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Abstract

As renewable energy sources with power-electronic interfaces become functionally and

economically viable alternatives to bulk synchronous generators, it becomes vital to

understand the behavior of these inverter-interfaced sources in ac grids devoid of any

synchronous generation, i.e. inverter-based grids. In these types of grids, the inverters need

to operate in parallel in grid-forming mode to regulate and synchronize their output voltage

while also delivering the power required by the loads. It is common practice, therefore,

to mimic the parallel operation control of the very synchronous generators that these

inverter-based sources are meant to replace. This practice, however, is based on impractical

assumptions and completely disregards the key differences between synchronous machines

and power electronic inverters, as well as the dynamics of the dc source connected to the

inverter. This dissertation aims to highlight the shortcomings of conventional controllers and

derive an improved grid-forming inverter controller that is effective in parallel ac operation

without sacrificing dc-link stability.

This dissertation begins with a basis for understanding the control concepts used by

grid-forming inverters in ac grids and exploring where existing ideas and methods are

lacking in terms of efficient and stable inverter control. The knowledge gained from the

literature survey is used to derive the requirements for a grid-forming control method that is

appropriate for inverter-based ac grids. This is followed by a review and comparative analysis

of the performance of five commonly used control techniques for grid-forming inverters,

which reveal that nested loop controllers can have a destabilizing effect under changing

grid conditions. This observation is further explored through an impedance-based stability

analysis of single-loop and nested-loop controllers in grid-forming inverters, followed by a

review of impedance-based analysis methods that can be used to assess the control design

iv



for grid-forming inverters. An improved grid-forming inverter controller is proposed with

a demonstrated ability to achieve both dc-link and ac output stability with proportional

power-sharing. This dissertation ends with a summary of the efforts and contributions as

well as ideas for future applications of the proposed controller.
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Chapter 1

Introduction

Increased grid modernization efforts and the need to shift away from fuel-based generation

has led to a steady increase in the penetration of inverter-interfaced renewable energy sources,

as represented in Fig. 1.1. The percentage of loads interfaced with the grid through

power electronics is also increasing. As the share of inverter-interfaced sources increases

in the generation mix, conventional grid-connected inverters will be unable to fulfill the role

of synchronous generation. The grid characteristics will be altered by both the addition

of distributed generation and inverters as well as the removal of fuel-based synchronous

generation. To completely replace this synchronous generation, inverters need to form the

grid rather than follow it. Thus, there has recently been a growth in research efforts in

realizing grid-forming inverters.

Today, most inverters are operated in grid-following mode and controlled to feed the

system with predefined active power and reactive power. In a system solely supported by

inverter-interfaced sources, they will need to be able to adapt to load demand. Hence, there

is a need to develop grid-forming controllers that do not simply support the grid during

emergencies but can completely sustain the grid without any bulk synchronous generation.

This type of grid, which is dominated by inverter-interfaced sources, is sometimes referred

to as an isolated microgrid. However, to not be constricted by the specific characteristics of

microgrids, this type of grid will henceforth be referred to as an inverter-based grid, which

has the following requirements [9]:

1



1. Alternating Current System

Although HVDC systems and hybrid AC/DC microgrids are gaining more popularity,

the majority of distribution and transmission systems are still operated using

alternating current. There are also some benefits provided by using an AC system

rather than a DC system in terms of protection, existing infrastructure and degrees

of freedom for sensing and actuation. Designing inverter controls for the existing AC

system will not require additional modifications to the existing grid infrastructure

and operation paradigms, and will enable a smoother and economical transition into

inverter-based systems.

2. Multi-inverter Synchronization

All nodes in an AC system should always operate at the same frequency. This frequency

can be easily maintained at a constant value by inverter controls. However, the phase

angle is a time-varying function and needs to be estimated relative to other devices in

the system.

3. Power Balance

Under steady-state conditions, the electrical power consumed by the loads should

match the power generated by the inverter-interfaced sources. In other words, these

sources should not only meet the demand of rated loads but also be able to tolerate

some degree of overloading. However, this overload capacity should not be achieved

through the oversizing of inverters since they achieve peak efficiency at about half of

their rated power. Lower power output will lead to lower efficiency. [10].

4. Dispatchability

Inverter controls need to have the ability to follow power setpoints, or in other

words, create dispatchable sources. These setpoints are usually determined by higher

levels of control for optimization purposes or driven by markets. Unlike synchronous

generators that have energy reserves in their rotating masses, the level of dispatchability

for inverter-interfaced sources will be determined by the type of source, operating

conditions, and inverter constraints.
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5. Stable and reliable function

Inverter controls should be able to quickly and effectively respond to any type

of disturbance or outage, maintaining frequency and voltage magnitudes within

acceptable ranges. Even though inverters, in general, have the ability to react

faster than synchronous generators, conventional control techniques embedded in grid-

connected inverters force them to react as slowly, if not slower, than machines. Inverters

should have the capability to black start and restore the system following an outage.

This means that inverters need both the active power capacity to pick up instantaneous

loads and the reactive capability to energize the network.

6. Backward compatibility with traditional grids

While inverter-interfaced renewable sources are steadily increasing in the generation

mix, a complete shift to inverter-based systems will not occur in the very near future.

In the meantime, smaller, isolated, inverter-based systems may need to connect with

synchronous generators without deteriorating their performance and stability.

To be clear, although large-scale renewable sources can, and have been, integrated into

the grid at transmission levels, the scope of this work is limited to distribution-level, low-

voltage inverter-based AC grids.

Contemporary control methods and assumptions have been derived for fuel-based

synchronous generation. Synchronization methods are based on an intrinsic link between

frequency and power balance among generators, rotor inertia determines transient stability

limits, and droop control is predominantly used for both synchronous and distributed

generation. However, most of these assumptions do not apply to inverter-based grids.

The disturbance response of synchronous generators is determined by their innate physics,

whereas the response of power electronic devices is determined by their control system. The

grid topology and types of loads also have a huge impact on the control and operation of

the system. Therefore, although inverters can be forced to act like synchronous generators,

they should not be expected to perform exactly like them. While this may appear to be a

drawback with inverter-based grids, they actually provide additional possibilities to control

the power balance which can be chosen by design. Moreover, in the absence of a physical
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relationship between frequency and inverter control, the operating frequency can be kept

constant, thus reducing the risks associated with high rates of change of frequency and

nadirs. Frequency stability and its associated indicators such as total inertia and damping

ratio, may not perfectly characterize system stability and resilience in inverter-based grids.

Most inverter manufacturers concur that inverters can tolerate large frequency fluctuations

and the standard frequency ride-through range can be widened.

Inverters provide faster controls and increased dynamic performance, but they are

also affected by high frequency dynamics, unlike synchronous generators. Hence, the

increase in power electronics as a result of increasing renewable generation presents new

opportunities for grid control and reliable operation as well as unfamiliar challenges. Many

grid-forming control methods today are largely based on emulating the rotating mass physics

of synchronous machines in the control loop. While these machine-emulating methods may

provide sufficient control in steady state and in the presence of a stiff voltage, they are

not able to cope with post-contingency stabilization and other new challenges specific to

the power electronic behavior of non-synchronous generation. This disconnect between the

dynamics of power electronic devices, the physics of distributed resources, and power system

needs is the motivation behind this study. It is wasteful to force physical rules derived

from bulk generation in inverter control that are not inherent in inverters and suppress the

enhanced capabilities offered by them.

Contrary to popular belief, the lack of inertia in inverter-based grids is not the main

impediment to higher penetration of renewable sources; it is the lack of appropriate

controllers designed to fully utilize power electronic capabilities in extracting maximum

power from distributed generation. The DC link voltage is more indicative of power

imbalance than frequency and is a valuable control signal. Hence, DC link stability should

be given more importance than frequency stability when designing inverter controllers. This

can not only enhance grid operation but also assist in grid planning by shifting the focus

away from the rules dictated by the presence of synchronous machines.
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Figure 1.1: Future power grids will consist of considerably more distributed, power
electronics-based generation and loads [1]
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Chapter 2

Literature Review

The transition from synchronous generation to inverter-interfaced, distributed generation

diminishes the system inertia and stiff voltage support that conventional grid control

relies upon. The endeavor to design an inverter controller that harnesses the capabilities

offered by inverters needs to have a foundation of existing inverter control concepts and

an understanding of current issues impeding the progress of inverter-based grids. For the

purposes of this discussion and the following analysis, the term inverters will only include

voltage-source converters (VSCs) because they are more commonly used for interfacing

renewable sources with the grid and have well-established control paradigms. Although

current source converters (CSCs) offer natural short circuit protection, voltage boosting and

simpler ac-filter structure, they suffer from high conduction losses and require large inductive

storage on the dc side [11], and are not a popular choice for interfacing distributed generation

to the grid.

2.1 Control Methods for Parallel Inverters

There exist several categories for classification on inverter control methods, none of which

are universally accepted. Some of the basic control concepts are obtained from low-power

applications of parallel inverters such as uninterrupted power supply (UPS) systems, and

thereby have an inherent hierarchical structure. The most prevalent categories are shown in

Fig. 2.1, and these classifications will be used to define the scope for comparing grid-forming

6



control in inverter-based grids. Because this work focuses on improving the system-level

performance of grid-forming inverters at the primary control level, the classification chart in

the figure is only populated for the relevant fields (in bold) and is by no means, an exhaustive

list.

Classification based on hierarchy [12]:

1. Primary control uses local measurements to stabilize the voltage and frequency, and

properly share the active and reactive power between parallel inverters. It responds

to any disturbance within a timescale of milliseconds to seconds to guarantee system

stability. Primary control receives setpoints (such as references for active and reactive

power) from and sends measurements (voltage, current and frequency) to secondary

control.

2. Secondary control compensates for the deviations caused by primary control actions

to enhance system performance and stability. It uses non-local measurements and

has a bandwidth of a few Hertz (minutes to hours). Secondary control actions are

coordinated by tertiary level control.

3. Tertiary control is used to optimize the economic operation of the grid by controlling

the reserves and power flow between larger areas and microgrids. These supervisory

actions can take from a few hours up to days.

Classification based on operation mode [13]:

1. In grid-forming mode, the inverter regulates the voltage magnitude and frequency

without the support of bulk generators, albeit similar to them. Since they operate in

voltage-control mode, they are usually represented as an ideal ac voltage source with a

low-output impedance. In this mode, the feedback signals for both the inner and outer

loop controls use inputs from the rest of the ac grid. This mode is normally reserved

for emergencies where bulk generation is unavailable but applies well to the case of

isolated ac grid that is supplied solely by inverter-interfaced sources.

2. In grid-following (or grid-feeding) mode, the inverter maintains synchronism with the

rest of the grid while providing a certain amount of active and/or reactive power.
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Figure 2.1: Defining scope of study based on control method classification

Figure 2.2: Hierarchical Control Levels
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Since they operate in current-control mode, they are usually represented as an ideal

current source with a high output impedance. In this mode, the feedback for the inner

loop comes from the rest of the ac grid, while the outer loop uses feedback from the

input terminals of the inverter. In contemporary power systems, inverters are normally

operated in grid-following mode and rely on the assumption of a stiff voltage.

Grid-following inverters are essentially current-controlled voltage source inverters and

cannot respond instantly to a change in load demand. Since these inverters are

completely dependent on measurements, there is a measurement and processing delay

embedded in the control loop. On the flip side, current-controlled converters are less

susceptible to transient phenomena like load changes or power variations.

3. Grid-supporting inverters are the middle ground between grid-forming and grid-

following inverters. They use additional control loops to regulate their output active

and reactive power to provide voltage and frequency support. Hence, they can be

represented either as an ideal current source with a shunt impedance or an ideal voltage

source with a series link impedance. Grid-supporting inverters are designed to function

as synchronous generators would and can operate in both grid-connected and islanded

modes. Therefore, they are usually controlled using power or voltage/frequency droop.

Classification based on controller structure [14]:

1. The outer loop of an inverter control structure is either used for regulating output power

in grid-following mode or voltage (or power factor) in grid-forming mode. This loop

runs slower than and provides current references for the inner control loop. This loop

interacts with external actors such as supervisory controllers, measurement devices and

coordinating load sharing with other devices. While the outer power control loop uses

feedback from the grid for grid-following inverters, grid-forming inverters establish the

outer voltage control loop around the output capacitor.

2. The inner loop is used to regulate inverter current in both grid-forming and grid-

following modes. This loop has a faster response than the outer control loop and uses

feedback from the output inductor. This loop can often include feedforward signals

from the inductor to enhance the inverter transient response.
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Figure 2.3: Inverter Controller Operating Modes: a) grid-forming, b) grid-following, c)
voltage-controlled grid-supporting and d) current-controlled grid-supporting [2]
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Classification based on type of control network [15]:

This classification of control networks is applicable to all three layers of hierarchical control

mentioned above, but the following descriptions and illustration in Fig. 2.5 will be limited

to the primary level only.

1. In a centralized network, data is collected from each device (or node) in the system and

transmitted to the central controller. The central controller then processes the data

and sends control signals to each device. Therefore, a two-way communication channel

is required between each node and the central controller, which makes the network

dense and expensive. Although the control implementation in centralized networks

is comparatively easy, it is not conducive for plug-and-play operation and also has a

single point of failure, which makes the entire system highly vulnerable.

2. In a decentralized network, all the devices in a system are not dependent on a central

controller but rather use local information to drive their own control actions. Unlike

a centralized network, it requires little to no communication channels and hence, is

ideal for plug-and-play operation. Since there is no single point of failure, each device

can function properly regardless of the state of any other device. However, this also

means that there is a lack of coordination between the devices, and a reduced ability

to optimize the system.

3. Distributed networks combine the best features of centralized and decentralized

networks. A distributed network divides a larger system into small control clusters with

individual controllers that interact with each other. This way, there is no single point of

failure for the whole system, but there is coordination between different clusters. This

network requires two-way communication channels between each node in a cluster, and

between each cluster, which makes the communication topology less expensive than

that of a centralized network. Hence, this type of network is well-suited for the variable

nature of inverter-based grids and facilitates plug-and-play operation as well as system

optimization.
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Figure 2.4: Nested Control Structure

Figure 2.5: Types of Control Network: a) Centralized b) Decentralized and c) Distributed
[3]
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2.1.1 Nested Control Loops

Most inverter controllers use a nested loop (or cascaded control) structure to realize specific

functions in each operating mode as described in Table 2.1 [16].

Due to the nature of grid-following and grid-supporting control, there is a need to have

control loops dedicated to specific functions. Ultimately, the grid properties determine the

selection of the inner loop controller. Reference [14] provides a comprehensive review of inner

loop controllers. On the other hand, grid-forming controls operate voltage source inverters as

voltage sources and do not require an inner current control loop. Nevertheless, the following

shortcomings of contemporary single-loop voltage control structures have encouraged the use

of nested loop structures [17]:

1. With a single loop to control ac and dc voltage, there is no explicit current limiting

control to protect the power electronic device.

2. The voltage measurement across the capacitor may not provide accurate or sufficient

information about the grid.

3. There is no scope to include a feedforward signal to compensate for load variations and

harmonic disturbance.

The inner current control loop thus enables a current consensus between parallel inverters

and regulates load sharing. An efficient inner current control loop should have high

bandwidth, fast dynamic response, low current distortion, and the ability to damp output

filter resonance. The faster response of the inner control loops compared to outer control

loops ensures reasonable decoupling between the two and linearizes the control system. The

saturated current reference generated by the outer loop provides overcurrent protection.

In grid-following and grid-supporting modes, the inner current control loop can also help

maintain the dc bus voltage. Although the feedforward term offers load compensation, it

requires measurement of the total load current in the grid.
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2.2 Grid-Forming Control

Voltage source inverters are generally used for interfacing distributed generation with the

grid, while current source inverters are largely used in motor drive applications. However,

for grid-connected operation, voltage source inverters are transformed into current sources to

feed active and reactive power to the grid. As a virtual current source, these inverters require

a stiff grid and prior knowledge of system loads. Even grid-supporting inverters, which do

not necessarily need a synchronous generator to impose a stiff frequency, are normally only

used to balance the voltage and frequency of the grid. Moreover, current-controlled inverters

cannot respond instantly to load change. On the other hand, grid-forming inverters have

some unique features that make them ideal for inverter-based grids [18]:

• They control voltage source inverters as dispatchable voltage sources with independent

control of voltage and frequency. The output current is then determined by the system

loading conditions and the inverter current limits. Their ability to function as an

”infinite bus” is limited by the size and strength of the dc source.

