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Abstract: The demand of high-quality metadata for the available multimedia content requires the
development of new techniques able to correctly identify more and more information, including the
speaker information. The task known as speaker attribution aims at identifying all or part of the
speakers in the audio under analysis. In this work, we carry out a study of the speaker attribution
problem in the broadcast domain. Through our experiments, we illustrate the positive impact of
diarization on the final performance. Additionally, we show the influence of the variability present
in broadcast data, depicting the broadcast domain as a collection of subdomains with particular
characteristics. Taking these two factors into account, we also propose alternative approximations
robust against domain mismatch. These approximations include a semisupervised alternative as well
as a totally unsupervised new hybrid solution fusing diarization and speaker assignment. Thanks to
these two approximations, our performance is boosted around a relative 50%. The analysis has been
carried out using the corpus for the Albayzín 2020 challenge, a diarization and speaker attribution
evaluation working with broadcast data. These data, provided by Radio Televisión Española (RTVE),
the Spanish public Radio and TV Corporation, include multiple shows and genres to analyze the
impact of new speech technologies in real-world scenarios.

Keywords: speaker attribution; diarization; multi-domain; domain mismatch

1. Introduction

In recent years, the importance of extensive high-quality annotations for multimedia
data has been highlighted. Regarding audio, this information may describe the inner details
of the data (who talks in an audio, what is said, etc.) or link multiple pieces according to
external characteristics (e.g., someone’s music preferences). Thus, the net worth of a certain
set of multimedia data now heavily depends on the quality of its labels.

Unfortunately, the inference of more and more elaborated labels is not free of charge.
In the past, metadata generation was hand-made, restricted to few types and expensive in
terms of money, time and effort. These days, the variety of requested side information has
largely increased and must be obtained for a much larger amount of multimedia content.
Hence, large-scale human annotation tends not to be viable. Fortunately, thanks to the
evolution of artificial intelligence, computer-based or computer-assisted solutions can be
considered instead.

One of the most traditional inferred audio metadata is speaker information. However,
not all the speaker metadata is equally descriptive. Speaker attribution is the job responsible
for inferring whether any speaker from a set of enrolled speakers contributes to the audio
under analysis. Furthermore, if these speakers are present, the estimation of timestamps
when these contributions occur is also requested. For this purpose, the speaker enrollment
should be according to a small portion of audio per person of interest. Thus, speaker
attribution can be interpreted as the fusion of two well-known tasks: speaker verification
and diarization.

Appl. Sci. 2021, 11, 8521. https://doi.org/10.3390/app11188521 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1772-0605
https://orcid.org/0000-0002-3886-7748
https://orcid.org/0000-0001-5803-4316
https://orcid.org/0000-0001-9137-4013
https://doi.org/10.3390/app11188521
https://doi.org/10.3390/app11188521
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11188521
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11188521?type=check_update&version=2


Appl. Sci. 2021, 11, 8521 2 of 19

The study of speaker attribution has been largely studied, as shown in the bibliogra-
phy. Usually, it has been considered an evolution of diarization. Thus, very often, it follows
a similar Bottom-Up strategy: First, the input audio is divided into segments under the
assumption of a single speaker per audio fragment. Then, each segment is transformed
into a speaker representation and assigned to its corresponding cluster according to its
speaker. Within the bibliography, speaker attribution has analyzed multiple sorts of speaker
representations: Joint Factor Analysis (JFA) [1], i-vectors [2], PLDA [3], or DNN embed-
dings, such as x-vectors [4]. Regarding systems, some alternatives rely on Agglomerative
Clustering [5–7] taking into account different metrics (cosine distance, Kullback–Leibler
divergence, Cross Likelihood Ratio (CLR), etc ). Other contributions [8,9] exploit Informa-
tion Theory concepts, such as Mutual Information, to make decisions. The assignment
of clusters by means of a speaker recognition paradigm has also been proposed in [10].
Finally, ref. [11] proposes graph-based semi-supervised learning approximation to speaker
attribution. Most of these systems consider well-known techniques and state-of-the-art
approximations. However, they usually suffer from a similar limitation: lack of robustness.
These systems rely on a threshold under the assumption of similar conditions in both
development and evaluation scenarios.

The motivation for this article is the analysis of speaker attribution in broadcast
data. The broadcast domain and its archive services are keen on many types of automatic
annotation, including speaker attribution. This interest is due to the increase of produced
content experiments within recent years as well as the high complexity of the domain
nature. This content, understood as a collection of shows and genres with particular
characteristics, provides a challenging domain that requires techniques capable of dealing
with such variability. In fact, this complexity motivates the division of our main objective,
the analysis of speaker attribution, into three partial goals. These partial goals are:

• To study the influence of diarization on the performance of speaker attribution systems;
• To analyze the impact of domain mismatch between models and data;
• To propose robust approximations that mitigate the domain mismatch between models

and data under analysis.

The audio used in this study belongs to the latest of the ongoing series of Albayzín
evaluations [12]. These evaluations seek the evolution of speech technologies, such as
Automatic Speech Recognition (ASR), diarization and speaker attribution, with special
emphasis on the broadcast domain. For this purpose, the whole corpus, gathered along the
multiple editions, consists of audio from real broadcast content from radio stations and TV
channels. Regarding the 2020 edition, the data are released by Radio Televisión Española
(RTVE), the Spanish public Radio and Television Corporation (RTVE collaboration through
http://catedrartve.unizar.es/, accessed on 9 September 2021).

This article is organized as follows: A study of the speaker attribution problem is
carried out in Section 2. The experimental scenario is described in Section 3. The studied
systems are explained in detail in Section 4. Section 5 is dedicated to the results of the
experiments carried out in this article. Finally, our conclusions are collected in Section 6.

