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The area of Automatic Speech Emotion Recognition has been a hot topic for researchers for quite some time now. The recent 
breakthroughs on technology in the field of Machine Learning opens up doors for multiple approaches of many kinds. However, some 
concerns have been persistent throughout the years where we highlight the design and collection of data. Proper annotation of data can be 
quite expensive and sometimes not even viable, as specialists are often needed for such a complex task as emotion recognition, even for 
humans themselves. The evolution of the semi supervised learning paradigm tries to drag down the high dependency on labelled data, 
potentially facilitating the design of a proper pipeline of tasks, single or multi modal, towards the final objective of the recognition of the 
human emotional mental state. In this paper, a review of the current single modal (audio) Semi Supervised Learning state of art is 
explored, as a away to help future researches refer to when getting to the planning phase of such task. 
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I. INTRODUCTION 

MOTIONS are a big part of the human essence. 
They have the power to completely drive our actions and 

portrait behaviors that model the human society. Its complex 
nature is somewhat uncertain as multiple men- tal states can 

overlap, originating different perspectives regarding each 
individual [1]. For a relatively long time, a lot of researchers 

built theories attempting to discretize these mental states. Paul 
Ekman initially focused on six basic emotions: anger, 

disgust, fear, happiness, sadness and surprise. He based his 
conclusions on empirically universally recognized emotions, 

independent of culture [2]. Robert Plutchik proposed a 
psychoevolutionary clas- sification approach for emotional 

responses [3]. He began from the point where he took into 
account a few basic, primary emotions, anger, fear, sadness, 

disgust, surprise, anticipation, trust, and joy. From these, 
different combi- nations would arise, giving origin to more 

complex sets of emotions, much like the basic colors and their 
derivatives. Note that it is not possible to combine just any of the 

basic emotions as some were proposed to be mutually 
exclusive. The line of work, where emotions become discrete 

values allowed for discriminative models to appear, and the 
recog- nition of emotions by a machine found its base to 

grow. The traditional Automatic Speech Emotion 
Recognition (ASER) framework divides itself in three 

components, data collection, feature extraction and 
classification [4] [5]. Data collection on speech has had 

multiple approaches as well as categories where they fit, 
regarding the context 

and restrictions it has [6]. But the issue focused here revolves 
around the expensive task of labelling necessary large amounts 
of data to be fed into state of art algorithms. It does not scale to 
the required proportions of instances to make a reliable ASER 
system [7]. So something like Semi Supervised Learning (SSL) 
could have a big impact on the design of such collection, where 
costs are severely reduced, making big scale projects viable, 
and so, more likely to perform ASER in a more naturalistic way. 

With today’s advances in deep learning, the feature 
extraction on ASER tasks require less and less human 
intervention as the neural networks designed can build complex 
functions that identify important features on data [8]. So the 
need for hand crafted features has been decreasing in favour of 
the automatically extracted ones. It opens up a bigger margin for 
training as the time wasted on feature crafting and selection 
might grow quite large. With automatic feature extraction, it 
might be possible to try out the most diverse scenarios [9]. 

The classification schemes have already been multiple. The 
more traditional ones consisted on Hidden Markov Model 
(HMM) [10], Gaussian Mixture Model (GMM) [11], Bayesian 
Networks [12] and Support Vector Machine (SVM) [13]. 
However, neural networks have been the best choice for the past 
few years due to their discriminant ability and efficiency. In this 
paper, mainly Deep Neural Network theory will be exploited 
for the purpose of SSL [14] [15]. 

In Section 2, important concepts will be described as a 
baseline to SSL. In Section 3, we will review the work done 
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on ASER, under the SSL paradigm, and the respective state of 
art, to our best knowledge. In section 4, a brief discussion on the 
future of the research will be exposed as a personal opinion by the 
authors. In section 5, a conclusion and future research 
perspectives will be shared. 

 

II. IMPORTANT NOTIONS 

On the SSL paradigm, multiple approaches were ex- ploited 
so far. [14] distinguishes and defines four categories on SSL 
algorithms: Consistency training, Proxy label methods, 
Generative models and Graph based methods. 

