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Abstract—Traditionally, speech emotion recognition (SER) research has relied on manually handcrafted acoustic features using
feature engineering. However, the design of handcrafted features for complex SER tasks requires significant manual effort, which
impedes generalisability and slows the pace of innovation. This has motivated the adoption of representation learning techniques that
can automatically learn an intermediate representation of the input signal without any manual feature engineering. Representation
learning has led to improved SER performance and enabled rapid innovation. Its effectiveness has further increased with advances in
deep learning (DL), which has facilitated deep representation learning where hierarchical representations are automatically learned in
a data-driven manner. This paper presents the first comprehensive survey on the important topic of deep representation learning for
SER. We highlight various techniques, related challenges and identify important future areas of research. Our survey bridges the gap
in the literature since existing surveys either focus on SER with hand-engineered features or representation learning in the general

setting without focusing on SER.

Index Terms—Speech emotion recognition, multi task learning, representation learning, domain adaptation, unsupervised learning

1 INTRODUCTION

Peech is a natural mode of communication among hu-

mans. It conveys affective information about emotional
expression through explicit (linguistic) and implicit (par-
alinguistic) cues. Studies report that linguistic messages
are rather unreliable means to predict and analyse hu-
man affective behaviour [1] because linguistic content is
language-dependent, and the generalisation of emotions for
multiple languages is very difficult to achieve. People often
choose different words to express emotion, making it hard
to anticipate a speaker’s word choice and the associated
affective expressions. The paralinguistic content of speech,
on the other hand, provides an immense body of acoustic
features that can be used to encode the emotional state of
the speaker. These acoustic features are reliable indicators of
basic emotions and have been explored by different machine
learning (ML) [2]-[4] as well as deep learning (DL) models
[5]-[8] for speech emotion recognition (SER).

Traditionally, the efficiency of ML algorithms in SER has
been critically dependent on the quality of hand-crafted
acoustic features. Consequently, feature engineering, which
focuses on creating features from raw speech, has been
an important part of SER research for a long time. Deep
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Fig. 1: An overview of deep representation learning-based SER system.

representation learning encompasses DL techniques to learn
representations of input data, usually through the non-
linear transformation of the input data. Researchers have
evaluated different DL models for representation learning in
SER. Figure 1 presents an overview of deep representation
learning in SER, showing that DL models can learn emo-
tionally salient representations from raw speech as well as
from acoustic features. These deep models can be trained in
different ways, including supervised, unsupervised, semi-
supervised, and transfer learning techniques to learn emo-
tional representation from speech. This review covers all
these deep representation learning techniques for SER pro-
posed to date.

We compare our paper with the existing surveys on
deep learning or representation learning for SER in Table
1. The comparison shown demonstrates the uniqueness of
our paper. The article by Bengio et al. [9] focus on the
geometrical connections between representation learning,
manifold learning, and density estimation. Since this article
was published in 2013, it predated the development of mod-
ern generative models, and the discussions focus mostly on
traditional techniques such as principal component anal-
ysis (PCA) [14], restricted Boltzmann machines (RBMs),
and autoencoders (AEs). Research on representation learn-



TABLE 1: Comparison of our paper with that of the existing surveys.

Focus
. Speech Emotion Recognition .
Paper Repre§ entation ?Iand Engineered [;geep Representation Deep . Details
Learning Datasets Feature Learning Learning

This paper reviews the work in the area of unsupervised

Bengio et al. [9] v X X v feature learning and deep learning. It also covers

2013 advancements in probabilistic models and autoencoders.
It does not include recent models like VAE and GANS.
This paper covers the history of data representation

Zhong et al. [10] v X X v learning from traditional to recent DL methods. Challenges

2016 for deep representation learning, recent advancement,
and future directions are not covered.

Basu et al. [11] This paper focuses on the challenges of choosing emotional

2017 ' X v’ v’ v’ corpora and identification of different hand crafted
features for classification model.

Swain et al. [12] X v v v This paper reviews the literature on various databases,

2018 handcrafted features, and classifiers for the SER system.
This paper focuses on emotional corpora, preprocessing

%kzcocay etal. [13] X v’ v’ v’ techniques for handcrafted features, supporting
modalities and emotion classifiers.
Our paper covers deep different representation learning
techniques from emotional speech in comparison

Our paper v’ v’ v’ v’ v’ traditional methods and handcrafted features, covers
poplar emotional corpora, DL models, discusses different
challenges, highlights future directions.

ing has since evolved significantly with generative models
like variational autoencoders (VAEs) [15], and generative
adversarial networks (GANSs) [16] demonstrating superior
performance in representation learning compared to au-
toencoders and other classical methods [17]. Furthermore,
we find surveys that focus on different emotional datasets
and handcrafted features and classification networks do not
focus on deep representation learning for SER.

We consider multiple databases to find the relevant
literature, including IEEE Xplore, Springer, Elsevier, and
Google Scholar. We searched articles using related key-
words: “representation learning”, “feature learning”, and
“feature extraction”. Many studies were also found in the
bibliographies of reviewed papers and were included. In
general, studies in this review use DL for representation or
feature learning/extraction on publicly available datasets.

The major contribution of our paper is that we cover a
comprehensive survey that bridges the gaps in the existing
literature. More specifically, we focus on (1) the importance
of deep representation learning for SER; (2) the popular DL
models and their representation learning abilities; and (3)
the various representation learning techniques used for SER
in the literature. We further highlight the challenges of deep
representation learning in SER and conclude this paper by
discussing the findings of our review and by identifying
future research directions.

The remainder of the paper is organised as follows. We
provide a discussion on the relevant background and con-
cepts in Section 2. The use of deep representation learning
for SER is discussed in Section 3. The challenges of deep
representation learning for SER are discussed in Section
4. Discussions and future directions follows in Section 5.
Finally, the paper is concluded in Section 6.

2 BACKGROUND AND CONCEPTS

Representation learning has become a rich research disci-
pline in the ML community. In SER, representation learning
can use raw speech as well as speech features to learn
emotionally discriminating representations for emotion clas-
sification or prediction (as highlighted in Figure 1). This

section briefly discusses various important concepts related
to representation learning in SER.

2.1 Representation Learning Vs Feature Engineering

The manual design of a conversion of the speech sig-
nal into meaningful information and a reasonably limited
number of attributes using domain knowledge is called
(speech) feature engineering. In SER, feature engineering
and designing ML models for classification or prediction
are often considered separate problems. Most of the actual
SER research has focused on feature engineering or the
design of pre-processing data transformation pipelines to
craft emotional representations that support ML algorithms.
Although feature engineering techniques can help improve
the SER performance, the downside is that these techniques
are labour-intensive and time-consuming. For decades, Mel
frequency cepstral coefficients (MFCCs) [18] has been used
as the principal set of features for SER and other speech
analysis tasks. The four steps involved in the extraction
of MFCCs are: (1) computation of the Fourier transform,
(2) projection of the powers of the spectrum onto the Mel
scale, (3) taking the logarithm of the Mel frequencies, and
(4) applying discrete cosine transformation (DCT) or other
suited transformations for compressed representations. It is
found that the last step loses information and destroys spa-
tial relations; therefore, it is usually omitted, which results in
the LogMel spectrum, a popular feature used by the speech
community. It is also the most popular feature to train DL
networks in the speech domain. Minimalist feature sets like
GeMAPs and eGeMAPs [19] are also widely used (e. g., [20],
[21]) as benchmarks. They are designed/engineered to (a)
index affective physiological changes in voice production,
and (b) achieve automatic extractability [19].

On the other hand, representation learning is the tech-
nique of learning representations, usually through the auto-
matic transformation of the input data. It comes under the
header of DL or feature learning. The key goal of represen-
tation learning is yielding abstract and useful representa-
tions for ML tasks such as classification and prediction. We
compare feature engineering with representation learning in
Table 2. The comparisons show that representation learning




is a less time consuming automatic process and requires
minimal human domain knowledge to produce better re-
sults than the hand-engineered features. Also, unlike feature
engineering, representation learning does not require extra
efforts to design features for a new task and have more
generalisation ability.

TABLE 2: Comparing feature engineering and representation learning.

Automated | Human Independence | Generalisability
Feature Engineering X X X
Representation Learning v’ N v’

2.2 Traditional
Techniques

vs Deep Representations Learning

In the field of representation learning, the algorithms are
generally categorised into two classes: shallow and deep
[22]. Shallow learning algorithms are also considered as tra-
ditional methods. They aim to learn transformations of data
by extracting useful information. One of the oldest shallow
learning algorithms is PCA [14], which has been studied
extensively over the last century. Similar to PCA, linear
discriminant analysis (LDA) [23] is another shallow learning
algorithm. Unlike PCA, LDA is a supervised method that
requires class labels to maximise class separability. Other
linear feature learning methods include canonical correla-
tion analysis (CCA) [24], multi-dimensional scaling (MDS)
[25], and independent component analysis (ICA) [26].