• Since they do not rely on a stiff grid for synchronism, grid-forming inverters impose

the grid voltage frequency and phase angle reference through their own controls and

are capable of blackstart operation without a dedicated phase-locked loop (PLL).

• Grid-forming inverters are voltage-controlled and have a smaller output impedance

compared to grid-following inverters, which makes them suitable for weak ac grids.

Generally, in isolated microgrids, there is only one grid-forming inverter to establish the

grid voltage while the other inverters function in grid-following mode. This configuration

lacks redundancy and the grid cannot be sustained in the absence of the single grid-forming

inverter. To overcome this and ensure reliability, multiple grid-forming inverters should be

used. Since grid-forming inverters are viewed as replacements for synchronous generation,

several existing grid-forming control methods are derived from synchronous generators to

induce the physical synchronization and stabilization mechanisms in inverters that are

inherent in synchronous generators. Some of the existing grid-forming controls are described

in Table 2.2.
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2.2.1 Droop Control

Droop control is the most commonly used grid-forming control method in islanded or

isolated microgrids. In fact, some authors even assume that any grid-forming control will

have implicit droop characteristics [19]. Droop enables decentralized control of parallel

inverters, thereby avoiding any need for communication between them. The premise is

to linearly couple voltage and frequency to active and reactive power. This type of control

enables inverters to be controlled similar to synchronous generators by programming droop

characteristics into their controllers, as shown in Fig. 2.6. It can be easily applied in grid-

following mode as well and can switch between the two modes as needed.

Droop control is familiar, easy to implement, avoids high complexity and cost, and

facilitates plug-and-play operation. It is also supported by immense research efforts into

developing adaptive schemes specific to low-voltage grids and microgrids. However, droop

control has some major drawbacks:

1. Since droop control schemes are based on the steady-state operation of synchronous

generators and use average values of active and reactive power over a cycle, they have

a slow transient response to any disturbance. This response is also under-damped in

case of inverter-based grids and can cause significant power oscillations [20].

2. Large volt/var droop gains, where the reactive power is highly sensitive to voltage, can

cause the inverters to interact with each other. This interaction is more likely if two

or more inverters use the same, large droop gains and can cause unstable oscillations

[21].

3. There is a trade-off between accurate active and reactive power sharing (which requires

larger droop gains) and low frequency and voltage deviation in steady state (which

requires smaller droop gains). Moreover, at lower X/R ratios there is an increased

mismatch in power sharing [22] due to increased coupling between active and reactive

power. Conventional droop schemes assume highly inductive lines which is not the

case in low-voltage grids. This further increases the trade-off.
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Table 2.1: Control Loop Functions

Control

Loop
Grid-Forming Grid-Following Grid-Supporting

Outer
Regulates inverter

output voltage

Tracks dc-link voltage

or output power

Support grid voltage regulation

by adjusting reactive power

delivered to grid

Inner

Compensates

dynamic variations in

current

Tracks current

reference to deliver

set power

Tracks current reference to

support voltage regulation

Figure 2.6: Droop control block diagram [4]
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4. Conventional droop control also requires the inverters to have equal output impedance

and voltage setpoints to achieve proportional load sharing. Unequal line impedances

between sources result in large circulating currents between them, reducing the

accuracy of load sharing [23].

5. Droop control is also significantly affected by changes in system parameters such as

droop coefficients and dynamic properties of the network, source and loads. This limits

the stable operation of the grid to a small region and requires further adaptive schemes

[24].

6. Conventional droop control does not consider harmonic power sharing in the presence

of non-linear loads. Focusing solely on fundamental power sharing can lead to

harmonic circulating currents and poor power quality from non-linear loads. Including

harmonic components for proportional power sharing will further add delay to the

power measurement module and slow down the dynamic response [25].

7. In grids isolated from bulk generation, grid voltage and frequency are load-dependent.

In these cases, droop control is unable to generate fixed voltage and frequency

waveforms that are independent of system load. Furthermore, droop control is also

unable to support blackstart operation [26].

8. Droop curve settings also impact control loop gains and bandwidth, and thereby

controller behavior. Large droop gains can not only saturate the control loop but

also cause instability [27].

In the next chapter, droop control will be used as the baseline for comparing the

performance of the following grid-forming control methods:

2.2.2 Synchronverter

There exist numerous techniques for controlling parallel inverters by emulating the inertial

characteristics and damping of electromechanical oscillations inherent to synchronous

machines. These techniques typically embed reduced-order and differential algebraic models
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of synchronous machines (SM) into the control logic, which depend on accurate ac side

measurements.

As explained in [5], a synchronverter operates the inverter as a synchronous generator by

replacing the mechanical inertia in the swing equation with power on the dc bus. By imitating

the control behavior, the inverter also assumes other attributes of synchronous generators

in terms of disturbance response and inertia emulation. In other words, the parameters

normally defined for synchronous generators can also be used to set up the synchronverter,

which enables the application of conventional synchronous control methods. It can also

operate as a synchronous motor, which makes it the most flexible of the machine-emulating

methods. The synchronverter control structure is presented in Fig. 2.7. The main advantages

of synchronverters are that they produce the same dynamics as synchronous generators, they

can be operated both in grid-forming and grid-following modes, and they are not reliant on

voltage or current reference tracking.

2.2.3 Matching Control

The matching control concept introduced in [33] utilizes the structural similarities between

synchronous generators and inverter models to control the dc link similar to a mechanical

rotor. Instead of using a synchronous generator model to derive control references, this

strategy involves the use of dc link voltage to drive the frequency of a harmonic oscillator.

The internal model of this oscillator is embedded into the controller and drives the inverter

modulation. In this way, the controller effectively uses dc link voltage as a measure of

power balance, akin to the power-frequency response in machines. Further active power

tracking is achieved by directly controlling the dc current, which in turn controls the voltage

and regulates the oscillator frequency. This is graphically represented in Fig. 2.8. This

type of control is essentially derived from the links between dc link voltage and frequency,

and rotor torque and dc converter current. Matching control does not require any ac-side

measurements and is not burdened by measurement and processing delays. It only uses

dc-side measurements which are local and readily available.
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Table 2.2: Synchronous Machine-Emulating Inverter Control

Virtual Synchronous

Machine [28]

• Uses current references from SM model

• Behaves as current source connected to grid

Virtual Synchronous

Generator [29]

• Uses voltage references from SM model

• Uses energy storage to add virtual inertia

Synchronous VSC [30]
• Adjusts dc-link voltage to make the VSC dc-link act as a

virtual rotor

Inducverter [31]

• Emulates induction motor instead of synchronous machine

• Eliminates need for PLL

• Adds virtual inertia

Synchronous Power

Controller [32]

• Cascaded control system with an outer voltage loop and

an inner current control loop through the use of a virtual

admittance
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Figure 2.7: Synchronverter control structure [5]

Figure 2.8: Matching control using dc bus measurements
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2.2.4 Virtual Oscillator Control

Similar to matching control, virtual oscillator control (VOC) emulates the dynamics of

nonlinear (Van der Pol) oscillators in the inverter controller. But unlike matching control,

VOC uses droop-like functions using time-domain signals (instead of phasors) to regulate the

voltage output. VOC uses the self-synchronizing properties of nonlinear oscillators to achieve

synchronization among a network of coupled (virtual) oscillators without any communication.

The inverter output current is extracted from the oscillator circuit to estimate the capacitor

voltage, which is ultimately used to drive the inverter modulation [34]. VOC is sometimes

regarded as a superset of droop control, encompassing all the desired features of droop control

while providing superior voltage regulation and dynamic load sharing even under nonlinear

conditions [35]. The dispatchable version of VOC allows for the power setpoints to be set

by the operator/central controller and adds a layer of controllability [6]. Fig. 2.9 shows the

control diagram for VOC. Nonetheless, VOC suffers from a trade-off between response time

and frequency deviation.

2.2.5 Direct Voltage (V-f) Control

Also known as the single-loop voltage source inverter control, V-f control is the most

straightforward control scheme to implement in grid-forming inverters. Under V-f control,

both the voltage magnitude reference and frequency are constant [36] . The single-loop

controller is used to control the dc-link voltage in grid-following applications and for ac

voltage regulation in grid-forming applications, as shown in Fig. 2.10. This control

scheme is most useful in leader/follower topologies, where multiple grid-following inverters

follow a ’leader’ grid-forming inverter. In the case of multiple grid-forming inverters, the

synchronizing phase angle needs to be shared between them via communication channels.

Therefore, this type of control does not enable decentralized operation or dispatchability.

2.2.6 Partial Grid Forming

To avoid being restricted by the strict distinction between grid-forming and grid-feeding

control, [37] proposes a partial grid forming method using parallel inverters. This control
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Figure 2.9: Virtual Oscillator Control [6]

Figure 2.10: V-f control block diagram
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scheme extends the grid-supporting droop control concept to prove that an inverter-based

grid can be sustained without a dedicated grid-forming inverter. The authors expand

the common categories described above to include frequency-forming and voltage-forming

operation modes. Thus, one inverter imposes the grid frequency and follows the grid voltage

while the other inverter forms the voltage magnitude and follows the grid frequency. The

power output of each power unit can also be controlled through the droop curves. The main

drawback of this scheme is that losing either one of the partial units will collapse the grid.

Even though this type of control will not be used in the comparative study, this survey of

grid-forming control methods would be incomplete without it.

2.3 Control Challenges in Inverter-Based Grids

As mentioned earlier, while the proliferation of inverters provides new possibilities for grid

control and power sharing, they also present new challenges unlike those faced by traditional

grids supported by synchronous generators. A grid lacking synchronous generation is

normally described as a weak ac grid and has lower inertia, lower X/R ratio, lower short

circuit ratio and higher grid impedance, compared to traditional ac grids. The major system-

level challenges in effectively operating parallel inverters in such low-voltage, weak ac grids

are listed below:

1. In case of low short circuit ratio, the control action of each inverter influences the grid

voltage as well the control loops of other inverters.

2. In the presence of lower X/R ratio, voltage and frequency dynamics are highly

coupled, thereby making it difficult to guarantee voltage and frequency stability in

the traditional sense [38]. These complex values of line impedance also cause coupling

between active and reactive power.

3. In the absence of a stiff voltage, the voltage at the point of common coupling becomes

dependent on the grid impedance, the outputs of the inverters, and the local loads.

Hence, the dynamics of the inverters are no longer decoupled.
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4. In inverter-based grids, the network topology and the interactions between line and

inverter impedances have a significant impact on system stability [39]

5. Some instability issues specific to parallel inverter operation are [40]:

(a) Inverters controlled in a decentralized manner (which is the case for most grid-

forming control strategies) are greatly affected by sudden load changes, which can

cause power sharing instability in the low frequency range.

(b) The fast dynamics in the inner control loops and high order filters of parallel

inverters interact with each other and cause harmonic resonance in the high

frequency range.

6. Inverters have a very limited safe thermal operating range and cannot provide large

short-circuit currents required by conventional overcurrent and differential protection

schemes.

7. Compared to synchronous generators, power electronic sources lack considerable energy

reserves and have a narrow overload capacity (typically 1.1 times the rated power) [41].

8. Non-linearities of loads and inverters as well as multiple resonance modes of network

impedance in inverter-based microgrids make power quality control more challenging

[42].

9. Owing to the insensitivity of synchronous machines to short-term disturbances, there

are no response requirements immediately after a disturbance. An increasing presence

of power electronics shrinks all control and response timescales and hence requires

specific requirements for instantaneous response during and after transients. The

difference in time constants and response to events also requires different methods

for analysis [9].

There are also certain device-level limitations inherent in the operation and control of

power electronics, which need to be considered when designing inverter controllers [43]:

1. Unstable interactions between inverter and grid
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Unlike synchronous machines, the physical dynamics of inverters are on similar

timescales as the grid network dynamics, which causes unstable dynamic coupling

between the inverter and the grid. For systems with high X/R ratios, there is a large

margin for inverter controllers to be faster than traditional synchronous control while

avoiding any unstable coupling effects. But in the case of lower X/R ratios of low or

medium voltage distribution grids, this margin for avoiding unstable coupling between

the inverter and the grid is reduced, which limits the effectiveness of the controller.

2. Inherent actuation delays

Inverter behavior is determined by the nature of control algorithms, which require

the measurement of ac voltage and current measurements. These measurements

are processed by each control loop to determine setpoints and drive the Pulse

Width Modulation. Hence, the inverter controller has implicit delays associated

with measurement and signal processing. Thus, while having more control loops

offers additional features and degrees of control, they also add to the control delay.

Communication-enabled, distributed controls can also add communication lags to the

control loop, even though they provide some benefits for wide-area control. Considering

the faster timescales of dynamics in inverter-based low-inertia systems, these delays

could have a greater impact on overall system stability.

3. Current Limits

As mentioned earlier, the tight thermal range for power electronic devices puts strict

limits on inverter current which cannot be circumvented in case of any contingency. In

fact, these restrictions have encouraged the widespread use of nested control structures

with inner current loops that limit the inverter output current.

2.4 Designing an Ideal Grid-Forming Controller

All of the grid-forming methods described here are sufficiently capable of controlling parallel

inverters in inverter-based grids. Whether implicitly or explicitly, most of these methods

introduce synthetic inertia into the controller to mimic the behavior of synchronous machines.
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They do so by embedding a synchronous generator model or the swing equation into the

control law (synchronverter, matching control), emulating the frequency-power relationship

inherent to synchronous machines (virtual synchronous generators), or simply applying

traditional, synchronous control techniques (droop control) [44]. Nonetheless, the absence

of inertia is not necessarily an impediment to effectively controlling parallel inverters, and

adding virtual inertia to inverters does not always have the desired impact. The natural

inertial response of machines cannot be artificially generated in inverters due to the existence

of control and measurement delays in the inertia emulation loops [45]. In the absence of

synchronous generation and mechanical inertia, there is no natural coupling between the

distributed generation and the grid. This means that the interaction between them, as well as

the inverter response, is determined by the control scheme rather than the electromechanical

properties. Therefore, there are certain details specific to inverter-based systems that should

be considered when evaluating the performance of any grid-forming control.

2.4.1 Proportional Power Sharing

The first and foremost concern in controlling multiple independent grid-forming inverters

is how to share the load among them. In grids formed by distributed generation, the line

impedance can vary significantly from one point to another, which affects power sharing

between inverters. Any variation in line impedance greatly affects droop control and other

methods that utilize an inner current control loop. Power sharing between parallel inverters

is also affected by non-uniformity between inverters in terms of output impedances and

component tolerances. The mismatch in line impedances is normally compensated by

virtual impedance schemes which require prior and complete knowledge of system impedance

or cumbersome impedance estimation [46]. Besides, the addition of virtual resistance to

improve current sharing couples the fundamental sequences and magnifies the output voltage

distortion of inverters.

In such systems, the load may also be distributed which makes it impractical to

measure total system load and then determine power setpoints for each source accordingly.

Therefore, an effective power sharing technique should be robust to line impedance variations,

independent of load measurements, and compensate for differences in inverter components.
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In other words, the ability of grid-forming inverters to dispatch should be robust to external

system variations.

2.4.2 Incorporating Power Electronic Dynamics at the System

Level

Many control methods assume stiff dc voltage control, bulk dc supply, and time-scale

separations between the ac side and dc side control. This assumption of a stable dc voltage

stemming from a seemingly infinite dc source is clearly visible in numerous simulation studies.

The studies that model inverters as ideal sources regardless of the source type or capacity.

However, from the above discussion, it is clear that those assumptions are not feasible for

inverter-interfaced sources. These sources are not only limited in terms of reserves but also

usually intermittent. Guaranteeing a stiff dc supply would also require an impractically

large dc capacitor. Hence, modeling power electronic sources as bulk generators hides the

impacts that inverter controllers can have on dc-link stability and completely ignores dc-

link dynamics. Transient events in grids supported by such limited energy reserves have an

adverse impact on dc link voltage dynamics, which is a major stability concern for inverter-

based systems [47].

