26,610 research outputs found

    High-precision astrometry with VVV. I. An independent reduction pipeline for VIRCAM@VISTA

    Full text link
    We present a new reduction pipeline for the VIRCAM@VISTA detector and describe the method developed to obtain high-precision astrometry with the VISTA Variables in the V\'ia L\'actea (VVV) data set. We derive an accurate geometric-distortion correction using as calibration field the globular cluster NGC 5139, and showed that we are able to reach a relative astrometric precision of about 8 mas per coordinate per exposure for well-measured stars over a field of view of more than 1 square degree. This geometric-distortion correction is made available to the community. As a test bed, we chose a field centered around the globular cluster NGC 6656 from the VVV archive and computed proper motions for the stars within. With 45 epochs spread over four years, we show that we are able to achieve a precision of 1.4 mas/yr and to isolate each population observed in the field (cluster, Bulge and Disk) using proper motions. We used proper-motion-selected field stars to measure the motion difference between Galactic disk and bulge stars. Our proper-motion measurements are consistent with UCAC4 and PPMXL, though our errors are much smaller. Models have still difficulties in reproducing the observations in this highly-reddened Galactic regions.Comment: 11 pages, 10 figures (some in low res), 1 table. Accepted for publication in MNRAS on March 25, 2015. The FORTRAN routine will be soon made available at http://groups.dfa.unipd.it/ESPG/ , and via email request to the first autho

    Probing the Balance of AGN and Star-Forming Activity in the Local Universe with ChaMP

    Full text link
    The combination of the SDSS and the Chandra Multiwavelength Project (ChaMP) currently offers the largest and most homogeneously selected sample of nearby galaxies for investigating the relation between X-ray nuclear emission, nebular line-emission, black hole masses, and properties of the associated stellar populations. We present here novel constraints that both X-ray luminosity Lx and X-ray spectral energy distribution bring to the galaxy evolutionary sequence H II -> Seyfert/Transition Object -> LINER -> Passive suggested by optical data. In particular, we show that both Lx and Gamma, the slope of the power-law that best fits the 0.5 - 8 keV spectra, are consistent with a clear decline in the accretion power along the sequence, corresponding to a softening of their spectra. This implies that, at z ~ 0, or at low luminosity AGN levels, there is an anti-correlation between Gamma and L/Ledd, opposite to the trend exhibited by high z AGN (quasars). The turning point in the Gamma -L/Ledd LLAGN + quasars relation occurs near Gamma ~ 1.5 and L/Ledd ~ 0.01. Interestingly, this is identical to what stellar mass X-ray binaries exhibit, indicating that we have probably found the first empirical evidence for an intrinsic switch in the accretion mode, from advection-dominated flows to standard (disk/corona) accretion modes in supermassive black hole accretors, similar to what has been seen and proposed to happen in stellar mass black hole systems. The anti-correlation we find between Gamma and L/Ledd may instead indicate that stronger accretion correlates with greater absorption. Therefore the trend for softer spectra toward more luminous, high redshift, and strongly accreting AGN/quasars could simply be the result of strong selection biases reflected in the dearth of type 2 quasar detections.Comment: 23 pages, 8 figures, 1 long (3 page) table, to appear in Ap

    Capturing Energy Waste in Ohio: Using Combined Heat and Power to Upgrade Our Electric System

    Get PDF
    Assesses the state's potential for capturing heat generated during electricity production or industrial processes to meet thermal needs, cut fossil fuel use, and reduce emissions. Recommends ways to remove barriers to combined heat and power adoption

    CMF-13 research on carbon and graphite Progress report, 1 Feb. - 30 Apr. 1969

    Get PDF
    Carbon and graphite research and development, with detailed data on Santa Maria coke as filler materia

    Weighing the Giants - I. Weak-lensing masses for 51 massive galaxy clusters: project overview, data analysis methods and cluster images

    Full text link
    This is the first in a series of papers in which we measure accurate weak-lensing masses for 51 of the most X-ray luminous galaxy clusters known at redshifts 0.15<z<0.7, in order to calibrate X-ray and other mass proxies for cosmological cluster experiments. The primary aim is to improve the absolute mass calibration of cluster observables, currently the dominant systematic uncertainty for cluster count experiments. Key elements of this work are the rigorous quantification of systematic uncertainties, high-quality data reduction and photometric calibration, and the "blind" nature of the analysis to avoid confirmation bias. Our target clusters are drawn from RASS X-ray catalogs, and provide a versatile calibration sample for many aspects of cluster cosmology. We have acquired wide-field, high-quality imaging using the Subaru and CFHT telescopes for all 51 clusters, in at least three bands per cluster. For a subset of 27 clusters, we have data in at least five bands, allowing accurate photo-z estimates of lensed galaxies. In this paper, we describe the cluster sample and observations, and detail the processing of the SuprimeCam data to yield high-quality images suitable for robust weak-lensing shape measurements and precision photometry. For each cluster, we present wide-field color optical images and maps of the weak-lensing mass distribution, the optical light distribution, and the X-ray emission, providing insights into the large-scale structure in which the clusters are embedded. We measure the offsets between X-ray centroids and Brightest Cluster Galaxies in the clusters, finding these to be small in general, with a median of 20kpc. For offsets <100kpc, weak-lensing mass measurements centered on the BCGs agree well with values determined relative to the X-ray centroids; miscentering is therefore not a significant source of systematic uncertainty for our mass measurements. [abridged]Comment: 26 pages, 19 figures (Appendix C not included). Accepted after minor revisio

    Faint, moving objects in the Hubble Deep Field: components of the dark halo?

    Get PDF
    The deepest optical image of the sky, the Hubble Deep Field (HDF), obtained with the Hubble Space Telescope (HST) in December 1995, has been compared to a similar image taken in December 1997. Two very faint, blue, isolated and unresolved objects are found to display a substantial apparent proper motion, 23+/-5 mas/yr and 26+/-5 mas/yr; a further three objects at the detection limit of the second epoch observations may also be moving. Galactic structure models predict a general absence of stars in the color-magnitude range in which these objects are found. However, these observations are consistent with recently-developed models of old white dwarfs with hydrogen atmospheres, whose color, contrary to previous expectations, has been shown to be blue. If these apparently moving objects are indeed old white dwarfs with hydrogen atmospheres and masses near 0.5 M_Sun, they have ages of approximately 12 Gyr, and a local mass density that is sufficient, within the large uncertainties arising from the small size of the sample, to account for the entire missing Galactic dynamical mass.Comment: 6 pages, using emulateapj, including 2 colour figures, accepted for publication in ApJ Letter
    • …
    corecore