Many methods for nonlinear feature reduction are also
proposed to discover the non-linear hidden structure from
the high dimensional data [27] including locally linear em-
bedding (LLE) [28], non-negative sparse coding [29], isomet-
ric feature mapping (Isomap) [30], t-distributed stochastic
neighbour embedding (t-SNE) [31], and neural networks
(NNs) [32]. The kernel PCA (KPCA) [33], and generalised
discriminant analysis (GDA) [34] are non-linear versions of
PCA and LDA, respectively.

The shortcoming of shallow representation learning is
that such representations contain only a small number of
non-linear operations and are unable to accurately model
complex, high-dimensional, and noisy real-world data (such
as emotional speech) [35]. The shallow feature learning al-
gorithms have, however, dominated representation learning
until the successful training of deep models for represen-
tation learning of data reported by Hinton and Salakhut-
dinov in 2006 [36]. This work was quickly uptaken by
other researchers [37], [38], which led to a large number
of deep models suitable for deep representation learning. In
DL models (e. g., feed-forward neural networks), all hidden
layers except the last layer (i. e., softmax classifier) learn rep-
resentations, which often leads to much better performance
compared to the hand-designed representations [39].

Studies show that deep architectures can learn more
complex relationships that greatly help improve perfor-
mance [22]. The non-linearity in deep models help to learn
more robust representations when multiple layers/modules
are stacked atop one another. Such robust representation in
lower dimensions can be easily transmitted to the commu-
nication network for a wide range of real-time applications
and services [40].

2.3 Deep Learning Models for Representation Learning

This section covers DL models, including feed-forward neu-
ral networks (FNNs), autoencoders, and generative models,
which have been widely used for emotional representation
learning in SER research. We highlight the characteristics
of these models in terms of their emotional representation
learning abilities in Table 3.

TABLE 3: Characteristics of DL model for representation learning. Here DNN
represents fully connected deep networks.

Model | Characteristics

Good for learning a hierarchy of representations. They can learn
invariant and discriminative representations. Features learnt

by DNNs are more generalised compared to traditional methods.
Good for learning both low-level as well as high-level
representation from emotional speech.

Good for sequential modelling. They can learn temporal
structures from speech suitable for emotion classification.
Powerful unsupervised representation learning models that
encode the emotional speech data in sparse and compressed
representations.

Stochastic variational inference and learning model. Popular

in learning disentangled emotional representations from speech.
A Game-theoretical framework that is useful for data
generation and is robust to overfitting. They can learn
disentangled representations that are very suitable for SER.

DNNs

CNNs

RNNs

AEs

VAEs

GANs

2.3.1 Deep Neural Networks (DNNs)

Historically, the idea of fully connected DNNs' is an ex-
tension of ideas emerging from artificial neural networks
(ANNS) [41]. Multilayer perceptrons (MLPs) [42] with mul-
tiple hidden layers are indeed a good example of deep
architectures. DNNs consist of multiple layers, including an
input layer, hidden layers, and an output layer, of processing
units called “neurons”. These neurons in each layer are
densely connected with the neurons of the adjacent layers.
Each layer of a DNN performs representation learning based
on the input provided to it. A well trained DNN learns a
hierarchy of distributed representations [43]. Increasing the
depth of DNNs enables the learning of a deep hierarchy
of representations at different levels of abstraction. DNN
with highway connectivity [44] is a good example of such
deep architecture. Higher levels of abstract representations
generally offer invariance to local changes of the input [9]
and are helpful in designing SER systems.

Convolutional neural networks (CNNs) [45] are a spe-
cialised kind of deep architecture for processing data having
a grid-like topology. Examples include image data that
have 2D grid pixels and time-series data (i.e., 1D grid).
CNNs introduce convolutional, and pooling layers into the
structure of DNNs, which take into account the spatial rep-
resentations of the data and make the network more efficient
by introducing sparse interactions, parameter sharing, and
equivariant representations [46]. There are many variants
of CNNs; however, ResNet [47], and DenseNet [48] are
especially popular in SER due to their complex emotional
representation learning ability.

In contrast to fully connected DNNSs, the training process
of CNNs is more straightforward due to fewer parameters
[49]. CNNSs are powerful at extracting low-level representa-
tions at the initial layers, and high-level features (textures
and semantics) in the higher layers [50]. The convolution
layer in CNNs acts as a data-driven filterbank that is able to

1. We use DNNis for fully connected deep neural networks.



capture emotional representations from speech, which are
more generalised, discriminative, and contextual [50], [51].

Recurrent neural networks (RNNs) [52], [53] introduce
recurrent connections within layers to enable parameters
sharing across time. They create a memory in the net-
work by using the information from all previous inputs.
This makes RNNs have stronger representational mem-
ory compared to hidden Markov models (HMMs), whose
discrete hidden states bound their memory [54]. Simple
RNNs usually fail to model the long-term temporal con-
tingencies due to the vanishing gradient problem. Multiple
specialised RNN architectures, including long short-term
memory (LSTM) [55] and gated recurrent units (GRUs)
[54] address this problem using a gating mechanism to
add and forget the information selectively. Bidirectional
RNNs [56] also model both past and future contexts by
passing the input sequence through two separate recurrent
hidden layers. RNNs introduce recurrent connections to
allow parameters to be shared across time, making them
powerful in learning temporal dynamics from sequential
data, e.g., speech. In SER, temporal dynamics modelling
using RNNs-Connectionist Temporal Classification (CTC)
[57] based models shows improved results.

2.3.2 Autoencoders (AEs)

The idea of an autoencoding network [58] is to learn a map-
ping from high-dimensional data to a lower-dimensional
feature space such that the input observations can be ap-
proximately reconstructed from the lower-dimensional rep-
resentation. A function fy called the encoder maps the input
vector x into feature/representation vector h = fp(z). The
decoder network is responsible to map a feature vector h
to reconstruct the input vector & = gg(h). The decoder
network parameterises the decoder function gg. Overall, the
parameters are optimised by minimising the following cost
function:

L(, go(fo(x))) = llo — 2[I3. @)

The set of parameters ¢ of the encoder and decoder net-
works are simultaneously learned by incurring a minimal
reconstruction error. To capture useful representations h, the
cost function of Equation 1 is usually optimised with an
additional constraint to prevent the AE from learning the
useless identity function having zero reconstruction error.
One way of learning useful feature representations h is
to regularise the autoencoder by imposing constraints to
have a low dimensional feature size. In this way, the AE
is forced to learn the salient representations of data from a
high dimensional space to a low dimensional feature space.
Below we discuss some other autoencoding networks.

Sparse autoencoders (AEs) can discover a useful feature
representation with the size larger than the input vector
2 [59]. This is done using the sparsity regularisation [38].
Sparseness plays a key role in learning a more meaningful
representation of input data [60]. It has been found that
sparse AEs are simple to train and can learn better repre-
sentation compared to denoising autoencoders (DAE) and
RBMs [61]. In particular, sparse encoders can learn useful
information and attributes from emotional speech, which
can facilitate better classification performance [62].

Denoising autoencoders (DAEs) are considered as a
stochastic version of the basic AE. They are trained to

reconstruct a clean input from its corrupted version [63].
The objective function of a DAE is given by:

‘C(Z,QG(fe(i')))v (2)

where Z is the corrupted version of z, which is done via
stochastic mapping & ~ ¢p(Z|z). During training, DAEs
minimise the same reconstruction loss between a clean x
and its reconstruction from h. The difference is that h is
learnt by applying a deterministic mapping fp to a cor-
rupted input Z. It thus learns higher level feature repre-
sentations that are robust to input corruption. Therefore,
DAEs are suitable for learning emotional representations
from noisy speech [64].

2.3.3 Deep Generative Models

Deep belief network (DBN) [65] is a powerful proba-
bilistic generative model that consists of multiple layers of
stochastic latent variables, where each layer is a restricted
Boltzmann machine (RBM) [66]. Boltzmann machine (BM)
is a bipartite graph in which visible units are connected to
hidden units using undirected connections with weights. A
BM is restricted in the sense that there are no hidden-hidden
and visible connections. During the training phase, an RBM
uses Markov chain Monte Carlo (MCMC)-based algorithms
[65] to maximise the log-likelihood of the training data.
RBMs are very effective at approximating any distribution.
However, training RBMs based on MCMC computes the
gradient of the log-likelihood, which poses a significant
learning problem [67]. In recent years, generative models
like GANs and VAEs have been proposed that can be trained
via direct back-propagation and avoid the difficulties of
MCMC-based training. We discuss GANs and VAEs in more
detail next.

Generative adversarial networks (GANSs) [16] use ad-
versarial training to directly shape the output distribution of
the network via back-propagation. They include two neural
networks—a generator, GG, and a discriminator, D, which
play a min-max adversarial game defined by the following
optimisation problem:

minmax E,flog(D(x))] + E-[log(1 - D(G(=)]. @)

The generator, G, maps the latent vectors, z, drawn
from some known prior, p, (e.g., Gaussian), to fake data
points, G(z). The discriminator, D, is tasked to differenti-
ate between generated samples (fake), G(z), and real data
samples, £ € pgata. Overall, GAN is trained to achieve a
generator network that maximally confuses the discrimina-
tor into believing that the samples it generates come from
the data distribution.