Furthermore, because grid-forming inverters are expected to act as infinite buses, they

also assume, at a higher level, the dc source to be boundless. As explained in [48], maximum

power point tracking on the dc end of photovoltaic (PV) systems and voltage (grid-forming)

control on the ac end do not complement each other. When feedback loop gains for grid-

forming inverters are high, the closed-loop impedance of the inverter acts like a negative

incremental resistor and pushes the dc voltage to collapse. Thus, even when there is sufficient

PV power to meet the load demand, the dc interface may become unstable when it tries

to achieve maximum power. This type of behavior is usually disregarded when designing

inverter controllers, which is problematic. Finally, designing controllers for ideal sources also

ignores the fact that energy storage and electric vehicle charging inverters need to operate

in both inverting and rectifying modes.
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2.4.3 Droop-less Synchronization

In bulk power systems, mechanical inertia serves as a proxy for nodal frequency dynamics

across the network. But in the case of lower inertia provided by power electronic inverters

and their output filters, the electrical physics dominate the grid dynamics more than the

mechanical relation between inertia and frequency [49]. Hence, synchronization using PLLs is

not suitable for multiple grid-forming inverters in inverter-based grids. Moreover, PLLs have

adverse impacts on inverter output impedance, controls and system stability in low-voltage,

low-inertia ac systems [50]. While some grid-forming methods obviate the need for a PLL,

some methods like droop control have similar impacts on the inverter controller as PLLs [51].

Since the frequency will no longer represent the health of the grid, it can be kept constant by

inverter controllers. In the absence of substantial inertia, distributed feedback control plays

an important role in maintaining stable voltage and frequency waveforms among parallel

inverters in the presence of variations and exogenous disturbances [49]. Distributed control

algorithms could also play a major role in this regard.

2.4.4 Independence from Rigid Control Structures

Currently, there are no universally accepted and applied control schemes. One reason for this

is the ambiguity in classification of these schemes. The strict hierarchy of operation modes

and nested control loops ignores the actual inverter behavior and misrepresents the scope of

the problem [43]. Under blackstart and unbalance conditions, it is not possible to guarantee

different time constants between the inner and outer control loops, which makes the design

subject to control parameterization. This will cause dynamic coupling between the two loops

and diminish the controller performance. Besides, the outer loop is nonlinear, difficult to

tune, and introduces complexity and time delay into the control system. At the same time,

interactions between the inner control loops of different inverters can cause instability .

To overcome the shortcomings of nested control loop structures, a parallel control block

structure may be used. This type of controller should have the following characteristics [14]:

• dc voltage regulation with minimum error

• Maintain power quality and stability in the presence of non-linear elements and loads
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• Robust to system parameter changes

• Mirror frequency decoupled, or decoupled in the synchronous reference frame

• High loop gain at fundamental frequency to reduce steady-state voltage error

• Fast and stable response to disturbances

In conclusion, an effective grid-forming inverter should have well-defined angle, frequency,

and dc link voltage characteristics, and should function well in both rectification and

inversion modes, similar to the motor and generator modes of synchronous machines.
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Chapter 3

Comparison of Grid-Forming Controls

in an Inverter-Based ac System

To design a better grid-forming control method for inverter-based grids, it is important to

study and compare the features, benefits, and drawbacks of existing grid-forming control

methods. The main requirements identified for an effective grid-forming control strategy in

weak ac grids are [19]:

• Compatibility with realistic dc sources like photovoltaics (PV) and energy storage

• Limiting inrush current during startup and load change

• Synchronization of parallel inverters

• Stability of interconnected grid-forming inverters

• Backward compatibility with synchronous generators

• Robustness to system topology changes

This chapter continues with a description of the design and development details of the

Simulink model for an inverter-based grid consisting of two different distributed resources.

The lessons learned from the previous chapter are used to develop a more realistic system that

better represents power electronic and individual resource behavior at the power system level

while still maintaining relatively fast simulation speeds. The literature review also informs

the selection and implementation of the test cases used to compare the performance of each
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control method. The results from the analysis are finally used to draw conclusions regarding

the best features that should be incorporated into an ideal grid-forming controller.

3.1 Simulink Model of Inverter-Based ac Grid

The inverter-based grid used in this study comprises of one photovoltaic array (PV), one

energy storage system (BESS), and two ZIP loads. For brevity, the sources will henceforth

be referred to as PV and BESS, respectively. The ZIP loads are comprised of 30% Z-load

(constant impedance), 30% I-load (constant current) and 40% P-load (constant power).

The sources and loads are connected in a simple radial topology to form an inverter-based

grid, as shown in Fig. 3.1. Each section of the grid is separated by pi line sections with

a baseline X/R ratio of 1, which is reasonable for low-voltage, low-inertia grids. The two

inverters are connected to the grid through LCL filters with parameters that have been

selected to avoid any distortions caused by resonance with the grid components. LCL

filters have recently become a popular option due to smaller inductor sizes (lower cost and

weight), better attenuation of high-frequency harmonics, reduced power consumption, and

lower current ripple.

Unlike most simulation studies, the inverters are represented by average models of three-

phase dc/ac converters instead of ideal three-phase voltage sources, and the sources behind

each inverter are represented by photovoltaic and battery models instead of ideal dc sources.

The PV array uses a single diode model with a temperature- and light-dependent current

source, diode, and series and shunt resistances. The default Simulink PV model was adapted

for Opal-RT simulation. The PV system has a constant irradiance of 1000 W/m2 and

temperature of 40°C. The energy storage system uses a generic battery model to simulate

the charge and discharge characteristics, as well as the temperature effects of a Lead-acid

battery. The battery has a default state-of-charge of 60%. Further information about each

of these models can be found in [52].

Since the PV and BESS sources use single voltage source converters, they require a

boost stage before the dc/ac interface, which is a boost converter in the PV model and a

bidirectional half-bridge converter in the BESS model. The ZIP load is modeled using three
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single-phase current sources and has adjustable ZIP coefficients and P-Q setpoints, which

are used as follows:

PZIP = Pref (pzV
2
pu + piVpu + pp) (3.1)

QZIP = Qref (qzV
2
pu + qiVpu + qp) (3.2)

where pz, pi and pp are the coefficients for output active power, and qz, qi and qp are the

coefficients for output reactive power. Also, pz + pi + pp = qz + qi + qp = 1.

By utilizing and adapting the available Simulink models for each source, the grid model

captures the inverter dynamics, the interaction of the control system with the dc-dc converter,

and the physical limitations of each type of source. The scope of this analysis, however, is

limited to the behavior on the ac side of each inverter, and the interaction between the

inverters and the ac grid. Since the focus is more on the inverter controllers than the

performance of the power electronics, the average models of three-phase voltage source

converter and dc-dc converters prove sufficient. Also, the inverter models in Simulink do

not allow for rating specifications and hence, the thermal limitations of inverters are not

modeled here. Ultimately, the inverter output is limited by the control logic and source

capacity.

3.2 Implementation of Grid-Forming Controllers

Each source inverter can be controlled in five different ways: droop control, synchronverter

control, matching control, dispacthable virtual oscillator control, and direct voltage and

frequency control. On the other hand, each source uses a different method to control its dc

output: PV uses maximum power point tracking (MPPT) with a boost converter, and BESS

uses closed-loop duty cycle control with a bidirectional half-bridge converter. Since both the

BESS and PV systems use the same dc/ac interface, the implementation for each of the five

control methods is identical. Some of the control methods use an explicit current controller

with feedforward which receives direct (d) and quadrature (q) axes current references as

inputs from the outer voltage control loop and produces d-q axes voltage references for

PWM control, as shown in Fig. 3.3.
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Figure 3.1: Simulink Model of Inverter-Based Grid

Figure 3.2: Voltage Source Converter with LCL Filter
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Figure 3.3: Inner Current Controller in Droop Control and dVOC
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3.2.1 Droop Control

Droop control regulates the output frequency and voltage of the inverter using active power

(Pmeas) and reactive power (Qmeas) values respectively [4]. This trade-off relationship is

defined by droop curves:

ω = ωref +mpPmeas (3.3)

v = vref +mqQmeas (3.4)

where mp and mq are droop gains. The integral of frequency (ω) provides the phase angle

for synchronizing the PWM signal and the voltage output of the droop controller is used by

a PI-controller against a d-axis voltage reference (Vdref ) to get a reference for d-axis current

(Idref ). The q-axis current reference is set to zero (Iqref = 0). These references are used as

inputs for the inner current control loop mentioned above, as shown in Fig. 3.4.

3.2.2 Synchronverter

Synchronverters induce synchronous generator dynamics in the inverter output by applying

the rotor swing equation to the dc bus [5]. The output frequency is defined by:

Jω̇ =
1

ωref
(Pref − P ) +Dp(ωref − ω) (3.5)

where J is the virtual inertia constant, ω is the frequency, P is the active power, and Dp is

the damping factor with ref denoting the reference values.

The output voltage is defined by:

v̂ = 2ωMf if ˜sinθ (3.6)

where Mf is the virtual mutual inductance and if is the excitation current. The

synchronverter produces the frequency and phase angle references similar to droop control.

However, unlike droop control, the synchronverter does not have an explicit inner current

control loop, and thus no current limitation. The output current is used to calculate active
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and reactive power only. The “emf voltage” of the synchronverter is derived using the

equations above and used to drive the PWM signal.

3.2.3 Matching Control

Matching control is similar to synchronverter control in the sense that it embeds synchronous

generator dynamics into the dc link capacitor. By correlating the dc capacitance to

mechanical inertia, the dc link voltage can be used to drive the frequency of a virtual

harmonic oscillator, while the ac voltage is regulated by a simple PI controller [33]. The

output voltage magnitude and frequency are then used to derive the PWM signal.

θ̇ = ω = kθvdc (3.7)

Here, θ is the phase angle, ω is the frequency, kθ is the frequency control gain, and vdc is the

dc voltage.

v̂ =< kp(vref − ||v||) + ki

∫ t

0

(vref − ||v||)dt, ˜sinθ > (3.8)

In eq. 3.8, kp and ki are the PI control gains, vref is the voltage reference, and ||v|| is the

measured voltage magnitude. The output voltage v̂ is a vector with phase ˜sinθ.

3.2.4 Dispatchable Virtual Oscillator (dVOC)

Dispatchable VOC uses droop-like functions in the time domain to synchronize parallel

inverters similar to a network of coupled oscillators [6]. The reference voltage (vdq) is

generated in the synchronous reference frame according to the dVOC control law:

d

dt
vdq = ωrefJvdq + η(Kvdq −R(κ)idq +

α

v2ref
(v2ref − ||vdq||2)vdq) (3.9)

where

R(κ) :=

cos(κ) −sin(κ)

sin(κ) cos(κ)

 is the rotation matrix

κ := tan−1(ωL/R) is the inductance to resistance ratio
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J := R(π/2)

K :=
1

v2ref
R(κ)

 pref qref

−qref pref


η and α are virtual oscillator design parameters, ωref and vref are frequency and voltage

references, idq is measured current, and ||vdq|| is the measured voltage magnitude. This

voltage reference is the input for a PI controller which produces the current references for

the current controller described above, as shown in Fig. 3.5.

3.2.5 Direct Voltage (V-f) Control

As mentioned in the previous chapter, distributed direct V-f control requires communication

between the inverters to synchronize the phase angle while the frequency is fixed at 60 Hz

through a constant oscillator signal. The communication is enabled using signal flags in the

simulation and assumes zero communication delay. dc and ac voltage control is established

in the synchronous reference frame as follows [36]:

vdref = kp(vdc−ref − vd) + ki

∫ t

0

(vdc−ref − vd)dt (3.10)

vqref = kp(vac−ref − vq) + ki

∫ t

0

(vac−ref − vq)dt (3.11)

where vd is the d-axis voltage, vq is the q-axis voltage, kp and ki are the PI control gains, vdc

is the dc voltage, and vac is the ac voltage with ref denoting reference signals.

3.3 Comparing Controllers

Three different loading scenarios have been designed to test the performance of each grid-

forming control method based on the requirements mentioned at the beginning of this

chapter. For each test case, one set of results is generated using one type of control in

both PV and BESS inverters. The voltage control loops in each type of controller have the

same PI control gains as do all the current control loops in droop, dVOC, and synchronverter.

This enables a fair comparison of the control law utilized in each controller. The Simulink
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Figure 3.4: Droop Control Structure in Simulink

Figure 3.5: Dispatchable Virtual Oscillator Control in Simulink
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Table 3.1: System and Controller Parameters

Nominal Voltage 500 V

Nominal Load 5 kW, 5 kVar

Nominal Frequency 60 Hz

PV rated power 25 kVA

BESS rated power 10 kVA

LCL Filter
L= 0.1 mH, Rl= 10 mΩ,

C= 70 µF, Rc= 0.6 Ω

Droop curve gains mp= 0.01, mq= 0.001

dVOC parameters η= 100, α= 3.6, κ = π/2

Matching control parameters kθ= 0.0015

Synchronverter parameters Dp= 0.02, J= 0.005
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model has been designed to run on the Opal-RT platform, which allows for accelerated

simulation speeds compared to the MATLAB runtime engine. It also prepares the model to

be used in future testing with controller-in-the-loop using Opal-RT. The model parameters

are given in Table 3.1.

3.3.1 Equal Loads

In the equal loads test case, the PV and BESS inverters are equally loaded throughout the

simulation. This serves as the base case with ideal conditions in terms of equal output

impedances for each inverter. At 1.0 s, the circuit breaker is closed between PV and BESS.

The oscillating voltage in Fig. 3.6 is accompanied by oscillating output current in Fig.

3.7 for dVOC. The output currents for droop control and synchronverter do not change

throughout the simulation and remain stable. On the other hand, there exists a small

phase difference in the output voltages for matching and V-f controllers which leads to

circulating currents between the PV and BESS sections when they are connected. For the

matching inverters, the circulating current reduces as the controllers try to synchronize. The

circulating currents between V-f controlled BESS and PV persist due to the constant phase

difference between the two caused by the use of a constant oscillator signal without real-

time synchronization. This issue can be overcome by using secondary or tertiary frequency

response and synchronization methods.

Fig. 3.6 shows the ac output voltage for both inverters. Synchronverter, matching and

V-f controllers reach the rated level before the load is picked up and are stable after it. The

droop controller takes 100 ms to stabilize while the dVOC takes 500 ms to stabilize after

load pickup. After the breaker between the two sections is closed, there is no discernible

effect on the output voltage for any of the controllers.

The (input) dc-link voltages for droop and synchronverter controllers in Fig. 3.8 remain

stable after load pickup as well as breaker closing. The dc-link voltages for dVOC inverters

suffer some disturbance after the load is picked up but is not affected by the breaker closing.

The PV dc-link voltage for both matching and V-f controllers is affected more than the BESS

dc-link voltage. In matching controllers, frequency/phase synchronization is achieved using

a form of dc voltage-frequency droop control. Hence, when the two connected inverters are
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trying to synchronize with each other (and reduce the circulating current between them),

the PV dc-link voltage slowly tries to match the BESS dc-link voltage. On the contrary, the

PV dc-link voltage for V-f controlled inverter stays constant at the the lower value after the

disturbance at 1 s.

The frequency waveforms in Fig. 3.9 show that all five controllers are able to regulate

the output frequency very well, even with the output frequencies of dVOC controllers trying

to adjust for 500 ms after load pick-up. This shows that sudden changes in load have a

larger impact on the output frequency of dVOC compared to the other controllers. Any

other disturbances presented are a result of output voltage oscillations which impact PLL

measurements, rather than actual changes in frequency.

The PV MPPT output for droop, synchronverter and dVOC inverters remain stable

after the load is fully picked up and unaffected by the breaker closing, as seen in Fig. 3.10.

For the instance of matching controllers, the increase in dc output at 1 s shows that the

circulating currents flow from PV to BESS until the inverters are synchronized. At this

point, the PV output returns to the original output level. The V-f control results reveal that

the circulating currents flowing from PV almost halve the PV output efficiency by moving

out of the MPPT (constant power) region into the constant current region, where the dc-link

voltage can collapse.

