditions, the
systems act quite differently. Figure 5.3(d) illustrates an example of this different
behavior. Note that here, the initial condition is outside the estimate of the region of
attraction in both models.

5.5.5 SMIB: Region of Attraction

Figure 5.4 illustrates the phase portrait of the system (5.23) and the Lyapunov function
V (δ, ω) level sets. It is verified that our estimate of the domain of attraction is not very
conservative. All solutions (dotted green) within the Lyapunov level set V (δ, ω) = c

(dark blue) converge to the equilibrium (δ, ω) =
(
π
6 , 2π × 60

)
. Here, cp < ck, and
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Figure 5.4: The estimate of the domain of attraction for system (5.23) (SMIB).

hence c = cp = Vp(
π
2 ). Note that there are solutions outside the estimate of region of

attraction that still converge, however the solutions further away from the estimate
of domain of attraction diverge from the equilibrium.

5.6 Conclusion

We have investigated the properties of an improved swing equation, as a model
for synchronous generators. Two scenarios are analyzed in this chapter. First, the
stability of a single generator connected to a CPL is shown, and frequency regulation
is achieved through the proposed integral controller. In the second scenario, the
synchronous machine is connected to an infinite bus. As a contribution with respect
to [160], where similar dynamics are investigated through linearization, here, a
nonlinear Lyapunov analysis is provided to prove stability and frequency regulation.
Finally, simulations are carried out to show that the swing equation model gives rise
to a behavior that does not match with the one suggested by the improved swing
equation. Moreover in [148], it was shown that the behavior of the improved swing
equation is closer to the FP model. As it will be shown in the next chapter, and
under more restrictive conditions, stability of a network of sources modeled by the
improved swing equation is guaranteed.



Chapter 6

Power Sources II: Power Converters with Ca-
pacitive Inertia

“It is not inertia alone that is responsible for human relationships repeating them-
selves from case to case, indescribably monotonous and unrenewed: it is shyness
before any sort of new, unforeseeable experience with which one does not think
oneself able to cope.”

– Rainer Maria Rilke, Letters to a Young Poet

L
ACK of inertia is an emerging concern for design and development of
inverter dominated networks. This chapter addresses the problem of
stability and frequency regulation of a recently proposed inverter, where

the DC-side capacitor emulates the inertia of a synchronous generator. First, we
remodel the dynamics from the electrical power perspective. Second, using this
model, we show that the system, connected to a constant power load, is stable, and
the frequency can be regulated by a suitable choice of the controller. Next, and as the
main focus of this chapter, we analyze the stability of a network of these inverters,
and show that frequency regulation can be achieved by an appropriate controller
design. Finally, a numerical example is provided which illustrates the effectiveness
of the method.

6.1 Introduction

Along with the emergence of the renewable energy sources in power networks, and
consequently the increasing usage of power converters, new issues and concerns
regarding stability of the grid have arisen. Recently, the problem of low inertia of
inverter dominated systems has been extensively investigated. In classical electrical
grids, synchronous generators dominated the power source types in the network.
These machines possess a massive rotational part, rotating at the same frequency
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Figure 6.1: Schematic of an inverter with capacitive inertia (ICI)

as that of the generated electrical sinusoidal voltage. The kinetic energy of such
rotation takes the role of an energy reservoir. When an abrupt increase or decrease
occurs in the load, the kinetic energy of the synchronous machine is injected into,
or absorbed from the network, respectively. In conventional power converters, the
absence of this reservoir jeopardizes the stability of the network, and leads to new
frequency instability issues in power systems [15, 133, 136]. Inverters possess fast
frequency dynamics and the traditional control strategies are too slow to prevent
large frequency deviations and their consequences [136]. In particular, in networks
with low inertia, the rate of change of frequency (ROCOF) may be large enough to
activate the load-shedding switches of a power network, even with a small power
imbalance [43]. As a remedy to this problem, the concept of Virtual Inertia has been
introduced and various methods have been proposed, so that the inverters emulate
the behavior of synchronous generators [2, 11, 46, 97, 122, 128, 137, 144, 159].

Although a better performance of the inverters results with this emulation, the
virtual inertia cannot react instantaneously. This is due to the fact that the AC mea-
surements play a major role in mimicking the inertia [43], and hence the inevitable
delay in these measurements slows down the emulating behavior. Therefore, as an
alternative, methods to provide an instantaneous physical inertia have been pro-
posed. More specifically in [5, 146, 147], the energy stored in the DC-side capacitor of
the inverter is employed as a replacement of the kinetic energy stored in the rotor
of a synchronous generator. The DC-side capacitor is an inherent element in most
inverters. We refer to these devices as Inverters with Capacitive Inertia (ICI) throughout
the chapter. Recently, a promising and detailed nonlinear model of such devices is
provided in [34, 69], where the generated frequency is proportional to the measured
voltage of the DC-side capacitor (see Figure 6.1). However in [34, 69], the stability
of the inverter, connected to a single load or a network, was not investigated. Note
that, as previously mentioned, the motivation for emulating inertia is to alleviate the
stability problems of low-inertia networks, that are dominated by inverters.

In this chapter, we remodel the ICI dynamics in [69] from a power perspective, in
order to ease the stability analysis of these devices in several scenarios. In Section 6.2,
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the case of a single inverter connected to a constant power load will be investigated.
A primary controller is provided, which guarantees stability of the system. Next, it is
shown that the frequency can be regulated to its nominal value by a secondary con-
troller. In Section 6.3, stability of a network of ICIs is investigated, and a distributed
controller is proposed to regulate the frequencies to the desired value. Finally, a
numerical example illustrates the effectiveness of the method.

6.2 Single Inverter with Capacitive Inertia

In this section, we first explain briefly how a single inverter is modeled in [69], and
next we reconfigure the model from the electrical power perspective. Finally the
control method is elaborated.

6.2.1 ICI Model in [69]

Figure 6.1 depicts the schematic of an ICI, which is based on the averaged model of
a three-phase converter. For the sake of clarity, the electrical circuit of one phase is
shown. The electrical part, shown in black, consists of a controllable current source
idc, a resistor with the conductance Gdc, and a capacitor Cdc in the DC-side. The
switching block in the middle converts the DC current to an alternating current. This
conversion is carried out via a pulse width modulation (PWM) unit which provides
on/off signals to the switching block, according to a given phase angle input θ. A
low-pass LCL filter in the AC-side eliminates the high frequency harmonics of the
output signal. This process generates a sinusoidal voltage vAC with the phase angle
θ.

In a synchronous generator, when the power demand is more than the mechanical
input power, the lacking amount of energy is extracted from the kinetic energy of the
rotor 1

2Jω
2, and hence the angular velocity of the rotor decreases, and the frequency

of the output voltage drops. Similarly, in power converters with a DC-side capacitor,
the extra power demand is released from the energy stored in the capacitor ( 1

2Cdcv
2
dc).

However, contrary to the inertia of a synchronous generator, if the voltage of the
DC-side drops, this will not be visible in the output frequency at the AC-side. As
a remedy, in [34, 69], the frequency ω = θ̇ of the output voltage vAC is tuned to
be proportional to vdc. This mechanism is fulfilled via an integral action over the
measured voltage vdc, with an integral coefficient κ. The generated signal is then fed
as the PWM signal to the switching block, i.e. θ̇ = κvdc (see Figure 6.1). Hence we
have

ω = κvdc , (6.1)
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where a reasonable choice for the integral coefficient is κ = ω∗

v∗dc
, with ω∗ > 0 de-

noting the desired frequency (angular velocity corresponding to 50 Hz or 60 Hz).
Furthermore, using Kirchhoff’s current law in the DC side, we have

Cdcv̇dc = −Gdcvdc − iin + idc . (6.2)

Combining (6.1) and (6.2) we obtain the model [69]

Jω̇ = −Dω − iin
κ

+
idc

κ
, (6.3)

where J = Cdc

κ2 and D = Gdc

κ2 .

6.2.2 ICI Model from the Electrical Power Perspective

We can rewrite the system (6.3) as

Jω̇ = −Dω − Pin
κvdc

+
idc

κ
,

where Pin = vdciin is the electrical power that is injected into the switching block.
Assuming that no power is dissipated in the switching block and the LCL filter (see
Figure 6.1), i.e. Pin ' PAC, we obtain

Jω̇ = −Dω − PAC

ω
+ u , (6.4)

where u = κ−1idc is treated as the control input.

6.2.3 Primary Control

Consider an ICI modeled by (6.4) connected to a constant power load PAC = P`. To
provide a primary control, we propose the control input

u = Dω∗ + ω−1Pm , (6.5)

where Pm ∈ R>0 will be designed later. This design is inspired by the following
remark.

Remark 6.2.1 [Interpretation of Pm]
Around the nominal frequency ω = ω∗, the term Pm in (6.5) represents the power
injection behind the capacitor Cdc (see Figure 6.1). To see this, notice that we can
rewrite (6.5) as

v∗dc

ω∗
idc = Gdc

v∗2dc

ω∗
+
Pm
ω∗

,
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where we used u = κ−1idc, D = κ−2Gdc, and κ = ω∗

v∗dc
. Hence we have

Pm = P ∗dc −Gdcv
∗2
dc .

Note that the first term is the nominal DC power, and the second term is the power
dissipated in the DC-side resistor in the nominal frequency. �

Since ω = κvdc, where vdc is a DC value measured for generating the PWM signal,
no additional measurement is required to implement this controller. In this section,
we assume a constant Pm = P`

∗, where P`∗ > 0 is an estimate of the nominal load.
Now, the model (6.4) can be rewritten as

Jω̇ = −D(ω − ω∗) +
P`
∗ − P`
ω

. (6.6)

The model (6.6) indicates a droop-like behavior. That is, the frequency will drop if
the power extracted by the load is larger than the nominal power, and will increase
otherwise. In fact, the dynamics (6.6) resembles that of a synchronous generator
modeled with the improved swing equation (5.2), with inertia J = Cdc

κ2 , damping
coefficient D = Gdc

κ2 , and mechanical input power P`∗.
Assume that the maximum power mismatch (lack of power) P` − P`∗ is such that

∆ := ω∗2 − 4
P` − P`∗

D
> 0 . (6.7)

Then the dynamics (6.6) has the following two equilibria

ωs =
1

2
(ω∗ +

√
∆), ωu =

1

2
(ω∗ −

√
∆) . (6.8)

According to Theorem 5.3.1, the equilibrium point ω = ωs is asymptotically stable.
A secondary controller is needed to eliminate the static deviation of ωs from the
nominal frequency ω∗.

Remark 6.2.2 [Additional damping]
According to (6.7), a larger damping coefficient (D), allows for larger power devia-
tions. However, this requires a largerGdc, and consequently more power loss (v2

dcGdc)

in the DC-side resistor. Therefore, a proportional controller term can be added to the
control input. In particular, let u = Dω∗ + ω−1Pm + up, where up = D̃(ω − ω∗) for
some D̃ > 0. In this case, the damping term in (6.6) modifies to (D + D̃)(ω − ω∗). �

6.2.4 Secondary Control

Aiming at the frequency regulation of the system (6.4), we propose the controller as

χ̇ = −ω−1(ω − ω∗)
u = Dω∗ + ω−1χ .

(6.9)
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Note that here, compared to the primary controller, the term Pm in (6.5) is not a
constant, but a state variable integrating the frequency deviation. This controller
regulates the frequency to the nominal ω∗ in the steady state of the system (6.4) (see
Remark 6.3.7 later on).