Benefiting from the flexibility of GAN'’s framework, ad-
versarial training methodology has been successfully lever-
aged to many traditional tasks, including unsupervised
representation learning. For example, DCGAN [17] uses
the intermediate features from the discriminator as the
representations of the input images. On the other hand, the
input of the generator, i.e., noises, can be viewed as the
representations of the output images.

Variational autoencoders (VAEs) are probabilistic mod-
els that use a stochastic encoder for modelling the posterior
distribution ¢(z|z), and a generative network (decoder) that
models the conditional Log-likelihood logp(z|z). Both of



these networks are jointly trained to maximise the following
variational lower bound on the data loglikelihood:

logp(w) > Eq(zjz)logp(z|z) — KL(g(z|2)[|p(2)).  (4)

The first term is the standard reconstruction term of an AE,
and the second term is the KL divergence between the prior
p(z) and the posterior distribution g(z|z). The second term
acts as a regularisation term, and without it, the model is
simply a standard autoencoder. In contrast to standard AEs,
VAEs learn the probability distribution parameters from the
input in a latent space by making the latent distribution
close to a ‘prior” distribution. Due to these characteristics,
VAEs are becoming very popular in learning emotional
representation from speech [68]. Recently, various variants
of VAEs are proposed in the literature, which include 3-VAE
[69], InfoVAE [70], FactorVAE [71], and many more [72].
All these VAEs are very powerful in learning disentangled,
and hierarchical representations and are also popular in
clustering multi-category structures of data [72].

2.4 Emotional Corpus

Emotional databases can be divided into three types: simu-
lated, elicited (induced), and natural. Simulated emotional
speech databases consist of recordings collected from ex-
perienced and trained actors or artists. Induced emotional
speech databases are collected by generating an emotional
situation artificially by involving the speaker in the emo-
tional dialogue or conversational setting. The speaker’s
reactions towards the emotional situation are potentially
recorded without their knowledge after ethical approval.
Natural emotional databases are produced by recording
emotions from real-world applications such as call centres
[73], or patient and doctors conversations, among others.
Natural emotional databases may not contain all emotions
and also have copyright and privacy issues.

Different emotional datasets are available; however, in
this work, we only present the details of the most popular
ones in Table 4, which are being utilised for emotional
representation learning. In [74], [75], the authors provide
further details on speech emotional databases. These emo-
tional datasets are annotated using either categorical [76]
or dimensional [77] emotion models. A categorical emotion
model considers emotions as discrete classes, whereas a
dimensional emotion model defines emotions as two or
more dimensional space characterised mostly by arousal
and valence and next frequently dominance.

2.5 Evaluation Metrics

In SER, the effectiveness of a deep emotional representa-
tion is evaluated by performing classification or regression
using these representations as input. For classification, SER
systems use a classification score or accuracy as a metric.
However, as data is often imbalanced across the classes, in
naturalistic emotion corpora, the accuracy is usually used as
so-called unweighted accuracy (UA) or unweighted average
recall (UAR), representing the average recall across classes,
unweighted by the number of instances per classes. This
has been introduced by the first challenge in the field—
the Interspeech 2009 Emotion Challenge [86] and has since
been used by other challenges across the field. SER systems
that use deep representation for emotional attributes such

as arousal and valence or dominance prediction commonly
optimise regression-based models using the mean squared
error (MSE) and concordance correlation coefficient (CCC)
as objective functions [87].

3 DEEP REPRESENTATION LEARNING IN SER

In this section, we review the existing literature on deep
representation learning techniques for SER. The readers are
referred to Table 5 for a summary of the reviewed studies in
this paper. We present studies while describing their use of
corpus, input features, models, and performance in Table 5.
Studies are clustered into five major groups depending on
the DL techniques employed for representation learning;:

3.1 Supervised Representation Learning

In supervised representation learning, features are learnt
from data samples using their labels. In SER, supervised
representation learning methods are widely used to improve
performance. In [6], the authors use a DBN for emotional
representation learning from speech and achieve 7% higher
classification accuracy (86.5%) on the BUAA emotional cor-
pus compared to the classical hand-engineered features. To
improve the SER performance, Cairong et al. [7] fuse the
classical features with emotional representation learnt by a
DBN. They show that the fusion of deep emotional represen-
tations learnt by a DBN with classical features can improve
SER by 8.8%. A similar fusion of a DBN representation with
hand-engineered features was performed in [88] to improve
SER performance in noisy conditions. Experiments were
performed on the EMODB dataset, and the results show
that the proposed approach improves the performance by
5.48%. In [89], the authors perform experiments on multiple
datasets and show that DBNs can learn more powerful
and effective discriminative long-range features that help
improve SER performance. Similar to DBNs, researchers
also explored DNNs with multiple fully connected hidden
layers for emotional representation learning.

Deep neural networks (DNNs) are popular in learning
high-level discriminative emotional representations. Hen et
al. [90] use DNNs for high-level emotional representation
learning from raw speech. They construct an utterance-level
representation from a segment level probability distribution
produced by a DNN and use extreme learning machines
(ELMs) to perform emotion classification on these utterance
level representations. They evaluate the proposed frame-
work on the IEMOCAP data and show that the proposed
approach effectively captures emotional representation and
leads to 20% classification improvement. In [91], the authors
attempt to learn a discriminative emotional representation
in compressed size to facilitate fast classification. The re-
sults show that DNNs can capture a hidden emotional
representation that leads to significant improvement in SER
performance. Various other studies [92]-[94] also explore
DNNs for emotional representation from speech; however,
the improved ability of RNNs for better modelling of long-
range emotional context shift the research towards using
RNNSs in state-of-the-art SER systems.

Recurrent neural networks (RNNs) with gated archi-
tectures are specialised to model a long-range of contexts.
Emotions in human speech are contextually embedded;
therefore, the context capturing abilities of RNNs such as



TABLE 4: Review of different SER databases.

Corpus Name Language Speakers Mode Type Emotions g;;a:;z)n Public Access
EMODB [78]) German 10 speakers (5 males, 5 | audio stimulated | an8el boredom, disgust, < 1 hour yes
females) fear, happiness, sadness,
neutral
MSP-IMPROV [79] | English 12 actors (6 males and | audio, video | stimulated | anger, happiness, 18 hour yes
6 females) sadness, neutral
MSP-Podcast [80] English gg spef\k;zrs (30 females, | audio naturalistic | arousal, valence, dominance | 27 hours yes
males
5 affective dimensions
SEMAINE [81] English 150 participants audio, video induced (i.e., valence, activation, 6.2 hours yes
power, anticipation/
expectation,
intensity)
. o ] neutral, happiness, sadness,
IEMOCAP [82] English 5 females, 5 males audio, video stimulated anger, surprise, fear, 12 hours yes
disgust, frustration, excited
and other)
EMOVO [83] Italian 6 speakers (3 males, audio stimulated | 9iS8Ust happiness, fear, < 2 hours yes
3 females) anger, surprise, sadness,
neutral
five social behaviours
RECOLA [84] French 46 speakers (19 males, audio, video natural (dominance, agreement, 3.5 hours Yes
27 females) performance, engagement,
rapport); arousal and
valence
CMU-MOSEI [85] English single speaker multimodal natural inger', anxious, disgust, 65 hours Yes
appiness, neutral, sadness,
surprise and fear

LSTM and GRU were explored in SER research by various
studies. Lee et al. [8] use RNNs to learn high-level tem-
poral dynamics of emotional representation from speech.
They adopt bidirectional long short-term memory (BLSTM)
network and achieve 12% improved results compared to
the DNN-ELM [90]. In [124], the authors evaluate differ-
ent BLSTM-RNN architectures for emotional representation
learning from speech. They use the IEMOCAP corpus for
evaluation and found that RNNs can learn both emotionally
relevant short-term frame-level acoustic representation and
compact utterance-level emotional representation of frame-
level features. They report that BLSTMs outperform DNNs
and SVMs trained on hand-engineered features. Ghosh et al.
[98] evaluate the representation learning from spectrogram
and glottal flow signals using DAE-BLSTM models. They re-
port that their proposed framework can generate highly dis-
criminative representations that produce comparable emo-
tion classification results to state-of-the-art approaches.

Convolutional neural networks (CNNs) are also popu-
lar for emotional representation learning in SER [5], [125]-
[128]. They can learn more generalised features from speech
compared to DNNSs, and other feature-based approaches
[50]. In [96], the authors explore CNN for speech emotion
detection. They found that CNN filters capture emotions re-
lated to the fundamental frequency, which helps create dis-
criminative features for SER. Feature representations learnt
by deep CNNs show robustness against noisy situations
[129], [130]. Therefore, studies in SER also use deep CNN
architectures such as ResNet and DenseNet for SER in
noisy environment [131], [132]. The research on emotional
representation learning was further advanced by the use
of combined CNN and RNN architectures. Various studies
used CNN-LSTM [50], [87], [133], [134], where they used
CNN:s for feature extraction and LSTM (or GRU) networks
for modelling long term dependencies. Based on the re-
sults, these studies showed that CNN-RNNs is a better
choice in contrast to using CNN or LSTM individually. In

order to learn the spatial relationships in spectrograms, the
authors in [135] used capsule networks (CapsNets). They
designed a sequential capsule structure to obtain utterance-
level emotional representations and evaluated the proposed
model on the IEMOCAP dataset. They compared the results
with baseline CNN-LSTM and showed that the proposed
CapsNets are able to produce improved results in SER
compared to the CNN-LSTM.