Consistency training relays on the assumption that 
perturbations of a certain degree to a data instance would not 
change its output class, providing a characteristic robustness 
on unlabelled data and its perturbed versions. From this 
statement, a model would be trained in such a way that the 
decision boundary would lie in a low-density region of the data 
space, making the probability of one example to switch classes 
after a small perturbation much thinner. 

Proxy label methods look to take more of an explicit 
advantage on labelled data instances combined with some 
heuristic to assign classes to some instances of unlabelled data, 
providing information on the modelling of the final function, 
even if there is some error to the automatically labelled 
instances. Self training and multiview learning can be seen as two 
major approaches in this category, where the first focus on the 
very own model producing the new labels, and the second one 
uses models trained on different views of the data the come up 
with the new labels. 

Generative models are models with the ability of gen- erating 
new data instances that follow the training data distribution. 
This implies that the model should learn important features on 
the data presented, opening doors for use on other downstream 
tasks. More importantly, with generative models, a direct 
approach with concepts such as deep learning [15] have risen, 
meaning neural networks with multiple layers with a 
remarkable ability of feature extraction and selection. By using 
deep learning models as generative models, impressive results 
have been achieved on many areas of study, making it worth to 
highlight and focus around. 

Graph Based methods look for direct comparison be- tween 
data instances through specific measures like simi- larity 
metrics or prior knowledge derived values, on which it attempts 
to correctly propagate labels through unla- belled data. 

It is important to note that algorithms from different 
categories can complement each other to take advantages from 
each one on multiple stages. 

III. RESEARch ON ASER 

On the context of ASER, a lot of research has been coming 
by for the past years, but the technological rev- olution of 
machine learning started relatively recently, meaning hardware 
and algorithms are being refined for many different tasks with 
a considerable rate of success. 

SSL itself is also very new, on early stages of development, but 
due to its nature of handling unlabelled data, it might just 
guarantee a spot on future approaches. Labelled data can present 
issues like costs, time and difficulty of obtaining. In this case, 
SSL looks to capitalize on the abun- dance of unlabelled data to 
improve learning performance, sometimes even outperforming 
supervised learning itself [7]. 

The field of ASER has always suffered from the dataset 
design perspective [16], as both collection and labelling present 
themselves as expensive tasks and on many cases even not 
viable, thus strongly justifying approaches based on SLL [17] 
[19] [20] . 

[17] went on to taking advantage of the concept of 
Generative Adversarial Network (GAN) [21] regarding 
generative models combined with distribution smoothness taken 
out of Adversarial Training [22] and Virtual Ad- versarial 
Training [23] [14]. A performance comparison  is made 
between Semi Supervised Generative Adversarial Network 
(SSGAN), Smooth Semi Supervised Generative Adversarial 
Network (SSSGAN) and Virtual Smooth Semi Supervised 
Generative Adversarial Network (VSSSGAN). 

The first model displayed at Fig.1 represents the stan- dard 
procedure of a SSGAN incorporating the audio signal processed 
on the OpenSmile toolkit [52]. This model is used as control to 
compare with the proposed method- ologies. It’s always 
important to set good comparison frameworks so the value of a 
certain project won’t be ever undermined under such volatile 
criteria. 

 
 

 
Fig. 1. Semi Supervised Generative Adversarial Network standard framework 

 
The next model, displayed at Fig.2, adds the Adversarial 

Training component to the equation. The loss function has an 
extra portion comprehending the adversarial loss. This is one of 
the two proposed variations on the GAN training. 

Note that Adversarial Training utilizes labelled data to 
smooth the decision boundary area, discarding completely the 
information contained in the unlabelled portion of data in terms 
of Adversarial Training itself. Taking the current context into 
account, it may be perceived as irrelevant, but it’s important to 
face it up against the use of unlabelled instances on the 
algorithm. 
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Fig. 2. Proposed Smooth Semi Supervised Generative Adversarial Network 
framework 

 

The model displayed at Fig.3 represents the applied concept 
of Virtual Smoothing. The changes on Virtual Adversarial 
Training, contrarily to standard Adversarial Training, allow it 
to make use of potentially important features on unlabelled 
data, complementing the Semi Su- pervised Paradigm and 
providing value to the approach. This specific model makes use 
of virtually created labels for unlabelled data to incorporate 
these instances on the calculation on estimates of adversarial 
directions. 