6.3 Network of Inverters with Capacitive Inertia

In this section, we investigate the stability and the frequency regulation in a network
of ICIs.

6.3.1 Network Model

Consider an inverter-based network, where each bus is connected to an inverter
and a local constant power load P`. The topology of the grid is represented by a
connected undirected graph G(V,E), with node set V, and edge set E, given by a set
of unordered pairs {i, j} of distinct vertices i and j. Let n = |V| and m = |E|. As
it was shown in Chapter 3, the lines can be assumed to be dominantly inductive
due to the inductive output impedance of the inverters, i.e., two nodes {i, j} ∈ E are
connected by a nonzero inductance. The set of neighbors of the ith node is denoted
by Ni = {j ∈ V | {i, j} ∈ E}.

Calculation of the active power transferred via a power line is in general cum-
bersome, and complicates the network stability analysis. To remove this obstacle,
we take advantage of phasor approximations. The relative phase angles are denoted
in short by θij := θi − θj , {i, j} ∈ E. Now let γk :=

|Vi||Vj |
Xij

, k ∼ {i, j}, where Xij

represents the reactance of the line connecting nodes i and j, and |Vi| denotes the
magnitude of the voltage at node i, which is assumed to be constant. Then the active
power transferred via the inductor between nodes i and j is calculated as

Pij = γk sin θij , k ∼ {i, j} .

Hence, the injected active power by the inverter at each node PACi is given by

PACi = P`i +
∑
j∈Ni
k∼{i,j}

γk sin θij , (6.10)

where P`i denotes the local load connected to node i. Note that the phasor approxi-
mation is only exploited to write the expression of the active power above.

For every node i we have

θ̇i = ωi

Jiω̇i = ui − ω−1
i PACi −Diωi .
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With a little abuse of notation, using (6.10), the network can be written in vector form
as

θ̇ = ω

Jω̇ = u− 〈ω〉−1
(P` +BΓ sin(B>θ))−Dω ,

(6.11)

where θ = col(θi), ω = col(ωi), J = diag{J1, · · · , Jn}, u = col(ui), P` = col(P`i),
D = diag{D1, · · · , Dn}, B is the incidence matrix, and Γ = diag{γ1, · · · , γm}, with
indices indicating the node/edge numbers.

Note that if (θ, ω) is a solution to (6.11) for given u and P`, then (θ+ 1α, ω) is also
a solution to (6.11) for any constant α ∈ R. To exclude this rotational invariance, it is
convenient to introduce a different set of coordinates, representing the phase angle
differences, given by η := B>θ. Then the model (6.11) modifies to

η̇ = B>ω

Jω̇ = u− 〈ω〉−1
(P` +BΓ sin η)−Dω .

(6.12)

6.3.2 Primary Control

The goal of primary control is to design a proportional controller u = k(ω), such that
all frequencies converge to the same value, corresponding to a stable equilibrium of
the system. To this end, analogous to the case of a single ICI, and with a little abuse
of notation, we propose the control input

u = D1ω∗ + 〈ω〉−1
Pm . (6.13)

For a constant setpoint Pm = P ∗` = col(P ∗`i), the dynamics (6.12) reads as

η̇ = B>ω

Jω̇ = 〈ω〉−1
(P`
∗ − P` −BΓ sin η)−D(ω − 1ω∗) .

(6.14)

Note that η(0) = B>θ(0), and hence η(t) ∈ imB> for all t > 0. Therefore, we can
restrict the domain of solutions to (η, ω) ∈ X := imB>×Rn, which is clearly forward
invariant.

Note that the choice of the setpoint P`∗ is decided based on an estimate of the
load P`. We assume that the maximum mismatch (lack of power) P` − P`∗ is such
that

∆N := ω∗2 − 4
1>(P` − P`∗)

1>D1
> 0. (6.15)

It is easy to see that the condition (6.15) guarantees the existence of an equilibrium
for system (6.14). Next, we characterize the equilibria of (6.14).
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Lemma 6.3.1 Assume that (6.15) holds. Then the points (ηs,1ωs) and (ηu,1ωu) are
two equilibria of system (6.14) if and only if

P`
∗ − P` = BΓ sin ηs +D1ωs(ωs − ω∗), (6.16)

P`
∗ − P` = BΓ sin ηu +D1ωu(ωu − ω∗),

where

ωs =
1

2
(ω∗ +

√
∆N ), ωu =

1

2
(ω∗ −

√
∆N ) , (6.17)

Proof. By the first equality in (6.14) it follows that ω = 1ω̃ for some ω̃. By premulti-
plying the second equality in (6.14) by 1>, we obtain 1>(P`

∗−P`) = 1>D1ω̃(ω̃−ω∗),
which is a quadratic equation with the roots given by (6.17). �

The equilibrium of interest here is (ηs,1ωs). In fact, the other equilibrium can be
shown to be unstable. Lemma 6.3.1 imposes the following assumption:

Assumption 6.3.2 For given P` and P ∗` satisfying (6.15), there exists ηs ∈ imB> ∩
(−π2 ,

π
2 )m such that (6.16) is satisfied.

The additional constraint ηs ∈ (−π2 ,
π
2 )m is needed for stability of the equilibrium

and is ubiquitous in the literature, often referred to as the security constraint [42]. To
prove stability of the equilibrium (ηs,1ωs), we consider first the energy function

V (x) =
1

2
ω>Jω − ωs−11>Γ cos η , (6.18)

with x = col(η, ω). We shift this energy function to

Vs(x) = V (x)− (x− x̄)>∇V̄ − V̄ , (6.19)

where x̄ = (ηs,1ωs). As mentioned in Chapter 2, Vs is positive definite locally if the
function V is strictly convex around x̄ [20]. By calculating the first and second partial
derivatives of Vs, it is easy to observe that Vs is strictly convex and takes its minimum
at x = x̄, provided that ηs ∈ (−π2 ,

π
2 )m. Now, we are ready to state the main result of

this subsection:

Theorem 6.3.3 Suppose that Assumption 6.3.2 holds. Then there exists a neighbor-
hood Ω of (ηs,1ωs) such that any solution (η, ω) to (6.14) that starts in Ω, asymptoti-
cally converges to the equilibrium point (ηs,1ωs).
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Proof. First, observe that by substituting P`∗ − P` from (6.16) the system (6.14) can
be written as

η̇ =B>(ω − 1ωs)

Jω̇ =− 〈ω〉−1
(
BΓ(sin η − sin ηs))

+D
(
〈ω〉(ω − 1ω∗)− 1ωs(ωs − ω∗)

))
.

(6.20)

Consider the Lyapunov function Vs given by (6.18)-(6.19). Computing the time
derivative of Vs along the solutions of (6.20) yields

V̇s =− (ω − 1ωs)>〈ω〉−1
(
BΓ(sin η − sin ηs))

+D
(
〈ω〉(ω − 1ω∗)− 1ωs(ωs − ω∗)

))
+ ωs

−1
(
Γ(sin η − sin ηs)

)>
B>(ω − 1ωs)

=− (ω − 1ωs)>
(
〈ω〉−1

BΓ(sin η − sin ηs)

− ωs−1BΓ(sin η − sin ηs)
)

− (ω − 1ωs)>〈ω〉−1
D[ω + 1ωs − 1ω∗](ω − 1ωs) .

Bearing in mind that ω∗ − ωs = ωu, where ωu is given by (6.17), we have

V̇s =(ω − 1ωs)>(〈ω〉 − ωsIn)〈ω〉−1
ω∗−1BΓ(sin η − sin ηs)

− (ω − 1ωs)>D〈ω〉−1〈ω − 1ωu〉(ω − 1ωs) .

Hence, we obtain

V̇s =− (ω − 1ωs)>〈ω〉−1(
D〈ω − 1ωu〉 − ωs−1〈z(η)〉

)
(ω − 1ωs)

with
z(η) := BΓ(sin η − sin ηs) .

Since D > 0, ωs > 0, 〈1ωs − 1ωu〉 =
√

∆NIn > 0, and z(ηs) = 0, there exists a
neighborhood Ω+ around (ηs,1ωs) such that

〈ω − 1ωu〉 > 0 , D〈ω − 1ωu〉 − ωs−1〈z(η)〉 > 0

for all (η, ω) ∈ Ω+. Take a (nontrivial) compact level set Ω of Vs contained in this set,
i.e., Ω ⊂ Ω+. Note that such Ω always exists for sufficiently small r > 0, Ω = {x |
x ∈ Ω+ and Vs(x) 6 r}. The compactness follows from convexity of Vs. The set Ω is
clearly forward invariant as V̇s is nonpositive at any point within this set. Now, by
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LaSalle’s invariance principle, solutions of the system initialized in Ω converge to the
largest invariant set M in Ω, where V̇s = 0. On this invariant set we have ω = 1ωs.
By using the second equality in (6.20), we obtain that

0 = BΓ(sin(η)− sin(ηs)) (6.21)

on the invariant set. Recall that η, ηs ∈ imB>, namely η = B>θ and ηs = B>θs, for
some vectors θ and θs. By multiplying (6.21) from the left with (θ− θs)>, we find that

0 = (η − ηs)>Γ(sin(η)− sin(ηs)).

This results in η = ηs, as the compact level sets are constructed in a neighborhood
of ηs ∈ (−π2 ,

π
2 )m, where sin(ηk) is strictly monotone for each k = 1, 2, . . . ,m. This

completes the proof. �

6.3.3 Secondary Control

The primary controller stabilizes the system at the frequency ωs, which in general
is not equal to the nominal frequency ω∗. In this section, we aim at (optimally)
regulating the frequency of the system (6.12) via the controller (6.13), such that a
unique equilibrium with ωs = ω∗ is achieved. Note that ωs = ω∗ if and only if

1>Pm = 1>P` . (6.22)

We associate a diagonal matrix Q = diag{q1, . . . , qn}with the power generation costs,
where qi > 0 is the cost coefficient of the power generation of the ith inverter. Here
we seek for an optimal resource allocation such that the control signal Pm = col(Pmi)

minimizes the quadratic cost function

C(Pm) =
1

2
P>mQPm , (6.23)

subject to the power balance constraint given by (6.22). Following the standard La-
grange multipliers method, the optimal control P ?m that minimizes (6.23) is computed
as

P ?m =
Q−111>P`
1>Q−11

. (6.24)

An immediate consequence of the above is that the load is proportionally shared
among the inverters, i.e,

(P ∗m)iQi = (P ∗m)jQj , (6.25)
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for all i, j ∈ V. To achieve the optimal cost, and inspired by [4, 42, 124, 134], we
propose the controller given by

ξ̇ = −Lξ −Q−1〈ω〉−1
(ω − 1ω∗)

Pm = Q−1ξ ,
(6.26)

where L is the Laplacian matrix of an undirected connected communication graph.
The term −Q−1〈ω〉−1

(ω − 1ω∗) regulates the frequency to the nominal frequency,
while the consensus based algorithm −Lξ aims at steering the input to the optimal
one given by (6.24). Having (6.12)-(6.13), and (6.26), the overall system reads as

η̇ = B>ω

Jω̇ = 〈ω〉−1
(Q−1ξ − P` −BΓ sin η)−D(ω − 1ω∗)

ξ̇ = −Lξ −Q−1〈ω〉−1
(ω − 1ω∗) .

(6.27)

Note that η(0) = B>θ(0), and hence η(t) ∈ imB> for all t > 0. Consequently, we can
restrict the domain of solutions of (6.27) to (η, ω, ξ) ∈ X := imB>×Rn×Rn which is
clearly forward invariant. Next, we characterize the equilibrium of the above system.