In supervised representation learning, attention-based
networks have recently become very popular. Attention
layers in DL models help the networks to focus on important
emotional representations in the input speech. Researchers
have attempted various attention mechanisms including
self-attention [136], local attention [124], multi-hop atten-
tion [137], and many other variants [113], [138]. In these
studies, the authors show that attention mechanisms enable
networks to focus on affect-salient components and extract
emotional representations from speech sentences, which
help to improve the performance of the system.

Despite the promising results, the success of supervised
training is limited by the requisite of labels. It is important
to note that creating and labelling these datasets is very
expensive in terms of time and resources. To tackle these
issues, unsupervised learning has been used to learn repre-
sentations from unlabelled data. We discuss unsupervised
representation learning of speech emotion in the next sub-
section.

3.2 Unsupervised Representation Learning

Unsupervised representation learning facilitates the analysis
of input data without corresponding labels and aims to learn
the underlying inherent structure or distribution of the data.
Real-life data (such as speech, image, or text) have extremely
rich structures. Algorithms trained in an unsupervised way
aim to learn the underlying structure of the data rather than
learning any particular tasks, e. g., classification, prediction
etc. In speech analysis, unsupervised representation learn-
ing can exploit the unlimited amount of unlabelled corpora



TABLE 5: Summary of deep representation learning techniques used for SER in different studies. C: classification, P: prediction, ARR: Average Recognition Rate, AAC:
Average Accuracy, IS09-IS13: Interspeech 2009-2013 paralinguistics challenge feature set, LLDs: Low-Level Descriptors, act: activation, val: valence, dom: dominance,

aro: arousal.

Paper (Year) Technique Corpus Input Model (C/P) Performance
Cairong et al. [7] (2014) ABC corpus [95] | Spectrogram DBN (C) 52.2 %(ARR)
Kim et al. [94] (2019) Supervised IEMOCAP ?g;)ttsr:g Hexical 1 Hn (o) 61.4 % (UAR)
Fayck ot al. [93] (2017) Egg’rrr‘iisrf“ta“"“ TEMOCAP Mel scale features | DNN (C) 5878 % (UAR)
Bertero et al.[96] (2017) & TED talks [97] Raw speech CNN (C) 66.1 % (AAC)
TEMOCAP ) 61.8 % (UAR)
Aldeneh et al. [51] (2017) MSP-IMPROV Mel filterbanks CNN (C) 52.6 % (UAR)
Lee et al. [8] (2015) IEMOCAP Acoustic features BLSTM (C) 63.89 % (UA)

- TEMOCAPD 60.23 % (UAR)
Latif et al. [50] (2019) MSP-IMPROV Raw Speech CNN-LSTM 52.43 % (UAR)
Ghosh et al. [98] (2016) IEMOCAP Spectrogram DAE-BLSTM (C) 51.86% (UA)
Xia et al. [99] (2016) TEMOCAP TST0 [100] DAE-SVM (C) 63.1% (UAR)
ggla;fevol’omos etal. [101] IEMOCAP 1510 AE-SVM (C) 57.8 % (UA)
Latif et al. [68] (2018) TEMOCAP LogMel features VAE-LSTM (C) 55.42% (UA)
Eskimez et al. [102] (2018) IEMOCAP MFCCs +LLDs AAE-DNN (C) 48.18 % (UAR)

and derivatives
Tatif et al. [103] (2020) TEMOCAPD 1510 GAN-DNN (C) 60.51 % (UAR)
aro (0.803 CCC)
Parthasarathy et al. [104] MSP-Podcast 1S13 [105] Ladder val (0.458 CCC)
(2018) networks (P) dom( 0.746)
Semi-supervised ;
! aro (0.770 CCC)
ggztgfsamthy etal. [106] Eefrrs?gma“‘m MSP-Podcast 1513 szvfgks ®) val (0.301 CCC)
earning dom( 0.700)
Tao et al. [107] Ladder o
(2019) IEMOCAP 1509 [108] metworks () 59.7 % (UAR)

. TEMOCAP 66.7% (UA)
Latif et al. [109] (2020) MSP-IMPROV Spectrogram AAE-CNN (O) 603%(UA)
Chang et al.[T10] (2017) TEMOCAP Spectrogram GAN-DNN (C) 48.88% (UA)
Xia et al. [111] IEMOCAP 605 % (UA)
(2017) SEMAINE 1510 DBN (C) 35.9% (UA)
Lotfian et al. [112] Multi-task o
(2018) Representation MSP-Podcast eGeMAPS DNN (C) 66.8 % (UA)
ggggamhaﬂ‘ etal. T113] Learning IEMOCAP LogMel DNN (C) 70.1% (UA)

Tao et al[T14] (2018) TEMOCAP 1510 I[STM ) 55.3% (WA)

gy ety etal (115] GeWEC [116] | 1509 Universum AE (C) 63.3 % (UAR)

Abdelwahab et al. [117] igr;a:;e IEMOCAP aro (489 CCC)

: p ) 1513 DANN (P) val (215 CCC)

(2018) Representation MSP-IMPROV d 401 CCC
Learning om (. )

Paraskevopoulos et al. [101] TEMOCAP 1509 DNN (C) 56.2% (UAR)

(2019) MSP-IMPROV 44.1% (UAR)

Shukla et al. [118] Self Supervised | TEMOCAP Spectrogram CNN-LSTM(C) 0.615 % (F1)

(2021) Representation

Siriwardhana et al. [119] pres

(2020) Learning IEMOCAP Wav2Vec [120] Transformer (C) 74.7 (AAC)

(Lzaolé‘f)“ki“ etal. [121] DRL for IEMOCAP MFCC GRU (O) 84.9% AAC
Representation

Chen et al. [122] N MFCCs . o

2019) Learning CMU-MOSEI HOG [123] Multimodal-LSTM (C) | 76.5% (AAC)

to learn good intermediate feature representations, which
can then be used to improve the performance of supervised
SER, where availability of labelled data is limited [139].
Autoencoders (AEs) are mostly utilised for unsuper-
vised emotional representation learning from speech in SER.
AEs can learn high-level semantic contents that are invariant
to confounding low-level details (pitch contour or back-
ground noise) in speech [140]. In [141], the authors explored
Denoising Autoencoders (DAEs) for emotional representa-
tion learning on IEMOCAP data. They empirically showed
that a representation captured by the bottleneck layer of
AEs are highly discriminative in separating the emotions
and help to achieve comparable results to that of using
hand-engineered features (such as voice quality features and
MECCs). In [98], Ghosh et al. use stacked DAEs for learning
frame-level emotional representations from the spectrogram
of speech and glottal flow signals. They evaluated the
proposed framework on IEMOCAP data and found that
a stacked DAE can learn highly discriminative features

that help to achieve state-of-the-art results (54.56% UA).
Huang et al. [142] evaluated different unsupervised repre-
sentation learning algorithms including K-means clustering,
the sparse AE, and sparse RBMs for SER. They explored
the effect of the content window size and the number
of hidden nodes on the performance. They found that a
larger content window and more hidden units produce
better results. To extract robust features, Xia et al. [64]
used DAEs for SER. The authors empirically showed that
DAEs can extract more robust feature representations and
significantly outperformed using the static features for SER.
Another work [99] utilised a modified DAE to model gender
information to learn more robust emotional representations.
The authors evaluated the proposed model on IEMOCAP
data achieving improved results compared to the DAE used
in [64] and hand-engineered features. Models like RBMs
and DBNs can also learn high-level feature representations
[143] and auditory-like sub-band filters [144] from speech,
which can help improve the performance compared to



hand-engineered features when used in SER for unsuper-
vised representation learning [6], [145]. In [146], the authors
utilise unsupervised learnt representations from unlabelled
data to improve SER. They integrate an AE with a CNN-
based emotion classifier to improve SER performance for
within-corpus and cross-corpus settings. Generative models
have further advanced the performance of unsupervised
representation learning in SER.