 

 
Fig. 3. Proposed Virtual Smooth Semi Supervised Generative Ad- versarial 
Network framework 

 

The chosen dataset is the IEMOCAP [24], collected by the 
Speech Analysis and Interpretation Laboratory at the University 
of Southern California, due its common use in the ASER 
community. Three other datasets were chosen as unlabelled 
training sets: the EmoDB [25],AEC [26] and MSP-IMPROV 
[27]. 

The chosen features are the baseline from [28], consisted of 16 
Low Level Descriptors (LLD) extracted from the raw signals: 
zero-crossing rate, root mean square, pitch frequency 
normalized to 500 Hz, harmonics-to-noise rate by 
autocorrelation function, and Mel-frequency cepstrum 
coefficients 1-12 in full accordance to HTK-based compu- 
tation. Then, the first order of the 16 LLD is calculated to 
append to the feature set. Finally, a set of functionals are applied 
to the 16 LLD and their first orders, i. e., mean, standard 
deviation, kurtosis, skewness, minimum and maximum values, 
relative position and range, as well 

as the offset and slope of the linear regression line and their 
mean square error. Finally, a total of (16+16)× 12 
= 384 acoustic features are taken into consideration. Fig.4 
summarizes the features just described for a more brief 
overview. 

 
 

 
Fig. 4. Specified features used in the baseline of the INTERSPEECH 2009 
emotion challenge 

 
With their methods, the obtained results were 59.3% and 

58.7% Unweighted Average Recall (UAR), at 2400 labelled 
data, on the proposed methods of SSSGAN and VSSSGAN, 
respectively, claiming to outperform the till date state of art 
work on the task of ASER, under the specified context. Fig.5 
shows the aggregated results on the experiments done over 300, 
600, 1200 and 2400 labels. Both the networks on Adversarial 
and Virtual Adversarial Training present better results on 
average over all exper- iments done. This shows the potential 
fine tuning aspect that it can bring into models in future research, 
as valuable performance gains might come in crucial later on. 

 

Fig. 5. Values obtained on the approaches proposed 

 

The graph on Fig.6 can be used on the purpose of scaling of 
UAR regarding the number of labelled samples utilized during 
training. 

 
 

Fig. 6. Graph compiled from results, showing short range scaling on number of 
labelled instances 
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An interesting take on the work developed is the use of 
multiple classes on the discriminator, where a label  is assigned 
to which emotion plus one to determine the authenticity of a 
sample. The purpose of it was to train the discriminator to also 
define features that differentiate the considered real classes, 
instead of only if it comes from a theoretically real distribution 
or not. This can  be seen as a take off based on the previous 
work on Categorical Generative Adversarial Network 
(CatGAN) 
[29] and Semisupervised Generative Adversarial Network 
(SGAN) [30]. 

[18] utilized a GAN variant in a different type of pipeline task, 
the Boundary Equilibrium Generative Adversarial Network 
(BEGAN) [31], where an AutoEncoder (AE) is used in place of 
the discriminant and trained on unlabelled data, in an total 
unsupervised way, by a GAN mechanism. The encoder obtained 
is then used in the building of a classifier, consisted of 
convolutions, that is then trained on labelled data. Fig.7 
represents an overview on the model designed for the task. 

 

Fig. 7. Abstract overview of the approach proposed 

The AE is introduced as a mean of taking advantage of the 
pieces of unlabelled information. An important note is on the 
use of the Convolutional Neural Network (CNN) as a classifier, 
as it represents a supervised component of the process. This 
type of pipeline may present traces of the main issue on labelled 
data, but the use of generative model to learn features on 
unlabelled instances are the highlight, as the challenge of this 
sort of task is to extract valuable information without the 
labelling cost associated to it. 