Lemma 6.3.4 The point (η̄, ω̄, ξ̄) ∈ X is an equilibrium of (6.27) if and only if it
satisfies

Q−1ξ̄ − P` −BΓ sin η̄ = 0

ω̄ = 1ω∗, ξ̄ =
11>P`
1>Q−11

.
(6.28)

Proof. By the first equality in (6.27) it follows that ω = 1ω̃ for some ω̃. By premultiply-
ing the third equality in (6.27) by 1>, we obtain that 1>Q−1〈ω〉−1

(ω̃−ω∗) = 0, which
implies that ω̃ = ω∗. In addition, ξ̄ = 1ξ̃ for some ξ̃ ∈ R. Again, by premultiplying
the second equation by 1>, we have 1>Q−11ξ̃−1>P` = 0, implying ξ̄ = 11>P`

1>Q−11
. �

Lemma 6.3.4 imposes the following assumption:

Assumption 6.3.5 For given P`, there exists η̄ ∈ imB> ∩ (−π2 ,
π
2 )m such that(

Q−111>

1>Q−11
− In

)
P` −BΓ sin η̄ = 0 .

To prove frequency regulation, we exploit the energy function

W (x) =
1

2
ω>Jω − ω∗−1

1>Γ cos η +
1

2
ξ>ξ , (6.29)
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with x = col(η, ω, ξ). Note that the only difference with (6.18) is the addition of the
quadratic term associated with the states of the controller. For the analysis, as before,
we use the shifted version

Ws(x) = W (x)− (x− x̄)>∇W̄ − W̄ . (6.30)

where x̄ = (η̄, ω̄, ξ̄). Noting that η̄ ∈ (−π2 ,
π
2 )m, it is easily verified that Ws is positive

definite around its local minimum x = x̄. Again it is easy to verify that Ws takes it
minimum at x = x̄, provided that η̄ ∈ (−π2 ,

π
2 )m. Now, we have the following result.

Theorem 6.3.6 Suppose that Assumption 6.3.5 holds. Then there exists a neighbor-
hood Ω of (η̄, ω̄, ξ̄) such that any solution (η, ω, ξ) to (6.27) that starts in Ω, asymptoti-
cally converges to the equilibrium point (η̄, ω̄, ξ̄). Moreover, the vector Pm converges
to the optimal power injection P ?m given by (6.24).

Proof. First, observe that by substituting P` from (6.28) the system (6.27) can be
written as

η̇ =B>(ω − 1ω∗)

Jω̇ =〈ω〉−1
(Q−1(ξ − ξ̄)

−BΓ(sin η − sin η̄))−D(ω − 1ω∗)

ξ̇ =− L(ξ − ξ̄)−Q−1〈ω〉−1
(ω − 1ω∗)

(6.31)

Analogous to the proof of Theorem 6.3.3, the time derivative of Ws given by (6.29)-
(6.30) along the solutions of (6.31) is computed as

Ẇs =− (ξ − ξ̄)>L(ξ − ξ̄)

− (ω − 1ω∗)>
(
D − ω∗−1〈ω〉−1〈z(η)〉

)
(ω − 1ω∗)

with
z(η) = BΓ(sin η − sin η̄) .

Since D > 0, ω∗ > 0, and z(η̄) = 0, there exists a neighborhood Ω+ around (η̄, ω̄, ξ̄)

such that

D − ω∗−1〈ω〉−1〈z(η)〉 > 0

for all (η, ω, ξ) ∈ Ω+. Take a (nontrivial) compact level set Ω of Ws contained in
this set, i.e., Ω ⊂ Ω+. Again note that such Ω always exists for sufficiently small r,
Ω = {x | x ∈ Ω+ and Ws(x) 6 r}. Noting that Ω is forward invariant, by LaSalle’s
invariance principle, solutions of the system initialized in Ω converge to the largest
invariant set M in Ω with Ẇs = 0. On this invariant set we have ω = 1ω∗, and Lξ = 0
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Figure 6.2: The solid lines denote the power lines in G, and the dashed lines depict the
communication links with the Laplacian L. The values over the edges are the reactance of the
lines.

implying that ξ = ξ̄ + α1 for some α ∈ R. By premultiplying the second equality in
(6.31) with 1>, on the invariant set we have 0 = 1>Q−1(ξ̄ + α1 − ξ̄), which yields
α = 0 and thus ξ = ξ̄. This means that Pm = Q−1ξ̄ on the invariant set, which
coincides with the expression of optimal power injection P ?m given by (6.24), noting
the last equality in (6.28). Finally, by using an analogous argument to the proof of
Theorem 6.3.3, we conclude that η = η on the invariant set, which completes the
proof. �

Remark 6.3.7 [An ICI connected to a constant load]
We can treat a single ICI modeled by (6.4)-(6.9) as the special case of the network
modeled by (6.27) with L = 0, n = 1, Q = 1, and Γ = 0. Hence the controller
regulates the frequency to its nominal value also in the case of a single ICI connected
to a constant load. �

6.4 Numerical Example

We illustrate the results by a numerical example of a power network consisting of
five ICIs. The interconnection topology (solid lines) and the communication graph
(dashed lines) are shown in Figure 6.2. The reactance of the lines are depicted along
the edges. The inverter setpoints and other network parameters are chosen as shown
in Table 6.1. The system is initially at steady-state with the constant power loads
P`i . At time t = 0, loads P`1 , P`3 , and P`5 are increased by 10 percent of their original
values. The frequency evolution and the active power injections are depicted in
Figure 6.3. It is observed that the system regulates the frequency to its nominal value
50 Hz. Note that the frequencies at the various nodes are so similar to each other,
that no difference can be noticed in the plot. The system shows a safe maximum
rate of change of frequency ROCOFmax = 0.3 Hz/s (ENTSOE standard threshold for
the maximum ROCOF is 1 Hz/s [48]), which can be diminished further using larger
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Table 6.1: Simulation Parameters

ICI1 ICI2 ICI3 ICI4 ICI5

Cdci(mF) 1.0 1.2 1.1 2.5 4.4

Gdci(0) 0.10 0.09 0.12 0.12 0.18

qi($/kW2 h) 0.056 0.028 0.019 0.014 0.011

P`i(kW) 10 12.5 13.5 16 25

|Vi|(V) 300.7 298.8 299.7 301.0 300.3

v∗dc(kV) 1.0 0.9 0.8 1.2 1.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

49.985
49.99

49.995
50

50.005

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

ROCOF

-------

max

Figure 6.3: Frequency regulation and optimal power injection after a step change in the local
loads connected to the nodes 1, 3, and 5.

or parallel capacitors. Finally, observe that the load is shared among the sources
with the ratios of {q−1

1 , · · · , q−1
5 }, which is in agreement with the proportional power

sharing (6.25).

6.5 Conclusion

In this chapter, inverters with capacitors that emulate inertia, were investigated
in two cases. First, the case of a single inverter connected to a constant load, and
second, a network of inverters with local constant power loads. A control method
including primary and secondary controllers was proposed, by which the stability
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and frequency regulation are guaranteed. Finally, a numerical simulation illustrated
that the method successfully regulates the frequency, and share the power between
sources in an optimal fashion.





Chapter 7

Power Systems in Port-Hamiltonian Framework

“Space and time are the framework within which the mind is constrained to construct
its experience of reality.”

– Immanuel Kant

P
ORT-HAMILTONIAN (pH) modeling of physical systems has gained exten-
sive attention in recent years. pH systems theory provides a systematic
framework for modeling and analysis of physical systems and processes

[140, 141]. In this chapter, we investigate modeling power systems in pH framework,
and study their shifted passivity properties in two cases: (i) The control input acts on
the flow; and (ii) The control input acts on the power.1 (with constant structure and
dissipation matrices)

7.1 Shifted passivity of port-Hamiltonian systems: Ap-
plication to stability analysis of the 6th order model
of synchronous generators

As mentioned in Chapter 2, showing shifted passivity for port-Hamiltonian systems
with state-dependent dissipation and interconnection matrices is nontrivial. In this
section, we examine the shifted passivity property of pH systems with strictly convex
Hamiltonian, and derive conditions under which shifted passivity is guaranteed. In
case the Hamiltonian is quadratic and state dependency appears in an affine manner
in the dissipation and interconnection matrices, our conditions reduce to negative
semidefiniteness of an appropriately constructed constant matrix. Moreover, we
elaborate on how these conditions can be extended to the case when the shifted
passivity property can be enforced via output feedback, thus paving the path for

1Rate of change of the Hamiltonian
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controller design. Stability of forced equilibria of the system is analyzed invoking the
proposed passivity conditions. The utility and relevance of the results is illustrated
with the application to the 6th order synchronous generator model.

7.1.1 Introduction

In this section, we study shifted passivity of port-Hamiltonian (pH) systems that, as is
well-known, provide an attractive energy-based modeling framework for nonlinear
physical systems [141, 142].2 As mentioned in Chapter 2, the Hamiltonian readily
serves as a storage function certifying passivity of a pH system, however, proving
its shifted passivity is in general nontrivial. It was also shown that pH systems
with convex Hamiltonian are shifted passive provided the input, dissipation and
interconnection matrices are all constant. Conditions for shifted passivity of pH
systems with state-dependent matrices have been reported in [82] and [49]. In the
former case, quite conservative, integrability conditions, are imposed while the latter
ones are too general and thus can be difficult to verify. The main contribution of
this section is to give compact and easily verifiable conditions, i.e., monotonicity of
a suitably defined function, to ensure shifted passivity of pH systems with strictly
convex Hamiltonian and state-dependent dissipation and interconnection matrices.
Our candidate storage function is the shifted Hamiltonian.

Notably, for the case of affine pH systems with quadratic Hamiltonian, our condi-
tions reduce to negative semidefiniteness of an appropriately constructed constant
matrix. Such systems are relevant in applications such as synchronous generators as
will be demonstrated by the case study. The proposed conditions are able to verify
shifted passivity as well as stability of these systems in an efficient way, namely
by checking whether a systematically constructed matrix is negative semidefinite.
An additional contribution of our work is that the proposed conditions provide an
estimate of the excess and shortage of passivity that serves as a tool for controller
design; see, e.g., [106].

The structure of the section is as follows. The problem formulation is provided in
Subsection 7.1.2. The main results are given in Subsection 7.1.3, and are specialized
to quadratic affine pH systems in Subsection 7.1.4. The results are illustrated with a
synchronous generator in Subsection 7.1.5. The section closes with conclusions in
Subsection 7.1.6.

2Throughout this section, unless explicitly specified, shifted passivity is referring to a global property, i.e.,
X = Rn in view of Definition 2 (Chapter 2).
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7.1.2 Problem Formulation

Consider the pH system

ẋ = (J(x)−R(x))∇H(x) +Gu (7.1a)

y = G>∇H(x), (7.1b)

with state x ∈ Rn, input u ∈ Rm, and output y ∈ Rm. The constant matrix G ∈ Rn×m
has full column rank, and H : Rn → R is the Hamiltonian of the system. The matrix
J is skew-symmetric, i.e., J(x) + J>(x) = 0, and

R(x) > R∗, ∀x ∈ Rn (7.2)

for some constant positive semidefinite matrix R∗.
Define the steady-state relation

E := {(x, u) ∈ Rn × Rm | (J(x)−R(x))∇H(x) +Gu = 0}.