Generative models including VAEs, GANSs, and adver-
sarial autoencoders (AAE), are becoming very popular in
emotional representation learning due to their exceptional
performance in learning representation and generating new
data samples. In [68], the authors explore VAE architectures
for latent representations of speech emotion. They perform
extensive experiments on the IEMOCAP dataset and show
that VAEs can learn discriminative emotional attributes
suitable for improving classification than standard AEs.
Eskimez et al. [102] evaluate various unsupervised autoen-
coding networks including DAE, VAE, AAEs, and adver-
sarial variational Bayes (AVB) for emotional representation
learning. They find that these unsupervised methods can
capture the intrinsic structures of speech emotion that help
to achieve improved results compared to SVMs and CNNs.
Latif et al. [103] use GANs for representation learning as
well as generating synthetic representations. They modify
the GAN and use the mixup [147] technique to augment
a GAN in SER. They achieve 61.05% and 46.60% accuracy
on within-corpus and cross-corpus settings, respectively.
These studies show that generative models can learn better
emotional representations and generate synthetic data sam-
ples that can be used to train the classifier along with real
samples. This can lead to improvements in SER performance
even in low resource conditions.

Despite all these successes, the performance of unsu-
pervised representation learning techniques is not as good
as that of the supervised methods [109]. Semi-supervised
representation learning techniques alleviate this problem
by simultaneously utilising both labelled and unlabelled
data. We discuss the semi-supervised representation learn-
ing technique in the next subsection.

3.3 Semi-supervised Representation Learning

The success in DL has predominately been possible due to
key factors like advanced algorithms, processing hardware,
open sharing of codes and papers, and most importantly, the
availability of large-scale labelled datasets (e. g., ImageNet)
pre-trained networks. However, a large labelled database
or pre-trained network for every problem like SER is not
always available [20], [89], [148]. It is very difficult, ex-
pensive, and time-consuming to annotate speech emotional
data as it requires manual expert human efforts [109]. Semi-
supervised representation learning attempts to solve this
problem by utilising the feature representations from large
unlabelled data, jointly with the labelled data, to build better
classifiers. It reduces human efforts and provides higher
accuracy in contrast to unsupervised representation learn-
ing; therefore, semi-supervised models are of great interest
both in theory and practice [149]. Huang et al. [150] use a
CNN in a semi-supervised way for capturing affect-salient
representations. They evaluate their model on four publicly
available datasets and find that a semi-supervised CNN

learned salience, orthogonal, and discriminative represen-
tations for SER. These representations help to achieve supe-
rior performance compared to results using well-established
hand-engineered features. Deng et al. [151] propose a semi-
supervised model by combining an AE and a classifier.
They consider samples from unlabelled data as an extra
garbage class in the classification problem. They evaluate
the proposed architecture on five publicly available datasets
and show that features learnt by a semi-supervised AE im-
prove SER performance compared to an unsupervised AE.
Parthasarathy et al. [152] utilise semi-supervised AAE to
disentangle the discrete emotion distribution and show that
the proposed learning approach performs better compared
to a fully supervised method. In [109], the authors train an
AAE by utilising the additional unlabelled emotional data
to improve SER performance. They perform evaluations on
IEMOCAP and MSP-IMPROV and show that additional
data help to learn more generalised representations that
perform better than various supervised and unsupervised
methods.

Ladder network-based semi-supervised methods are
very popular in SER. A ladder network is an unsupervised
DAE that is trained along with a supervised classification
or regression task. It can learn more generalised represen-
tations suitable for SER compared to the standard meth-
ods. Parthasarathy et al. [104] use a ladder network with
skip connections between encoder and decoder networks
for emotional representation learning. They evaluate the
proposed model on the MSP-Podcast dataset and find that
a semi-supervised ladder network can lean more powerful
representations that facilitate better performance in predic-
tions of emotional attributes than conventional DAE. In
another study [106], the authors show that a ladder network
can generate powerful and generalised representations that
help to achieve relative gains in concordance correlation
coefficient (CCC) of 3.0% to 3.5% for within-corpus, and
16.1% to 74.1% for cross-corpus settings using the MSP-
Podcast, IEMOCAP, and MSP-IMPROV datasets. In [153],
the authors utilise a semi-supervised ladder network to
generate a robust feature representation by simultaneously
minimising the sum of supervised classification and unsu-
pervised cost functions. The features generated by a ladder
network are used as an emotional representation for clas-
sification with an SVM. They perform evaluations on the
IEMOCAP corpus and show that the proposed framework
achieves 2.6% improved performance than a DAE, and 5.3%
higher than the static acoustic features. Tao et al. [107]
also utilise a ladder network for emotional representation
generation and conducted experiments on the IEMOCAP
dataset, and achieve improved classification performance
with a small number of labelled samples compared to DAE,
VAE, and hand-engineered features.

Generative adversarial networks (GANs) were also
explored for semi-supervised representation learning in
SER. Chang et al. [110] performed emotional representation
learning from speech using a convolutional GAN. They
utilise 100 hours of unlabelled data and show that the
proposed model derives automatic discriminative represen-
tations learning to improve the SER performance. They
perform classification on emotional valence using a discrete
5-point scale and 3-point scale and achieve an accuracy



of 43.88% and 49.80%, respectively. Sahu et al. [154] use
a conditional GAN for modelling feature representations
and generating new data samples. They performed evalu-
ations on the IEMOCAP and MSP-IMPROV datasets and
showed that synthetic feature vectors can help improve SER
performance in different settings. In another study [155],
the authors use a GAN to generate a high dimensional
synthetic feature representation using lower-dimensional
feature vectors and apply synthetic feature representations
to augment the training data. Based on the within-corpus
and cross-corpus evaluations, they find that synthetic data
can help to improve performance. In [156], the authors
present a semi-supervised adversarial model to facilitate
knowledge transfer from videos to the audio domain, hence,
improving SER performance. They show that the proposed
model can outperform a baseline supervised method on
the CREMA-D and RAVDESS datasets. Zhao et al. [157]
present robust semi-supervised GANs to address the issue
of labelled data unavailability. They evaluate the model
on four publicly available datasets for capturing underly-
ing emotional representation knowledge from both labelled
and unlabelled data. They demonstrate that the proposed
methods are superior to the state-of-the-art supervised and
semi-supervised models. Sahu et al. [158] evaluate semi-
supervised AAEs in SER for encoding emotional represen-
tation in a compressed form and generating the synthetic
data samples. They perform experiments on IEMOCAP and
observed that an AAE can encode emotional representation
in compressed form without losing emotional class discrim-
inability and can generate synthetic samples that augment
the training data to improve the SER performance.
Semi-supervised representation learning is mainly used
in SER to circumvent the lack of sufficient labelled train-
ing data by utilising unlabelled data. These studies show
that semi-supervised representation learning helps to learn
generalised representations by including the unlabelled data
into the training pipeline, which leads to performance im-
provements. Another way of using unlabelled data is the
representation transfer learning that we discuss next.

3.4 Representation Transfer Learning

Transfer learning (TL) involves methods that utilise any
knowledge resources (i.e., data, model, representations, la-
bels, etc.) to increase the model learning and generalisation
for the target task [159]. The idea behind TL is “Learning
to Learn”, which specifies that learning from scratch (tabula
rasa learning) is often limited, and experience should be used
for deeper understanding [160]. Representation transfer
learning involves using representations learnt on any large
scale data and can be beneficially utilised for the target task.
It encompasses different approaches, including multitask
learning (MTL), domain adaptation, knowledge transfer,
covariance, self-supervised learning, etc. This subsection
covers domain adaptive, multitask, and self-supervised rep-
resentation learning, which is a very popular representation
transfer learning approach to improve SER’s performance.

3.4.1 Deep Domain Adaptive Representation Learning

Deep domain adaptive representation learning is a sub-
field of TL, and it has emerged to address the problem of
domain shift. SER systems can achieve better results when

evaluated on test data having a distribution similar to the
training set. However, the performance of SER systems is
degraded by the mismatch in training and testing data dis-
tributions. These differences become more significant with
the training and test data of different languages, leading
to failing SER systems to function. To build more robust
systems for SER applications, domain adaptive represen-
tation learning techniques are usually applied to explicitly
minimise the difference between the training (source) and
testing (target) domains.

In SER, various domain adaptive representation learning
methods are evaluated to enable the system to learn repre-
sentations that can be used to perform emotion identifica-
tion across different corpora and different languages. Deng
et al. [161] use a DAE with shared hidden layers to learn
common representations for different emotional datasets.
The proposed model can minimise the discrepancy between
different datasets and increase the emotion classification
accuracy compared to other feature domain adaptation
methods. In [162], the authors introduce shared hidden-
layer AE to learn common feature representations shared
across the source and target data to reduce the discrepancy
in them. They perform evaluations on three publicly avail-
able corpora and demonstrate that the proposed method
significantly improves the emotion classification accuracy
compared to a DAE. In another study [115], the authors
use a Universum AE for unsupervised domain adaptation
to improve cross-corpus SER. They performed evaluations
on four publicly available datasets and showed that the
Universum AE has the strong representational capability to
discover common structures among the source and target
speech data.