3.3.2 Unequal Loads

For the unequal loads test case, ZIP load 1 is set to draw an additional 2.5 kW throughout

the simulation. The timeline is the same as in the equal loads scenario. Fig. 3.11 shows

that there is no change in the output voltage behavior for synchronverter, matching and V-f

controlled inverters. However, droop control and dVOC outputs fall out of phase when the

breaker is closed between the PV and BESS sections. This behavior can be explained with

the help of the frequency and dc-link voltage behavior. Similar to the previous case, the

circuit breaker between PV and BESS is closed at 1.0 s.

The output current waveforms in Fig. 3.12 show that both droop and dVOC inverters

have circulating currents flowing between the two sections after the breaker closes. This

happens as a result of the frequency difference between the inverter outputs. When the PV
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Figure 3.6: Inverter Output Voltage for Equal Loads Case

42



Figure 3.7: Inverter Output Current for Equal Loads Case
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Figure 3.8: Inverter dc-Link Voltage for Equal Loads Case
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Figure 3.9: Inverter Output Frequency for Equal Loads Case
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Figure 3.10: PV MPPT Output Power for Equal Loads Case
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Figure 3.11: Inverter Output Voltage for Unequal Loads Case

47



Figure 3.12: Inverter Output Current for Unequal Loads Case
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inverter is loaded with an additional 2.5 kW without changing the droop/dVOC gains, the

frequency drops below 60 Hz, as shown in Fig. 3.14. When these asynchronous sections

are connected, large circulating currents start flowing between them whose magnitude is

proportional to the dc voltage difference between the inverters. The average models of

inverters do not include any overcurrent protection that would trip the inverter off in this

situation, but it is also clear that the implicit current limiting provided by the nested control

structure for droop and dVOC is unable to diminish these circulating currents. Additionally,

Fig. 3.14 shows that while droop is able to synchronize after the breaker closes, dVOC loses

its ability to properly regulate the output frequency.

Meanwhile, in Fig. 3.12, the V-f controlled inverters behave similarly to the equal loads

case with the same level of circulating currents, while the matching-controlled inverters do not

suffer from circulating currents in spite of the same phase error between their outputs (which

are eventually synchronized). The synchronverters, unlike the equal loads case, experience

a phase disturbance as the two inverters try to share power equally. The inverters return to

a synchronized state once the output currents have returned to their original levels. There

is no change in the output frequency or dc-link voltage behavior for the synchronverter,

matching and V-f controllers in Figs. 3.14 and 3.13, compared to the previous case. The PV

output power results in Fig. 3.15 show similar behavior to the equal loads case for matching

and V-f controlled inverters. The PV output for synchronverter drops as the two inverters

try to share the load equally but then returns to the original value when the AC outputs

are synchronized. Droop and dVOC inverters exhibit an increase in PV output power when

the circulating currents start flowing. Ultimately, the synchronverter, matching and V-f

controlled inverters are sufficiently stable regardless of the loading conditions.

3.3.3 Load change

To further test the capabilities of each controller, this test case creates a step change in

ZIP load 1 after the PV and BESS sections (with equal loads) are connected. While the

previous scenarios focused on the impact of changing grid conditions on the inverter controller

stability, this test will emphasize the power sharing capability of each controller during
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Figure 3.13: Inverter dc-Link Voltage for Unequal Loads Case
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Figure 3.14: Inverter Output Frequency for Unequal Loads Case
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Figure 3.15: PV MPPT Output Power for Unequal Loads Case
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parallel operation. In this case, the circuit breaker between PV and BESS is closed at 0.7 s

and ZIP load 1 changes from 5 kW to 7 kW at 1.0 s.

It should be noted that although ZIP load 1 takes around 150 ms to respond to the load

change signal (similar to the startup condition). As in the case of unequal loads, the output

voltages for synchronverter, matching and V-f controllers in Fig. 3.16 are stable, whereas

those for the droop controller and dVOC lose synchronism. The large drop in the output

voltage for droop controllers can be attributed to the circulating currents that start around

1.2 s in Fig. 3.17, and are approximately 30 times the nominal current. Meanwhile, the

dVOC inverters are no longer able to regulate the output voltage magnitude or frequency

and experience similarly large circulating currents. The parallel synchronverters have a

smooth increase in output current which is proportional to the load change, albeit with

some distortion. Although the matching and V-f controllers experience circulating currents

post breaker connection, they are also able to easily accommodate the load increase. In all

three cases, the PV inverter picks up more load than the BESS inverter because it is closer

(has a lower impedance connection) to ZIP load 1.

Similar to the previous case, the inverter output instability for the droop control and

dVOC is also reflected in the dc-link voltage and output frequency results in Figs. 3.18

and 3.19 respectively. For dVOC inverters, this is represented by a significant drop in the

PV dc-link voltage, whereas the dc voltages for both droop inverters drop to 30-40% of the

nominal value. The droop controller is also able to stabilize the output frequency but the

dVOC is not. This shows that droop and dVOC inverters do not have a stable response to

sudden load changes. Increasing the size of the dc-link capacitor can make the dVOC output

more stable under these conditions, which demonstrates the issues that dVOC inverters have

with limited dc sources. These figures also show that the synchronverter, matching and V-f

inverters remain stable through the breaker closing and load change.

Similar to the unequal loads case, the results in Fig. 3.20 show that synchronverter is

stable and efficient during the breaker closing and step load change, matching-controlled

PV output experiences an increase after the breaker closing, and V-f controlled PV loses

efficiency when the two sections are connected. Droop and dVOC outputs experience
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Figure 3.16: Inverter Output Voltage for Load Change
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Figure 3.17: Inverter Output Current for Load Change
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Figure 3.18: Inverter dc-Link Voltage for Load Change
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Figure 3.19: Inverter Output Frequency for Load Change
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Figure 3.20: PV MPPT Output Power for Load Change
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unstable oscillations/transients after the load is increased which ultimately settle at a higher

value to support the circulating currents.

3.3.4 Bidirectional Power Flow

In many analyses of control strategies, the converter only operates in inverting mode,

irrespective of the dc source. There are only a handful of dc/ac control studies that take into

account the rectifier operation, mostly in the case of electric vehicle charging applications.

However, bidirectional dc-dc converters add complexity to the dc/ac converter control which

should not be ignored. Hence, all grid-forming controllers are separately tested when the

battery has a low state of charge (20%) and is charged by the PV system.

In Fig. 3.21, positive power represents battery discharging (inverter mode) and negative

power represents battery charging (rectifier mode). All controllers are deployed as is, without

tuning the droop gains for rectifier operation or modifying the synchronverter parameters

to operate as a motor. The results show that droop control, synchronverter, and dVOC

without these modifications are unable to support the battery charging function. When

the PV section is connected to the BESS section at 0.5 s, the synchronverters and droop-

controlled inverters continue to operate in regular inverting mode, while dVOC becomes

unstable. The similarities among these three control methods lie in their disregard for dc

quantities and the presence of implicit or explicit current control. The two methods which are

able to support rectifier operation, namely matching and V-f control, both directly control

dc voltage without any inner control loops.

3.3.5 Compatibility with Synchronous Generators

The Simulink model is not used for analyzing the interaction of grid-forming inverters with

synchronous machines since the same can be found in the literature. The study in [7]

compares the performance of a similar set of grid-forming controllers in the presence of

synchronous machines in a low-inertia grid. The structures of the dc source connected to

the converter model and the (inductive) grid network are shown in Fig. 3.22 a) and b),

respectively. It analyzes the responses of and interactions between the inverters and the
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synchronous machine during separate contingencies involving load change and loss of the

machine. The benchmark for the analysis is a system with three identical synchronous

generators and no grid-forming converters. This study found that, contrary to popular

concern, integrating grid-forming inverters with synchronous machines actually improves

frequency stability compared to traditionally strong grids, regardless of the control method.

Replacing machines with grid-forming inverters reduces the values of frequency nadirs and

rate of change of frequency, as well as the power imbalance, which is attributed to the fast

response of inverters.

In the absence of an unlimited dc source, all controller types except for matching control

are unable to cope with large load disturbances. Droop control, dVOC and synchronverter

regulate dc and ac quantities independently but at the same time, exploit the dc source for

stable ac regulation. However, the underlying assumptions for these controllers do not hold

in the presence of limited dc sources and large disturbances. Moreover, the limitation in dc

capacity cannot be compensated by adding inertia to the system or by ac current limitation

schemes, and a large increase in load ultimately causes the dc voltage to collapse. On the

other hand, matching control links the dc dynamics to ac dynamics by using one to control

the other, which is more representative of the actual behavior and interactive influence in

these systems. In this way, it is able to maintain stable operation by switching to constant

current mode and stabilizing the dc voltage through adjustment of the ac frequency/angle.

When the system loses the synchronous machine (and its slow but stabilizing dynamics),

the two grid-forming converters remain stable. In fact, in the absence of the interaction

between the fast response of inverters and the slow response of the machine, the grid-

forming converters are better able to maintain stability during the disturbance. When

the dc and ac currents are limited, the slow machine dynamics are not supported by an

infinite dc source and the different time scales present in such mixed (converter+synchronous

machine) systems cause instabilities. These unstable interactions of fast-responding grid-

forming converters occur not only with slow-moving synchronous machines but also with

the slower line dynamics and are often neglected. This study shines light on the importance

of considering the interaction of grid-forming converters with traditional grid components

when designing an efficient controller.
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Figure 3.21: BESS dc power output

Figure 3.22: Comparative study of interactions between grid-forming converters and
synchronous machines: a) Aggregate model of dc source connected to dc/ac converter
b) IEEE 9-bus system with one synchronous machine and two grid-forming converters [7]
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3.4 Conclusion

This analysis compares the performance of droop, synchronverter, dVOC, matching and V-f

control in two parallel inverters connected to PV and BESS. It tests the ability of each

control type to support the functions listed at the beginning of this chapter. The results

for compatibility with synchronous generators are obtained from the literature. The key

observations are summarized as follows:

1. AC output stability

Droop control and dVOC (in the absence of active damping) are sensitive to changing

grid conditions and inverter output impedance whereas synchronverter is impervious to

any such changes. Matching control is affected by small transients in case of topology

change while V-f control suffers from synchronization errors which lead to persistent

circulating currents.

2. Power sharing

Synchronverter, matching and V-f control are able to seamlessly share power during

parallel operation whereas droop control and dVOC are unable to do so without

gain adjustment. As mentioned in the literature review, droop-based controllers are

highly sensitive to load/line impedances and require parallel inverters to have equal

impedances to achieve accurate and efficient load sharing.

3. DC-link stability

Synchronverter, matching, and V-f control are able to maintain a stable dc-link voltage

for all test cases. Droop control and dVOC have a significant voltage drop after a step

increase in load to support the large circulating currents.

4. Current Limiting

Although synchronverter, matching and V-f controllers never experience large current

oscillations, it is clear that the inner current control loops in droop and dVOC are not

able to limit the output current during load changes.

5. Compatibility with MPPT (PV)

In spite of the instability on the dc-link caused by the ac output oscillations, droop
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control and dVOC are more compatible with MPPT than matching and V-f control.

Synchronverter is also compatible and stable with MPPT control.

6. Compatibility with BESS (Bidirectional Operation)

Matching and V-f control are capable of bidirectional operation whereas droop control,

synchronverter and dVOC need to be modified for rectifier operation.

7. Compatibility with synchronous generators

Droop, synchronverter, matching and dVOC control perform better without syn-

chronous generators, but matching control is able to maintain stable operation even in

the presence of synchronous generators while the others are not.

Although synchronverters and droop controllers are both derived from synchronous

generators, the power droop equation in droop (and dVOC) control creates a trade-off

between power sharing and voltage regulation. This trade-off is exacerbated by higher

coupling between power and voltage in weak grids. The small droop/dVOC gains used

in the study enable the parallel inverters to sufficiently regulate the output voltage, but

they are not able to efficiently share power without circulating currents when the loads

are changed. Ultimately, synchronverters, which use voltage and current measurements in

parallel control loops, prove to be the most stable and efficient controller for parallel inverter

operation even though they are not directly compatible with bidirectional operation and

synchronous generation. On the contrary, droop control and dVOC use nested voltage and

current control loops which have a slow, underdamped response to topology or load changes.

While the inner current control loop is disabled/transparent under steady-state conditions,

it affects the overall controller bandwidth and stability when the loading conditions are

changed.

Moreover, both synchronverters and matching controllers utilize dc-link dynamics

(power/voltage) to regulate the inverter output which enables both effective synchronization

as well as power sharing. These insights about controller structures and utilization of the dc-

link should be considered in developing a more effective grid-forming controller for inverter-

based ac grids.
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Chapter 4

Small-Signal Impedance Analysis of

the Impact of Grid-Forming Control

Structures on their DC and AC

Dynamics

4.1 Introduction

As it becomes more feasible to sustain an isolated grid with renewable energy sources, the

role of ’grid-connected’ converters will shift from that of supporting bulk generation to

maintaining a stable grid voltage while feeding the loads, i.e. forming the grid. Hence, grid-

forming converters have recently gained traction [53, 54, 55, 56]. Many existing primary

control techniques for grid-forming converters are derived from the established control

methods for synchronous generators that these converters are meant to replace. However,

some of these methods are not suitable for grid-forming converters.

The dc-link voltage between the renewable source or upstream dc-dc converter and the

dc/ac converter is often considered analogous to the mechanical inertia of synchronous

machines [57], and is utilized in various virtual inertia and frequency synchronization

methods. However, in reality, the dc-link has limited reserves (unless an extremely large and
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expensive capacitor is used) and does not respond instantaneously to changes in frequency

[45]. Moreover, the dc-link has different interactions with conventional synchronous machine

controllers which can cause voltage instability.

Most conventional controllers for grid-forming converters use some form of voltage and

frequency droop control using a nested control loop structure [58]. The outer loop regulates

the voltage while the inner loop controls the current, each using feedback from the input

and/or output terminals of the converter. These multiple feedback loops can destabilize the

dc-link voltage, even when it is explicitly controlled. This paper analyzes the impact of the

controller structure on the input impedance of a grid-forming converter to illustrate this

behavior.

Several papers have been published in recent years that focus on the impedance

interaction of grid-tied converters and the use of impedance-based methods to analyze the

stability of converters and controller design [59, 60, 61, 62, 63]. Both input and output

impedance (or admittance) studies for dc/ac converters are usually focused on the ac-side

impedance, and the distinction between the two may depend on whether the converter is used

in rectifying mode [62] or inverting mode[64]. Hence, dc-link dynamics are often disregarded

and the impact of any converter controller on the dc-link dynamics is rarely considered in

impedance-based analyses.

This work aims to fill that gap by representing the dc-link dynamics in the closed-loop

input (dc) impedance of the converter and applying established impedance-based methods to

deduce the impacts of controller feedback loops on dc-link voltage stability. Although these

dynamics are commonly studied for load converters [65, 66], this analysis will demonstrate

similar phenomena in dc/ac source converters. While the upstream dc/dc converter or dc

source also interacts with the dc link, this discussion will be focused solely on the impact of

the dc/ac converter system.

A multitude of papers studying the input and output impedance of grid-connected

converters attribute any instability or issues caused by the converter controller to the phase-

locked loop (PLL) present in the controller[67, 64, 68, 62, 50]. However, in grid-forming

inverter control, this PLL is replaced by either some form of droop control for parallel

operation of multiple grid-forming inverters, or by a constant reference in the case of a single
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grid-forming inverter with/without multiple grid-following inverters. But even in the absence

of a synchronization loop, there are certain issues caused by the use of multiple feedback

loops. This will be shown by the impact of multiple feedback loops on the output admittance

of a grid-forming converter.

4.2 Input and Output Impedance of Grid-Forming

Converters

This section will focus on deriving the transfer functions of open-loop and closed-loop input

impedance and output admittance for nested control loops and a single control loop in a

grid-forming converter. Subsequently, an outer loop with droop regulation is added to both

controllers to determine the impact of synchronization on these two control structures. The

nested control structure consists of the same voltage control loop as that of the single control

loop structure as well as an inner control loop with d-q decoupling, as shown in Fig. 4.1.

The voltage reference can be constant for single operation or be received from the droop

control loop for parallel operation of a grid-forming converter.

4.2.1 Single grid-forming converter without droop control

In a nested controller, the output current feeds into the inner feedback loop while the output

voltage is used in the outer feedback loop. In this case, the d-axis voltage reference is set

to the nominal value or provided by the droop control loop and the q-axis reference is set

to zero. The equivalent circuit model of a grid-forming inverter interfaced with a limited dc

source is shown in Fig. 4.2. Here, C is the dc-link capacitor, rf and Lf represent the L-filter

resistor and inductor, respectively, and ωs is the nominal frequency.