Fix (x̄, ū) ∈ E and the corresponding output ȳ := G>∇H̄ .3 We are interested in
finding conditions under which the system (7.1) is shifted passive with respect to
(x̄, ū).

7.1.3 Main Results

In this subsection, we provide our main results concerning shifted passivity, stability,
and shifted feedback passivity of the pH system (7.1).

Shifted passivity

Here, we provide conditions under which the pH system (7.1) is shifted passive.
Towards this end, we make two assumptions:

Assumption 7.1.1 [Strict convexity]
The Hamiltonian H is strictly convex.

Given the strictly convex function H , we define the Legendre transform, sometimes
called Legendre-Fenchel transform, of H as the function

H∗(p) := max
x∈Rn
{x>p−H(x)}, (7.3)

where the domain ofH∗ is the set of all p for which the expression is well-defined (i.e.,
the maximum is attained). We list the following properties of the Legendre transform

3We denote∇H(x̄) by∇H̄ ; see Section 1.4.
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H∗; see, e.g., [7], [105].
1. The domain of H∗ is equal to the convex range of∇H .4

2. H∗ is strictly convex.
3. H∗∗ = H . 5

4. ∇H∗(∇H(x)) = x, for all x.
5. ∇H(∇H∗(p)) = p, for all p in the convex range of∇H .

Let F (x) := J(x)−R(x). Leveraging the Legendre transform above, the function
F (x) can be restated in terms of co-energy variables s := ∇H(x) as

F (x) = F (∇H∗(s)) =: F(s). (7.4)

We denote the domain of H∗, which is equal to the range of ∇H , by S. Let s̄ := ∇H̄ .
We impose the following assumption on F:

Assumption 7.1.2 [Monotonicity]
The mapping F verifies

∇(F(s) s̄ ) +∇(F(s) s̄ )> − 2R∗ 6 0, ∀s ∈ S. (7.5)

Note that the choice of R∗ is important in feasibility of (7.5), and it is best to
choose the lower bound in (7.2) as tight as possible. Now, we have the main result of
this section:

Proposition 7.1.3 [Shifted passivity]
Let Assumptions 7.1.1 and 7.1.2 hold. Then, the pH system (7.1) is shifted passive,
namely

Ḣ 6 (u− ū)>(y − ȳ) (7.6)

is satisfied with H being the shifted Hamiltonian

H(x) := H(x)− (x− x̄)>∇H̄ −H(x̄). (7.7)

Proof. First, note that H is nonnegative as the Hamiltonian H is (strictly) convex
[20, 68]. Substituting (7.4) into (7.1) yields

ẋ = F(s)s− F(s̄) s̄+G(u− ū),

4If p is not in the range of∇H , then the maximum in (7.3) for such p does not exist.
5This means that the Legendre transform is an involution, namely the Legendre transform of the

Legendre transform of H is equal to H itself.
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where we have subtracted 0 = F(s̄) s̄+G ū. Noting that∇H(x) = ∇H(x)−∇H̄ , the
time derivative of H(x) is computed as

Ḣ = (∇H)>ẋ =
(
s− s̄

)>(
F(s)s− F(s̄) s̄

)
+ (y − ȳ)>(u− ū)

=
(
s− s̄

)>(
F(s)− F(s̄)

)
s̄

+
(
s− s̄

)>
F (x)

(
s− s̄

)
+ (y − ȳ)>(u− ū)

6
(
s− s̄

)>(
F(s)− F(s̄)

)
s̄

−
(
s− s̄

)>
R∗
(
s− s̄

)
+ (y − ȳ)>(u− ū), (7.8)

where we used (7.1b) in the first identity, added and subtracted the term (s −
s̄)>
(
F(s)s̄

)
and used (7.4) to write the second equality, while the bound is obtained

invoking (7.2). Now, let
M(s) := F(s)s̄−R∗s. (7.9)

Then Ḣ can be written as

Ḣ =
(
s− s̄

)>(
M(s)−M(s̄)

)
+ (y − ȳ)>(u− ū). (7.10)

By (7.5), we have that ∇M(s) + (∇M(s))> 6 0, for all s ∈ S, which ensures that the
map M(·) is monotone [115]. The proof is completed noting that by monotonicity(

s− s̄
)>(

M(s)−M(s̄)
)
6 0.

�

Remark 7.1.4 [Local shifted passivity]
By Assumptions 7.1.1 and 7.1.2, both the strict convexity and the monotonicity
property must hold for the whole sets Rn and S, respectively, which results in global
shifted passivity of (7.1). For local shifted passivity, 6 we can restrict to a subset
X ⊆ Rn, with Assumptions 7.1.1 and 7.1.2 modified to

1. The Hamiltonian is strictly convex in X ⊆ Rn.
2. Inequality (7.5) holds for all s ∈ S := {∇H(x) | x ∈ X},
while R∗ is any matrix satisfying, instead of (7.2), R(x) > R∗, ∀x ∈ X. �

We complete this subsection by considering the case where the condition (7.5)
does not hold, which means that the system (7.1) may not be shifted passive, but it
can be rendered shifted passive via output feedback.

6By “local” we mean that there exist open neighborhoods X ⊆ Rn and U ⊆ Rm of (x̄, ū) ∈ X× U such
that (7.6) holds for all (x, u) ∈ X× U.
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Proposition 7.1.5 [Shifted feedback passivity]
Consider the pH system (7.1) verifying Assumption 7.1.1 and such that

∇(F(s) s̄ ) +∇(F(s) s̄ )> − 2R∗ 6 2γ GG>,

for some γ ∈ R. Then, the shifted Hamiltonian (7.25) satisfies the following dissipa-
tion inequality

Ḣ 6 (u− ū)>(y − ȳ) + γ‖y − ȳ‖2.

Proof. The proof is analogous to that of Proposition 7.1.3, by adding and subtracting
the term γGG>(s− s̄) in (7.8), and modifying the map M as

M̃(s) := M(s)− γGG>s.

�

Note that a negative γ proves that the pH system is (output-strictly) shifted passive.
On the other hand, a positive γ indicates the shortage of shifted passivity. Notice that
the simple proportional controller

u = ū−KP (y − ȳ) + v,

with KP > γI , ensures that the interconnected system is passive from the external
input v to output y− ȳ. Analogously, Proposition 7.1.5 can be used to design dynamic
passive controllers to stabilize the closed-loop system; see [106] for an application to
control of permanent magnet synchronous motors.

Stability of the forced equilibria

Lyapunov stability of the equilibrium of (7.1) with u = ū, immediately follows from
Proposition 7.1.3, with the Lyapunov function being the shifted Hamiltonian H.
Moreover, asymptotic stability follows by imposing the condition that Ḣ is negative
definite. As will be shown below, the case of state-dependent input matrix can also
be accommodated in the stability analysis by imposing conditions analogous to (7.5).
To this end, consider again the pH system (7.1a), where now G = G(x). Let

G(x) = G(∇H∗(s)) =: G(s).

Then, we have the following result:

Proposition 7.1.6 [Asymptotic stability]
Consider the pH system

ẋ = (J(x)−R(x))∇H(x) +G(x)ū, (7.11)

with (x̄, ū) ∈ E. Then, we have
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1. The equilibrium is asymptotically stable if∇2H(x̄) > 0 and there exists ε > 0

such that the inequality

∇(F(s) s̄+ G(s)ū ) +∇(F(s) s̄+ G(s)ū )> − 2R∗ 6 −2εIn, (7.12)

holds at s = s̄.7

2. The equilibrium is globally asymptotically stable if the Hamiltonian H is
strongly convex and (7.12) holds for all s ∈ Rn.

Proof. The proof of the first item follows analogously to Proposition 7.1.3 by modify-
ing the map M in (7.9) as F(s)s̄−R∗s+ G(s)ū, and noting that the the function H is
locally nonnegative and is equal to zero whenever x = x̄ [20, p. 205], [68, Prop. 2].

To prove the second statement, it suffices to show that S is radially unbounded.
This follows from strong convexity of H noting that [104, Ch.2]

H(x) = H(x)− (x− x̄)>∇H̄ −H(x̄) > µ‖x− x̄‖2,

for some µ ∈ R+. �

Remark 7.1.7 [Alternative for (7.12)]
The identity matrix in the right hand side of (7.12) can be replaced by a positive
semidefinite matrix C>C, with C ∈ Rm×n, if the equilibrium is “observable” from
the input-output pair (ū, C∇H̄), namely if

ẋ = F (x)∇H +G(x)ū, C∇H(x) = C∇H̄ =⇒ x = x̄.

�

Remark 7.1.8 [Shifted passivity with state-dependent input matrix]
While the inequality (7.12) with ε = 0 does not imply shifted passivity of the pH
system with state-dependent input matrix, it ensures that the map u− ū to the output
ym defined as

ym := G>(x)∇H(x) = G>(x)(∇H(x)−∇H(x̄))

is passive. �

7This means that the Jacobian of F(s) s̄ + G(s)ū in (7.12) has to be evaluated at s = s̄.
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7.1.4 Application to Quadratic Affine Systems

In this subsection we specialize our results to the case where

F (x) = F0 +

n∑
i=1

Fixi, (7.13)

with Fj ∈ Rn×n, j = 0, . . . , n, constant and

H(x) =
1

2
x>Qx, (7.14)

with Q ∈ Rn×n being positive definite. We call these systems quadratic affine pH
systems.

In order to satisfy (7.2) and state the global version of our results, we need to
assume that R(x) = R0 for some constant matrix R0. This is due to the fact that in
the affine case the inequality R(x) > R∗, for all x ∈ Rn, implies that the matrix R is
constant. In Remark 7.1.12, we elaborate on how this assumption is relaxed to obtain
local results. Note that, with a constant dissipation matrix, F0 +F>0 = −2R0 6 0 and
Fj + F>j = 0 for each j > 1.

Proposition 7.1.9 [Shifted passivity of quadratic affine systems]
Consider the quadratic affine pH system (7.1) with (7.13) and (7.14). Fix (x̄, ū) ∈ E

and define the n× n constant matrix

B :=

n∑
i=1

FiQ x̄ e
>
i Q
−1, (7.15)

with ei ∈ R the i-th element of the standard basis. Then we have

Ḣ 6 (y − ȳ)>(u− ū), (7.16)

where H is the quadratic shifted Hamiltonian function H(x) := 1
2 (x−x̄)>Q(x−x̄),

if and only if
B +B> − 2R0 6 0. (7.17)

Proof. The ”if” part follows by verifying the conditions of Proposition 7.1.3. In this
case, H∗(p) = 1

2p
>Q−1p,

∇H∗(s) = Q−1s, s = Qx,

and

F(s) = F0 +

n∑
i=1

Fi(e
>
i Q
−1s). (7.18)
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Hence,

F(s)s̄ = (F0 +

n∑
i=1

Fi(e
>
i Q
−1s))Q x̄.

Now, by rewriting the last expression in the equivalent form

F(s)s̄ = F0Qx̄+

n∑
i=1

FiQx̄e
>
i Q
−1s,

we obtain that

∇(F(s)s̄) =

n∑
i=1

FiQx̄e
>
i Q
−1.

Finally, using (7.15), condition (7.5) takes the form

∇(F(s)s̄) +∇(F(s)s̄)> − 2R0 = B +B> − 2R0 6 0.