Domain adversarial neural networks (DANNSs) [163]
are becoming popular in learning domain adaptive repre-
sentation learning. The authors in [117] suggest an adversar-
ial domain network for cross-corpus emotional attributes’
prediction. They focus on capturing common representa-
tions between the train and test domains by applying a
gradient reversal layer (GRL) which propagates back the
gradient produced by the domain classifier to the shared
layers. They observe that the proposed model can learn
domain invariant representations to improve the primary
regression task. Xiao et al. [164] present an adversarial net-
work for class-Aligned and generalised domain-invariant
representations learning. They also consider GRL to fa-
cilitate shared representations among source and target
domains. They evaluate the proposed architecture against
cross-corpus settings and achieve improved results com-
pared to AE-based models and Danns. In [165], the au-
thors evaluate a DANN against cross-lingual SER. They
use GRL with a language classifier, which helps the model
to learn language-independent emotional representations.
Experiments with the IEMOCAP and RECOLA datasets
show that their proposed method achieves 3.91% improved
accuracy than the baseline system (naive cross-lingual SER)
for the arousal and valence classification tasks.

Some studies also use different adversarial networks for
domain adaptive representation learning for cross-corpus
and cross-language SER. Zhou et al. [166] investigate a
class-wise domain adaptation method using adversarial
training to address cross-corpus mismatch issues and show



that adversarial training is useful when the model is to
be trained on a target language with minimal labels. The
authors perform evaluations on the EMODB, and FAU-
AIBO datasets [167] and show that the proposed architec-
ture learns generalised representations that minimise the
domain shift between positive and negative emotion classes.
Gideon et al. [168] introduce an adversarial discriminative
domain generalisation method that follows a “meet in the
middle” approach for cross-corpus emotion recognition. The
proposed model improves the cross-corpus generalisation
by iteratively moving the learnt representations for each
dataset closer. They perform evaluations on the IEMOCAP,
MSP-IMPROV, and PRIORI emotion datasets [169] and find
that the proposed model consistently converges and gener-
ates more generalised representations for cross-corpus SER,
even when no target labelled data is used. In [20], the
authors utilise a GAN-based model in an unsupervised way
to learn language invariant features and evaluate the model
over four different language datasets. They significantly
improve the performance of SER across different languages
using language invariant representations.

3.4.2 Multi-Task Representation Learning

Multi-task learning (MTL) has led to successes in different
applications of ML, from NLP [170] and speech analysis
[171] to computer vision [172]. MTL aims to optimise more
than one loss function in contrast to single-task learning
(STL) and uses auxiliary tasks to improve the main task
of interest [173]. Multitask representation learning (MTRL)
can improve the performance of the main task by capturing
underlying relevant factors from the auxiliary tasks [9],
[174]. In this way, representations learnt in the MTL scenario
become more generalised, which helps improve the perfor-
mance. In SER, the speech also contains multi-dimensional
information about the message, speaker, and gender that
can be used as auxiliary tasks to improve performance
without external speech data.

For SER, studies use emotional attributes (e.g., arousal
and valance) as auxiliary tasks to improve the performance
of the system. Xia et al. [111] apply a DBN-based MTL
model that uses dimensional emotions as auxiliary tasks to
improve the performance of categorical emotion as a major
task. Their results indicate that learning shared representa-
tions for different tasks acts as complementary information
to SER systems and helps to improve performance. In [175],
Kim et al. presented an MTRL framework that utilises
gender and naturalness as auxiliary tasks. They evaluate
the proposed model with within-corpus and cross-corpus
settings on five publicly available datasets and find that
MTL improves the generalisation in SER by learning more
generalised representations when compared to the state-
of-the-art STL methods. Further, Parthasarathy et al. [176]
proposed an MTRL framework for joint prediction of emo-
tional attributes including arousal, valence, and dominance
by exploiting their interdependencies. Their results indicate
that the proposed model learns shared representations that
maximise the performance of the regression models. They
base their experiments on three datasets for evaluations
and demonstrate that the proposed MTRL model gains a
concordance correlation coefficient (CCC) as high as 4.7%
for within-corpus and 14.0% for cross-corpora experiments

compared to STL. In [112], the authors introduce an MTRL
framework for jointly learning primary and secondary
emotions. They perform evaluations on the MSP-Podcast
database and show that the proposed MTRL model can
leverage the extra information about the secondary emo-
tions and leads to relative improvements of 7.9% in F1-score
for an 8-class emotion classification task.

Other auxiliary tasks that researchers consider in MTL
SER are speaker and gender recognition to improve the
accuracy of a system compared to STL [177]. In [113],
Nediyanchath et al. utilise a multi-head attention-based
MTRL framework with gender classification as an auxiliary
information source. They find that gender-specific represen-
tations influence the emotion characteristics in speech and
achieved 70.1% for UA—that is 5.3% higher than the state-
of-the-art reported accuracy in SER for four emotion classes
at the time. Tao et al. [114] utilise a variant of a multitask
LSTM for learning contextual representations with speaker
and gender as auxiliary tasks. The proposed model learns a
shared representation for multitasks, which help to achieve
a 5.5% relatively higher accuracy than the ‘standard” LSTM
on the IEMOCAP dataset. Next, Latif et al. [109] introduce
an MTRL framework that uses auxiliary tasks for which
data is abundantly available and find that utilisation of this
additional data for auxiliary tasks can improve the main
task of emotion classification with limited available labelled
data. They apply AAE to learn powerful and discrimina-
tive representations with gender identification and speaker
recognition as the auxiliary tasks. Evaluations performed
on IEMOCAP, and MSP-IMPROV show that the proposed
model can generate generalised and discriminative repre-
sentations that help to achieve results better than the state-
of-the-art comparable studies, with a supervised single- and
multitask CNN, and single- and multitask semi-supervised
AEs.

MTRL is an effective approach to learning a shared rep-
resentation that leads to no major increase in computational
power while improving the system’s recognition accuracy
and decreasing the chance of overfitting [109]. However,
MTL implies the preparation of labels for considered aux-
iliary tasks, which is expensive and time-consuming. Re-
cently, self-supervised representation learning is emerging
as a solution to utilise representations learnt from unla-
belled data to supervise a downstream task. We discuss self-
supervised representation learning next.

3.4.3 Self-Supervised Representation Learning

Self-supervised representation learning [178] is a new
paradigm in ML, which is a form of unsupervised learn-
ing, where the data provides the supervision. The self-
supervised task, also known as the pretext task, uses the
unlabelled data to guide downstream tasks. Self-supervised
representation learning utilises both labelled and unlabelled
data. However, unlabelled data do not need to belong to the
same class labels or generative distribution as the labelled
data. Such a loose restriction on unlabelled data in self-
supervised learning significantly simplifies learning from a
large volume of unlabelled data.

Self-supervised representation learning-based models
are getting tremendous interest in vision [179], NLP [180],
and speech recognition [181], however, emotional represen-



tation learning with self-supervising needs exploration in
SER. We find a recent study [182] that presents a visual data-
guided self-supervised framework for speech representation
learning. The authors evaluate the proposed model in SER
and automatic speech recognition (ASR) and achieve state-
of-the-art results for emotion recognition and competitive
results for speech recognition. In [183], the authors pro-
pose a multitask self-supervised method for shared speech
representation learning, where a single neural encoder is
followed by multiple workers that jointly solve different
self-supervised tasks. They achieve improved results for
speaker, phonemes, and emotional cues identification. Fur-
ther, transformers [184] are becoming very popular in apply-
ing a self-supervised multi-modal representation to improve
SER [185]. In [186], the authors exploit transformer-based
self-supervised representation learning to improve multi-
modal emotion recognition. They report that fine-tuning
the transformer from the masked language modelling task
improve emotion recognition performance by 3% on the
CMU-MOSE dataset. These studies indicate the potential of
self-supervised representation learning, which need to be
further explored in SER.

3.5 DRL for Representation Learning

Deep reinforcement learning (DRL) is a combination of DL
and reinforcement learning (RL) principles to create efficient
and autonomous systems that can learn by interacting with
their environment. RL follows the principle of behaviourist
psychology, where an agent learns to take actions in an envi-
ronment and tries to maximise the accumulated reward over
its lifetime. RL has been repeatedly successful in solving
various problems [187]; however, previous methods were
inherently limited to low-dimensional problems and lacked
scalability. The advancements in DL have accelerated the
progress in RL and gave rise to various algorithms to solve
high-dimensional complex problems [188].

Recently, DRL is also gaining interest in the speech
community, and researchers have proposed multiple ap-
proaches to model different speech problems [189]. Some
of the popular RL-based solutions include dialog modelling
and optimisation [190], [191], speech recognition [192], and
speech enhancement [193]. In SER, researchers also use DRL
algorithms for emotion modelling in speech [121], [194].
However, the problem of emotional representation learning
for improving SER is not explored using DRL.

4 CHALLENGES OF DEEP REPRESENTATION

LEARNING IN SER

In this section, we present the major challenges of using
deep representation learning in SER.

4.1 Training Complexity

Training DL models for representation learning is not
straightforward. It applies highly non-linear functions to
the input signal to learn abstract representations. Learning
representations associated with input manifolds requires
intense and difficult training to unfold and distort com-
plicated input manifolds [9]. Speech signals have complex
manifolds [195] that inherently embody information related
to the message as well as the speaker’s gender, age, health
status, personality, friendliness, mood, and emotion. These

types of information are entangled together [40], and train-
ing DL models for disentanglement of emotional represen-
tations from other attributes (in a latent space) is a difficult
task and has been a long-standing goal in SER.