2. The Speaker Attribution Problem

The speaker attribution problem is a complex task focused on inferring detailed
speaker information about any input audio. As illustrated in Figure 1, speaker attribution
should estimate whether a set of enrolled people contribute to a given audio and, if so,
when they talk. These decisions are made according to small portions of audio from the
speakers of interest. Whenever all speakers in the audio are reassured to be enrolled in
the system, we are dealing with a closed-set scenario; otherwise, it is an open-set scenario.
Some contributions in the field of speaker attribution are [13], which focuses on the identity
assignment and includes purity quality metrics, [14], which combines the diarization task
with a speaker-based identity assignment, and [15], which speeds up the diarization and
the identity assignment process by means of low-resource techniques.

http://catedrartve.unizar.es/
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Figure 1. Concept diagram of speaker attribution. For the given audio, we assign the portion of
speech generated by each enrolled speaker. Additionally, we must also detect the audio belonging to
non-enrolled speakers (red arrow).

State-of-the-art speaker attribution has been built by collecting techniques to identify
the audio from a single speaker in a recording and strategies to assign this audio to the
corresponding enrolled speaker. This description also fits other tasks, such as speaker
linking and longitudinal diarization, which require similar techniques and only differ in the
description of enrollment audios. A general solution for all these tasks follows a diagram
block, as shown in Figure 2.

Audio Segmentation
Speaker

Representation

Clustering Identity
Assignment

Final
Labels
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Audio

Speaker
Representation

Online Processing

Offline Processing

Figure 2. General block diagram for a speaker attribution system.

This diagram represents a Bottom-Up approach for speaker attribution. First, the
given audio is divided into segments in which a single speaker is assumed. These seg-
ments are then transformed into representations that highlight the speaker discriminative
properties. Taking into account these representations, the segments are clustered, grouping
those with a common speaker. Finally, each one of these clusters are assigned to an identity,
either an enrolled speaker or the generic unknown one. For this purpose, a side pipeline
processes those audios belonging to the enrollment identities in an offline fashion. The de-
scribed diagram has an alternative interpretation: A Bottom-Up diarization system isolates
the speakers in the audio under analysis, assigning them to the corresponding identity
afterwards. Regardless of the interpretation, most of these blocks are based on popular
techniques from both speaker recognition and diarization.

The contribution of speaker recognition consists of tools to accurately represent the
speakers by means of the embedding-backend paradigm. Thus, the speech of a speaker
in a given piece of audio is transformed into a compact representation that highlights
its discriminative properties. Some generative statistical alternatives are Joint Factor
Analysis [1] or the well-known i-vectors [2]. With the advent of Deep Learning (DL),
discriminative embeddings based on neural networks have also been proposed, such as
x-vectors [4] and d-vectors [16]. On top, a backend is in charge of scoring how likely
the speaker in the test audio is an enrolled speaker. As backend, the Probabilistic Linear
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Discriminant Analysis (PLDA) [3] has been traditionally considered, although certain
modifications, such as discriminative PLDA [17], the heavy-tailed PLDA [18,19] or the
Neural PLDA [20], are now popular too. Unfortunately, all these techniques work under
the assumption of a single speaker within the given recording; otherwise, the performance
is severely degraded.

Due to the fact that speaker recognition techniques cannot deal with multiple speak-
ers, diarization is in charge of isolating the audio from each speaker. In order to do so,
diarization contributes with two stages: Segmentation identifies contiguous segments with
a single speaker, and Clustering groups those segments that share a common speaker.
Regarding the first block, the division of the audio is done by means of the Speaker
Change Point Detection (SCPD) techniques. Some considered technologies for this subtask
are metric-based (Bayesian Information Criterion (BIC) [21], ∆BIC [22], etc.) or models
such as Hidden Markov Models (HMMs) [23] and Deep Neural Networks (DNNs) [24].
With respect to the clustering stage, multiple alternatives have been proposed, such as
Agglomerative Hierarchical Clustering (AHC) [25,26], mean-shift [27–29], K-means [30,31]
and Variational Bayes [32], or statistical approaches, such as i-vectors [33] or PLDA [34–38].

Finally, the identity assignment block is exclusive from speaker attribution and respon-
sible for assigning each estimated cluster to the corresponding enrolled speaker. In order
to make this assignment, clustering techniques are usually applied, such as the Ward
method based on the Hotteling t-square statistic [39], the symmetrized Kullback–Leibler
divergence [5,8] or the Cross-Likelihood Ratio (CLR) [7]. Other alternatives, i.e., the ones
presented in [10], consider the assignment as a speaker recognition task. Alternatively, other
contributions to speaker attribution present a totally new approach, integrating clustering
and identity assignment blocks and simultaneously performing diarization and speaker
attribution. This approximation as a dual task is solved by graph-based techniques [11].

Unfortunately, despite the great amount of developed techniques, the speaker attribu-
tion problem is still far from being solved for all domains. Broadcast data can be considered
a wide collection of shows and genres with particular characteristics and, therefore, huge
variability. This variability is due to the different acoustic environments in the data but also
to other reasons related to the speakers (different number of speakers, unbalanced amount
of speech among speakers, etc.). Thus, a general system may suffer from degradation to
each particular scenario, and the same large amount of shows and genres discourages
having multiple particular systems. Besides, in the broadcast domain, it is usually required
to deal with unseen subdomains (e.g., a new show). While certain works have mitigated the
domain mismatch between training and evaluation scenarios [37], in speaker attribution,
we must also bear in mind the potential extra domains in the enrollment audios. This
case is very common in real life, especially concerning public figures whose data can be
collected in multiple conditions.

Finally, other important factors for the speaker attribution performance are the ben-
efits and limitations of open-set and closed-set scenarios. The former scenario presents
the unconstrained version of the speaker attribution task, whereas the latter condition
simplifies the attribution problem by not considering the unknown identity, potentially
boosting the performance. This consideration is important in the broadcast domain where
some shows potentially fit into the closed-set condition, such as debate programs.