To prove the “only if” part, suppose that (7.16) is satisfied. This implies that the pH
system linearized around the equilibrium x = x̄ is passive with the Hamiltonian
H(x) = 1

2x
>Qx serving as a storage function [142, Ch. 11.3]. It is easy to verify that

the resulting linear time-invariant system admits the form

ẋ = (J(x̄)−R0)Qx+BQx+Gu (7.19a)

y = G>Qx. (7.19b)

Therefore, we obtain that [142, Ch. 4.1]

Q
(
J(x̄)−R0 +B

)
Q+Q

(
J(x̄)−R0 +B

)>
Q 6 0,

which reduces toQ(−2R0 +B+B>)Q 6 0. Clearly, the latter inequality is equivalent
to (7.17). �

Remark 7.1.10 [Stability condition in terms of co-energy variables]
The stability condition in Proposition 7.1.9 can equivalently be stated in terms of the
co-energy variables s = ∇H(x), which in certain cases decreases the computational
effort. To this end, note that by (7.18), the function F(s) can be written in the affine
form:

F(s) = F0 +

n∑
i=1

Fisi,

where Fi :=
∑n
j=1 FjQ

−1
ij . Hence, the matrix B in (7.15) can be equivalently written

as

B :=

n∑
i=1

FiQx̄ e
>
i =

n∑
i=1

Fi s̄ e
>
i .

�
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Since H is strongly convex and the condition (7.17) is state independent, Proposi-
tion 7.1.6 yields the following result:

Corollary 7.1.11 [GAS of quadratic affine systems]
Consider the quadratic affine pH system (7.1a) with (7.13) and (7.14) under some
constant input u = ū, and let (x̄, ū) ∈ E. The equilibrium x̄ is globally asymptotically
stable if (7.17) holds with strict inequality.

Remark 7.1.12 [Local shifted passivity and stability]
Analogous to the previous subsection, local variations of Proposition 7.1.9 and Corol-
lary 7.1.11 can be obtained by restricting x in a domain X ∈ Rn with x̄ ∈ X. In that
case, the matrix R0 in (7.17) is replaced by R∗, where R(x) > R∗ > 0 for all x ∈ X. �

7.1.5 Synchronous generator (6th-order model) connected to a resis-
tor

In this subsection, we apply the proposed method to the six-dimensional model of the
synchronous generator. As introduced in Chapter 1, the state variables of this model
comprise of the stator fluxes on the dq axes ψd ∈ R, ψq ∈ R, rotor fluxes ψr ∈ R3 (the
first component of ψr corresponds to the field winding and the remaining two to the
damper windings), and the angular momentum of the rotor p. The Hamiltonian H
(total stored energy of the synchronous generator) is the sum of the magnetic energy
of the generator and the kinetic energy of the rotating rotor. More precisely, the
Hamiltonian takes the form H(x) = 1

2x
>Qx with x =

[
ψd ψq ψr p

]>
and

Q =

[
L−1 051

015 m−1

]
> 0 , L =


Ld 0 kLafd kLakd 0

0 Lq 0 0 −kLakq
kLafd 0 Lffd Lakd 0

kLakd 0 Lakd Lkkd 0

0 −kLakq 0 0 Lkkq

 ,

where m ∈ R is the total moment of inertia of the turbine and the rotor. Note that the
elements of the inductance matrix L are all constant parameters; see [50] for more
details. The system dynamics is then given by the pH system [50]

ẋ = (J(x)−R)∇H(x) +G

[
Vf
τ

]
,
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with

J(x) =


022 023

[
−ψq
ψd

]

032 033 031[
ψq −ψd

]
013 0


, R =



[
r 0

0 r

]
023 021

032

Rf 0 0

0 Rkd 0

0 0 Rkq

 031

012 013 d


> 0 ,

G =


021 0211

0

0

 031

0 1

 ,

where Vf represents the rotor field winding voltage, τ is the mechanical torque, r
is the summation of the load and stator resistances, Rf , Rkd, Rkq denote the rotor
resistances, and d corresponds to the mechanical friction. We can rewrite the system
as

Q−1ṡ = (J(s)−R)s+G

[
Vf
τ

]
, (7.20)

where s = Qx = [Id Iq Ir ω]>. Here Id ∈ R, Iq ∈ R are the components of the stator
current on the dq axes, and Ir ∈ R3 and ω ∈ R are the currents and angular velocity
of the rotor, respectively. Note that

J(s) =


022 023 vJ(s)

032 033 031

v>J (s) 013 0

 , vJ(s) :=

[
−LqIq + LakqIkq

LdId + LafdIf + LakdIkd

]
.

Let Vf = V̄f and τ = τ̄ , for some constant vectors V̄f and τ̄ . Through straightforward
calculations, and using Remark 7.1.10, the condition (7.17) reads as

−2r ω̄(Ld − Lq) 0 0 kω̄Lakq −ĪqLd
ω̄(Ld − Lq) −2r kω̄Lafd kω̄Lakd 0 ĪdLd

0 kω̄Lafd −2Rf 0 0 −ĪqLafd
0 kω̄Lakd 0 −2Rkd 0 −ĪqLakd

kω̄Lakq 0 0 0 −2Rkq −ĪdLakq
−ĪqLd ĪdLd −ĪqLafd −ĪqLakd −ĪdLakq −2d


6 0 ,

(7.21)
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where Īd, Īq, Īr, ω̄ are the associated values of s at the equilibrium of (7.20), i.e.,

(J(s̄)−R)s̄+G

[
V̄f
τ̄

]
= 0 ,

with s̄ = [Īd Īq Īr ω̄]>. Hence, by Proposition 7.1.9, (7.20) is shifted passive if
(7.21) holds. Moreover, by Corollary 7.1.11, if (7.21) holds with strict inequality, then
the equilibrium x̄ = Q−1s̄ is globally asymptotically stable. The stability result is
consistent with those of [23, 143].8

Note that the general method proposed in [82] is based on augmenting the
Hamiltonian with an extra term which is a function of the input and the states.
However, this method relies on integrability conditions that are not satisfied for τ̄ 6= 0

[50], which is the case of interest in practice. Also note that Corollary 7.1.11 is valid
for a general quadratic affine pH-system, and the condition (7.21) is obtained in a
systematic manner here, namely by verifying the negative definiteness test in (7.17).
Moreover, if (7.21) does not hold, then in view of Proposition 7.1.5, one can investigate
the possibility of designing suitable proportional, PI, or more generally dynamic
(input-strictly) passive controllers rendering the equilibrium globally asymptotically
stable.

7.1.6 Conclusion

We have examined the shifted passivity property of pH systems with convex Hamil-
tonian by proposing conditions in terms of the monotonicity of suitably constructed
functions, under which the property is verified. We have leveraged these conditions
to study (global) asymptotic stability of forced equilibria of the system. As we ob-
served, for quadratic affine pH system, shifted passivity and (global) asymptotic
stability are guaranteed if an appropriately constructed constant matrix is nega-
tive semidefinite. We demonstrated the applicability of the results on the 6th order
synchronous generator model.

8Notice that the condition (7.21) is identical with (30) in [143], however there is a typo there as the term
ω̄(Ld − Lq) is missing.
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7.2 Shifted passivity of power-controlled Hamiltonian
systems: Application to electrical systems with con-
stant power loads

Here, we study a type of port-Hamiltonian system, in which the controller or distur-
bance is not applied to the flow variables, but to the systems power; a scenario that
appears in many practical applications. A suitable framework is provided to model
these systems and to investigate their shifted passivity properties, based on which,
a stability analysis is carried out. The applicability of the results is illustrated with
the important problem of stability analysis of electrical circuits with constant power
loads.

7.2.1 Introduction

Typically, the external inputs (controls or disturbances) in pH systems act on the
flow variables, i.e., on the derivative of the energy storing coordinates. However,
in some cases of practical interest, these external inputs act on the systems power,
either as the control variable, or as a power that is extracted from (or injected to)
the system. We refer to this kind of systems as Power-controlled Hamiltonian (PwH)
systems. PwH systems cannot be modeled with constant dissipation matrices, which
is the scenario considered in [68], and therefore analyzing their passivity properties
is nontrivial. Furthermore, the conditions derived in the Section 7.1 are general, and
in cases conservative.

An example of PwH systems is electrical systems with instantaneous constant-
power loads (CPLs), which model the behavior of some point-of-load converters that
are widely used in modern electrical systems; see [81, 116] and references therein. It
is well-known that CPLs introduce a destabilizing effect that gives rise to significant
oscillations or to network collapse [47], and hence they are the most challenging
component of the standard load model, referred to as ZIP model [37, 125]. Therefore,
the investigating the stability of the equilibria of the systems with CPLs is a topic of
utmost importance; see [9, 17, 77, 81] for an analysis of existence of equilibria.

In [125], sufficient conditions are derived for all operating points of purely resis-
tive networks with CPLs to lie in a desirable set. Stability analysis has been carried
out in [3, 9] using linearization methods; see also [81]. In [12], and recently in [26],
Brayton-Moser potential theory [19] is employed, however, constraints on individual
grid components are imposed. Moreover, as shown in [81], the estimate of the region
of attraction (ROA) of the equilibria based on the Brayton-Moser potential is rather
conservative.
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In this section, we propose a framework to model PwH systems, and provide
sufficient conditions for shifted passivity and stability of their equilibria. We use
the shifted Hamiltonian as the candidate Lyapunov function. This Lyapunov func-
tion is hence based on the physical energy of the system, and unlike the case of
Brayton-Moser model, is trivially computed. Two immediate corollaries of the
shifted passivity property are: (i) that their shifted equilibrium can be stabilized with
simple PI controllers [68]; (ii) that in the uncontrolled case, when a constant input
power or load is imposed, stability of this equilibrium can be established. In this
section we concentrate on the latter issue, that was first studied in the standard pH
systems framework in [82]. Interestingly, our framework allows us to give an analytic
characterization of an estimate of the ROA, in the case of a quadratic Hamiltonian.

The remainder of this section is organized as follows. The proposed model for
PwH systems is introduced in Subsection 7.2.2. The main result, that is, the derivation
of conditions for their shifted passivity, is provided in Subsection 7.2.3. The stability
analysis is given in Subsection 7.2.4. The main result is then illustrated in Subsection
7.2.5 with its application to electrical systems with CPLs, and in Subsection 7.2.6,
with the application to synchronous generators. Finally, some concluding remarks
are provided in Subsection 7.2.7.

7.2.2 Model

Consider the pH system driven by the flow f ∈ Rm [140]

ẋ = (J −R)∇H(x) +Bf

e = B>∇H(x) ,

where x ∈ Rn is the system state, e ∈ Rm is the effort, H is the system Hamiltonian
(energy) function, and the n × n constant matrices J = −J> and R > 0, are the
structure and the dissipation matrices, respectively. Without loss of generality, we
consider the constant matrix B defined as

B :=

[
Im

0(n−m) (m)

]
. (7.22)

To model the power control input/disturbance, we define the control (power) input
u ∈ Rm as the element-wise product of effort and flow, i.e., u := 〈e〉〈f〉1. Hence we
have f = 〈e〉−1

u. We decompose the vector∇H into

∇H =

[
∇uH(x)

∇0H(x)

]
,
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where ∇uH(x) ∈ Rm is associated with the actuated states. We have

Bf = B〈e〉−1
u = B〈B>∇H(x)〉−1

u

= B〈∇uH(x)〉−1
u

= G(x)u ,

where the (power) input matrix G ∈ Rn×m is defined as

G(x) :=

[
〈∇uH(x)〉−1

0(n−m) (m)

]
. (7.23)

The input matrix G(x) is well-defined in the set Ω+ characterized as

Ω+ := {x ∈ Rn : 〈∇uH(x)〉 > 0}.