The training of unsupervised representation learning
models in SER is much more difficult than that of supervised
ones. Due to relatively small emotional speech datasets,
unsupervised representation learning methods do not guar-
antee to learn a useful representation and can potentially
ignore emotional attributes [196]. In contrast, unsupervised
representation learning from larger audio or multi-modal
datasets can be potentially used to improve the SER per-
formance. However, the performance improvement is not
significant despite increasing the complexity of the system
by using hundreds of hours of audio data [146]. Therefore,
semi-supervised representation learning models are consid-
ered as an alternative, as they utilise both labelled and
unlabelled data (as discussed in Section 3.3). However, blind
training of DL models for semi-supervised representation
learning may not necessarily improve the performance over
supervised learning [197]. Empirical evidence suggests that
unlabelled data only help in certain favourable situations
when there is a link between the marginal data distribution
and the target function [198]. In fact, noisy and biased
unlabelled data can even lead to worse performance [199].
Therefore, it is required to manually select the learning
parameters and regularise the semi-supervised model to
learn a generalised representation from both, labelled and
unlabelled data that help improve the performance com-
pared to the supervised techniques.

Literature shows that GANs have a strong ability to
model data distribution and learn discriminative represen-
tations. However, they are difficult to train on available
emotional corpora, as they face convergence issues [155]. To
address this, researchers use various techniques, including
conditional architectures [155], [200], unlabelled data [201],
and data augmentation techniques [103] with substantial
room for further improvement for effective training of
GAN:S in learning emotion representations.

4.2 Lack of Emotional Speech Data

Deep representation learning models aim to identify poten-
tially useful and ultimately understandable patterns. This
demands not just plenty of data, but diverse data that
capture all the directions of variation in the data [202].
For learning a good representation, data must be accurately
labelled and unbiased. Most of the SER corpora are designed
in laboratories, which may have bias and the recorded
corpus on acted emotions may not represent real-life human
emotions. This can lead the algorithms to exhibit erroneous
behaviour [203].

The quality of speech emotional data can also be poor
due to various other reasons. For example, different back-
ground noises and music can corrupt speech data. Similarly,
the noise of microphones or recording devices can also
contaminate the speech signal. Although studies use ‘noise
injection” techniques to avoid overfitting, this only works
for moderately high signal-to-noise ratios [204]. Due to the
current emphasis on emotion recognition in the wild, this
has become ever so important to recognise speech emotion
from noisy data. DAEs [63] can learn a representation of



data with noise, imputation AE [205] can learn a representa-
tion from incomplete data, and non-local AE [206] can learn
reliable representations from corrupted data. These models
are very popular for noise invariant emotional representa-
tion learning; however, their performance still needs further
improvement.

In SER, the design and use of the existing emotional
speech database primarily depend on the research goals.
For example, the emotions can be classified as soothing,
and prohibition [207]; or joy and anger [208]. The number
and type of emotions contained in a database define the
emotional classification task. In most cases, the corpora are
purpose-driven, developed by professional actors, and do
not naturally incorporate and simulate emotions. Most im-
portantly, these corpora are annotated by human raters as an
‘outer emotion’, which can be highly different from the ‘in-
ner emotion’ of an individual. Representations learnt from
such laboratory designed datasets cannot be generalised to
real-life natural emotions. To eventuate real-world applica-
tions of deep emotional representation learning-based SER
systems, there is still a need for generic emotional speech
corpora by using standard ground truth, which captures
all the human emotions. Moreover, these emotional speech
databases should be standardised and available for the
research community.

4.3 Corpus and Lingual Variance

Deep representation learning-based SER systems have
achieved improved results when evaluated using similar
training and testing data. However, the performance of
these systems drops significantly if the test samples de-
viate from the distribution of the training data. Learning
emotional representations that are invariant to speakers,
language, etc., are difficult to achieve. The representations
learnt from one corpus tend not to work well on other
corpora with different recording conditions.

In the past few years, researchers have achieved compet-
itive performance by learning speaker invariant emotional
representations [209], [210]. However, language and corpus
invariant representation learning is still a very challenging
task. Although emotions are considered language invariant,
the performance of SER systems degrades when tested
across different language emotional corpora [20]. Repre-
sentations learnt by a few shot learning can be a solution
for adapting SER systems, which needs a few samples of
target language data. Compared to the number of spoken
languages globally, we have speech corpora covering a few
languages only. Even though there are more than 5000 spo-
ken languages in the world, 389 languages alone account for
94 % of the world’s population®. However, speech corpora
are missing even for all of these 389 languages, which makes
cross-language speech emotion research more challenging.
The variation, imbalance, diversity, and dynamics in speech
and language corpora present hurdles to designing gen-
eralised representation learning algorithms. Recent studies
are focusing on representation learning for languages with
the very small size of emotional datasets [20], but a fully
satisfactory solution has not yet emerged.

2. https:/ /www.ethnologue.com/statistics

4.4 Privacy and Robustness Issues

When people use SER services, they usually grant com-
plete access to their speech recordings or transmit features
through the network. It can cause a leak of user’s informa-
tion such as gender, ethnicity, and emotional state and can
be used for unintended purposes [40], [211]. Similarly, the
users’ recordings can also be edited or used to create a fake
speech that the user never spoke, or the voiceprints can be
used to deceive voice-authentication systems. In healthcare
applications of SER, there are also risks of users’ personal
private information leakage [212]. Various other privacy-
related issues that arise while using speech-based services
have been discussed in [213]. It is desirable in SER appli-
cations that there are suitable provisions for ensuring that
there is no unauthorised and undisclosed eavesdropping
and violation of privacy.

Privacy-preserved representation learning can allevi-
ate this problem but is a relatively unexplored re-
search topic. Recently, researchers have started to utilise
privacy-preserving representation learning models to pro-
tect speaker identity [214], gender identity [211], and lan-
guage information [40]. This motivates the exploitation of
deep representation learning models on devices, or edge
servers [212]. In this way, robust representation from speech
in smaller dimensions can be learned and transmitted to
the network for real-life applications [40]. However, model
or feature sizes should be optimised for on-device util-
isation for feature extraction. To preserve users’ privacy,
federated learning [215] is another technique, explored in
[216] for SER, where the training of a shared global model is
performed using multiple participating computing devices.
These participating devices collaboratively learn a shared
model without revealing their local data and avoid privacy
infringement.

Recent studies on adversarial examples pose enormous
challenges for robust representation learning from speech
by showing the susceptibility of deep models to adver-
sarial examples having imperceptible perturbations [217].
Some popular adversarial attacks include the fast gradient
sign method (FGSM) [218], Jacobian-based saliency map
attack (JSMA) [219], and DeepFool [220]. They compute the
perturbation noise based on the gradient of the targeted
output. SER systems are also vulnerable to these attacks
[131], [221]. The success of adversarial attacks against SER
systems shows that the representations learnt by underlying
DL models are not robust [222]. Immunity against such ad-
versarial perturbations, which could mislead SER classifiers,
can be achieved by training a DL model to generate an
invariant representation to such transformations. This has
been explored in the image domain [223] but needs to be
explored for emotional representation learning from speech.
In SER, emotional representations learnt by very deep archi-
tectures are found robust against adversarial attacks [131].
However, further research is required to tackle the challenge
of adversarial attacks by exploring what DL models capture
from the input speech data and how adversarial examples
can be defined as a combination of previously learnt repre-
sentations without any knowledge of adversaries [224].



TABLE 6: Summary of challenges, gaps, and future directions of deep representation learning in SER.

Solutions explored

Challenges in Literature

Existing Gaps

Future Directions

Static representation

Training complexity learning methods

Lack of exploration

DRL-based methods need to be explored
for emotional representation learning

Unlabelled data using
Unsupervised representation
learning techniques.

Limited size
labelled emotional data.

Low performance.

Investigation of self-supervised
representation learning methods.

Domain adaptive

Corpus and . .
representation learning

Lingual Variance

Performance not comparable
with baseline results.

Investigation of multi-modal
representation to improve SER.

methods.
Privacy and Robustness | Privacy preserving Performance drops using Research is required on effective defence
Issues. representations. these representations. mechanisms against adversarial attacks.

5 DiscUSSION AND FUTURE DIRECTIONS

This section highlights the gaps and provides future re-
search pointers for different aspects of deep representation
learning in SER. For quick insights, the readers are referred
to Table 6 that presents the summary of challenges, solu-
tions presented in the literature, existing gaps, and future
directions.

