116 research outputs found

    Scientific Information Extraction with Semi-supervised Neural Tagging

    Full text link
    This paper addresses the problem of extracting keyphrases from scientific articles and categorizing them as corresponding to a task, process, or material. We cast the problem as sequence tagging and introduce semi-supervised methods to a neural tagging model, which builds on recent advances in named entity recognition. Since annotated training data is scarce in this domain, we introduce a graph-based semi-supervised algorithm together with a data selection scheme to leverage unannotated articles. Both inductive and transductive semi-supervised learning strategies outperform state-of-the-art information extraction performance on the 2017 SemEval Task 10 ScienceIE task.Comment: accepted by EMNLP 201

    The Domain Mismatch Problem in the Broadcast Speaker Attribution Task

    Get PDF
    The demand of high-quality metadata for the available multimedia content requires the development of new techniques able to correctly identify more and more information, including the speaker information. The task known as speaker attribution aims at identifying all or part of the speakers in the audio under analysis. In this work, we carry out a study of the speaker attribution problem in the broadcast domain. Through our experiments, we illustrate the positive impact of diarization on the final performance. Additionally, we show the influence of the variability present in broadcast data, depicting the broadcast domain as a collection of subdomains with particular characteristics. Taking these two factors into account, we also propose alternative approximations robust against domain mismatch. These approximations include a semisupervised alternative as well as a totally unsupervised new hybrid solution fusing diarization and speaker assignment. Thanks to these two approximations, our performance is boosted around a relative 50%. The analysis has been carried out using the corpus for the Albayzín 2020 challenge, a diarization and speaker attribution evaluation working with broadcast data. These data, provided by Radio Televisión Española (RTVE), the Spanish public Radio and TV Corporation, include multiple shows and genres to analyze the impact of new speech technologies in real-world scenarios

    A survey on the semi supervised learning paradigm in the context of speech emotion recognition

    Get PDF
    The area of Automatic Speech Emotion Recognition has been a hot topic for researchers for quite some time now. The recent breakthroughs on technology in the field of Machine Learning open up doors for multiple approaches of many kinds. However, some concerns have been persistent throughout the years where we highlight the design and collection of data. Proper annotation of data can be quite expensive and sometimes not even viable, as specialists are often needed for such a complex task as emotion recognition. The evolution of the semi supervised learning paradigm tries to drag down the high dependency on labelled data, potentially facilitating the design of a proper pipeline of tasks, single or multi modal, towards the final objective of the recognition of the human emotional mental state. In this paper, a review of the current single modal (audio) Semi Supervised Learning state of art is explored as a possible solution to the bottlenecking issues mentioned, as a way of helping and guiding future researchers when getting to the planning phase of such task, where many positive aspects from each piece of work can be drawn and combined.This work has been supported by FCT - Fundação para a Ciencia e Tecnologia within the R&D Units Project Scope: UIDB/00319/202

    Towards a cyber physical system for personalised and automatic OSA treatment

    Get PDF
    Obstructive sleep apnea (OSA) is a breathing disorder that takes place in the course of the sleep and is produced by a complete or a partial obstruction of the upper airway that manifests itself as frequent breathing stops and starts during the sleep. The real-time evaluation of whether or not a patient is undergoing OSA episode is a very important task in medicine in many scenarios, as for example for making instantaneous pressure adjustments that should take place when Automatic Positive Airway Pressure (APAP) devices are used during the treatment of OSA. In this paper the design of a possible Cyber Physical System (CPS) suited to real-time monitoring of OSA is described, and its software architecture and possible hardware sensing components are detailed. It should be emphasized here that this paper does not deal with a full CPS, rather with a software part of it under a set of assumptions on the environment. The paper also reports some preliminary experiments about the cognitive and learning capabilities of the designed CPS involving its use on a publicly available sleep apnea database

    Advances in Hyperspectral Image Classification Methods for Vegetation and Agricultural Cropland Studies