The system’s performance is measured on its application to 
three diferent datasets: SAVEE [32], OMG Emotion 
[33] and EmoDB [25].The reason behind this choice lies around 
the diversity of design, modality, language and context on 
which these datasets were conceived on. For the unsupervised 
module, the LibriSpeech [34] dataset was used due to its size and 
variability of multiple components 

like speakers and condition scenarios. Regarding features and 
preprocessing, it is mentioned that there was a change in the 
audio frequency to 16 KHz followed by a decompo- sition into 
1 second chunks without overlapping. The raw audio was then 
converted to a spectrogram with Short Time Fourier Transform 
[35] of size 1024 and stride 512. 

The results obtained on SAVEE, OMG Emotion and EmoDB 
were shown using diverse metrics so that those could be 
matched to previous work. For SAVEE, accuracy was used on 
four different speakers, DC, JE, JK, KL each one achieving, 
respectively, 80.69%, 80.96%, 80.15% and 82.46%, 
acomplishing superior results to those of the baseline 
mentioned in the article [36], displayed on Table I. 

 

Accuracy averages (%) 

Ashwin et al. 
DC 
79 

JE 
78 

JK 
76 

KL 
80 

I. Pereira et al. 80.69 80.96 80.15 82.46 

TABLE I 

RESULts ON SAVEE DATASET 

 
For the OMG Emotion dataset, the F-score,and Arousal and 

Valence concordance correlation coefficient (CCC). The values 
reported for this work were respectively 0.73, 
0.17 and 0.16, surpassing the baseline work for the dataset, with 
results at Table II 

 

Performance metrics 

 
Barros et al. 

F-score 

79 

Arousal 
CCC 
78 

Valence 
CCC 
76 

OMG emotion - 0.29 0.36 

I. Pereira et al. 0.73 0.17 0.16 

TABLE II 

RESULts ON OMG DATASET 

 
On the EmoDB dataset, accuracy values are provided as results 

and goes around 72% accuracy, showcased at Table III. 
 

Accuracy (%) 
Deb and Dandapat 79 

I. Pereira et al. 80.69 

TABLE III 

RESULts ON EMODB DATASET 

 
This approach builds on models that should try and 

generalize for most cases and conditions on which speech is 
collected. It can be seen there are competitive results with 
previous comparable work done, as it was shown by the 
authors. 

GANs show promising results and the margin of im- 
provement is stretching far away into the horizon [30] , but its 
complexity and computational cost might be a breaking factor 
when it comes to choice of algorithm, as there are many factors 
about GAN that aren’t quite standardized yet as well as other 
intrinsic problems regarding its per- formance, training and 
design [38]. 
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[19] recurred to a model architecture built around two main 
paths, a supervised and an unsupervised one, mod- eling a 
Denoising AutoEncoder (DAE) [40] [37], with the same root 
layers, so that the shared parameters would be able to retain 
information from both labelled and unlabelled data. It is added 
a pseudo class for recognition of unlabelled data so it can 
complement the joint loss function. The use of AE, compared 
to that of GANs, show a lower degree of complexity as the 
amount of hyper parameters to test from is smaller and training 
itself can be more stable [39], this might be important on 
research where the focus is not on the algorithm itself but on   
the pipeline designed for the task, although it would be essential 
to keep this kind of trade off in mind. As a claimed novelty, the 
authors introduce the concept of identity skip connection, 
where the output of one layer would skip a few of the next to a 
certain point in the chain of layers, justified by the smooth 
flowing of information across multiple layers during training, 
displayed at Fig.8. The idea of skipping connections is not a 
new thing, as it has already been used in other different contexts 
[48], but the use of it in the SSL paradigm based models is not 
such a banality itself. 

This works allows for the use of AEs [40] in the semi 
supervised learning paradigm, claiming to achieve state of the 
art results on the performance test executed, under the specified 
circumstances. 

 

 

Fig. 8. Proposed model by [19], with two paths sharing the same root layers (left) 
and the proposed model with the concept of identity skip connections integrated 
(right) 

 

For the datasets used on the performance evaluation, five 
different public datasets were chosen: the INTER- SPEECH 
2009 baseline dataset FAU AEC [28] [26], the GeWEC [41], 
ABC [42], the EmoDB [25] and the SUSAS 
dataset [43]. 