3. Experimental Protocol
3.1. Albayzín Corpus and Allowed Data

The dataset used for the evaluation of the systems is the Albayzín 2020 corpus (Evalu-
ation plan available in http://catedrartve.unizar.es/reto2020/EvalPlan-SD-2020-v1.pdf,
accessed on 9 September 2021). This dataset consists of approximately 750 h of broadcast
content and is the accumulation of past Albayzin evaluations (2012, 2016, 2018 and 2020)
proposed by Red Temática de Tecnologías del Habla (RTTH, http://rthabla.es, accessed on
9 September 2021). The content of the dataset, focused on the broadcast domain, considers
multiple sources (3/24 TV channel, Corporación Aragonesa de Radio y Televisión (CARTV)

http://catedrartve.unizar.es/reto2020/EvalPlan-SD-2020-v1.pdf
http://rthabla.es
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and Radio Televisión Española (RTVE)), media (radio and TV) as well as languages (Span-
ish and Catalan). The corpus integrates a wide range of shows and genres, from talk-shows
to fiction. Albayzín evaluations are not exclusively focused on speaker technologies. Thus,
a wide variety of metadata is released: around 180 h of human-annotated content, including
time-referenced speaker labels, 100 h of audio labeled with coarse acoustic segmentation
and 570 h of audio with the released broadcast subtitles.

For diarization and speaker attribution purposes, we only bear in mind the subset of
audio with speaker labels, i.e., approximately 180 h of the total. In this analysis, we divide
the corpus imitating the 2020 evaluation conditions: The audio from previous evaluations
(2012, 2016 and 2018) is available for training purposes, consisting of approximately 140 h
of content. The remaining audio, the data released in 2020, is divided into two subsets:
development (4 h of audio) and test (37 h of content). The development set consists of
two different shows: the documentary “Aquí la Tierra” as well as the teen drama “Bajo
la Red”. The test subset presents a larger heterogeneity with ten different shows that
belong to four genres: Fiction series, such as the already mentioned “Bajo la Red”, as well
as “Boca Norte”, “Si Fueras Tu” and “Wake-up”; two debate shows: “Los Desayunos de
TVE” and “Millenium”; two comedy shows, namely “Ese Programa del que Usted me
Habla” and “Neverfilms”, are also evaluated. Finally, two magazines, “Aquí la Tierra”
and “Comando Actualidad”, complete the subset. (All involved shows are reproducible
in RTVE Video on Demand (VoD) platform https://www.rtve.es/play. accessed on 9
September 2021) The selection of shows for the evaluation involves large variability in
terms of duration (from 3.5 min up to 96 min) or the number of speakers (from 6 to 74).
Furthermore, although certain shows (“Aquí la Tierra”, “Bajo la Red” and “Millenium”) are
not exclusive to the test subset, this information was deliberately hidden by the organizers
during the evaluation to avoid particular setups in these specific audios.

In order to perform the speaker attribution task, exclusive of the 2020 edition, extra
audio for the enrolled speakers was also released. The provided data includes approx-
imately an hour of audio involving 179 people (18 for development, 161 from test) in
193 recordings (25 for development and 168 in test). Hence, on average, each speaker is
enrolled considering 20 s of audio, usually in a single condition.

The released data for Albayzín 2020 are originally configured according to an open-set
scenario, with non-enrolled speakers in the evaluation audios as well as unseen enrolled
speakers. A closed-set version can be obtained by masking all the speech from non-enrolled
speakers in both online processing and evaluation.

In spite of the large amount of released data in the official Albayzín corpus, 2020
edition rules do not restrict the use of extra data if necessary. Hence, in our experiments,
the Albayzín training subset is complemented with data from Video on Demand (VoD) by
means of VoxCeleb 1 [40] and 2 [41]. We also make use of extra broadcast data with the
manually annotated subsets from the Multi-Genre Broadcast (MGB) Challenge 2015 [42].

3.2. Performance Metrics for Diarization and Speaker Attribution

The original evaluation considers the Assignment Error Rate (AER) as the measure to
evaluate the performance of the systems. This metric, conceived as a modification of the
popular Diarization Error Rate (DER), reflects the proportion of misclassified audio.

The original DER metric assumes errors to be caused by three different causes: missed
audio (lost audio with speech), false alarm audio (audio falsely considered to contain
speech) and speaker error (speech assigned to a wrong speaker). Thus, the formulation of
the DER metric is:

DER =
LWRONG

L
=

LMISS + LFA + LSPK

L
= EMISS + EFA + ESPK (1)

where L, LWRONG, LMISS, LFA and LSPK stand for the total length of the audio, the length of
audio wrongly assigned and the lengths of audio per error cause, respectively, miss, false

https://www.rtve.es/play
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alarm and speaker. Moreover, as shown in the formulation, DER can also be interpreted as
a composition of three terms, EMISS, EFA and ESPK, each one representing the specific error
due to one of the previously described causes.

AER, heavily inspired by DER, follows a similar formulation that measures the pro-
portion of misclassified audio. Furthermore, AER also differentiates among three causes of
error: Miss, False Alarm and Speaker errors. However, differences with DER arise when
defining these causes. Missed audio now reflects the lost audio exclusively coming from
the enrollment speakers. The false alarm audio includes the audio falsely considered to
contain an enrolled speaker. Finally, the speaker error is the audio attributed to an incorrect
enrolled speaker.