Then the dynamics of the Power-controlled Hamiltonian (PwH) system is given by

ẋ = (J −R)∇H(x) +G(x)u , x ∈ Ω+ , (7.24)

with the first m components of x corresponding to the power controlled states. Note
that the external input u of the system (7.24), acts directly on the power (rate of change
of the Hamiltonian), i.e.,

Ḣ = −∇H>(x)R∇H(x) + 1>u .

The natural output corresponding to the input u is given as the constant vector 1,
in accordance with the fact that the total supplied power is 1>u. Since this output
cannot be employed, e.g., for a controller design, we will use a shifted output; see
(7.28) later on.

Defining the steady-state relation

E := {(x, u) ∈ Rn × Rm | (J −R)G(x)u = 0},

we can write the shifted model for the system as:

Lemma 7.2.1 [Shifted model]
Fix (x̄, ū) ∈ E, then the system (7.24), with the input matrix G as defined in (7.23),
can be rewritten as

ẋ =
(
J −

(
R+ Z(x)

))
∇H(x) +G(x)(u− ū) , (7.25)

where
Z(x) := Ḡ〈ū〉G>(x) , (7.26)

and H is the shifted Hamiltonian

H(x) := H(x)− (x− x̄)>∇H̄ − H̄ . (7.27)
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Proof. Subtracting the steady-state equation from (7.24) gives

ẋ = (J −R)
(
∇H(x)−∇H̄

)
+G(x)u− Ḡū .

Bearing in mind that∇H(x) = ∇H(x)−∇H̄ , we have

ẋ =(J −R)∇H(x) +G(x)u− Ḡū
−G(x)ū+G(x)ū

=(J −R)∇H(x) +G(x)(u− ū)

+
(
G(x)− Ḡ

)
ū

Note that (
G(x)− Ḡ

)
ū =−

(
〈∇H(x)〉 − 〈∇H̄〉

)
ḠG>(x)Bu

=− Ḡ〈ū〉G>(x)
(
∇H(x)−∇H̄

)
=− Z(x)∇H ,

where we used the fact that for all a, b ∈ Rn, we have 〈a〉b = 〈b〉a. Hence

ẋ =
(
J −

(
R+ Z(x)

))
∇H(x) +G(x)(u− ū) .

This completes the proof. �

The natural (shifted) output of the dynamics (7.25) is defined as

y = G>(x)∇H(x) . (7.28)

In the next section we will investigate the shifted passivity properties of the PwH
system (7.24), (7.28).

7.2.3 Main Result: Shifted Passivity

To establish the shifted passivity property, we further restrict the trajectories to be
inside the set

Ω̄p := {x ∈ Ω+ : R+ Z(x) > 0} ,

that is the closure of the open set

Ωp := {x ∈ Ω+ : R+ Z(x) > 0} , (7.29)

where we assume that Ωp is non-empty.
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Theorem 7.2.2 [Shifted passivity]
Consider the system (7.24), (7.28). For all trajectories x ∈ Ω̄p we have that

Ḣ 6 (y − ȳ)>(u− ū) . (7.30)

Moreover, if H is convex, the system is shifted passive.

Proof. Using Lemma 7.2.1 we can rewrite the system as in (7.25). Therefore, we have

Ḣ = −∇H>
(
R+ Z(x)

)
∇H + y>(u− ū) .

Now, note that y given in (7.28) can be written as

y = G>(x)
(
∇H(x)−∇H̄

)
,

and hence ȳ = 0. The proof of (7.30) is completed restricting the trajectories to satisfy
x ∈ Ω̄p. To establish the passivity claim, note that since H is convex, H(x) has an
isolated minimum at x̄, and hence is (locally, around x̄) non-negative; see [68]. �

Remark 7.2.3 [Constant power sources]
In case the control input includes only power sources, i.e., 〈ū〉 > 0, we see from (7.26)
and the fact that x ∈ Ω+, that Z(x) > 0, and hence Ω̄p = Ω+. Therefore, throughout
this section, we investigate the cases where at least one control input element is acting
as power load, i.e., 〈ū〉 � 0. �

Remark 7.2.4 [Additional constant input]
Theorem 7.2.2 holds also for the systems with an additional constant input, i.e.,

ẋ = (J −R)∇H(x) +G(x)u+ ūc ,

since the constant input ūc ∈ Rn disappears in the shifted model (7.25). �

7.2.4 Stability Analysis for Constant Inputs

Consider the system (7.24) with a constant input u = ū. Then the dynamics reads as

ẋ = (J −R)∇H(x) +G(x)ū . (7.31)

In this section, we first investigate the local stability of the equilibria of the system
(7.31), that is, points x̄ such that (x̄, ū) ∈ E. Then, we give an estimate of their region
of attraction (ROA). To establish these results we impose the stronger assumption
that x ∈ Ωp and, naturally, restrict ourselves to equilibrium points x̄ ∈ Ωp.
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Local stability

Using the result of Theorem 7.2.2, we have the following corollary:

Corollary 7.2.5 [Local Stability]
Consider the system (7.31) having a point x̄ ∈ Ωp such that (x̄, ū) ∈ E and∇2H(x̄) >

0. Then, the equilibrium x = x̄ of the system (7.31) is asymptotically stable.

Proof. Since R + Z(x̄) > 0 and ∇2H(x̄) > 0, there exists a ball B(x̄), centered in x̄,
such that H(x) > 0 and R+ Z(x) > 0 for all x ∈ B(x̄). Moreover, H satisfies

Ḣ = −∇H>
(
R+ Z(x)

)
∇H < 0, ∀x ∈ B(x̄), x 6= x̄,

making it a strict Lyapunov function. This completes the proof. �

Note that the result of Corollary 7.2.5 applies also to an equilibrium point x ∈ Ω̄p, if
a detectability condition is satisfied, guaranteeing asymptotic stability by the use of
LaSalle’s Invariance principle; see [141, Ch. 8].

Characterizing an estimate of the ROA

As it is well-known, all bounded level sets of Lyapunov functions are invariant
sets. However, our proof of asymptotic stability is restricted to the domain Ωp.
Consequently, to provide an estimate of the ROA of x̄ it is necessary to find a constant
k such that the corresponding sublevel set of H

Lk := {x ∈ Rn | H(x) < k, k ∈ R+}, (7.32)

is bounded and is contained in Ωp. To solve this, otherwise daunting task, we make
some assumptions on the system. First, we assume a positive definite dissipation
matrix, that is, R > 0. Given this assumption, it is possible to construct a set, defined
in terms of lower bounds on∇H , that is strictly contained in Ωp.

Lemma 7.2.6 [Lower Bounds on ∇H]
If the dissipation matrix R is positive definite, then the set ΩΓ defined as

ΩΓ :=

{
x ∈ Ω+ : 〈∇uH(x)〉 > −〈∇uH̄〉

−1〈ū〉
λm{R}

}
, (7.33)

is contained in Ωp.
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Proof. For all x ∈ ΩΓ we have

λm{R}Im + 〈∇uH̄〉
−1〈ū〉〈∇uH(x)〉−1

> 0

Recall that B =
[
Im 0(m) (n−m)

]>
. We have

λm{R}In +B〈∇uH̄〉
−1〈ū〉〈∇uH(x)〉−1

B> > 0 ,

where we used the fact that λm{R} > 0. Hence

λm{R}In + Ḡ〈ū〉G>(x) > 0 ,

The proof is completed noting that the second left-hand term above is Z(x) and
recalling that R > λm{R}In. �

Our second assumption is that the Hamiltonian is quadratic of the form

H(x) =
1

2
x>Mx, M > 0, (7.34)

In this case, the shifted Hamiltonian (7.27) reduces to

H(x) =
1

2
(x− x̄)>M(x− x̄). (7.35)

Notice that, now, all sublevel sets Lk, given in (7.32), are bounded. Therefore, in view
of Lemma 7.2.6, we only need to find a constant kc > 0 such that Lkc ⊂ ΩΓ, and this
sublevel set provides an estimate of the ROA of x̄.

Theorem 7.2.7 [Estimate of the ROA]
Consider the system (7.31) with the quadratic Hamiltonian (7.34) and the dissipation
matrix R > 0. Assume that x̄ ∈ ΩΓ where ΩΓ is given by (7.33). Define

kc :=
1

2λM{M}
min

i=1,...,m

{(
γi − (Mx̄)i

)2}
,

with
γi := max{0,− ūi

λm{R}∇uH̄i
},

and (Mx̄)i being the ith element of the vector Mx̄. Then, an estimate of the ROA of
the equilibrium x̄ is the set Lkc as defined in (7.32) with k = kc.

Proof. From (7.35) we have

H(x) =
1

2
(Mx−Mx̄)>M−1(Mx−Mx̄).
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Hence,

H(x) >
|Mx−Mx̄|2

2λM{M}

with | · | being the Euclidean norm. This bound, together with H(x) < kc, ensures
that for all i ∈ {1, · · · ,m}

((Mx)i − (Mx̄)i)
2 < (γi − (Mx̄)i)

2.

Note that since x̄ ∈ ΩΓ we have (Mx̄)i > γi. Hence γi − (Mx̄)i < 0. Consequently,
for all i ∈ {1, · · · ,m}we have

γi − (Mx̄)i < (Mx)i − (Mx̄)i < −γi + (Mx̄)i .

The left hand side of the inequality above guarantees (Mx)i > γi. Therefore, using
Lemma 7.2.6, we have R + Z(x) > 0. The proof is completed noting that the latter
ensures H(x) is a strict Lyapunov function of the system. �

In the following corollary, we show that in cases where M and R are diagonal,
the largest k in (7.32), and hence the largest Lk contained in Ωp, can be constructed
explicitly.

To streamline the presentation of the result we define the constants

ηi := − ūi
Rii∇uH̄i

, (7.36)

and the constant vectors

`i := col(x̄1, x̄2, · · · , x̄i−1,
ηi
Mii

, x̄i+1, · · · , x̄n) . (7.37)

Corollary 7.2.8 [Estimate of the ROA with diagonal M and R]
Consider the system (7.31) with the quadratic Hamiltonian (7.34) with diagonal R > 0

and M > 0. Assume that x̄ ∈ Ωp. Define

kd := min
i=1,...,m

{
H(`i)

}
,

with (7.36) and (7.37). Then, an estimate of the ROA of the equilibrium x̄ is the set
Lkd as defined in (7.32) with k = kd.

Proof. Since both Z and R are diagonal, we have R + Z(x) > 0 if and only if
Rii + Z(x)ii > 0 for all i = {1, · · · , n}. Therefore, Ωp is computed as

Ωp = {x ∈ Ω+ : Rii + ḠiiūiGii > 0 , i = 1, . . . ,m} ,
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Figure 7.1: Single-Port DC circuit connected to a CPL.

where we used the fact that for all i = m+ 1, . . . , n, Rii + Zii = Rii > 0. Hence, the
set Ωp can be defined in terms of lower bounds on∇H , i.e.,

Ωp = {x ∈ Ω+ : ∇H(x)i > −
Ḡiiūi
Rii

, i = 1, . . . ,m} . (7.38)

The rest of the proof follows analogously to the proof of Theorem 7.2.7, and is hence,
omitted. �

Note that the set Lkd in this case is the ellipsoid(x1 − x̄1√
2kd
M11

)2

+
(x2 − x̄2√

2kd
M22

)2

+ · · ·+
(xn − x̄n√

2kd
Mnn

)2

< 1 . (7.39)

7.2.5 Application to DC Networks with Constant Power Loads (CPL)

In this section, we apply the proposed method to study the stability of equilibria of,
single-port and multi-port, DC networks with CPLs.