The small-signal state space model for the inverter, which will be used to analyze the

impact of the controller on the input and output behavior of the inverter, is defined by the
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Figure 4.1: Grid-forming converter with nested control loops.

Figure 4.2: Equivalent circuit model of grid-forming converter [8].
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following set of transfer functions [8]:

vin
io

 =

Zin Toi Gci

Gio Yo Gco

 .

iin

vo

d

 (4.1)

where Zin = [Zin] is the input impedance,

Toi =
[
Toi d Toi q

]
is the output to input (voltage) gain,

Gci =
[
Gci d Gci q

]
is the inner control loop gain,

Gio =

Gio dd Gio dq

Gio qd Gio qq

 is the input to output (current) gain,

Yo =

Yo dd Yo dq

Yo qd Yo qq

 is the output admittance, and

Gco =

Gco dd Gco dq

Gco qd Gco qq

 is the outer control loop gain.

In these functions, the input variables are dc current (iin = idc), ac voltage (vo =

[vod voq]
T ), and duty cycle (d = [dd dq]

T ). The output variables are dc voltage (vin = vdc) and

ac current (io = [iod ioq]
T ). Fig. 4.3 shows the small-signal representation for the nested-loop

transfer functions when the grid voltage is regulated by the inverter and does not require

droop control. The open-loop gain and impedance values of these transfer functions are

calculated by setting the perturbations from the remaining inputs in the matrix to zero.

The outer control loop regulates the ac voltage as described by the following equations:

i∗od = Gv−PId(v
∗
d − vod) (4.2)

i∗oq = Gv−PIq(v
∗
q − voq) (4.3)
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where Gv−PI =

kvp + kvi
s

0

0 kvp + kvi
s

 is the proportional-integral (PI) control gain for the

outer control loop and v∗ = [v∗d v
∗
q ]
T is the voltage reference with v∗q set to zero.

The inner feedback loop uses current references from the outer feedback loop to control

the PWM output as described by the following two equations:

u∗od = Gi−PId(i
∗
od − iod)− ωsLiLq (4.4)

u∗oq = Gi−PIq(i
∗
oq − ioq) + ωsLiLd (4.5)

where

Gi−PI =

kip + kii
s

0

0 kip + kii
s


is the PI control gain for the inner control loop and

Gdec =


0 −ωsLf

ωsLf 0


is the decoupling gain used to reduce the impact of cross-coupling caused by the output filter

inductor (L is the filter inductor and ωs = 2πfs is the nominal frequency).

The ac (voltage and current) control delays are assumed to be the same and are calculated

using the second-order Padé approximation of the exponential function in the matrix:

Hout =

e−0.5Tss 0

0 e−0.5Tss

.

From Fig. 4.3, the closed-loop input impedance and output admittance for a single

grid-forming inverter with nested-loop controller can be derived as:

Zin c = Zin −Gci(Gdec −Gi−PI)HoutGio (4.6)

Yo c =
Yo +GcoGi−PIGv−PIHout

I +Gco(Gdec −Gi−PI)Hout

(4.7)
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On the other hand, a single-loop grid-forming converter has a single feedback loop to

directly control the output voltage of the converter and does not use an inner current control

loop. In this case, the control functions can be described by:

u∗od = Gv−PId(v
∗
d − vod) (4.8)

u∗oq = Gv−PIq(v
∗
q − voq) (4.9)

In the absence of a synchronization loop, the small-signal representation of the transfer

functions of the single-loop grid-forming controller is shown in Fig. 4.4. From this model,

the closed-loop input impedance and output admittance for a single grid-forming inverter

with single-loop controller can be derived as:

Zin s = Zin (4.10)

Yo s = Yo +GcoGv−PIHout (4.11)

4.2.2 Parallel grid-forming converter with droop control

Droop control is ubiquitous in parallel operation of grid-forming inverters. Therefore, to

study how synchronization control can alter the impact of the controller structure, the small

signal model of both nested- and single-loop controllers is extended to include an outer

loop with droop regulation [69]. More specifically, the active power-frequency and reactive

power-voltage droop control method is incorporated into both models.

Fig. 4.5 shows the small-signal representation of the additional droop transfer functions

along with the original model of the nested-loop controller, in which the droop control can

be described as follows:

[θ v∗]T = Gdrp(SV io + SIvo) (4.12)

where Gdrp = GtGmGlpf is the droop gain,

Gt =

1
s

0

0 1

 is the integral gain,
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Figure 4.3: Transfer function representation of input and output dynamics for nested-loop
controller without droop.

Figure 4.4: Transfer function representation of input and output dynamics for single-loop
controller without droop.
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Figure 4.5: Transfer function representation of input and output dynamics for nested-loop
controller with droop.
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Gm =

mp 0

0 mq

 is the droop coefficient matrix, and

Glpf =

 ωf

s+ωf
0

0
ωf

s+ωf

 represents the low-pass filter for power measurements.

SV =

Vd Vq

Vq −Vd

 and SI =

Id −Iq
Iq Id

 are the steady-state values for d-q axis voltage and

current measurements which are used to calculate the active and reactive power. In this

paper, capitalized variable names indicate steady state values.

In the case of parallel operation of grid-forming control, there exists a separation between

the d-q axes of the grid and the converter. This shift from this synchronization-affected frame

is included in the form of the following gains:

Gri =

−Iq 0

0 Id

 for droop-affected d-q current,

Grv =

−V s
q 0

0 Vd

 for droop-affected d-q voltage, and

Grd =

−Dq 0

0 Dd

 for droop-affected d-q duty cycle.

Gvv =

0 1

0 0

 is the droop to voltage and frequency reference gain.

The closed-loop input impedance and output admittance for the nested-loop controller

with droop regulation can then be derived from Fig. 4.5 as:

Zin cd = Zin −GciGdcGio (4.13)

Yo cd =
Yo +GcoGdv

I +GcoGdc

(4.14)
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where

Gdc = GrdGdrpSVHout + (Gdec −Gi−PI)Gcsi

Gdv = GrdGdrpSIHout

+Gi−PIGv−PI(GvvGdrpSIHout −Gcsv)

Gcsv = Hout +GrvGdrpSIHout

Gcsi = Hout +GriGdrpSVHout

The closed-loop input impedance and output admittance for single-loop controller with

droop regulation can then be derived from Fig. 4.6 as:

Zin sd = Zin −GciGdcsGio (4.15)

Yo sd =
Yo +GcoGdvs

I +GcoGdcs

(4.16)

where

Gdcs = GrdGdrpSVHout

Gdvs = GrdGdrpSIHout +Gv−PI(GvvGdrpSIHout −Gcsv)

4.3 Analytical Results

The transfer functions derived in the previous section were analyzed in Matlab using the

converter and controller parameters shown in Table 4.1. All plots are wrapped within ±180°.

4.3.1 Single grid-forming converter without droop control

Fig. 4.7 presents the bode plots for the input impedance of the single grid-forming inverter,

with Zin o being the open-loop input impedance, Zin c being the closed-loop impedance for

a converter with nested controls, and Zin s being the closed-loop impedance for a converter

with a single feedback loop. The open-loop input impedance is determined by the dc-link
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Figure 4.6: Transfer function representation of input and output dynamics for single-loop
controller with droop.
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Table 4.1: Converter and Controller Parameters

Steady-state Converter Parameters

Nominal ac voltage: Vac 294 V (peak)

Nominal ac current: Iod, Ioq 26.7 A, 0 A

Nominal dc voltage: Vdc 400 V

Nominal dc current: Idc 15 A

dc-link capacitor: C 5 mF

L-filter inductor: Lf 0.575 mH

L-filter resistor: rf 0.2 Ω

Nominal frequency: fs 60 Hz

Duty cycle: Dd, Dq 0.337, 0.059

Controller Gains

Sampling period: Ts 100 µs

Switching frequency: ωsw 10 kHz

Inner controller gains: kip, kii 0.105, 35

Outer controller gains: kvp, kvi 0.008, 40

Filter frequency: ωf 1500 Hz

Droop coefficients: mp, mq 0.001, 0.001
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capacitor. In the absence of the ac current feedback loop, the single-loop controller has no

impact on the input impedance.

The nested-loop controller with voltage and current feedback loops renders a capacitive

effect on the dc impedance at lower and higher frequencies but has a negative resistance effect

around the controller bandwidth. As described in [70], this negative resistance behavior of

dc/ac converters leads to dc voltage instability in upstream dc/dc converters because the

converter decreases the voltage when current increases in trying to keep the load constant.

Ref. [71] explains how tight closed-loop controllers exacerbate this phenomenon. However,

the single closed-loop does not create the same negative resistance effect or the increased dc

impedance at lower frequencies.

Fig. 4.8 presents the inverter output admittance, with Yo o being the open-loop

admittance, Yo c being the closed-loop admittance with nested control loops, and Yo s

being the closed-loop admittance with a single control loop. The open-loop admittance

is determined by the filter inductor. The nested-loop control has an increasing negative

admittance (reducing negative impedance) with increasing frequency and is non-passive at

all frequencies. The closed-loop admittances along both axes lie in the negative resistance

region around the controller bandwidth.

Nested-loop d-q coupling decreases at higher frequencies as a result of decoupling control.

The single-loop controller has higher positive admittance at lower frequencies which is

passive. It reduces and becomes non-passive in the control bandwidth region. These non-

passive regions show that the control delay from the feedback loops reduce the system

passivity even when the output filter is designed to be passive. The control delay from

the single feedback loop impacts the higher frequency region while the control delays from

the double feedback loops affect the lower frequency region. This non-passivity can lead to

unstable system oscillations under weak grid conditions [72].

4.3.2 Parallel grid-forming converter with droop control

From the input impedance results for nested-loop controller in Fig. 4.9, it is clear that the

outer droop loop only has an impact at lower frequencies, closer to the droop control loop

bandwidth. The droop control loop increases the input impedance at lower frequencies but
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Figure 4.7: Open loop and closed-loop Bode plots of converter input impedance.

Figure 4.8: Open loop and closed-loop Bode plots of converter output admittance.
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Figure 4.9: Bode plots comparing converter input impedance for nested-loop controller
with and without droop.

Figure 4.10: Bode plots comparing converter output admittance nested-loop controller
with and without droop.
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does not reduce the negative resistance behavior of the nested-loop controller. The results

in Fig. 4.10 show that droop control has little to no impact on the output admittance,

especially for the d-d and q-q axes.

Fig. 4.11 shows that the droop control loop only has an impact at the lower frequencies

for the single-loop controller, rendering an overall capacitive effect while increasing the input

impedance. Fig. 4.12 shows that droop control has a more significant impact on the output

admittance, making it more negative and non-passive. The power measurements used in

droop control also increase coupling between the d- and q- axes at lower frequencies.

Although the passivity-reducing effect of current control has been previously studied in

grid-connected inverters [73], this analysis demonstrates similar behavior for grid-forming

inverters as well. It is clear from both cases with and without droop control that using the

current feedback loop significantly reduces the passivity of the system and can be detrimental

to the system stability in inverter-based weak grids.

4.4 Simulation and Experimental Verification

A single grid-forming inverter is simulated in MATLAB/Simulink using both single- and

nested-loop controllers with an average model-based voltage source converter, connected to

an impedance load. The system and control parameters used for the simulation are the same

as those used in the baseline analysis (Table 4.1). The dc-link voltage is measured during a

step load change from 5 kW to 7 kW at 1 s, and shown in Fig. 4.13.

These results show that for the same change in load, the dc-link voltage for the nested-

loop controller experiences a larger drop after the load change than the single-loop controller.

This indicates that the dc-link behind the nested-loop controller is more susceptible to

disturbances as a result of changing load or grid conditions.

The input impedance for the single-loop controller is also measured using Simulink’s

Impedance Measurement function and compared with the analytical results. Fig. 4.14

shows that the analytical and simulation results match very well.

Experimental tests are performed to validate the analysis results for a single-loop

controller with a single grid-forming inverter. A small-signal voltage injection method is
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Figure 4.11: Bode plots comparing converter input impedance for single-loop controller
with and without droop.

Figure 4.12: Bode plots comparing converter output admittance single-loop controller with
and without droop.
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Figure 4.13: DC-link voltages for nested- and single-loop controllers during step load
change.

Figure 4.14: Bode plots of closed-loop input impedance from analytical model and
simulation measurements.
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used to measure the closed-loop output impedance of a grid-forming converter with single-

loop control in the CURENT hardware testbed [74, 75]. In Fig. 4.15, the top converter

is the grid-forming (source) inverter being tested while the bottom converter serves as the

current-controlled load which also injects high-frequency voltage perturbations. The two

identical converters have common dc and ac sides (by nature of the testbed design), as well

as the same L-filters on the ac side. The ac currents and voltages are measured using an

oscilloscope. To match the testbed hardware settings, the single-loop analysis results in this

section are derived using the values in Table 4.2.

To solve the 2-by-2 matrix of the output ac admittance in the d-q axes, two sets of d-q

voltage and current measurements (vd, vq and id, iq) are used as shown in (4.17) [76]. One

set of measurements is acquired for high-frequency injections in the d-axis voltage, and the

second set is from high-frequency injections in the q-axis voltage. To reduce the number of

measurements as well as data processing, the primary phase (A) is aligned along the d-axis to

obtain vd and id measurements, and then along the q-axis to obtain vq and iq measurements

for each set of injections. This eliminates the need for sensing the other phases and using

Park transformations.

The measurements collected from the oscilloscope are processed through a Fast Fourier

Transform in Matlab to obtain the complex admittance values for the range of injected

frequencies (100 to 2000 Hz in intervals of 50 Hz). These values are then used to estimate

the transfer functions of the measured output admittance matrix, and to draw the Bode

plots for comparison.

Yodd Yodq

Yoqd Yoqq

 =

id1 id2

iq1 iq2

vd1 vd2

vq1 vq2

−1 (4.17)

The results shown in Fig. 4.16 depict the measured impedance as Y meas and the

analytically derived impedance as Yo s. The phase values are wrapped between −180° and

+180° to show and compare the results more clearly. The results from the experimental

measurement match the analytical values very well.
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(a) Experimental setup schematic

(b) CURENT Hardware Testbed converter cabinet with inverters and filters

Figure 4.15: Experimental setup for inverter impedance measurement
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Table 4.2: Experimental Setup Parameters

Nominal ac voltage: Vac 40 V (peak)

Nominal ac current: Iod, Ioq 27.44 A, 0 A

Nominal dc voltage: Vdc 100 V

Nominal dc current: Idc 13.9 A

dc-link capacitor: C 500 mF

L-filter inductor: Lf 0.575 mH

L-filter resistor: rf 0.2 Ω

Figure 4.16: Bode plots of closed-loop output admittance from analytical model and
experimental measurements.
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4.5 Conclusion

Small-signal impedance analysis is used in this paper to compare the behavior of multiple

feedback loops to a single feedback loop in a grid-forming converter controller. Small-signal

models are derived for each type of controller to analyze the closed-loop input impedance and

output admittance of the converter. The analytical results are also verified using simulation

and hardware measurements.

This study demonstrates the existence of negative resistance behavior in both the input

impedance and output admittance of the commonly used cascaded-loop controller in grid-

forming inverters. The negative resistance behavior on the input side can lead to dc-link

voltage instability, and the non-passive output admittance can jeopardize the ac system

stability under weak grid conditions. While the single-loop controller does not impact

the dc impedance, the control delay inevitably creates a non-passive region in the output

admittance. The addition of the droop control loop does not exacerbate or alleviate the issues

caused by the nested-loop controller, but it does make the single-loop output admittance

less passive.

Hence, even though inner current control loops are suitable for grid-following inverters

and useful in current limiting during transients, their feedback loop ultimately weakens both

the dc and ac side stability for grid-forming applications. Ultimately, eliminating the inner

current control loop can improve dc-link stability and increase ac output passivity while also

enhancing the speed of the controller response.
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Chapter 5

Defining Controller Requirements for

Grid-Forming Inverters in Terms of

Input and Output Impedances

5.1 Introduction

The increased use of power electronic converters to interface loads and sources has led to

a significant shift in the dynamics and behavior of various grid components. Not only

are the response times faster, but the overall grid is also weaker with lower inertia and

higher impedance, so the concerns and conditions used as the foundation for control design

become less relevant in inverter-based grids [43]. Hence, the analysis methods developed for

synchronous machines need to be replaced by a new paradigm for assessing system stability

and calculating parameters for converter control. Impedance-based analysis methods are

better suited to capture the high-frequency dynamics and resonant interactions created by

the presence of power electronic elements [77].