4. Methodology

In this section, we describe the different alternatives under evaluation, all of which are
based on the general speaker attribution block diagram illustrated in Figure 2 and rely on
the embedding-PLDA paradigm. For this reason, we first describe all the common blocks
along the systems, i.e., the front-end, the Speaker Change Point Detection (SCPD) and
the embedding extraction. Then, we explain in detail the clustering block as well as the
backend. Afterwards, we describe the identity assignment block. Next, we describe our
first alternative, the direct assignment, which lacks diarization. The following alternative is
the indirect assignment system, a similar system now performing diarization clustering.
A new hybrid system simultaneously performing diarization and speaker attribution is
studied afterwards. Our last alternatives under analysis are the semisupervised versions
of the indirect assignment and hybrid systems. Finally, we also talk about the impact of
open-set conditions on the systems under evaluation and how closed-set versions are built.

4.1. Front-End, SCPD and Embedding Extractor Blocks

The first block for all the systems under analysis is an MFCC [43] front-end. For a
given audio Ω, a stream of 32 coefficient feature vectors is estimated according to a 25 ms
window with a 15 ms overlap. No derivatives are considered.

Simultaneously, DNN-based Voice Activity Detection (VAD) labels are estimated [44].
The network, consisting of a joint work of convolutional layers and Long-Short Term
Memory (LSTMs) [45], estimates a VAD label each 10 ms.

Both feature vectors and VAD labels are fed into the Speaker Change Point Detection
(SCPD) block. This stage, dedicated to infer the speaker turn boundaries, makes use of
∆BIC [22], the differential form of BIC. This estimation works in terms of a 6-second sliding
window, in which we assume there is, at most, a speaker turn boundary. Each involved
speaker in the analysis is modeled by means of a full-covariance Gaussian distribution.
Besides, the VAD labels delimit the parts of the audio in which the analysis is performed.
In the given data, the described configuration provides segments of an approximately
3-second length on average.

The identified segments are converted into embeddings using a modification of the
extended x-vector [46] based on Time Delay Neural Networks (TDNNs) [47]. The modifi-
cation is the inclusion of multi-head self-attention [48] in the pooling layer. This network,
trained on VoxCeleb1 and 2, provides embeddings of dimension 512. These embeddings
undergo centering and LDA whitening (reducing dimension to 200), both trained with
MGB as well as the Albayzín training subset, and finally length normalization [49]. These
embeddings will be referred to as Φ. A similar extraction pipeline working offline is in
charge of the enrollment audios. The enrollment embeddings will be named Φenroll .

4.2. PLDA Tree-Based Clustering Block

The considered clustering block relies on the idea originally proposed in [36]. It uses a
model of the PLDA family to estimate the set of N labels Θ = [θ1, . . . , θN ] that best explain
the set of N embeddings Φ = [φ1, . . . , φN ]. Thus, the label θj indicates the cluster to
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which the embedding φj belongs. The proposed approach works based on the Maximum a
Posteriori (MAP) estimation of the labels:

Θclust = arg max
Θ

P(Θ|Φ) = arg max
Θ

P(Φ, Θ)

P(Φ)
(2)

Working in terms of the latter expression, the only term depending on the labels is
P(Φ, Θ), which can be decomposed according to the product rule of probability as:

P(Φ, Θ) =
N

∏
j=2

P
(

φj, θj|φj−1
1 , θ

j−1
1

)
P(φ1, θ1) (3)

respectively, being φ
j−1
1 and θ

j−1
1 subsets from Φ and Θ with the first j − 1 elements(

φ
j−1
1 =

[
φ1, . . . , φj−1

]
and θ

j−1
1 =

[
θ1, . . . , θj−1

])
.

Inspired by [34], we can make the term P
(

φj, θj|φj−1
1 , θ

j−1
1

)
more tractable by de-

composing it into a conditional distribution depending on the embeddings and a prior
distribution for the labels:

P
(

φj, θj|φj−1
1 , θ

j−1
1

)
= P

(
φj|θj, φ

j−1
1 , θ

j−1
1

)
P
(

θj|θ j−1
1

)
(4)

This decomposition isolates a term P
(

φj|θj, φ
j−1
1 , θ

j−1
1

)
in which the embedding j

depends on its jth label as well as previous embeddings and labels. As the design choice,
we define it as a mixture of simpler distributions controlled by the means of the variable θj.
We define this variable as a one-hot sample with I values (θj = {θ1j, . . . , θij, ..θI j}), where
I is the number of candidate clusters. Hence, the ith component of θj takes the value of
one exclusively if the embedding j belongs to cluster i. Additionally, we also impose the
restriction that the embedding j, when belonging to the cluster i, should be exclusively
explained by those embeddings already assigned to this cluster. This subset of previous
embeddings assigned to cluster i at time j is denoted as Φij. Under these conditions:

P
(

φj|θj, φ
j−1
1 , θ

j−1
1

)
=

I

∏
i=1

P
(

φj|Φij

)θij
(5)

As we described before, we want this model to be based on the PLDA family. This
family of models makes use of a latent variable yi that is shared by all elements from the
same cluster. Consequently, we can redefine P

(
φj|Φij

)
as:

P
(

φj|Φij

)
=
∫

P
(

φj|yi

)
P
(
yi|Φij

)
dyi (6)

By going backwards, we have obtained two familiar distributions when dealing with
the PLDA family: P

(
φj|yi

)
and P

(
yi|Φij

)
. In our formulations, we consider our model to

be a Fully Bayesian PLDA (FBPLDA) [50] with a single latent variable. This choice implies:

P
(

φj|yi

)
∼ N

(
φj|µ + Vyi, W−1

)
(7)
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where µ is the speaker independent term, V a low rank matrix describing the speaker
subspace and W a full rank matrix explaining the intra-speaker variability space. Similarly,
the definition of P

(
yi|Φij

)
according to the same model is:

P
(
yi|Φij

)
∼N

(
φj|µyi

(j), Lyi (j)
)

(8)

Lyi (j) =I + VT
j−1

∑
k=1

θikWV (9)

µyi
(j) =Lyi (j)−1VTW

j−1

∑
k=1

θik(φk − µ) (10)

In addition, for the well-known closed form definitions, the choice for the FBPLDA
model also makes the previously mentioned integral have a closed-form solution:

P
(

φj|Φij

)
∼ N

(
φj|µi(j), Σi(j)

)
(11)

µi(j) = µ + Vµyi
(j) (12)

Σi(j) = W−1 + VL−1
yi

(j)VT (13)

With respect to the label prior P
(

θj|θ j−1
1

)
, we opt for its definition applying the same

distribution as in [51]. In this work, the authors make use of a modification of the Distance
Dependent Chinese Restaurant (DDCR) process [52]. This process explains the occupation
of an infinite series of clusters by a sequence of elements, assigning new elements to already
existing clusters or creating a new group.

