9,185 research outputs found

    Solution processed graphene structures for perovskite solar cells

    Get PDF
    Organometallic trihalide perovskite light absorber based solar cells have drawn increasing attention because of their recent rapid increase in power conversion efficiency (PCE). These photovoltaic cells have relied significantly on transparent conducting oxide (TCO) electrodes which are costly and brittle. Herein, solution processed transparent conductive graphene films (TCGFs) are utilized, for the first time, as an alternative to traditional TCO electrodes at the electron collecting layer in perovskite solar cells (PSCs). By investigating and optimizing the trade-off between transparency and sheet resistance (Rs) of the graphene films, a PCE of 0.62% is achieved. This PCE is further improved to 0.81% by incorporating graphene structures into both compact and mesoporous TiO2 layers of the solar cell. We anticipate that the present study will lead to further work to develop graphene-based transparent conductive electrodes for future solar cell devices

    Solution processed graphene structures for perovskite solar cells

    Get PDF
    Organometallic trihalide perovskite light absorber based solar cells have drawn increasing attention because of their recent rapid increase in power conversion efficiency (PCE). These photovoltaic cells have relied significantly on transparent conducting oxide (TCO) electrodes which are costly and brittle. Herein, solution processed transparent conductive graphene films (TCGFs) are utilized, for the first time, as an alternative to traditional TCO electrodes at the electron collecting layer in perovskite solar cells (PSCs). By investigating and optimizing the trade-off between transparency and sheet resistance (Rs) of the graphene films, a PCE of 0.62% is achieved. This PCE is further improved to 0.81% by incorporating graphene structures into both compact and mesoporous TiO2 layers of the solar cell. We anticipate that the present study will lead to further work to develop graphene-based transparent conductive electrodes for future solar cell devices

    Technology ready use of single layer graphene as a transparent electrode for hybrid photovoltaic devices

    Full text link
    Graphene has been used recently as a replacement for indium tin oxide (ITO) for the transparent electrode of an organic photovoltaic device. Due to its limited supply, ITO is considered as a limiting factor for the commercialization of organic solar cells. We explored the use of large-area graphene grown on copper by chemical vapor deposition (CVD) and then transferred to a glass substrate as an alternative transparent electrode. The transferred film was shown by scanning Raman spectroscopy measurements to consist of >90% single layer graphene. Optical spectroscopy measurements showed that the layer-transferred graphene has an optical absorbance of 1.23% at a wavelength of 532 nm. We fabricated organic hybrid solar cells utilizing this material as an electrode and compared their performance with ITO devices fabricated using the same procedure. We demonstrated power conversion efficiency up to 3.98%, higher than that of the ITO device (3.86%), showing that layer-transferred graphene promises to be a high quality, low-cost, flexible material for transparent electrodes in solar cell technology.Comment: 6 pages, 3 figure

    Graphene-based electrodes for silicon heterojunction solar cell technology

    Get PDF
    Transparent conductive electrodes based on graphene have been previously proposed as an attractive candidate for optoelectronic devices. While graphene alone lacks the antireflectance properties needed in many applications, it can still be coupled with traditional transparent conductive oxides, further enhancing their electrical performance. In this work, the effect of combining indium tin oxide with between one and three graphene monolayers as the top electrode in silicon heterojunction solar cells is analyzed. Prior to the metal grid deposition, the electrical conductance of the hybrid electrodes was evaluated through reflection-mode terahertz time-domain spectroscopy. The obtained conductance maps showed a clear electrical improvement with each additional graphene sheet. In the electrical characterization of the finished solar cells, this translated to a meaningful reduction in the series resistance and an increase in the devices’ fill factor. On the other hand, each additional sheet absorbs part of the incoming radiation, causing the short circuit current to simultaneously decrease. Consequently, additional graphene monolayers past the first one did not further enhance the efficiency of the reference cells. Ultimately, the increase obtained in the fill factor endorses graphene-based hybrid electrodes as a potential concept for improving solar cells’ efficiency in future novel designs.This research was funded by DIGRAFEN, grant number ENE2017–88065-C2-2-R. The APC was funded by the Ministry of Economy, Industry and Competitiveness from Spain. das-Nano and UPNA would also like to acknowledge the funding from the Government of Navarra and the European Regional Development Fund (ERDF), 2020 I + D projects: ref. 0011-1365-2020-000026 for das-Nano and ref. 0011-1365-2020-000045 for UPNA

    An antireflection transparent conductor with ultralow optical loss (o2 %) and electrical resistance (o6O 2)

    Get PDF
    Transparent conductors are essential in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and solar cells. Here we demonstrate a transparent conductor with optical loss of B1.6%, that is, even lower than that of single-layer graphene (2.3%), and transmission higher than 98% over the visible wavelength range. This was possible by an optimized antireflection design consisting in applying Al-doped ZnO and TiO2 layers with precise thicknesses to a highly conductive Ag ultrathin film. The proposed multilayer structure also possesses a low electrical resistance (5.75O 2), a figure of merit four times larger than that of indium tin oxide, the most widely used transparent conductor today, and, contrary to it, is mechanically flexible and room temperature deposited. To assess the application potentials, transparent shielding of radiofrequency and microwave interference signals with B30 dB attenuation up to 18 GHz was achieved.Peer ReviewedPostprint (author's final draft

    Homogeneously bright, flexible and foldable lighting devices with functionalised graphene electrodes

    Get PDF
    Alternating current electroluminescent technology allows the fabrication of large area, flat and flexible lights. Presently the maximum size of a continuous panel is limited by the high resistivity of available transparent electrode materials causing a visible gradient of brightness. Here, we demonstrate that the use of the best known transparent conductor FeCl3_{3}-intercalated few-layer graphene boosts the brightness of electroluminescent devices by 49%\% compared to pristine graphene. Intensity gradients observed for high aspect ratio devices are undetectable when using these highly conductive electrodes. Flat lights on polymer substrates are found to be resilient to repeated and flexural strains.Comment: Published on ACS Materials and Interface
    • …
    corecore