The chosen set of features was the one used on the 

[28] displayed previously at Fig.4. There were 16 LLD 

extracted from the raw signals: zero-crossing rate, root mean 
square, pitch frequency normalized to 500 Hz, harmonics-to-
noise rate by autocorrelation function, and Mel-frequency 
cepstrum coefficients 1-12 in full accordance to HTK-based 
computation. Then, the first order of the 16 LLD is calculated 
to append to the feature set. Finally, a set of functionals are 
applied to the 16 LLD and their first orders, i. e., mean, standard 
deviation, kurtosis, skew- ness, minimum and maximum values, 
relative position and range, as well as the offset and slope of the 
linear regression line and their mean square error. Finally, a total 
of (16+16)× 12 = 384 acoustic features are taken into 
consideration. 

As an evaluation metric, the standard Unweighted Av- erage 
Recall was used. On the AEC dataset, for 100, 200, 500 and 
1000 labelled instances of data, respectively, 
this work achieved 36.6% , 38.4%, 40.1%, 41.5% with the Semi 
Supervised Autoencoder solution and 36.5%, 38.5%, 41.1% 
and 41.8% with the Semi Supervised Autoencoder skip 
connections concept. These results surpass multiple approaches 
till the date of this work and stays competitive with previous 
fully supervised work that, according to this paper, it reaches a 
top of 45.6%. Further experiments are conducted on unlabelled 
out of domain data, where the labelled data from training 
dataset belongs to the AEC and the unlabelled data is from 
ABC or EMO or SUSAS or a mix of them. The test set still 
belongs to the AEC dataset. With these trials, the authors are 
testing the use of unlabelled data on the model’s capacity of 
generalization. 

 

Fig. 9. Results on unlabelled multi domain data, on combinations of ABC,EMO 
and SUSAS, with AEC as labelled data, tested on the AEC test set, from Semi 
Supervised Autoencoders and Semi Supervised Autoencoders with skip 
connections 

 

Comparing to the within corpus experiments, it can be drawn 
that the pick of unlabelled data, in relation to the labelled data, 
comes up with a big importance. The results observed are still 
quite impressive, taking into account the 
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mixed domains on multiple datasets. The next step would be to 
introduce data of the same domain of the labelled data and test 
set. To  the unlabelled data, partitions   of the AEC are added 
on every experiment joint with the other datasets that keep the 
previous experiment’s configurations. 

 

Fig. 10. Results on unlabelled multi domain data, on combinations of 
ABC,EMO,SUSAS and AEC, with AEC as labelled data, tested on the AEC 
test set, from Semi Supervised Autoencoders and Semi Supervised 
Autoencoders with skip connections, and the previous within corpus results 

 

The main purpose of the cross domain unlabelled dataset 
revolved around checking the effects of using other different 
domain datasets as a mean of data augmenta- tion to a particular 
context, in this case, the context of AEC. The results from 
Fig.10 show that no significant improvement was made on this 
particular premise but the model still manages to capture 
important features from the the data as whole, leading to 
acceptable results on the reality of the research done. Another 
positive aspect for this work is that the skip connections 
managed to consistently remain on top of the normal 
implementation, making it promising for fine-tuning models 
and push for the extra performance boost in the future. 

To take it further, experiments are done on the GeWEC 
dataset, replacing the role of AEC. The GeWEC in- troduces a 
different problem, where it consists of both whispered and 
normally enunciated speech. A portion of the whispered 
instances is used as labelled training data where the normally 
enunciated speech instances are used as test data. As unlabelled 
data, the ABC, EMO and SUSAS are once again referred to. 
Three pieces of previous work on GeWEC are used as 
comparison, two transfer learning methods, uLSIF [49] and 
DAE [50], and a super- vised learning method, with Modified 
Group Delay and 

SVM [41], with values displayed on Fig.11 as a matter of 
reference. It is important to try and understand the impact of SSL 
algorithms have over other more solidified ones like Supervised 
Learning and such, because the viability of such concept is only 
valid as long as it holds a considerable amount of success on the 
task in hand, under the the circumstances that current state of 
art allows. 