The presented decomposition fits a unique tree structure in which nodes stand for
assignment decisions, and leaves, all at depth N, represent the possible partitions Θ for the
set of embeddings Φ. Due to the high complexity of finding the optimal set of labels Θ [53],
this tree clustering approach follows a suboptimal iterative inference of the labels: We
estimate the best partition θ

j
1 for the subset φ

j
1 given a solution for a simplified problem and

the set of labels θ
j−1
1 for the subset of embeddings φ

j−1
1 . This procedure is complemented

by the M-algorithm [54], which simultaneously tracks the best M alternative partitions at
each time.

In our experiments, we opt to make use of a Fully Bayesian PLDA of dimension
100 and trained with all the available broadcast data, i.e., MGB and previous editions of
Albayzín evaluations.

4.3. The Identity Assignment Block

The considered identity assignment block consists of a speaker recognition architec-
ture, composed of the same clustering PLDA model, followed by score normalization and
calibration stages. First, the previously mentioned PLDA backend, by means of its likeli-
hood ratio, scores how likely a subset of embeddings j from the audio under analysis with a
common speaker resemble the enrollment speaker i. These scores sij are then normalized
by means of the adaptive S-norm [55]. The normalization cohort consists of MGB 2015
labeled data. Finally, the normalized scores are calibrated according to a threshold γ prior
to the decision making. Those scores overcoming the threshold are considered the target,
i.e., the test speaker and the enrollment speaker are the same person. This threshold is
adjusted by AER minimization in terms of a calibration subset Φcalib and the enrollment
embeddings Φenroll as follows:

γ = arg min
γ

(AER(Φcalib, Φenroll, γ)) (14)

where Φcalib and Φenroll represent the set of embeddings from calibration as well as the
enrollment speakers. The last step in the identity assignment block is the decision making.
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Any subset of embeddings is assigned to the enrolled identity with the highest score only
if this value overcomes the calibration threshold, being assigned to the generic unknown
identity otherwise. Mathematically, the assigned identity (θj) for a subset of embeddings j
with respect to the enrolled identity i is:

θj =

{
arg maxi(sij|sij > γ) if ∃i|sij > γ

Unknown if ∀i, sij < γ
(15)

where sij stands for the normalized PLDA log-likelihood ratio score between the embedding
j and the enrolled identity i.

4.4. The Direct Assignment Approach

The first proposal follows a traditional out-of-the box speaker recognition architecture.
This architecture fits the diagram block from Figure 2 except for the clustering stage,
which is not applied. Additionally, the identity assignment block follows the previously
described speaker recognition philosophy. In order to explain it in detail we present
Figure 3, which illustrates its functionality. Given the analysis audio, we individually assign
an identity, enrolled or generic unknown, to each embedding φi ∈ Φ representing an audio
segment. During the assignment process, each score sij stands for the similarity between the
individual embedding j from Φ compared to the enrollment speaker i. Moreover, the role
of the calibration subset Φcalib is played by those embeddings from the development subset.
This same calibration is also applied to the test subset. The detailed flowchart is illustrated
in Figure 4. Given the audio under analysis Ω, we perform its feature extraction, segment
the estimated information (VAD and SCPD stages are involved) and extract the set of
embeddings per segment (red box). These embeddings are compared to those obtained
from the enrollment audios Ωenroll (yellow box), processing the features for the whole
recording. Both sets of embeddings are fed into the identity assignment block to obtain the
final labels.

Audio

Segmentation

Embeddings

Identities

φ1 φ2 φ3 φ4

Figure 3. Diagram of the direct assignment approach. The embeddings obtained from the different
parts of the given audio are independently assigned to the identities. These assignments can be done
to enrolled identities or the generic unknown one (red arrow).
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EMBEDDING
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MDNN
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EMBEDDING
EXTRACTION
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IDENTITY

ASSIGNMENT

Ω

Ωenroll

Φenroll

Φ

ΘSPK.ATT

Figure 4. Flowchart of the direct assignment approach. Red and yellow boxes, respectively, represent
the embedding extraction pipelines for the evaluation audio Ω (online) and enrollment audios
Ωenroll (offline). The obtained embeddings (Φ and Φenroll) are taken into account in the identity
assignment block.

4.5. Clustering and Assignment: The Indirect Assignment Approximation

One of the great limitations of the previous alternative is the robustness of embeddings
when obtained from a low amount of audio [56]. Thus, decisions based on more audio
should be more reliable.

Thus, the next approach, the indirect assignment, straightforwardly follows the dia-
gram block described in Figure 2, also applying the speaker recognition identity assignment
block. The functionality of the system is described in Figure 5. Similarly to the direct as-
signment block, we obtain the embeddings Φ according to the segments estimated from
the given audio. However, compared to the direct assignment alternative, this system
performs clustering prior to the assignment stage. Afterwards, the identity assignment
subtask is performed similarly to the direct assignment approach but with an important
difference: While in its predecessor system, the score sij compared the embedding j with
the enrolled identity i, but in this new version, sij compares all embeddings assigned to the
cluster Cj with the ith speaker of interest. Again, we consider the calibration subset Φcalib
role to be played by the development subset. This learned calibration is then used with the
test subset. Figure 6 shows the flowchart for this approximation.