Single-port system

A schematic representation of a DC network with a single CPL is shown in Figure 7.1.
Observe that the combination of the resistive load rp and the CPL, acts as a ZIP load
connected to the capacitor C. In view of Remark 7.2.4, the current sink is omitted for
brevity.

Define the state vector x = col(q, ϕ), where q is the capacitor charge and ϕ is the
inductor flux. Then the network can be modeled by

ẋ = (J −R)∇H(x) +G(x)u+ uc , x ∈ Ω+ , (7.40)

with H = 1
2x
>Mx and

M =

[
1
C 0

0 1
L

]
, J =

[
0 1

−1 0

]
, R =

[
1
rp

0

0 r`

]
, (7.41)
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and uc = col(0, vg), u = −P , where P > 0 is the power extracted by the CPL. The
input matrix is

G(q, ϕ) =

[
C
q

0

]
,

which is well defined in the set

Ω+ = {(q, ϕ) ∈ R2 | q > 0}.

The equilibria of the system (7.40), (7.41) are computed in the following lemma.

Lemma 7.2.9 [Equilibria of the system (7.40)-(7.41)]
The system (7.40)-(7.41) admits two equilibria given by

q̄s = Crp
vg +

√
∆

(r` + rp)
, ϕ̄s = L

rpvg −
√

∆

r`(r` + rp)

and

q̄u = Crp
vg −

√
∆

(r` + rp)
, ϕ̄u = L

rpvg +
√

∆

r`(r` + rp)
,

where

∆ := v2
g − 4

r`(rp + r`)

rp
P.

The equilibrium points are real if and only if ∆ > 0 or equivalently

P 6 P e
max, P e

max :=
rpv

2
g

4r`(r` + rp)
. (7.42)

Through straightforward computations, it can be shown that the Jacobian of the vec-
tor field in the right hand side of (7.40), has a positive eigenvalue at the equilibrium
point (q̄u, ϕ̄u) and hence it is unstable. Furthermore, it can be shown that for small
values of the load power, the Jacobian is negative definite at the equilibrium point
(q̄s, ϕ̄s). �

Considering the results of Lemma 7.2.9, we continue with the equilibrium (q̄s, ϕ̄s) as
the candidate for nonlinear stability analysis. To use the results of Corollary 7.2.5, we
first compute

R+ Z(q, ϕ) =

[
1
rp
− C2P

q̄sq
0

0 r`

]
. (7.43)

Next, we observe that R+ Z(q̄s, ϕ̄s) > 0 if and only if

P < P s
max, P s

max :=
rpv

2
g

(rp + 2r`)2
. (7.44)
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Hence, according to Corollary 7.2.5, if the condition (7.44) is satisfied, then the
equilibrium (q̄s, ϕ̄s) is asymptotically stable. Note that if P < min{P e

max, P
s
max}, then

the existence of the asymptotically stable equilibrium point (q̄s, ϕ̄s), is guaranteed.

Remark 7.2.10 [CPL as a negative resistor]
Let v̄ := q̄s

C denote the voltage of the CPL at the equilibrium (q̄s, ϕ̄s). Then the
physical equivalent of the term −C

2P
q̄sq

in (7.43), is the inverse of a nonlinear negative
resistor with the resistance

rCPL(v) :=
(C2P

q̄sq

)−1

=
v̄v

P
.

This resistor is in parallel with rp, i.e.,

R+ Z(q, ϕ) =

[
1
req

0

0 r`

]
,

where req(v) :=
(

1
rp
− 1

rCPL(v)

)−1 is the equivalent resistor. Interestingly, the physical
interpretation of the condition (7.44) is that the equivalent resistance of the resistor
rp and the CPL, is positive (passive) at the equilibrium point, i.e., req(v̄) > 0. �

Next, using Corollary 7.2.8, we derive an estimate of the ROA of (q̄s, ϕ̄s). Bearing in
mind that the dissipative matrix R is diagonal, and using Lemma 7.2.6, we compute
Ωp as

Ωp = {(q, ϕ) ∈ R2 : q > qmin},

where

qmin := Prp
C2

q̄s
=

P

Pmax
q̄s > 0 . (7.45)

The interpretation of (7.45) is that the closer the load power to Pmax is, the smaller
the ROA is.

Now assume that (7.44) holds. Using Corollary 7.2.8, the set Lkd with

kd = H(qmin, ϕ̄s) ,

is an estimate of the ROA. Furthermore, using (7.39), we can rewrite this set as the
oval ( q − q̄s√

2Ckd

)2

+
(ϕ− ϕ̄s√

2Lkd

)2

< 1 . (7.46)

This set guarantees q > qmin for all solutions starting within the oval.
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Table 7.1: Simulation Parameters of the Single-Port CPL

vg(V) r` (Ω) rp(Ω) L(µH) C(mF) P (kW)

24 0.04 0.1 78 2 1

Figure 7.2: Phase plane of the system (7.40)-(7.41) with the parameters given in Table 7.1.

We evaluate our results by a numerical example of the network shown in Fig.
7.1, with the parameters given by Table 7.1. The maximum power for existence
of the equilibrium and its local stability are computed as P e

max = 2.57 kW and
P s

max = 2.33 kW, respectively. Note that the CPL satisfies the conditions (7.42) and
(7.44), since

P < P s
max < P e

max.

Figure 7.2 shows the phase plane of the system (7.40)-(7.41). The estimate of the
ROA (the oval (7.46)) is shown in blue, and all other converging solutions are shown
in light gray. It is evident that the proposed method provides an appropriate estimate
of the ROA, as the solutions just beneath this region (in dark gray), diverge from the
equilibrium.
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Multi-port networks

In this section, we investigate the stability of a complete multi-port DC network with
CPLs. Let iM ∈ Rl represent the currents of the inductors, and vC ∈ Rc denote the
voltages of the capacitors, where l and c are the number of inductors and capacitors.
Then, the dynamics of the network can be described by [73]

[
Cv̇C

Li̇M

]
=

[
−Y −Γ>

Γ −Z

] [
vC

iM

]
−

[
〈vC〉−1

0l c

]
P + uc , (7.47)

where C > 0 ∈ Rc×c and L > 0 ∈ Rl×l and are matrices associated with the
magnitude of capacitors and inductors (and mutual inductances), Y ∈ Rc×c and
Z ∈ Rl×l are positive definite matrices associated with the resistances, and Γ ∈ Rl×c
is the matrix associated with the network topology. Also, the power of the CPLs is
denoted by P = col(P1, ..., Pc). The vector uc ∈ Rc+l is constant and its components
are linear combinations of the voltages and currents of the sources in the network.
We assume that the capacitors and the inductors are not ideal, i.e., we consider that
all the inductors have a resistance in series and the capacitors posses a resistor in
parallel. Moreover, we assume that the constant power loads are connected to a
capacitor in parallel. This feature amounts for the capacitive effect of the input filters
for this type of loads; see [12, 26, 28].

With a little abuse of notation, define the state vector x = col(q, ϕ) ∈ Rc+l and
the control vector u = −P ∈ Rc, where q ∈ Rc denotes the electric charge of the
capacitors, and ϕ ∈ Rl denotes the magnetic flux of the inductors. Then the net-
work dynamics of the multi-port network given in (7.47) admits a Port-Hamiltonian
representation given by

ẋ = (J −R)∇H(x) +G(x)u+ uc,

with H = 1
2x
>Mx and

M =

[
C−1 0

0 L−1

]
, J =

[
0 −Γ>

Γ 0

]
, R =

[
Y 0

0 Z

]
.

Similar to the case of the single-port RLC circuit with a CPL, and using Theorem
7.2.7, an ellipsoid can be computed here as an estimate of the ROA.
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7.2.6 Application to Synchronous Generators connected to a CPL

In this section, we apply the results to the case of a synchronous generator, modeled
by the improved swing equation, connected to a CPL.9

ṗ = (J −R)∇H(p) +G(p)u+ uc, (7.48)

with

p = Mω, J = 0, R = Dm +Dd, G(p) =
M

p
= ω−1

H =
1

2M
p2, u = −Pe, uc = τm +Ddω

∗,

(7.49)

where p ∈ R+ is the angular momentum, M > 0 is the total moment of inertia of the
turbine and generator rotor, ω ∈ R+ is the rotor shaft velocity, ω∗ > 0 is the angular
velocity associated with the nominal frequency of 50 Hz, Dm > 0 is the damping
coefficient of the mechanical losses, Dd > 0 is the damping-torque coefficient of the
damper windings, τm > 0 is the constant mechanical torque (physical input), and Pe
is the constant power load.

Assume that

P <
(Ddω

∗ + τm)2

4(Dd +Dm)
.

Then the dynamics (7.48), (7.49) has the following two equilibria

ω̄s =
Ddω

∗ + τm +
√

∆

2(Dd +Dm)
, ω̄u =

Ddω
∗ + τm −

√
∆

2(Dd +Dm)
,

with ∆ := (Ddω
∗ + τm)2 − 4(Dd +Dm)Pe. We have

R+ Z(ω) =Dd +Dm −
Pe
ω̄sω

.

The equilibrium point ω = ω̄s is asymptotically stable since

R+ Z(ω̄s) =
τm +Ddω

∗

ω̄s
> 0.

Through straightforward computations, it can be shown that the set Ωp in (7.38) can
be written as

Ωp = {ω ∈ R>0 : ω > ω̄u} . (7.50)

9As studied in Chapter 6, an inverter with a capacitive inertia connected to a CPL can be modeled by
similar dynamics.
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Table 7.2: Simulation Parameters of the Synchronous Generator (p.u.)

M Dm Dd Pe τm

0.2 10−6 10−4 3 0.0027

0 10 20 30 40 50 60 70
0

20

40

60

80

Figure 7.3: Solutions of the system (7.48),(7.49) with different initial conditions.

In this set, the shifted HamiltonianH = 1
2M(ω− ω̄s)

2 is strictly decreasing. Therefore
the solutions get closer to the equilibrium ω̄s and move away from the point ω̄u as
time goes by. Consequently the set Ωp in (7.50) is forward invariant and represents
the estimate of the ROA. In fact, as shown in Chapter 5, this is not an estimate, but
the exact region of attraction.

Figure 7.3 shows the trajectories of a number of solutions of the system (7.48)-
(7.49), with the parameters given by Table 7.2, and with different initial conditions. It
is clear that the proposed method successfully identifies a very precise estimate of
the ROA (blue), as all the solutions starting from outside the ROA estimate (black)
diverge from the equilibrium.

7.2.7 Conclusion

In this section, a class of pH systems was investigated, where the control input/
disturbance acts on the power of the system. We refer to these systems as Power-
controlled Hamiltonian (PwH) systems. First, a model for such systems was proposed,
and second, the condition on which the system is shifted passive was computed.
Using these results, the stability of equilibria was investigated. Furthermore, an
estimate of the region of attraction was derived for PwH systems with quadratic
Hamiltonian. The proposed modeling and conditions were derived and computed
for two cases of interest in practice: A DC circuit and a synchronous generator, both
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connected to constant power loads. Finally, the validity and utility of the proposed
method was confirmed by numerical examples of these case studies.