    Get PDF
    Hyperspectral data are becoming more widely available via sensors on airborne and unmanned aerial vehicle (UAV) platforms, as well as proximal platforms. While space-based hyperspectral data continue to be limited in availability, multiple spaceborne Earth-observing missions on traditional platforms are scheduled for launch, and companies are experimenting with small satellites for constellations to observe the Earth, as well as for planetary missions. Land cover mapping via classification is one of the most important applications of hyperspectral remote sensing and will increase in significance as time series of imagery are more readily available. However, while the narrow bands of hyperspectral data provide new opportunities for chemistry-based modeling and mapping, challenges remain. Hyperspectral data are high dimensional, and many bands are highly correlated or irrelevant for a given classification problem. For supervised classification methods, the quantity of training data is typically limited relative to the dimension of the input space. The resulting Hughes phenomenon, often referred to as the curse of dimensionality, increases potential for unstable parameter estimates, overfitting, and poor generalization of classifiers. This is particularly problematic for parametric approaches such as Gaussian maximum likelihoodbased classifiers that have been the backbone of pixel-based multispectral classification methods. This issue has motivated investigation of alternatives, including regularization of the class covariance matrices, ensembles of weak classifiers, development of feature selection and extraction methods, adoption of nonparametric classifiers, and exploration of methods to exploit unlabeled samples via semi-supervised and active learning. Data sets are also quite large, motivating computationally efficient algorithms and implementations. This chapter provides an overview of the recent advances in classification methods for mapping vegetation using hyperspectral data. Three data sets that are used in the hyperspectral classification literature (e.g., Botswana Hyperion satellite data and AVIRIS airborne data over both Kennedy Space Center and Indian Pines) are described in Section 3.2 and used to illustrate methods described in the chapter. An additional high-resolution hyperspectral data set acquired by a SpecTIR sensor on an airborne platform over the Indian Pines area is included to exemplify the use of new deep learning approaches, and a multiplatform example of airborne hyperspectral data is provided to demonstrate transfer learning in hyperspectral image classification. Classical approaches for supervised and unsupervised feature selection and extraction are reviewed in Section 3.3. In particular, nonlinearities exhibited in hyperspectral imagery have motivated development of nonlinear feature extraction methods in manifold learning, which are outlined in Section 3.3.1.4. Spatial context is also important in classification of both natural vegetation with complex textural patterns and large agricultural fields with significant local variability within fields. Approaches to exploit spatial features at both the pixel level (e.g., co-occurrencebased texture and extended morphological attribute profiles [EMAPs]) and integration of segmentation approaches (e.g., HSeg) are discussed in this context in Section 3.3.2. Recently, classification methods that leverage nonparametric methods originating in the machine learning community have grown in popularity. An overview of both widely used and newly emerging approaches, including support vector machines (SVMs), Gaussian mixture models, and deep learning based on convolutional neural networks is provided in Section 3.4. Strategies to exploit unlabeled samples, including active learning and metric learning, which combine feature extraction and augmentation of the pool of training samples in an active learning framework, are outlined in Section 3.5. Integration of image segmentation with classification to accommodate spatial coherence typically observed in vegetation is also explored, including as an integrated active learning system. Exploitation of multisensor strategies for augmenting the pool of training samples is investigated via a transfer learning framework in Section 3.5.1.2. Finally, we look to the future, considering opportunities soon to be provided by new paradigms, as hyperspectral sensing is becoming common at multiple scales from ground-based and airborne autonomous vehicles to manned aircraft and space-based platforms

    Proposal of a health care network based on big data analytics for PDs

    Get PDF
    Health care networks for Parkinson's disease (PD) already exist and have been already proposed in the literature, but most of them are not able to analyse the vast volume of data generated from medical examinations and collected and organised in a pre-defined manner. In this work, the authors propose a novel health care network based on big data analytics for PD. The main goal of the proposed architecture is to support clinicians in the objective assessment of the typical PD motor issues and alterations. The proposed health care network has the ability to retrieve a vast volume of acquired heterogeneous data from a Data warehouse and train an ensemble SVM to classify and rate the motor severity of a PD patient. Once the network is trained, it will be able to analyse the data collected during motor examinations of a PD patient and generate a diagnostic report on the basis of the previously acquired knowledge. Such a diagnostic report represents a tool both to monitor the follow up of the disease for each patient and give robust advice about the severity of the disease to clinicians

    Survey of deep representation learning for speech emotion recognition

    Get PDF
    Traditionally, speech emotion recognition (SER) research has relied on manually handcrafted acoustic features using feature engineering. However, the design of handcrafted features for complex SER tasks requires significant manual eort, which impedes generalisability and slows the pace of innovation. This has motivated the adoption of representation learning techniques that can automatically learn an intermediate representation of the input signal without any manual feature engineering. Representation learning has led to improved SER performance and enabled rapid innovation. Its effectiveness has further increased with advances in deep learning (DL), which has facilitated \textit{deep representation learning} where hierarchical representations are automatically learned in a data-driven manner. This paper presents the first comprehensive survey on the important topic of deep representation learning for SER. We highlight various techniques, related challenges and identify important future areas of research. Our survey bridges the gap in the literature since existing surveys either focus on SER with hand-engineered features or representation learning in the general setting without focusing on SER

    Data-Selective Transfer Learning for Multi-Domain Speech Recognition

    Get PDF
    Negative transfer in training of acoustic models for automatic speech recognition has been reported in several contexts such as domain change or speaker characteristics. This paper proposes a novel technique to overcome negative transfer by efficient selection of speech data for acoustic model training. Here data is chosen on relevance for a specific target. A submodular function based on likelihood ratios is used to determine how acoustically similar each training utterance is to a target test set. The approach is evaluated on a wide–domain data set, covering speech from radio and TV broadcasts, telephone conversations, meetings, lectures and read speech. Experiments demonstrate that the proposed technique both finds relevant data and limits negative transfer. Results on a 6–hour test set show a relative improvement of 4% with data selection over using all data in PLP based models, and 2% with DNN feature
    • …
    corecore