C1 C2 C3

Audio

Segmentation

Embeddings

Diarization Clusters

Identities

φ1 φ2 φ3 φ4

Figure 5. Diagram of the indirect assignment approach. Embeddings from the audio are first
clustered during diarization (C1,. . . ,C3). Then, clusters are assigned to the available identities, either
the enrolled speakers or the unknown generic cluster (red arrow).
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Figure 6. Flowchart of the indirect assignment approach. Red and yellow boxes, respectively, stand
for embedding extraction pipelines for the evaluation audio Ω (online) and enrollment audios Ωenroll .
The green box means a diarization system, which clusters the evaluation embeddings Φ to obtain
diarization labels ΘDIAR. The obtained embeddings (Φ and Φenroll) as well as the estimated labels
ΘDIAR are taken into account in the identity assignment block.

Our system starts with the embedding extraction from the audio under analysis Ω (red
box). This process involves a feature extraction of the audio followed by its segmentation
(VAD and SCPD stages) and finally the embedding estimation. The estimated embeddings
are fed into the clustering block to obtain the diarization labels. Meanwhile, enrollment
audios Ωenroll undergo a similar embedding extraction pipeline. Then, the identity as-
signment block is responsible for estimating the final labels according to all the estimated
information, i.e., the two sets of embeddings as well as the diarization labels.

The choice for clustering addition implies a tradeoff: While clustering may boost
the system performance, it increases the computational cost and also adds a potential
performance degradation due to cluster impurities. Regarding other decisions, as a design
choice, we do not exclude the assignment of multiple diarization clusters to a single enrolled
speaker. This decision is made under the assumption that we can fix diarization errors.

4.6. Hybrid Solution

The next alternative, inspired by [11], presents a new approach that simultaneously
performs diarization and speaker attribution using the enrollment audio as anchors. For this
purpose, we consider a modification of the algorithm proposed in [36] by merging the clus-
tering and identity assignment blocks. The system, whose functionality is represented in
Figure 7, starts estimating the embeddings obtained from the inferred segments. Regarding
the new algorithm, it is a statistical Maximum A Posteriori (MAP) solution to estimate the
set of labels Θ′ = Θenroll ∪Θ that best explains the set of embeddings Φ′ = Φenroll ∪Φ,
i.e., the union of enrollment and evaluation embeddings, assuming the labels Θenroll for the
enrollment subset are fixed. This enrollment information generates a set of anchor clusters
for the speakers of interest. Thus, the algorithm iteratively assigns the embeddings from
the audio under evaluation to the anchor clusters or new clusters created on the fly for
speakers out of the group of people of interest. The flowchart for the presented solution
is shown in Figure 8. From the evaluation audio Ω, a stream of features is extracted and
used for segmentation (VAD and SCPD blocks), extracting one embedding per estimated
segment (red box). Similarly, enrollment audios are processed to obtain their embeddings
in the yellow box. Finally, both sets of embeddings are fed into the new hybrid clustering
and identity assignment block (green box) to obtain the final labels.
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Audio

Segmentation

Embeddings

Identities

φ1 φ2 φ3 φ4

t=1 t=2 t=3 t=4

Figure 7. Diagram of the hybrid approach. Embeddings (φ1,. . . ,φ4) are sequentially assigned to the available clusters at
each time t. Initially, the available clusters are only those for the enrolled speakers. When the embedding is not assigned to
an existing cluster (t = 3), it is responsible for an extra cluster for an unknown speaker (red arrow). This new cluster is then
available along the posterior assignments.

FEATURE
EXTRACTION

FEATURE
EXTRACTION

VAD

EMBEDDING
EXTRACTION

MDNN

SCPD

EMBEDDING
EXTRACTION

MPLDA

CLUSTERING
&

ID. ASSIGNMENT

Ω

Ωenroll

Φenroll

Φ

ΘSPK.ATT

Figure 8. Flowchart for the hybrid approach. Red and yellow boxes, respectively, stand for the
embedding extraction pipelines for the evaluation audio Ω (online) and the enrollment audios
Ωenroll (offline). Both sets of embeddings are used in the new hybrid clustering and identity assign-
ment block.

4.7. Semisupervised Alternative

In the semisupervised alternative, we consider an scenario where rather than blindly
dealing with any domain, we can previously obtain a small portion of data with manual
annotation. Thanks to these data, we optimize the system to the domain under analysis.
The main drawback for this option is the cost of data gathering and annotation, creating
a trade-off between potential performance benefits and cost. In this line of research, we
propose two different semisupervised options developed around previously described
systems from Sections 4.5 and 4.6. These systems take into account three types of input
embeddings: Φ,Φenroll and Φin, respectively, obtained from the audio under analysis,
the enrollment audios and the new labeled in-domain data.

The first semisupervised option is a modification of the system described in Section 4.5
and illustrated in Figure 9. In this system, we modify the subset of embeddings playing
the role of Φcalib for the threshold adjustment. While in the unsupervised system, this role
is played by the whole development subset with potentially out-of-domain data, we now
make use of the annotated in-domain data Φin.
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IDENTITY
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γADAPT
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Figure 9. Diagram block for the semisupervised approach based on the indirect assignment approach.

The second semisupervised alternative works with the system from Section 4.6. This
alternative modifies the definition of anchor embeddings. While the unsupervised hybrid
system builds the anchor clusters exclusively based on the enrollment embeddings Φenroll,
the semisupervised version now considers the joint work of enrollment embeddings as
well as those from the new labeled in-domain data Φenroll ∪ Φin. By doing so, anchor
clusters are reassured to contain traces of in-domain audio regardless of the enrollment
audio nature.