Chapter 8

Conclusions

“A conclusion is simply the place where you got tired of thinking.”
– Dan Chaon, Stay Awake

M
ICROGRIDS are sustainable and robust building blocks of the future power
networks. In this thesis, we investigated the modeling and control of
power systems in microgrids from different aspects. The main contribu-

tions of this dissertation, together with the points that can be considered for carrying
forward the work of this thesis, are summarized in the following lines:

• We investigated how output impedances affect the inductivity and resistivity
of the distribution lines, and proposed a metric to measure the inductivity of a
(homogeneous) network with output impedances. The results show that the
more connected the network is, the more output impedance diffuses into the
network and the larger its effect will be. Examples showed that the impact
of inductive output impedances on the network can be maximized in specific
network topologies. Results of a comparison of our method with a phasor-based
Kron reduction confirmed the validity and the effectiveness of the proposed
metrics.

As an extension to these results, it is interesting to see that how the inductivity
of a non-homogeneous network can be measured. Moreover, a relevant issue is
to derive analytical solutions on maximizing the network inductivity/resistivity
ratios. Although it was shown numerically, it is also of interest to investigate,
analytically, the effect of network inductivity ratio on the performance of the
droop-based methods.

• We proposed a master-slave microgrid architecture, where a synchronous gen-
erator is the master, and power converters act as the slaves. We showed that
stability and frequency regulation can be achieved by using conventional PI
controllers. Furthermore, we provided an implementation for the proposed
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inverters. Numerical results confirmed that, without the need to any commu-
nication, the proposed network reaches frequency regulation and optimized
power sharing.

In this work, we assumed that the phase locked loop is ideal. Therefore, a
future possibility to extend these results, is to include the dynamics of the
phase locked loop. Moreover, it is of interest to investigate how to relax the
assumption of purely inductive lines, and to examine if reactive power sharing
can be achieved using a similar method; based on voltage dynamics.

• We investigated the properties of an improved swing equation to model syn-
chronous generators. We derived a set within which the system is shifted
passive. Using this result, we designed an integral controller and showed
that frequency regulation can be achieved for a system that consists of a syn-
chronous generator connected to a constant power load. Furthermore, we
looked into the case of a synchronous machine connected to an infinite bus, and
provided an estimate of the region of attraction. Numerical results depicted
that, in most cases, the behavior of the improved swing equation is different
from the conventional swing equation.

In this work, we neglected the voltage dynamics, and hence a relevant issue is
to investigate the stability with the dynamics including the improved swing
equation together with synchronous generator voltage dynamics.

• We studied inverters with capacitors as the energy reservoirs, that emulate
inertia of synchronous generators. We showed the stability of these inverters
connected to constant power loads, and of a network of these inverters con-
nected to each other. Aiming at frequency regulation, we designed a control
method, and indicated that the stability and frequency regulation are guaran-
teed exploiting the proposed controllers.

We used the phasor notation for the analysis of the network. An open problem
is a time-domain analysis using the third order model in [69]. Furthermore,
it is of interest to extend the results to structure-preserving and differential
algebraic models [14, 91, 111, 135].

• We derived conditions under which a pH system with a convex Hamiltonian is
shifted passive. This result enabled us to study the (global) stability of forced
equilibria of the pH systems. Interestingly, the aforementioned condition is
independent of the states for quadratic affine pH systems. We showed the
utility of the results on the sixth-order synchronous generator model.

Future works include attempting to reduce possible conservatism in the stability
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conditions as well as deriving conditions for shifted passivity of the systems
with a state dependent input matrix.

• Power-controlled Hamiltonian (PwH) systems are a class of pH systems, where
the control input/disturbance acts on the power of the system. We proposed
a model for these systems and showed that, as long as the trajectories belong
to a specific set, the system is shifted passive. Using these results, we derived
conditions for asymptotic stability of the equilibrium, and characterized an
estimate of the region of attraction for PwH systems with quadratic Hamiltonian.
The application of the results on two important physical systems (DC circuits
and synchronous generators, connected to constant power loads), confirms the
validity of the results.

A possible extension of this work is to design high-performance controllers
with guaranteed stability domains. It is also of interest to extend the results to
state-dependent structure and dissipation matrices, e.g., the sixth-order model
of the synchronous generator.
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[9] Barabanov, N., Ortega, R., Griñó, R., and Polyak, B. (2016). On existence and stability of
equilibria of linear time-invariant systems with constant power loads. IEEE Transactions on
Circuits and Systems I: Regular Papers, 63(1):114–121.

[10] Barabanov, N., Schiffer, J., Ortega, R., and Efimov, D. (2017). Conditions for almost global
attractivity of a synchronous generator connected to an infinite bus. IEEE Transactions on
Automatic Control, 62(10):4905–4916.



114 BIBLIOGRAPHY

[11] Beck, H. P. and Hesse, R. (2007). Virtual synchronous machine. In 9th International
Conference on Electrical Power Quality and Utilisation, pages 1–6.

[12] Belkhayat, M., Cooley, R., and Witulski, A. (1995). Large signal stability criteria for
distributed systems with constant power loads. In Power Electronics Specialists Conference,
1995. PESC ’95 Record., 26th Annual IEEE, volume 2, pages 1333–1338.
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Summary

This thesis addresses several problems related to modeling and control of power systems in
microgrids, as summarized in the following lines.

First, a method is established to measure the effect of the addition of output impedances
on the inductivity of a (homogeneous) RL network. With this addition, the overal network
is comprised of lines with different inductivity ratio R

L
. We define a measure to evaluate the

inductivity behavior of the overall network. Then we compute this measure for homogeneous
networks with RL output impedances, and conclude that the more connected the network
is, the more output impedances diffuse into the network. Numerical simulations show that
optimizing the effect of output impedances, based on the proposed measure, can lead to a
better performance of droop-controlled power converters.

Second, we propose a master-slave architecture for microgrids, in which the source with the
highest generation capacity acts as the master. The master increases/decreases the generated
frequency according to a decrease/increase in the load respectively. The rest of the sources
measure this change in frequency, and proportionally inject power into the network. It is
shown that this system is stable and remains synchronized for all times. In addition, power
sharing can be achieved among the sources, without the need to any communication network.

Third, we aim at finding a model for synchronous generators which, compared to the
swing equation, predicts better the behavior of the system, and yet it is easy to use. For this
purpose, we eliminate a simplifying assumption, namely the assumption of constant angular
momentum, in deriving the swing equation, and obtain an improved swing model. Incremental
passivity properties of this model are shown, which paves the path for a controller design.
The stability of a synchronous generator modeled with the improved swing equation is then
shown in the cases where it is connected to a constant power load and an infinite bus.

As a fourth problem, we look into the problem of lack of inertia in networks with dominant
renewable energies. First we model the power converters with large capacitors acting as inertia.
Then we carry out stability and synchronization analysis for a network of these converters. We
show that, by using appropriate controllers, frequency can be regulated to its nominal value.

Fifth, we investigate the shifted passivity property of port-Hamiltonian systems with strictly
convex Hamiltonian. We establish conditions, in terms of monotonicity of suitably constructed
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functions, under which the system is shifted passive. These conditions naturally guarantee
stability of forced equilibria of pH systems. As a case study, we apply this results to the
sixth-order model of a synchronous generator connected to a resistor.

Finally, a subclass of port-Hamiltonian systems is developed in this thesis that can be
described as power-controlled Hamiltonian systems, where the control input or disturbance is
acting on the power entering the system. Consequently, we investigate the shifted pasivity of
such pH systems, and characterize a region of attraction for stability of the equilibrium. An
interesting application of the proposed model is to verify stability of a DC circuit connected to
a constant power load.



Samenvatting

In dit proefschrift worden verschillende problemen in de modelvorming en regeling van
vermogenssystemen in microgrids bestudeerd.

Ten eerste is een methode verkregen waarmee het effect van het toevoegen van uit-
gangsimpedanties op de inductiviteit van een (homogeen) RL netwerk kan worden gemeten.
Als gevolg van deze toevoeging ontstaan in het gehele netwerk transmissielijnen met ver-
schillende inductiviteitsratio R/L. We hebben een maat gedefinieerd waarmee het inductieve
gedrag van het gehele netwerk geëvalueerd kan worden. Vervolgens hebben we deze maat
berekend voor homogene netwerken met RL uitgansimpedanties, en concluderen dat hoe meer
het netwerk verbonden is, hoe meer uitgangs impedanties zich in het netwerk verspreiden.
Numerieke simulaties tonen aan dat, gebaseerd op de voorgestelde maat, het optimaliseren
van het effect van uitgangsimpedanties kan leiden tot een betere prestatie van droop-controlled
vermogensomzetters.

Ten tweede wordt een master-slave architectuur voor microgrids voorgesteld waarin de
bron met de hoogste generatiecapaciteit fungeert als de master. De master verhoogt/verlaagt
de gegenereerde frequentie in overeenstemming met een toename/afname in de vermo-
genslast. De rest van de bronnen meten deze verandering in frequentie, en injecteren propor-
tioneel aan deze verandering vermogen in het netwerk. Er wordt aangetoond dat dit systeem
stabiel is en gesynchroniseerd blijft op ieder tijdstip. Daarbovenop kan vermogensdeling
tussen de bronnen worden bereikt zonder dat daar een communicatienetwerk voor nodig is.

Ten derde hebben we getracht een model te vinden voor synchrone generatoren dat,
vergeleken met de swing equation, het systeemgedrag beter voorspelt en tevens gemakkelijk
in het gebruik is. Om dit te bereiken elimineren we een vereenvoudigende aanname, namelijk
de aanname van constant impulsmoment, in het afleiden van de swing equation waarmee
een verbeterd swing model wordt verkregen. Voor dit model worden verschoven passiviteits
eigenschappen aangetoond, waarmee de weg is vrijgemaakt voor regelaarontwerp. Vervolgens
wordt stabiliteit van een synchrone generator gemodelleerd met de verbeterde swing equation
aangetoond voor situaties waarin deze verbonden is met een constante vermogenslast en een
oneindige bus.

Het vierde probleem waarnaar we hebben gekeken is het gebrek aan traagheid in netwerken
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met dominante renewable energies. Eerst modelleren we de vermogensomzetters met grote
condensatoren die de rol van traagheid vervullen. Vervolgens voeren we een stabiliteits- en
synchronisatie-analyse uit voor een netwerk van deze omzetters. We tonen aan dat door het
gebruik van geschikte regelaars de frequentie kan worden geregeld naar de nominale waarde.

Ten vijfde hebben we de verschoven passiviteitseigenschap van poort-Hamiltonse (pH)
systemen met een strikt convexe Hamiltoniaan onderzocht. We hebben voorwaarden verkre-
gen waaronder het systeem verschoven apssief is in termen van monotoniciteit van passend
geconstrueerde functies. Deze voorwaarden garanderen uit zichzelf stabiliteit van opgelegde
evenwichten van pH systemen. In een case study passen we deze resultaten toe op een
zesde-orde model van een synchrone generator verbonden met een weerstand.

Ten slotte is in dit proefschrift een sub-klasse van poort-Hamiltonse systemen ontwikkeld
welke kan worden aangeduid als vermogens-geregelde Hamiltonse systemen. Hierbij grijpt
de ingang van de regelaar of de verstoring aan op het ingaande vermogen van het systeem.
Vervolgens hebben we de verschoven passiviteit van zulke pH systemen onderzocht, en een
gebied van attractie gekarakteriseerd voor de stabiliteit van het evenwicht. Een interessante
toepassing van het voorgestelde model is het verifiren van stabiliteit van een gelijkstroom
elektrisch netwerk verbonden met een constante vermogenslast.