Grid-following (or grid-tied) inverters are more commonly analyzed using impedance-

based and other analysis methods than grid-forming inverters, which have only recently

gained traction and interest. Furthermore, the conclusions obtained from the analysis of

grid-following inverters cannot be completely applied to grid-forming inverters because, in
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the absence of a stiff grid or synchronous generators (which is normally the environment in

which grid-forming inverters are used) the interaction of the inverter with other inverters,

loads and grid elements becomes much more complicated [78]. Therefore, it is important to

understand grid-forming inverter dynamics and control through the impedance lens as the

separation between dc and ac parts of the grid diminishes.

Most of the impedance-based analysis methods mentioned hereafter are commonly used

in dc distribution systems and are becoming increasingly applicable in inverter-based grid

systems. In such systems, the inverter is more affected by variations in the grid impedance

than synchronous machines are, and inverter impedances are also significantly impacted

by the inverter control design. Hence, the effect of various control design decisions can

be measured through the analysis of the inverter impedance. Conversely, impedance

measurements can also inform controller requirements [79].

5.2 Impedance-Based Analysis for Controller Design

The two major analysis tools used for power electronics-based grids are the state-space

method and impedance-based method [80]. These two tools have certain advantages and

disadvantages and can be used in a complementary manner [81]. The state-space model

tends to be more comprehensive by providing deep insight into the dynamics of the system

but requires extensive knowledge of the system and control parameters for model formulation

and validation. On the other hand, although impedance-based models cannot be used to

identify the reasons for underdamped or unstable modes, they are easier to formulate and

validate using direct measurements and without complete knowledge of the system [82].

Moreover, as the attention shifts towards higher frequency dynamics with the proliferation

of more power electronics in the grid, impedance-based analysis will prove to be more useful

than state-space methods.

5.2.1 DC side Stability

Most analyses of ac power inverters connected to dc sources normally consider an infinite

dc source behind the dc-link and completely ignore the dc-link dynamics. This leads such
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analyses to focus solely on the ac output behavior or the impact of the input impedance on

the ac output, which results in an incomplete understanding of the inverter behavior as well

as an inefficient design. As more dc power system-based control and analysis methods are

applied to ac grids, attention must also be paid to the dc dynamics behind the ac inverter.

The major impedance-based stability criteria used in dc power systems are described

in [83]. The most common stability issue in dc (micro)grids is the negative incremental

resistance behavior of constant power loads [84, 85, 86]. The constant power loads usually

analyzed in these studies are dc and ac motor loads connected to the grid through an

inverter which is tightly controlled [87]. However, source inverters connected to dc sources,

depending on the control feedback structure can also behave like constant power loads from

the perspective of the upstream dc source. It is this behavior that causes unstable interactions

between parallel inverters even when each inverter is designed to be independently stable.

The most prevalent method used to analyze the stability of a dc distribution system is

to separate it into a source subsystem and a load subsystem and apply one of the stability

criteria mentioned in [83] to the interface between the two subsystems. All of these criteria

utilize the minor loop gain to determine stability boundaries for controller design. The minor

loop gain is defined as:

GML = Zs/Zl (5.1)

where Zs is the output impedance of the source subsystem and Zl is the input impedance of

the load subsystem.

The application of minor loop gain-based stability criteria has also been extended beyond

purely dc systems to any power system with power electronic converters such as HVDC

systems [88], hybrid dc/ac microgrids [89], or even between an inverter and a dc source [90],

as shown in Fig. 5.1. The source and load subsystems are usually separated by a dc-link

capacitor on the dc side and by the output filter capacitor on the ac side. To study the impact

of a dc/ac inverter on the dc-link stability (or even the upstream dc source and converter),

the system can be separated into a source subsystem and a load subsystem (consisting of the

dc/ac inverter), which can then be analyzed similarly to a dc grid system. This is particularly
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useful to gauge the impact of the converter controller on the stability of the dc-link between

the converter and the dc source [48].

Many inverter controllers scale the PWM output to compensate for variations in the

input dc voltage. Hence, the power output of the inverter can be considered independent of

the input dc voltage. Reference [91] shows that this results in a negative input resistance

which can affect the stability of the dc-link as well as that of the upstream dc source by

causing oscillations at the resonant frequency of the input filters.

5.2.2 AC side stability

Current-controlled voltage source inverters commonly used for grid-tied operation are

incapable of quickly responding to changes in load. This control is sufficient to extract a

constant amount of power and make the inverter impervious to grid disturbances. However,

trying to maintain the stability of an inverter during disturbances can also make the inverter

unresponsive to changing load conditions. Maintaining stable operation while providing

sufficient load support is a challenging task, especially for weak grids with poor grid stiffness.

Although controllers with multiple feedback loops are employed for their ability to limit the

output voltage and current, these loops tend to slow down the controller response, making

them unable to achieve fast frequency or inertia response which are intrinsic to synchronous

generators [92]. These types of controllers also need to be retuned with changing grid

conditions to achieve the intended control characteristics which can be achieved using an

impedance-based approach as described in [93].

Just as the negative input resistance of dc/ac inverter can have a destabilizing effect

on the dc-link, a negative output impedance can have a destabilizing effect on the grid by

reducing system damping. Unlike the inverter input resistance, this phenomenon is widely

studied for ac inverters, and is usually attributed to the use of synchronization loops [94] or

feedforward control [95]. The study in [96] shows that cascaded controllers used for maximum

power output with PV systems also inherently have negative output impedance.

The frequency-domain passivity theory is another analysis tool that is increasingly being

used to assess the stability of grid-connected inverters [97]. Impedance Zo is considered

passive if it has a non-negative real part, i.e. Re{Zo(jω)} ≥ 0 or ∠Zo ε [−90◦, 90◦] ∀ ω.
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According to the theory, if all grid components are passive, critical resonant interactions

between the grid impedance and the inverter output impedance are damped. Otherwise,

these resonant interactions can cause potentially destabilizing oscillations [98].

Traditional grid-tied inverters usually control voltage and current in a cascaded loop

structure and essentially behave like current sources with large output impedances. The

outer control loop in current-controlled voltage source inverters can either be a power control

loop (for grid-following operation) or a voltage control loop (for grid-forming operation).

When source inverters are used in grid-following mode in a stiff grid with high inertia and

slower time scales (due to the presence of synchronous generators), these cascaded controllers

perform well. However, when parallel grid-forming source inverters operate in an inverter-

based grid with lower inertia and faster time scales, the cascaded controller cannot keep up

with changing grid conditions. Higher controller flexibility is proportional to the number of

feedback loops and can improve the inverter performance and provide resilience to abnormal

conditions at the cost of control delays and slow response times. These delays can be further

increased by the controller structure, i.e. the increase in control delay is proportional to the

number of control loops [99]. Control delays from current control tend to cause resonances

close to the fundamental frequency while LC/LCL filters attached to the inverter reduce the

passivity in the higher frequency range for grid-tied inverters.

Feedforward control can be used to shape the inverter output impedance characteristic

to be more passive and independent of grid impedance variations [100, 101]. However, the

performance and stability of a controller with feedforward compensation deteriorate with

reducing grid stiffness. This is attributed to the positive feedback effect of the feedforward

signal which increases with increasing grid impedance (for weaker grids) and degrades the

stability of the controller [102].

5.2.3 Load Disturbance Compensation

Since the inner control loop removes disturbances in the output of the outer loop, a

cascaded control structure can increase the stability and the response speed of the outer

loop. Nevertheless, cascaded control cannot respond to any disturbance outside the control

loop which creates errors in the control loop variable. Hence, feedforward control is normally
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added as a correcting signal to modulate the output of the control loop and cancel out the load

disturbance [103]. In this way, the load disturbance compensation by feedforward control

complements the supply disturbance compensation of the cascaded feedback loop control

and improves its transient stability. In this case, the control system poles are determined by

the feedback loop gains while the zeros are determined by the feedforward loop gains.

The authors in [104] demonstrate the use of feedforward control for load disturbance

rejection. Since the output voltage of a grid-forming inverter is affected by the load

current through the output impedance, reducing the output impedance will reduce the

effect of changing load current on the inverter output voltage. This is achieved by using

a proportional feedforward controller to set the dc component of the output impedance to

be zero. Nevertheless, it is also noted that feedforward control not specifically designed for

achieving passive output impedance but rather to improve disturbance rejection ability of

the controller can render the control system non-passive in multiple frequency ranges. This

issue exists for both single-loop and cascaded loop controllers and is overcome by suppressing

the feedforward control in the non-passive regions.

5.2.4 Cross-coupling in Different Domains

The Nyquist Stability Criterion is a minor loop gain-based analysis tool most commonly

applied to power electronic systems. Nevertheless, its application is limited to linear time-

invariant, single-input-single-output (SISO) systems, which makes it an infeasible tool for

three-phase ac systems. An impedance-based model can be derived in the synchronous axes

domain or the sequence domain, with both models comprising of coupling terms, making

them multiple-input-multiple-output (MIMO) models [105]. The output impedance can be

described by:

ZDQ =

Zdd Zdq

Zqd Zqq

 (5.2)

in the synchronous reference frame and

ZPN =

Zpp Zpn

Znp Znn

 (5.3)
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for the sequence domain, where the off-diagonal elements represent the coupling terms.

Cross-coupling in the synchronous domain is caused by asymmetrical control dynamics

along the axes and the presence of inductance and capacitance in output filters and grid

impedance whereas cross-coupling in the sequence domain is attributed to system imbalances

in the positive or negative sequence domains and the mirror frequency effect [106]. Mirror

frequency effect is defined as the phenomena when a harmonic disturbance at an arbitrary

frequency induces a response at twice the frequency [107] and is usually caused by asymmetry

of control loops between the d-axis and q-axis as in the dc-link voltage controller [108]. These

coupling terms exist even in balanced systems and cannot be ignored in the stability analysis

[109]. The impact of cross-coupling on the output impedance is more significant in weaker

grids which have higher cross-coupling due to larger line impedances [110]. Therefore, the

Generalized Nyquist Stability Criterion (GNC) has to be applied to the MIMO models in

both domains [111].

5.2.5 Improved Power Sharing

The flow of circulating currents between inverters reduces their power sharing efficiency and

can also lead to instability in severe cases. Circulating currents between inverters are usually

a result of the mismatch at the output terminals of connected inverters, which can be a small

difference in output voltage magnitude or frequency, disparate output/line impedance, or

phase error between outputs. Active and reactive power sharing accuracy can be improved

by adjusting or shaping the output impedance of each converter to minimize the circulating

current between them [112]. Impedance analysis can also be used to determine power transfer

stability limits for converters interfaced with dc sources like energy storage and solar arrays

that are connected to very weak ac grids [113].

In traditional, stronger grids, the output impedance of synchronous generators is

dominated by large inductors (like transformers) connected to their output terminals, and

the grid impedance is mostly inductive as a result of the long-distance lines. But that is not

the case for smaller and weaker inverter-based grids, where the inverter output filters consist

of capacitive elements, and the grid impedance is more resistive. Since the inverter output

impedance is also significantly influenced by the inverter controller, virtual impedance can
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also be added to the feedforward path of the voltage control loop of the inverter to improve

its transient response and reduce circulating currents between parallel inverters, especially

for droop control [114], as shown in Fig. 5.2. According to [115], if two parallel inverters

are perfectly synchronized (have zero phase error) and have identical output impedances

(R + jωL), then active and reactive circulating current can be calculated as:

∆Ip ≈
1

2

R(Vo1 − Vo2)
R2 + (ωL)2

(5.4)

∆Iq ≈
1

2

ωL(Vo1 − Vo2)
R2 + (ωL)2

(5.5)

where Vo1 and Vo2 are the output voltage magnitudes of the two inverters. This shows that

the active component of the circulating current is proportional to the output resistance,

whereas the reactive component is proportional to the output inductance. Therefore, the

output impedance can be adjusted to reduce the circulating currents between inverters.

5.2.6 Synchronization Stability

Impedance-based analysis is also utilized in assessing the impact of synchronization loops on

controller stability and performance. For grid-following inverters, impedance-based stability

analysis is most commonly used to study how various types of phase-locked loops (PLL)

shape the inverter impedance in both synchronous reference frames [116, 117] and stationary

reference frames [118]. For grid-forming inverters, [69] uses an impedance modeling approach

to incorporate the frequency contribution of the droop control loop in the impedance model

which can be employed to analyze the impact of droop-based synchronization on the output

impedance.

It is often found through the analysis of the inverter output impedance that the

asymmetrical structure of the PLL (in both synchronous and stationary reference frames)

causes the output impedance to behave as a negative resistance in the PLL bandwidth

[119, 120], which can lead to unstable interactions with the grid impedance. The PLL also

causes coupling between the positive and negative sequences in the phase domain (even in

balanced systems) which needs to be considered for an accurate stability analysis [109].
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(a) DC system (b) AC system

Figure 5.1: Source-Load Subsystem Model for Minor Loop Gain-Based Stability Criteria.

Figure 5.2: Block diagram of a grid-connected inverter with virtual impedance control.
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5.2.7 Harmonic Stability

Impedance based analysis can also be used to assess harmonic stability [121]. With higher

integration of inverter-based generation (and loads) into the grid, increasing harmonic

distortion significantly deteriorates its power quality. This increased harmonic distortion is a

combination of high-frequency harmonic injection from the inverter and harmonic resonance

between the inverter output impedance with the grid impedance [122].

These resonant dynamics can be damped using passive or active damping techniques.

Passive damping involves modifying the output filter or adding more passive elements, while

active damping techniques alter the controller structure or parameters [123]. A feedforward

dc voltage regulator is able to reduce the nonlinearities for a grid-connected PV system

and efficiently control the dc-link voltage and reduce the harmonic distortion in the grid

current in [124]. The authors in [125] demonstrate that an inverter with a capacitive output

impedance can achieve lower harmonic distortion in its output.

In most cases of impedance-based analysis of ac stability for grid-tied inverters, the model

is limited to the study of a single inverter connected to a stiff grid or load through an output

filter. For a single-inverter system, the resonance frequencies are determined by the filter

parameters and the grid impedance. However, if more than one inverter is present in the grid,

this analysis is incomplete because it ignores the coupling between inverters and its impact

on the stability and performance of each inverter. When n similar inverters are connected

in parallel with grid impedance being Zg, then the effective grid impedance seen by each

inverter becomes n × Zg as a result of the coupling between the parallel inverters [126], as

shown in Fig. 5.3. This coupling effect can also be modeled as circulating resonant currents

between the paralleled inverters which cause multiple resonances at various frequencies [127].

Therefore, the interaction between paralleled inverters produces different resonant

characteristics compared to a single-inverter system. Disregarding this interaction between

inverters can create resonances in a multi-inverter system even if each inverter individually

satisfies the power quality standards [128]. This applies to interconnected microgrids as well

wherein any stability analysis needs to consider the coupling effect among inverters as well
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as the interaction between microgrids in a cluster for an accurate assessment of the system

[129].

5.3 Application of Impedance Analysis to Droop Con-

trol

The impedance analysis of a droop-controlled grid-forming inverter will demonstrate the

application of impedance-based analysis methods to judge different aspects of the controller

performance. A P-f/Q-V droop controlled 3-phase inverter powers a ZIP load through an

LCL filter. The grid parameters are provided in Table 5.1. The droop controller consists of

a power-droop loop, an outer voltage control loop and an inner current control loop. The

inner control loop uses d-q decoupling but no feedforward compensation. The controller is

analyzed using Matlab, and the inverter-load system is simulated using MATLAB/Simulink.

The bode plots for the input and output impedances of the inverters are shown in Figs. 5.4

and 5.5 respectively.