 

Fig. 11. Results on unlabelled multi domain data, on combinations of 
ABC,EMO and SUSAS, with GeWEC as labelled data, tested on the GeWEC 
test set, from Semi Supervised Autoencoders and Semi Supervised 
Autoencoders with skip connections, and the comparison results on uLSIF, DAE 
and MGD+SVM 

 
As seen on Fig.11, only a very limited amount of labels is 

needed for the proposed model to reach competitive results on 
the previous work chosen as baseline on the dataset. With the 
maximum amount of labels, significant improvements are made 
over the baselines. This can come up as very important detail as 
it can open up doors for large scale projects on data collection, 
where unlabelled data still has a great value to the model, but it 
might be able to function properly with low resources when it 
comes to labelled data. 

 
A piece of interesting work comes with the use of Ladder 

Networks [14] [44] on an ASER task by [20]. They claim to use 
as motivation the fact there are problems on ASER models 
regarding generalization degree of models, where one model 
trained on a determined dataset will most likely perform 
considerably worse at another dataset. They also focus around 
the issue of multi and single task learning, where they set as 
target the arousal, valence and domi- nance of utterances and use 
those as metrics of comparison to previous work. This research 
is highlighted on multiple but somewhat simple experimental 
setups that allow for a fair and highly detailed comparison to 
other methods done on previous research. Training is done on 
different feature sets (not shown here) as well as architectures, 
both fully 
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connected and convolutional layers [45]. Fig.12 evidences the 
building of a standard ladder network, where two encoders and 
a decoder complement each other to extract information from 
data. 

 

Fig. 12. Schematics on a ladder network model. 

 

As to the datasets chosen, the MSP-Podcast [46] is used to 
train, fine-tune and initially evaluate the model. Then, a 
characteristic cross corpus evaluation is performed on the MSP-
Improv [27] and the IEMOCAP [24]. Feature wise, according 
to the paper, the paralinguistic challenge at Interspeech 2013 
[47] was used as reference. The fea- ture set is called the 
ComParE feature set. LLD are extracted throughout 20 
millisecond worth of frames. The LLD include loudness, mel-
frequency cepstral coefficients, fundamental frequency, spectral 
flux, spectral slope, jitter and shimmer. Then, segment-level 
features are calculated over the LLD mentioned, leading to a 
fixed dimensional feature vector. This is important due to the 
model’s nature on the input length. These statistics are referred 
to as high-level descriptors and include various functionals such 
as the arithmetic and geometric means, standard deviations, 
peak to peak distances and rise and fall times. The ComParE 
feature set contains 130 LLD (65 LLD + 65 delta) and 6,373 
High Level Descriptors (HLD). This is a specific description 
used from [47]. 

The experiments made goes around two baseline results on 
methods previously implemented on singletask and multitask 
learning showcased on the article. 

For this work specifically, a setup on ladder networks with 
Single Task Learning (STL) or Multi Task Learning (MTL) as 
well as with labelled or labelled+unlabelled data, denoted 
respectively by L and UL, is formed. Later, the model’s 
architecture is altered to CNN on the place of the Fully 
Connected layers. The evaluation metric is the concordance 
correlation coefficient, known as CCC, already mentioned 
previously on this survey. The results within the MSP-Podcast 
dataset, with fully connected layers, showing in Fig.13, are 
made on every configuration available. 

The following conclusions are drawn directly from the 
original paper [20]. 

“On the development set, [...] the best performing sys- tems 
for ladder network architectures are significantly better than the 
STL baseline for arousal and dominance. 

 

 

Fig. 13. Within the MSP-Podcast corpus results. 

 
For these emotional attributes, the best performance is achieved 
by the ladder network implemented with MTL with only labeled 
data. The results on the test set are very consistent with the trends 
observed in the development set, demonstrating the 
generalization of the models. For arousal, the results of the 
ladder network frameworks are statistically significantly better 
than the results achieved by both baseline methods. For 
dominance, the ladder network architectures trained with 
labeled and unlabeled data lead to statistically significant 
improvements over both baseline frameworks. The frameworks 
trained with unlabeled data give the best performance for both 
arousal and dominance. Under this setting, the ladder network 
truly utilizes the abundant unlabeled data and generalizes to 
unseen data.” 