In both presented systems, the influence of the new in-domain data is restricted to
the assignment algorithms, keeping the backend models unmodified. This choice is made
despite the potential benefits of model adaptation to make a fair comparison between
unsupervised and semisupervised styles.

4.8. Open-Set vs. Closed-Set Conditions

As we previously described, depending on the data under analysis, we can consider
two different modalities: closed-set and open-set. The only difference is that the former
modality assumes that all speakers in the audio under analysis are enrolled in the system,
while the latter one does not, providing a more general solution that is more complex to
deal with.

While all the previously described speaker attribution systems work under the assump-
tion of open-set conditions, we can include small modifications to exploit the closed-set
simplifications. The direct and indirect assignment systems as well as the semisupervised
modification can be transformed by not including any calibration block and thus making
the assignment to the enrollment speaker with highest score. This simplification obeys the
fact that the calibration threshold is used to assign audio to the generic unknown speaker,
which is non-existent in the closed-set scenario. By contrast, those systems based on the
hybrid approach (either in unsupervised or semisupervised fashion) are insensitive to the
closed-set condition, thus not requiring any modification.

5. Results

The goal of this work is to provide a detailed analysis of the speaker attribution
problem in the complex broadcast domain. However, due to the high complexity of the
task, we have divided it into the following three subtasks:

• An illustration of the influence of diarization on the speaker attribution problem;
• A depiction of the impact of broadcast domain variability into the speaker attribution task;
• A proposal of alternative approximations to deal with this variability, with special

emphasis on unseen domains.
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5.1. The Influence of Diarization

In our first set of experiments, we evaluate our two proposed traditional alternatives:
the direct and the indirect assignment systems. While the former system only works in
terms of isolated segments, the latter performs clustering to obtain diarization labels used
during the identity assignment. The quality of these diarization labels is shown in Table 1,
where both development and test subsets from Albayzín 2020 are evaluated. The analysis
is extended to both closed-set and open-set conditions.

Table 1. DER (%) results for the Albayzín 2020 corpus, including results for both development and
test subsets.

Scenario Development DER (%) Test DER (%)

Closed scenario 6.72 8.67
Open scenario 17.27 15.16

The results in Table 1 show interesting performances in all the experiments but far
from a perfect estimation of the labels. The diarization system shows a similar behavior
between development and test regardless of the scenario, showing robustness against domain
mismatch. We also see how the restrictions in the audio under analysis, i.e., the closed set
assumption, implies important improvements in performance (up to a relative 61%).

Once the diarization system is characterized, we compare the two systems in the
speaker attribution task. In order to exclusively analyze the impact of diarization, we
get rid of the domain issues by applying adaptive oracle calibrations to the data. These
calibrations are obtained by the previously described criteria, only substituting the subset
playing the role Φcalib, which is now played by the same data under analysis. This oracle
calibration has been estimated in three different degrees of generality: a calibration for
all the audios in the development and test subsets (subset-level), an individual treatment
per show (show-level) and a particular calibration per audio (audio-level). The obtained
results for this experiment are included in Table 2.

Table 2. Study of the impact of diarization on speaker attribution with oracle calibration. Experiments
carried out with direct (without diarization) and indirect assignment (with diarization) systems.
Three degrees of calibration generality are shown. AER (%) results for the Albayzin 2020 development
and test subsets. Experiment corresponding to the open condition.

Data Subset Subset-Level Show-Level Audio-Level
Direct Indirect Direct Indirect Direct Indirect

Dev. subset 41.91 37.45 41.27 35.88 39.89 29.09
Eval. subset 48.19 34.87 41.70 28.10 40.31 26.54

The results illustrated in Table 2 indicate significant benefits (from a relative 27% up
to a 34% improvement) when diarization is applied rather than considering individual
segments. Thus, diarization clusters, despite their impurities, provide robustness to those
segments with a low amount of audio. Furthermore, we also see the importance of speci-
ficity in calibration. The more particular the calibration, the larger potential improvements
can be achieved, although resources must be more specific for the particular domain.

5.2. Broadcast Domain Mismatch in Speaker Attribution

The results from Table 2 have shown the importance of diarization as well as the
impact of individual adjustments of the system to each specific piece of information (subset,
show or audio). However, when no oracle calibration is available, systems are likely
to degrade.

The next experiment analyses the two previously evaluated systems, i.e., the direct as-
signment as well as the indirect assignment one. However, now, we do not apply an oracle
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calibration but estimate one according to the whole development subset. Additionally, we
also evaluate the hybrid system from Section 4.6, which is supposedly more robust against
domain mismatches. The obtained results for these three systems in both closed-set and
open-set conditions are included in Table 3.

Table 3. AER (%) results for the Albayzín 2020 corpus. Results of direct and indirect assignment as
well as the hybrid systems, including results for both development and test subsets. Experiment
corresponding to closed and open conditions.

Subset Closed Condition Open Condition
Direct Indirect Hybrid Direct Indirect Hybrid

Dev. subset 13.73 15.27 15.89 41.91 37.45 37.68
Eval. subset 25.11 17.20 16.49 65.31 60.34 31.95

The results in Table 3 reveal that systems depending on a tuned calibration (direct and
indirect assignment) strongly suffer from degradation with respect to the oracle result in
Table 2 (above a relative higher than a 35% relative degradation) when dealing with domain
mismatch. Moreover, we also see great differences in behavior between development and
test (degradations over a relative 55%), while particular calibrations (Table 2) did not.
Furthermore, this loss of performance is characteristic for the open-set condition; loss of
performance does appear in the closed set where no calibration is applied. Regarding the
hybrid system, its behavior manages to obtain the best results in the open-set condition,
obtaining improvements up to a relative 47%, which also outperforms some scenarios with
oracle calibration in Table 2. When applied to the closed-set scenario, its performance is
also the best one, yet the improvements are not as noticeable (relative 4%) compared to its
direct and indirect assignment counterparts. This is because a closed-set scenario does not
require any calibration tuning to fit the audio under analysis.