Fig. 5.4 shows that the input impedance is non-passive in the region between the

fundamental frequency and the controller bandwidth which can cause any load disturbance

to affect the dc-link. This effect is revealed in Fig. 5.6 where a sudden load increase from

0.75 p.u. to 0.9 p.u. creates oscillations in the dc-link voltage (that in turn affects the output

modulation). Hence, the inverter does not sufficiently isolate the dc source from the ac grid.

On the other hand, the output impedance in the higher frequency range is very small in Fig

5.5 (output admittances Y dd and Y qq have large magnitudes) which makes the ac voltage

magnitude impervious to the sudden load change, as shown in Fig. 5.6

Similar to PLLs, P-f droop can also create a negative resistance region in the inverter

output impedance [51]. This effect is also revealed by the Y dd and Y qq plots in Fig. 5.5

with the phase reaching ±180° in the droop loop bandwidth.

To analyze the harmonic stability of the inverter output, the ZIP load is replaced by a

rectifier load which is connected to the droop inverter at 0.15 s. The non-passive nature
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Figure 5.3: Equivalent circuit of inverter output impedance and effective grid impedance
with n paralleled inverters.

Table 5.1: Grid and Controller Parameters

Nominal ac voltage: Vac 294 V (peak)

Nominal ac current: Iod, Ioq 26.7 A, 0 A

Nominal dc voltage: Vdc 400 V

Nominal dc current: Idc 15 A

dc-link capacitor: C 5 mF

L-filter inductor: Lf 0.575 mH

L-filter resistor: rf 0.2 Ω

Nominal frequency: fs 60 Hz

Switching frequency: ωsw 10 kHz

Inner controller gains: kip, kii 0.105, 35

Outer controller gains: kvp, kvi 0.008, 40

Droop coefficients: mp, mq 0.001, 0.001
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Figure 5.4: Bode plot of input impedance for droop-controlled inverter.

Figure 5.5: Bode plot of output admittance for droop-controlled inverter.
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of the output impedance in Fig. 5.5 is demonstrated by the harmonics introduced in the

output voltage of the inverter when the rectifier load is connected as shown in Fig. 5.7.

The large dq and qd output admittance values (Y dq and Y qd) in Fig. 5.5 represent low

d-q coupling in the ac output as a result of using d-q decoupling in the current control loop.

This is demonstrated by changing the active power load setpoint and checking the impact

on the reactive power output and vice versa. Fig. 5.8 confirms the low dq coupling in the

ac output through the unaffected output reactive power when load active power is increased

(Fig. 5.8(a)), as well as the unaffected output active power when load reactive power is

increased (Fig. 5.8(b)).

5.4 Conclusion

Impedance-based models are capable of representing controller dynamics, resonant behavior,

and interactions with grid elements for a grid inverter, thus simplifying the system analysis

on both dc and ac sides. These modeling and analysis techniques can help identify desirable

input and output impedance characteristics. From this discussion, it can be concluded to

have an effective grid-forming converter for parallel operation:

1. The input impedance should not behave as a negative resistance and remain in the

passive region.

2. The output impedance should also be passive to prevent resonant oscillations in the

ac output.

3. The output impedance should be small enough to not only reduce circulating currents

and improve power sharing accuracy but to also reduce the effect of grid-side/load

disturbances.

4. The impact of synchronization control on inverter impedances should be included for

a comprehensive analysis.

5. Couplings among paralleled inverters which create resonant interactions should be

compensated.
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Figure 5.6: Impact of step load increase on inverter input and output.

Figure 5.7: Impact of rectifier load on harmonic stability.
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(a)

(b)

Figure 5.8: P-Q coupling in the ac output of droop-controlled inverter.
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The input and output impedances of an inverter can be actively shaped by varying the

control structure, using feedforward compensation, and adding virtual impedance in the

control loop. Impedance-based analysis is thus a powerful tool in inverter control design.
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Chapter 6

Grid-Forming Inverter Control Design

Considering DC-Link Dynamics

6.1 Introduction

With the movement from centralized generation and synchronous generators to distributed

generation and renewable sources, inverters have transitioned from providing load support

and ancillary services to now replacing synchronous generators as autonomous sources. These

types of source inverters are commonly referred to as grid-forming inverters [130].

A grid-forming inverter can be used as the primary source in an isolated grid with multiple

grid-following inverters or in parallel with other grid-forming inverters. Clearly, having

multiple grid-forming inverters in parallel eliminates the single point of failure and creates

a more robust grid. Nonetheless, disparate dc sources may be connected to these inverters,

like energy storage and photovoltaic (PV) arrays. The battery output voltage is determined

by its state of charge, whereas the PV output voltage is determined by its power point. In

PV source control, Maximum Power Point Tracking (MPPT) control is either applied to

the duty cycle for open-loop control or the PV voltage for closed-loop control [131]. This

makes the PV array a nonlinear current source which can operate in constant current mode

below the MPPT voltage, constant power mode around the MPPT voltage, and constant

voltage mode above the MPPT voltage [132]. The current vs. voltage and power vs. voltage
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characteristics for a PV array with 1000 W/m2 irradiation at 25°C and 45°C are shown in

Fig. 6.1.

The assumption of an infinite dc source upstream of a grid-tied inverter leads to the

disregard of the behavior and dynamics of the dc source, dc-link capacitor, and dc/dc

converter control. When there is a sudden change in load, the response of the dc source

system will be determined by these three components. A constant dc voltage regardless

of loading conditions can only be maintained by a large energy storage (in the form of a

capacitor or additional battery) at the dc-link [133], which adds to the cost and size of the

system. Ignoring the limitations of a practical dc source can result in a mismatch between

input and output power, which will cause the dc voltage to drop and affect the performance

of the inverter. According to [134], the dc-link voltage should not drop below 2vref/1.1 if the

inverter output is to be maintained at the voltage level vref , with 1.1 being the maximum

allowable modulation index.

The most efficient way to operate a PV source is at or near its maximum power point

which is not always feasible. Although operating the inverter in voltage-fed mode may

limit the dc voltage to values higher than the MPPT voltage, restricting the voltage to the

constant voltage region will avoid any unstable situations. However, if the voltage is below

the MPPT point and the PV source operates in the constant current region, the duty cycle

will be decreased to maintain the output current. This lower duty cycle will further lower

the output voltage to provide more current to the load, effectively reducing the PV power

output. Therefore, the power characteristic below the MPPT voltage is unstable and can

cause the dc bus voltage to ultimately collapse [135]. This can happen even if the available

PV power is higher than the load demand, and preventing this voltage collapse is the primary

objective in designing a proper dc/ac inverter controller for a PV source with MPPT control.

When inverters are interfaced with LCL filters, there are three possible variables that can

be used in closed-loop control: inductor current, capacitor voltage and grid current [136].

Grid current and/or capacitor voltage are the most commonly used feedback variables in grid-

tied inverters. While inductor current control is more effective in damping LCL resonances,

grid-side current control achieves better harmonic rejection and power regulation but requires

additional damping to improve their stability. The analysis in Chapter 4 also displayed how
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the use of inner (current) control loops leads to negative resistance behavior in the input

impedance and non-passive regions in the output impedance of grid-forming inverters.

Researchers have also found certain drawbacks to using inner current control loops in

power electronics-based machine emulators which can pertain to grid-connected inverters as

well. According to [137], the inner current control loop can:

• act as low pass filters that distort the output during load transients

• reduce the emulation accuracy when the electrical machine frequency is close to or

higher than the current loop bandwidth

• decrease the phase margin and in turn, the stability of the system during transient

conditions

Therefore, a single-loop voltage controller can provide enhanced dc and ac stability by

evading these issues and minimizing the negative resistance behavior on the dc side.

As explained in [138], any inverter that interfaces a PV source with the grid should be

able to protect the dc-link voltage from large load transients. This is not a concern in grid-

following inverters where the dc-link voltage is regulated by the grid-following controller. In

the absence of a dc-link controller (in the grid-connected inverter or with additional storage

at the dc-link) adjusting the PV power output lower than the maximum power point in the

constant voltage region can protect the dc-link against ac-side transients. While exceeding

the capability of the PV source will cause a voltage collapse, underloading the PV source will

simply cause the PV source output to be reduced below its MPP. This will not only prevent

a voltage collapse in the PV array but also maintain sufficient dc-link voltage for PWM

modulation. With this consideration, a single-loop grid-forming controller is developed that

is capable of robust parallel operation and overcurrent protection while maintaining a stable

dc-link voltage.

6.2 Grid-Forming Control Design

This section will describe the control design of a grid-forming controller for an MPPT-

controlled PV source. An effective grid-forming inverter controller should:
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• sufficiently decouple dc and ac dynamics

• be impervious to changing grid conditions in terms of synchronization and power

sharing with other inverters

• protect the inverter during transient events without losing stability

• have stable ac output while maintaining dc-link stability

• have minimum interaction with other inverter controllers and thereby, have minimum

impact on their stability

The PV source is connected to the grid through a two-stage inverter system comprising of a

dc-dc boost converter and a dc/ac power inverter presented in Fig. 6.2. The circuit model

of the grid-forming inverter interfaced with an LCL filter is shown in Fig. 6.3 with the

proposed controller shown in Fig. 6.4. The boost converter is controlled using a perturb-

and-observe MPPT algorithm, and the power inverter is controlled using the grid-forming

method described below. Although a two-stage inverter has lower efficiency than a single-

stage inverter, it improves MPPT efficiency and expands the operation range compared to

single stage inverter. Also, the dc-dc converter prevents ac power ripples from harming the

dc source [139].

6.2.1 AC Voltage Control with DC Current Feedforward

In the proposed controller, the PWM signal is derived from a single proportional-integral

(PI) control loop with d-axis and q-axis voltage measurements (vd,vq) as feedback and d-q

references (vd−ref , vd−ref ) set to 1 p.u. and can be described using these equations:

vd−PWM = kp(vd−ref − vd) + ki

∫ t

0

(vd−ref − vd)dt (6.1)

vq−PWM = kp(vq−ref − vq) + ki

∫ t

0

(vq−ref − vq)dt (6.2)

where kp and ki are the proportional and integral gains, respectively.
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Figure 6.1: PV characteristics at 1000 W/m2 for a 24 kVA PV generator.

Figure 6.2: Two-stage PV source inverter system.
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Figure 6.3: Circuit model of grid-forming inverter with LCL filter.

Figure 6.4: Proposed grid-forming controller.
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While this single-loop control does not provide implicit current limiting, it has higher

control bandwidth than a dual-loop controller and prevents negative resistance behavior in

the input and output impedance, which will be revealed by the stability analysis later in this

section. Nevertheless, the passivity of the inverter system (which is affected by resonances

caused by the output impedance) can be further improved by adding a dc current feedforward

(idc) with virtual impedance Zv to the voltage control reference such that the new reference

v′ref (for respective axis) becomes:

v′ref = vref + Zvidc (6.3)

Here, a resistive-capacitive (R-C) virtual impedance is used in the dc current feedforward

loop since it has been shown in [140] that R-C virtual impedance provides minimum voltage

distortion and improved harmonic current sharing among parallel inverters. Furthermore,

using dc current feedforward avoids the positive feedback effect that can arise from using ac

current which is affected by variations in grid impedance [102].

6.2.2 DC Voltage- AC Frequency Droop

DC-link voltage is as important to dc-side dynamics as frequency stability is to the ac-

side dynamics. Hence, it is reasonable to link them through the control action. Similar

to matching control [33], this synchronization loop uses dc-link voltage (vdc) to derive the

frequency and phase angle of the PWM output as follows:

ω = ω∗ −mf (v
∗
dc − vdc) (6.4)

where mf is the droop coefficient, ω∗ is the frequency reference, and v∗dc is the dc voltage

reference. For a limited dc source, the dc-link voltage is not impervious to changes in loading

conditions and can be used as a measure of power balance by detecting the variation from

the nominal value. In this way, any large drops in dc-link voltage will affect the output

frequency instead of being disregarded. Unlike other grid-forming controllers, this type of

110



controller includes the impact of dc-side disturbances in the output modulation rather than

compensating for them until the dc-link voltage collapses.

6.2.3 Regulating Modulation Index for Overcurrent Limitation

The analysis in [141] shows that unbalanced grid faults can create dc-link voltage oscillations

and degrade the ride-through ability and grid support voltage functions. The controller in

[141] is used to reject the dc-link oscillations and provide maximum fault current to support

the grid voltage rather than to reduce the dc-link oscillations. However, the design objective

for the proposed controller is not to ignore the dc-link oscillations and provide maximum

fault current but rather to stabilize the dc-link and limit the output current within a safe

range.

In the absence of an inner current control loop, the grid-side inductor current (ig)

is used to adjust the modulation index in case of transient events. By using the grid-

side inductor current instead of the inverter-side inductor current (ii), the impact of line

inductance variation and voltage harmonics are included in the controller action. In the

current limitation block, when the ac current passes a set threshold, the duty cycle is reduced

in proportion to the increase in current:

v′PWM =

vPWM , if iac ≤ Ilimit

( Ilimit

iac
)vPWM , if iac > Ilimit

(6.5)

where vPWM is the original PWM reference, v′PWM is the modified PWM reference, and iac

is the ac current feedback. Here, Ilimit is not the inverter overcurrent limit but is determined

by the ac current level corresponding to the MPP current output of the PV array. The

adjustment of the modulation index is saturated between the index limits set to ensure the

output voltage does not drop below a certain value for ride-through purposes. This enables

the controller to not only limit the output current but to also stabilize the dc-link.
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Figure 6.5: Transfer function representation of input and output dynamics for grid-forming
inverter.
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6.2.4 Impedance Analysis of Controller

Impedance analysis of the inverter control system provides useful insights into the impact

of the controller design on the dc and ac dynamics of the system. The grid-forming inverter

is modeled as a voltage-source voltage-output inverter as represented in Fig. 6.5. This

representation is used to derive the open-loop and closed-loop input admittance and output

impedance functions with o denoting open-loop, c denoting closed-loop without virtual

impedance feedforward, and cv denoting closed-loop with virtual impedance feedforward.

The system and controller parameters used for the analysis are provided in Table 6.1.

Zo c =
Zo o

I +GcoGPIHout

(6.6)

Yin c = Yin o −Gci(GPIGtv +Gtd)GdHin (6.7)

Zo cv =
Zo o +GcoGPIZvHinToi

I +GcoGPIHout

(6.8)

Yin cv =
Yin o −Gci(GPIGtv +Gtd)GdHin

I +GciGPIZvHin

(6.9)

In these equations:

Zo is the output (ac) impedance,

Yin is the input (dc) admittance,

Hin and Hout are the input and output control delay respectively,

Gio is the input to output (dc to ac) voltage loop gain,

Toi output to input (ac to dc) current loop gain,

Gci and Gco are the inner and outer control loop gain respectively,

GPI is the PI control gain for the voltage control loop,

Gtv and Gtd are the phase angle to voltage and phase angle to duty cycle gain respectively,

and

Gd = GfiltermdcGs is the droop control loop gain with Gfilter being the low-pass filter gain,

mdc being the droop coefficient and Gs is the integral gain.
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Table 6.1: Inverter-based Grid Simulation System and Controller Parameters

Nominal voltage 480 V

Nominal load 5 kW, 2.5 kVar

Nominal frequency 60 Hz

PV rated power 24 kVA

BESS rated power 10 kVA

LCL filter: L,Rl, C,Rc 0.1 mH,10 mΩ, 70 µF, 0.6 Ω

Dc-link capacitor 6.7 mF

Droop curve gain:mdc 0.01

Sampling period: Ts 100 µs

Switching frequency: ωsw 10 kHz

PI controller gains: kp, ki 0.3, 8

Filter frequency: ωf 1500 Hz

Virtual Impedance: Rv, Cv 1.25 Ω, 0.1 mF

114



Fig. 6.6 shows that the closed-loop input admittance of the inverter is not affected by

the voltage control or the synchronization loop and behaves as a passive capacitance, similar

to the open-loop admittance. The addition of the virtual impedance feedforward has an

overall inductive effect and introduces non-passivity only around the 90 Hz peak. Overall,

the dc-link is designed to be passive and stable.