Based on these within corpus results, it is quite interest- ing to 
note that the results on the proposed model trained with 
labelled+unlabelled data achieve similar or better results than 
the same model trained fully on labelled data. As verified 
previously, it is the model that uses unlabelled data that 
achieves best statistically speaking performance on the test set 
of the corpus, where the generalization capability of the model 
is put under stress to some degree and manages to beat both 
baseline models and its equal trained on fully supervised 
learning. For a more challenging problem, the cross corpus 
evaluations, more specifically, the IEMOCAP and the MSP-
IMPROV, where the labels on the previously trained model’s 
dataset are adjusted to fit this task, further results are shown in 
Fig.14. Note that the development set is still from the MSP-
Podcast dataset and will not be shown results for it again. 

In the cross corpus results, with the settings of the ladder 
network and unlabelled+labelled data, it can be seen a 
significant improvement not only over baseline work but over 
fully labelled data training as well. It is fascinating to realize that 
the non existence of labels might actually come as beneficial to 
certain types of models, promoting the power of abstraction of 
such. 

An alternative experiment is done, this time using Con- 
volutional layers joint with the ladder network configura- 
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Fig. 14. Cross corpus evaluation with the IEMOCAP and MSP Improv dataset. 

 
tion on a set up of frame-level features (instead of sentence- level 
features), where spectograms are used and inputted through a 
CNN, treated like an image. The architecture is composed by 
four convolutional layers that perform 1D convolutions, a 
flattening layer and two fully connected layers. Max pooling is 
done after each convolutional layer. The schematics of the 
convolutional component of the model is showcased on Fig.15. 
The model is composed by four convolutional layers, followed 
by the flatenning layer, two fully connected layers and one linear 
output layers. 

 

Fig. 15. Proposed CNN composed model to integrate in the ladder network. 

The results will present itself as within corpus, on the MSP 
Podcast. Two different kinds of features are men- tioned and 
trialed separately , LLD from the ComParE feature set, used 
originally in this work, and MFB energies with n=40 bands [51]. 
The time limit on each sample to 10 seconds where every 
instance crossing the limited is truncated where as instances 
with less than 10 seconds are padded with zeros. Due to the 
costs of training the ladder network on frame-level features, the 
authors chose to impose limitations on the process: the 
reconstruction loss is only applied only to the fully connected 
layers afters after the flattening layer; a fixed equal number of 
labelled and unlabelled data is specified. Both multitasking and 
singletasking is still taken into account. These models are 
compared with systems trained with HLD, where such models 
are not specified. 

On the features composed by LLD, the CNN shows progress 
over the STL baseline on arousal and over both 

Fig. 16. Results on frame-level features, through the CNN compo- nent model 

 
STL and MTL baselines on valence. The performance on 

dominance is said to be statistically non significant. On the 
other hand, with Mel-frequency Band (MFB), there is a certain 

consistency associated to the performance of the model with the 
LLD in relation to the baselines. It is said the statistically 

significant improvement is observed over the STL baseline for 
valence alone with the Lad+STL+UL set up. The authors of 

this just described work indicate that implementing the 
reconstruction loss on the CNN component would likely 

increase performance even further. The CNN approach on 
frame-level features presents itself as a different 

computational perspective. The ladder network set up already 
shows an impressive capacity of abstraction towards speech 

and the recognition of the components presented on this 
work. The fact that the authors can identify possible 

improvements towards the next step is very important, as it 
shows as a baseline where future research on ladder 

networks, on multiple architectures, can stand and rise to the 
expectation behind 

Artificial Intelligence (AI). 

IV. MODALITY TRADE off 

All the pieces of work mentioned here are composed by a 
single modal task. The use of various modalities have been 
exploited for some time and recently, interesting results were 
achieved on such paradigm [53]. 

However, some issues might come up on multi modal work. 
Many types of modalities other than voice can be identified on 
the problem of Emotion recognition, such as words used, facial 
expression, body language. 