5.1 Input Features

In recent years, the trend of using hand-engineered acoustic
features has been progressively changing. Deep representa-
tion learning is gaining popularity as a viable alternative
to learn directly from raw speech or features requiring
fewer processing steps. Researchers achieved promising
results using CNNs and CNN-RNNs to learn low-level
speech representations from raw waveforms, allowing a
network to capture important emotional characteristics bet-
ter. However, the proper design of the feature extraction
block is crucial to achieving this goal [50]. However, raw
speech as input to deep models requires enormous data
to achieve competitive performance. Researchers use data
augmentation techniques to meet the data requirement [50],
[225]. Log-Mel features and spectrograms are considered
popular choices to alleviate this problem as they need less
processing, fewer data samples, and training to achieve
state-of-the-art classification performance compared to se-
tups where raw audio is used. Table 5 shows that different
hand-engineered features are more popular compared to
the raw speech as input. However, it has been shown in
recent studies [21], [51] that deep representation learning
techniques can extract discriminative representations and a
particular choice of input features is not as important as the
model architecture. Therefore, future research is required to
design deep architectures that have minimal human knowl-
edge to learn generalised representations across emotions,
languages, and corpora.

5.2 Models

A summary of various deep representation learning tech-
niques is presented in Table 5. Studies using supervised
representation learning methods typically focus on learn-
ing discriminative and robust representations. Models like
CNNs, LSTM/GRU RNNs, and CNN-LSTM/GRU-RNNs
are widely used for learning salient emotional represen-
tations from raw speech. The reason for their popularity
is that CNN layers act as data-driven filterbanks that can
model spectral envelope of raw speech, and LSTM/GRU-
RNNSs can model contextual information. Therefore, most
of the studies on raw speech either use CNN, LSTM/GRU-
RNNS, or their combination for SER. Among these models,

LSTM/GRU-RNN-based architectures are mostly applied
due to their ability to capture temporal context. However,
RNNs use computationally expensive back-propagation
through time (BPTT) [226] to learn temporal dependen-
cies by sequentially processing the speech signal. Recently,
Transformers solve this issue by utilising the self-attention
mechanism for learning temporal correlations from the se-
quential data [184]. This makes Transformers capable of
capturing more temporal contexts with less computation
complexity. Various studies in ASR [227]-[229] and speech
synthesis [230], [231] highlight the contextual representation
learning ability and computational efficiency of Transform-
ers. Emotions in speech are also contextually dependent.
Therefore, Transformers need to be explored in SER.

Following the success of generative models, recent pa-
pers are mostly focused on utilising their distribution learn-
ing and generation abilities. Models like VAEs, AAAEs, and
GANSs are becoming popular choices in SER due to their
representation learning and feature generating abilities. An
interesting utilisation of GANs is generating synthetic data,
which can be utilised for SER to solve the data scarcity
problem. Learning a deep representation from synthetic
data can help improve the performance, and researchers
have validated the effective use of synthetic data for SER
[103], [158], [201]. However, creating ‘accurate’ synthetic
speech or features in different emotions using the available
limited sized emotional corpora is a difficult task, and
generative models like GANs face convergence issues [155].
Therefore, further research is needed to explore effective
training methods for generative models.

It is still an open research question which deep model is
superior for emotional representation learning to improve
SER performance. It is very hard to answer this question
from this literature search since different studies achieved
state-of-the-art results in different settings with different
models. This mainly depends on how effectively a particular
deep architecture is designed, pre-trained, and tuned for
deep representation learning.

5.3 Training Technique

We present a comparison in Table 7 on the training tech-
niques of deep representation learning models based on
different attributes to highlight trade-offs. Supervised rep-
resentation learning models are very popular in SER due to
better performance. However, the unavailability of labelled
data is a real bottleneck. These models require fully labelled
data as highlighted in Table 7. Unsupervised representation
learning can alleviate this problem by learning emotional
structures and patterns without requiring any labels, which
can help to improve the performance of the emotion classi-



TABLE 7: Comparing attributes of different deep representation learning techniques.

Supervised Unsupervised Semi-Supervised | Representation
Attributes Representation | Representation | Representation Transfer

Learning Learning Learning Learning
Fully labelled Data Compulsory v’ X X X
Unlabelled Data X v’ N v’
Partial Labelled Data X X N N
Predict Label/Future N X N N
Accuracy High Low High High
Exploration X X X X

fication task [146]. Autoencoding networks are widely used
in SER for unsupervised feature learning from speech; how-
ever, SER performance with unsupervised models is always
inferior to that of supervised models (as highlighted in
Table 5 and Table 6). Self-supervised representation learning
is gaining interest in vision, NLP, and speech recognition.
It enables better utilisation of unlabelled data by learning
high-level representations that can be used for different
downstream tasks. Research is required to explore the util-
isation of representations learnt from multi-modal data by
self-supervision on the downstream task of SER.

Semi-supervised representation learning models are
widely used in SER because they can exploit both la-
belled and unlabelled data to learn more. Studies utilise
generalised representations from both labelled and unla-
belled data to improve the performance of SER. The pop-
ular models include GANs [110], AE-based models [109],
[151] and other discriminative architectures [232], [233].
However, there are still opportunities in semi-supervised
representation learning for improving the performance of
SER by concomitantly reducing the annotation burden of
emotional corpora. Most importantly, further research is
required to provide theoretical guidelines on the number of
labelled versus unlabelled samples required to build semi-
supervised SER systems for practical applications.

MTRL methods are very popular in SER, where re-
searchers utilise additional label information available (e. g.,
speaker or gender) in speech as auxiliary tasks to learn
more generalised representations that help to improve the
SER performance [109]. However, extra efforts are required
to prepare the labels for the auxiliary task in MTRL ap-
proaches, which is an expensive and time-consuming task.
Another problem that hinders MTRL is the temporal differ-
ences among tasks. For instance, the modelling of speaker
recognition requires different temporal information than
phoneme recognition [234]. Ideally, memory-based deep
neural networks, e. g., LSTM or GRU cells, can help address
this issue.

Good representation disentangles the underlying ex-
planatory factors of variation. However, it is an open re-
search question what kind of training framework can po-
tentially learn disentangled representations from input data.
As highlighted in Table 7, all static representation learning
methods do not involve exploration. Reinforcement learning
(RL), on the other hand, facilitates the idea of exploration
while learning by interacting with the environment. A good
representation can be learned if RL is used to disentangle
factors of variation by interacting with the environment.
This will lead to faster convergence, in contrast to blindly
attempting to solve given problems. Thomas et al. [235]
recently validate this idea, where the authors use RL to

disentangle the independently controllable factors of varia-
tion by using a specific objective function. The authors show
that the agent can disentangle these aspects of the environ-
ment without any extrinsic reward. This is an important
finding that will act as the key to further research in this
direction. Some other studies [236]-[239] also use RL-based
approaches to learn representations and have achieved con-
siderable success. However, such RL-based approaches need
to be further explored for SER.

6 CONCLUSIONS

This article focuses on providing a comprehensive review of
speech emotional representation learning using deep learn-
ing approaches. In speech emotion recognition (SER), the
use of representation learning is very important, and there
is ongoing research on this topic in which different mod-
els and methods are being explored to disentangle speech
attributes suitable for emotion detection and identification.
The highlights of this survey are as follows:

e Most SER corpora are developed in laboratories by
professional actors and annotated by human raters
as outer emotions that might be significantly differ-
ent from inner ones. Future efforts are required to
motivate the collection of natural emotional corpora
by defining standardised data collection protocols
with a special focus on protecting speakers’ personal
information. It will encourage participants to enrol in
data collection.

o The SER research community is increasingly shifting
its focus to designing systems using raw speech or
input features that have minimal human knowledge
dependency.

e LSTM/GRU-RNNs combined with CNNs are very
popular and suitable for capturing emotional at-
tributes in a supervised way. In unsupervised repre-
sentation learning, Denoising Autoencoders (DAEs)
and Variational Autoencoders (VAEs) are widely de-
ployed architectures in SER, and GAN-based models
also gaining attention. Further research on utilising
these models in a semi-supervised way is required
to learn representation from unlabelled and labelled
data.

e Emotions are context-dependent, and Transformers
can better capture temporal contexts compared to
RNNSs. This encourages SER researchers to utilise
Transformers in their studies.

e Static deep representation learning methods are very
popular; however, they lack exploration. In contrast,
Deep Reinforcement Learning (DRL) facilitate explo-
ration by interacting with the environment and learn



better representation. This calls SER researchers to
utilise DRL to disentangle the emotional attributes to
achieve better performance.

e Privacy-preserving representation learning in SER is
very important to explore. This can help achieve
robustness against adversarial attacks and ensure no
unauthorised access to users’ personal information
while using SER services.

e Domain adaptation solutions based on adversarial
neural networks are widely used for cross-corpus
and cross-language emotion recognition; however,
performance is not comparable to baseline. Multi-
modal self-supervised domain adaptive representa-
tion learning models can potentially improve perfor-
mance.

We Dbelieve this article has the potential to become a
definitive guide to researchers and practitioners interested
in deep representation learning for SER. With all these
changes and advancements in place, we look forward to an
exciting era of SER starting to enable artificial intelligence
(AI) to sense our emotions better. We are curious whether,
in the longer run, deep representation learning will be the
standard paradigm in SER. If so, we are currently changing a
paradigm moving away from signal processing and expert-
crafted features into a highly data-driven era—with all its
advantages, challenges, and risks.
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