5.3. Semisupervised Solutions

In the previous experiments, we have confirmed the alternative definition of broad-
cast as a collection of audios with particular characteristics. These individual properties
generate an important domain mismatch that can cause significant harmful effects on the
speaker attribution task.

While, in the previous experiments, we developed an unsupervised technique, our
hybrid system, robust enough to deal with unseen scenarios, we also want to evaluate other
types of solutions. One of them are semisupervised alternatives, also known as human-
assisted solutions, which require available small portions of annotated in-domain data.

Bearing in mind those results from Table 2, we consider all the audios from the same
show as the domain. This choice is done according to the trade-off between specificity and
simplicity to gather the data. Then, for each show under analysis, we consider the audio
and speaker labels of an episode available as adaptation in-domain data.

Due to the way Albayzín 2020 data subsets are arranged, most shows are exclusive
from a subset. Hence, we must alter the Albayzín 2020 subsets in order to reassure this
annotated adaptation audio per show. The considered modification divides each subset,
development and test, into two parts: The first part consists of the annotated audios, one
per show in the subset, for adaptation purposes. In our experiments, we consider the first
episode in chronological order for adaptation. The second part of the subset, with the
remaining episodes, is considered as the new evaluation subset.

The next experiments evaluate the indirect assignment system as well as the hybrid
one in both unsupervised and human-assisted manners with the new subsets. The results
of these experiments are contained in Table 4.



Appl. Sci. 2021, 11, 8521 16 of 19

Table 4. AER (%) results for the Albayzín 2020 corpus for the assisted configuration. Results from
indirect assignment and hybrid systems, including results for both development and test subsets.
Experiment corresponds to an open-set condition.

Data Subset Unsupervised Semisupervised
Indirect Hybrid Indirect Hybrid

Dev. subset 38.86 39.07 42.40 38.45
Eval. subset 59.00 30.56 30.66 28.74

The results in Table 4 indicate the benefits of small available portions of annotated
in-domain data. By only having a single hour or audio manually annotated, systems
previously seen as weak against domain mismatch (such as the indirect assignment system)
now obtain significant improvements (a relative 48%). Actually, the same indirect system,
now with an adapted calibration, manages to obtain results similar to those obtained with
oracle calibration for shows. With respect to the hybrid system, the obtained benefits
are not as noticeable (a relative 6% improvement) but are the best results obtained in the
whole study.

6. Conclusions

Through this work, our goal was the improvement of the speaker attribution prob-
lem when dealing with broadcast data. These data are characterized for their great
variability—also defined as a collection of particular domains with individual charac-
teristics. For speaker attribution improvement, we studied three subtasks: the impact of
diarization in the results, the importance of domain mismatch in the approaches and the
proposal of alternative approximations that are robust enough to manage unseen scenarios.

With respect to the importance of diarization, our experiments with two straight-
forward approaches (direct and indirect assignment systems) confirm the benefits of
using diarization labels (approximately a relative 34% improvement) despite being noisy
(17% DER on the same dataset) when domain issues are canceled. Thus, the accumulation
of acoustic information thanks to diarization significantly compensates the poor individual
robustness of each obtained embedding due to its short length (around 3 s).

However, domain issues are a real problem in broadcast data. The same experiments
with adaptive oracle calibrations show improvements up to a relative 24% by considering
more specific domains. By contrast, real calibration adjusted during development can
significantly degrade the performance due to domain mismatch, in our case, up to a
relative 73%.

To solve it, we have proposed two alternatives: A new hybrid system that simultane-
ously performs diarization and speaker attribution as well as a semisupervised approach
making use of a limited amount of annotated in-domain data. Regarding our hybrid
alternative, it requires no calibration, showing great robustness against domain mismatch
and obtaining relative improvements of 47% compared to the traditional counterparts.
Moreover, this new approach has managed to overcome the results obtained with some
adaptive oracle calibrations.

With respect to the semisupervised approach, it manages to improve the performance
in both unsupervised proposals, indirect and the new hybrid system. These improve-
ments are particularly interesting in the indirect assignment system, which only needed
a small portion of in-domain audio to boost its performance (relative 48% improvement).
With respect to the hybrid system, its semisupervised version offers a much more reduced
improvement (a relative 6%) but obtains the best results with the dataset.

Author Contributions: Conceptualization, I.V. and A.O.; methodology, I.V.; software, I.V.; validation,
I.V.; formal analysis, I.V. and A.O.; investigation, I.V. and A.O.; resources, A.O., A.M. and E.L.;
data curation, A.O. and E.L.; writing—original draft preparation, I.V.; writing—review and editing,
I.V. and A.O.; visualization, I.V., A.O., A.M. and E.L.; supervision, A.O., A.M. and E.L.; project



Appl. Sci. 2021, 11, 8521 17 of 19

administration, A.O., A.M. and E.L.; funding acquisition, A.O., A.M. and E.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported in part by the European Union’s Horizon 2020 research and
innovation programme under Marie Skłodowska-Curie Grant 101007666; in part by FEDER/Spanish
Ministry of Economy and Competitiveness under Grant TIN2017-85854-C4-1-R, and in part by the
Government of Aragón under Grant Group T36_20R.

Data Availability Statement: RTVE data are available upon request through http://catedrartve.
unizar.es/albayzin.html accessed on 9 September 2021.

Acknowledgments: We gratefully acknowledge the support of the NVIDIA Corporation with the
donation of a Titan V GPU. This material is based upon work supported by Google Cloud.

Conflicts of Interest: The authors declare no conflict of interest. The founders had no role in
the design of the study; in the collection, analyses or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

AER Assignment Error Rate
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