Firstly, depending on the modalities chosen, the over- head of 
collecting, processing and predicting can increase dramatically 
due to each modality demand, and even cause considerable 
performance and logistic issues on the devices used. For 
example, video recording brings many problems as a clean shot 
of facial expressions or body language would probably be 
needed for effective use; if we’re talking about an application 
used in an office, it just might work as the environment reunites 
all the conditions needed for clean data, but on everyday use, it 
might raise more issues than it solves, due to the criteria 
demanded on recordings 
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such as angle, quality and duration. If certain goals are made, 
such as portability, ease of use and low hardware requirements, 
then a lot of the viability of the project itself can get 
compromised. 

Another particularly characteristic issue is the design of such 
tractable models on multiple modalities, more specifi- cally, the 
capacity of achieving satisfactory performance on means 
available. For example speech recognition is a rather explored 
area and Machine Learning algorithms already achieved very 
satisfactory results [54]. Such systems as well as the data used are 
often not open source. In theory, they could be integrated with 
Natural Language Processing systems designed for the task of 
ASER but it could raise copyright issues. It would be also 
possible to build one from scratch, but most likely incapable of 
achieving the desired results due to the demanding on 
computation power and data storage/usage. Even if such 
capacity is available, the high complexity needed prompts to 
the issues reported just previously on overhead of execution 
and adds another one where, with the complexity increase, the 
unpredictability of the model also increases [55], which 
contributes to the instability of the model itself. It takes 
experience to design such systems, even more so if adopted a 
multitask learning approach (explored on this survey), so it 
becomes harder to control the outcome of the exper- iment. 

Is the performance achieved on ASER good enough to justify 
the use of an above average set of hardware, most likely 
unavailable for most of the common users? The same question 
can be turned around where we question on how low can the 
performance be dropped to be available on a larger scale. It 
goes around efficiency, juggling resources, a trade off involving 
complexity, performance and accessi- bility; 

Even if the hardware used is the state of the art and there is 
no worrying about usage scaling, can the model achieve the high 
expectations on accuracy for ASER? Even with the hardware at 
hand, it is still difficult to design a proper system as many 
specialist spend months or even years developing state of art 
projects. 

Keep in mind that all this revolves around the final purpose 
of the system designed. Medical or legal purposes? Then 
performance will most likely be favoured over usage scaling. 
Emotional self awareness or self control purposes? Then usage 
scaling can be the priority as the system looks on to fit the 
common citizen devices. 

Many more variations and custom purposes can be 
extracted from the rationalization above but it is every 
important to have it clear when designing the final system. 

With the evolution of hardware, we might make it to a point 
where such trade off on complexity of modalities won’t be 
taken into account as much as it should at the present date, and 
no doubt that multi modal tasks will dominate single modal 
ones in the future, but as long  as there are big limitations, 
production and consumption wise, careful planning is needed 
on the deployment of models. 

V. CONCLUSION 

Many different approaches on the ASER task have been 
coming up on the last passing years. The development on Deep 
learning opened up many doors to different complex tasks, and 
more and more diverse pipelines have been showing up in the 
area. As algorithms get more complex, more computational 
power is required which may in many cases, together with time, 
be a limiting factor for many experiments. Never the less, 
progress is being made on many ends, such as computer science, 
psychology, neurology, all contributing with improvements 
toward the final goal on the field of ASER. 

Semi Supervised Learning is relatively recent paradigm that 
looks to build on the huge of amounts of data getting collected 
and alleviate the costs on labelling and hand processing that 
same data. As it was shared during this article, it has been 
showing amazingly promising results, many times staying even 
or better than fully supervised learning. This might allow for 
large scale projects to run smoother as the dependence on 
labelled instances goes down. 

An important aspect is the managing of comparison 
frameworks. It is noticeable the differences on performance 
measures in between multiple lines of work. Of course it might 
be considered that different purposes and objectives are set for 
each piece of research done, but overall, for a steady and 
healthy grow, solid benchmarking foundations need be settled. 
Such thing might only be possible with the time, as many 
different valid approaches present them- selves every other day. 

There is still a long path to go on reaching a somewhat 
reliable performance on ASER models, but new proposals with 
improved results keep showing up every day, meaning 
researchers all around the world are committed to find way where 
speech emotion recognition by machine learning is crystal clear 
viable. 
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