Fig. 6.7 shows the effect of the voltage control, synchronization control, and virtual

impedance feedforward control on the closed-loop output impedance of the grid-forming

inverter. As expected, the d-axis and q-axis closed-loop output impedances are larger

with higher coupling magnitudes between the axes. However, the single control loop

without virtual impedance renders the d-axis impedance non-passive at lower frequencies,

while the q-axis impedance remains passive throughout. Therefore, the virtual impedance

feedforward is added along the d-axis to improve passivity. The controller with virtual

impedance feedforward is able to make the output impedance passive everywhere except for

the resonance point (caused by control delays) around 90 Hz. The feedforward control also

reduces the cross-coupling magnitude in Zqd. Hence, the controller is able to relatively lower

the output impedance while making it passive.

6.3 CIL Simulation Results

The simulation is performed on the Opal-RT platform with controller-in-the-loop (CIL).

The grid-forming controller is implemented in a NI cRIO 9039 and the rest of the system is

simulated in a Simulink model. Fig. 6.8 shows the single-line representation of the Simulink

model deployed on the Opal-RT platform. The proposed controller is deployed in both the

PV and BESS source inverters, which are connected to the grid through LCL filters. The grid

impedance has an X/R ratio of 1. The PV system has a constant irradiance of 1000 W/m2

and temperature of 40°C. The PV array uses a single diode model with a temperature- and

light-dependent current source, diode, and series and shunt resistances. The energy storage

system uses a generic battery model and has a default state-of-charge (SoC) of 60%.

The BESS unit is also a two-stage inverter system with average models used to simulate

the converters. While both PV and BESS sources have the same grid-forming inverter
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Figure 6.6: Bode plot of inverter input (dc) admittance.

Figure 6.7: Bode plot of inverter output (ac) impedance.
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control, the BESS uses closed-loop dc voltage control at the dc boost converter stage while

the PV source uses MPPT. The ZIP load is modeled using three single-phase current sources

and has adjustable ZIP coefficients and active-reactive power setpoints. The ZIP loads are

comprised of 30% Z-load (constant impedance), 30% I-load (constant current) and 40% P-

load (constant power). The system and control parameters are the same as those used for

the impedance analysis in Table 6.1. Three test cases are used to assess the performance of

the grid-forming controller.

6.3.1 Parallel Operation

The two inverters are operated in parallel to test their synchronization stability as well as

their power sharing capabilities. Before the circuit breaker closes to connect the PV and

BESS sections at 2 s, the two ZIP loads operate separately with a nominal load of 5 kW

and 2.5 kVar. Without changing the loads, when the two sections are connected at 2 s, the

inverter ac voltages in Fig. 6.9 are unaffected but the PV picks up more load from the BESS

section, as shown from the ac current results in Fig. 6.10.

This can be explained by the dc voltage results in Fig. 6.11. When the PV is only

supporting ZIP load 1, the dc-link voltage is modulated to slightly above 1 p.u. which shows

that the PV inverter capacity is underutilized. As the two sources try to synchronize their

outputs, they also match their dc-link voltages. Unlike the BESS dc voltage which is not

affected by shedding a portion of its load, the PV dc voltage drops closer to the BESS dc

voltage when it picks up more load. Even though the PV source is still operating in the

constant voltage region, it moves slightly closer to the MPP to pick up the additional load

and balance its dc voltage with that of the BESS. The amount of additional load that can be

picked up by the PV is determined by the PV source capacity as well as the line impedance.

In this way, the two inverters are able to share power in proportion to their source capacities

rather than sharing the loads equally.
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Figure 6.8: Simulink Model of Inverter-Based Grid

Figure 6.9: Inverter output voltage during parallel operation.
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Figure 6.10: Inverter output current during parallel operation.

Figure 6.11: DC-link voltage during parallel operation.
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6.3.2 Balanced Three-Phase Fault

A balanced three-phase fault is used to test the current limiting capability of the proposed

controller in the PV inverter. The fault occurs at 1 s and is cleared at 1.2 s. Without any

current limiting in Fig. 6.12, the ac voltage and the dc voltage drop 60% to 0.4 p.u. The ac

current transient reaches 20 p.u. before settling at 10 p.u. (when PV inverter is overloaded).

The PV source output voltage also suffers a 50% drop and moves into the constant current

region of MPPT operation, which can make grid-forming operation unstable if the fault

persists.

On the other hand, in Fig. 6.13, the grid-forming controller with current limiting is able

to limit the current below 10 p.u. without overloading the PV source. The dc-link voltage

drops less than 10% while the ac voltage is limited to 0.3 p.u. The PV source voltage also

remains stable in the constant voltage region of MPPT operation. However, for a lower fault

impedance, the current limiting would not be able to limit the current to the same value

without further decreasing the ac voltage.

6.3.3 Step Load Change

In this test case, ZIP load 1 active power setpoint is increased at every second in steps of 1

p.u. starting from the nominal load of 1 p.u.(5 kW) to compare the behavior of the proposed

controller to a traditional grid-forming (droop) controller. Both the proposed controller in

Fig. 6.14 and the droop controller in Fig. 6.15 are able to accommodate an additional

1 p.u. of load without any effect on the ac voltage but with an 8% drop in the dc-link

voltage. However, with an additional 2 p.u. of load, the PV source becomes overloaded.

At this point, ac voltage drops to 0.6 p.u. for the proposed controller and 0.9 p.u. for the

droop controller. On the other hand, the dc-link voltage drops another 2% for the proposed

controller and another 8% for the droop controller, which is below the required dc voltage

level to maintain PWM modulation. Therefore, although limiting the drop in dc-link voltage

with the proposed controller makes the inverter behave as a constant power source when it

is overloaded, not limiting it still affects the output voltage modulation.
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Figure 6.12: Results for inverter control without current limiting during three-phase fault.
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Figure 6.13: Results for inverter control with current limiting during three-phase fault.
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Figure 6.14: Results for step increase in load with proposed controller.
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Figure 6.15: Results for step increase in load with traditional droop controller.
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The drop in dc-link voltage is proportional to the difference between ac power output and

available dc power. This reveals the limited extent to which the PV source can be exploited

to have ideal voltage source characteristics. In other words, there is trade-off between ac

output and dc-link voltage stability when the PV inverter is increasingly loaded.

6.4 Discussion

When closed-loop dc voltage control is used for the dc-dc boost converter of a voltage source

like BESS, the dc-link voltage is protected from any disturbances on the ac side and is

dependent solely on the battery state of charge. On the other hand, when a nonlinear current

source like PV is controlled using MPPT, the PV array output voltage as well as the dc-link

voltage depend on the loading conditions and can vary significantly. As mentioned earlier,

to maintain power balance and stable output voltage, the PV source should be operated in

the constant voltage region. By using the modulation index modifier in the grid-forming

inverter control, the dc-link voltage is maintained above 2vref/1.1 and the PV array voltage

is restricted from falling below the MPP (360 V).

However, ac voltage regulation is also affected by the increase in ac current in the constant

current region as:

∆vac = −PPV
∆iac

(6.10)

where PPV is the PV source output and iac is the ac current. When the PV voltage drops

below the MPP, the PV output starts decreasing. This means that the amount of ac voltage

drop relative to increase in ac current also reduces with the highest drop occurring at MPP.

Therefore, if the PV voltage (and in turn the dc-link voltage) is restricted to the MPP level,

the drop in ac voltage will be higher.

6.5 Experimental Validation

The controller is also tested in a two-converter system on the CURENT hardware testbed.

One converter is controlled as the source inverter with PV emulation while the other converter

is controlled as a ZIP load. The two converters are connected to a common dc supply and
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Figure 6.16: Experimental setup for testing grid-forming controllers.

Table 6.2: Experimental Setup Parameters

Nominal ac voltage: Vac 40 V (peak)

Nominal ac current: Iac 27.44 A

Nominal dc voltage: Vdc 1000 V

L-filter inductor, resistor: Lf , rf 0.575 mH, 0.2 Ω

Controller gains: kp, ki 0.105, 35
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have identical L-filters on the ac side, as shown in Fig. 6.16. The proposed grid-forming

controller is implemented in the source inverter and subjected to a step load change from

0.6 p.u. to 0.8 p.u. The dc voltage as well as the ac voltages and currents during the load

change are captured using an oscilloscope and presented in Figs. 6.17(b). The system and

controller parameters are presented in Table 6.2.

Fig. 6.17(a) presents the results for the same case of load change in the simulation system

used earlier. Both the experimental and simulation results show that during the load change,

both the dc and ac voltages remain stable and unaffected as the current output increases.

Hence, the inverter does not experience any significant drop in the dc or ac voltage for a

small change in load. However, a larger step change will cause a significant drop in the dc

voltage for all load levels higher than 0.2 p.u. The ac voltage will remain unaffected until

1.5 p.u. which is when the PV source moves past its MPP. Any increase in load past this

point will cause a drop in ac voltage that is proportional to the drop in dc voltage.

6.6 Conclusion

A PV source can be operated as a dispatchable voltage source in the constant voltage

region of operation. The proposed grid-forming controller is designed to maintain the PV

output voltage in this region and prevent a dc-link voltage collapse through a single-loop

voltage control with overcurrent limiting. DC-voltage-frequency droop is used for frequency

regulation, and the current is limited by adjusting the modulation index. The simulation

and experimental results show that the proposed controller is able to:

1. Synchronize parallel inverters with proportional load sharing

2. Limit overcurrent during transient events without sacrificing dc-link stability

3. Maintain dc-link stability when the source inverter is overloaded

4. Achieve passivity in input and output dynamics

Hence, by considering the limitations of the dc-link and the dc source behind the inverter, the

proposed controller proves to be more suitable to connect a PV source with a dispatchable

grid-forming inverter without additional storage at the dc-link.
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(a) Simulation results

(b) Experimental results

Figure 6.17: Results for step change in load using the proposed grid-forming controller in
simulation and hardware platforms.

128



Chapter 7

Conclusion and Future Work

To conclude this dissertation, this chapter will summarize the previous chapters, list the

main contributions, and recommend avenues to further expand in the area of grid-forming

control in inverter-based grids.

7.1 Summary

Chapter 1 describes the features and requirements for the operation of an inverter-based

grid completely devoid of synchronous generation. It emphasizes the shift in perspective

needed to fully utilize the capabilities of power electronic-interfaced sources in the absence

of mechanical inertia in the grid system.

Chapter 2 contains the literature survey that shapes the direction and scope of research

in the remainder of the dissertation. It provides an overview of inverter control concepts

and architectures, particularly grid-forming control. Five popular grid-forming control

methods are described in detail. The device-level and system-level challenges associated

with controlling inverters in the absence of synchronous generators are also investigated

to establish the requirements for an effective grid-forming inverter controller in an inverter-

based grid. The differences in operational requirements for grid-tied inverters (in distribution

grids) and grid-forming inverters (in isolated, inverter-based grids) are derived from the

literature review. Understanding these differences enables the design of effective grid-forming

controllers for parallel operation in inverter-based grids.
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Chapter 3 presents a comparative analysis of the five popular grid-forming control

methods described in the previous chapter, namely, droop control, synchronverter control,

virtual oscillator control, matching control, and distributed direct voltage control. These

five controllers are implemented in a two-inverter two-load system in MATLAB/Simulink

and simulated for three test cases. The performances of the five controllers are compared

to understand how the different control strategies affect the inverter output response to

sudden changes in the grid and loading conditions. In the absence of synchronous generators,

synchronverter control outperforms the other grid-forming controllers in terms of stable and

equal power sharing between parallel inverters.

Chapter 4 demonstrates the impact of the inverter control structure on the input (dc)

and output (ac) dynamics of the inverter through an impedance-based stability analysis

of single-loop and nested-loop controllers. The analysis comprises of the derivation of

small-signal models for converters with nested and single-loop control structures, and the

comparison of their input and output impedance characteristics both with and without

synchronization. The analysis shows that cascaded-loop controllers lead to negative

resistance behavior in the input impedance and non-passive regions in the output impedance,

unlike single-loop controllers. This non-passive behavior of nested-loop controllers can lead

to dc-link instability and unstable ac-side inverter interactions. The analysis results are also

verified using simulation and hardware measurements.

Chapter 5 explains how impedance-based models and analyses of inverter control

systems can be used to derive insights regarding their dc-link stability, interaction stability

with parallel inverters and other grid elements, ability to compensate for load disturbances,

inter-domain cross-couplings, power sharing behavior, and harmonic stability. Exemplary

simulation results for a commonly used droop-based grid-forming controller are provided to

demonstrate the utility of impedance-based analyses in inverter-based systems where power

system behavior is equally determined by dc and ac dynamics.

Chapter 6 presents a new grid-forming control design which considers the PV source

dynamics and limitations and maintains dc-link stability under transient and overloading

conditions. Based on the lessons learned from previous chapters, a single-loop voltage

controller is used without ac current feedback and the synchronization is achieved using dc
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voltage-frequency droop. Additional dc current-virtual impedance feedforward compensation

is included to improve the ac output passivity. The proposed controller is implemented and

tested on a controller-in-the-loop simulation platform. The simulation results show that

the controller shares power in proportion to the dc source capacities of parallel inverters,

effectively limits the overcurrent during faults, and limits dc-link voltage drop when the

inverter is overloaded. The controller is also validated on the hardware testbed during a step

load change.

7.2 Contributions

The main contributions of this dissertation are:

1. Five major grid-forming controllers are simulated and analyzed in an isolated grid

with one PV source, one energy storage source and two ZIP loads. The comparison of

their performance under changing grid and loading conditions reveals that single-loop

controllers (synchronverter, V-f, matching) achieve better synchronization and power

sharing overall than nested-loop controllers (droop, dispatchable virtual oscillator

control).

2. The superior performance of single-loop controllers over nested-loop controllers is also

exhibited through a small-signal stability analysis of the input and output impedance

of grid-forming controllers using each of these control structures. Previous works

analyzing grid-tied inverter controls using impedance-based methods have shown how

output current feedback loops and phase-locked loops render a negative resistance

effect on the output (ac) impedance of inverters. This work proves that inner current

feedback loops (in nested control structures) also turn the input (dc) impedance of

grid-forming inverters into a negative resistance and degrade dc-link stability, even

without synchronization loops.

3. A review of the applications and benefits of using impedance-based analysis methods in

inverter-based systems is also provided which can be utilized to study inverter response
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behavior and inverter interactions with other elements of the grid, and also aid in proper

control design for inverter controls.

4. Finally, these analyses and insights are used to develop a grid-forming controller to

interface an MPPT-controlled PV source with an inverter-based grid. The proposed

controller has the following features:

(a) The inner current control loop is replaced by a modulation index modifier with

a single voltage control loop which achieves current limiting without sacrificing

dc-link stability.

(b) The dc voltage-frequency droop synchronization regulates output frequency while

enabling proportional power sharing under parallel operation.

(c) A virtual impedance feedforward using dc current is used to improve inverter

output passivity.

In this way, the proposed controller effectively operates the PV array as a dispatchable

source and prevents dc voltage collapse.

7.3 Future Work

The following are some recommended avenues to use this dissertation for future research:

1. While the analysis in Chapter 3 compared different types of grid-forming control with

the same voltage and current control gains, the tuning of controller gains to optimize

the performance of each type of controller with a scientific optimization method will

prove useful as grid-forming inverters become popular.

2. As explained in Chapter 6, interfacing a PV source with a grid-forming inverter presents

some unique challenges. Although the proposed controller is able to maintain dc-link

stability when using a PV and battery sources, dc-link stability is not guaranteed

with other sources such as wind turbine generators which commonly use doubly-fed

induction generator (DFIG) control to regulate the dc-link voltage. Therefore, DFIG

sources actually have machine dynamics and synthetic inertia unlike other distributed
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generation but are limited by environmental factors unlike synchronous machines.

These additional challenges and the interaction between the proposed controller and the

DFIG dynamics behind the dc-link can be analyzed to further improve the controller

to have more universal applications.

3. Along the same lines, the impact of backup (diesel) generators often used in microgrids

and the grid-forming controller on each other can also be studied and compared with

the behavior of other existing grid-forming controllers.

4. The impedance-based stability analysis of grid-forming control structures can be

expanded to determine the effect of various forms of compensation such as feedforward

control and decoupling within single-loop, nested and hybrid control structures.

5. The importance of considering dc source and dc-link limitations has been emphasized

in this work. However, these limitations differ for each type of source behind the

dc-link. Hence, it would be meaningful to quantify these limitations based on the

physical characteristics of each source which can then be used to standardize and

simplify inverter control design as well as resource planning and sizing.
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