3,412 research outputs found

    Event-driven grammars: Relating abstract and concrete levels of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10270-007-0051-2In this work we introduce event-driven grammars, a kind of graph grammars that are especially suited for visual modelling environments generated by meta-modelling. Rules in these grammars may be triggered by user actions (such as creating, editing or connecting elements) and in their turn may trigger other user-interface events. Their combination with triple graph transformation systems allows constructing and checking the consistency of the abstract syntax graph while the user is building the concrete syntax model, as well as managing the layout of the concrete syntax representation. As an example of these concepts, we show the definition of a modelling environment for UML sequence diagrams. A discussion is also presented of methodological aspects for the generation of environments for visual languages with multiple views, its connection with triple graph grammars, the formalization of the latter in the double pushout approach and its extension with an inheritance concept.This work has been partially sponsored by the Spanish Ministry of Education and Science with projects MOSAIC (TSI2005-08225-C07-06) and MODUWEB (TIN 2006-09678)

    Towards rule-based visual programming of generic visual systems

    Full text link
    This paper illustrates how the diagram programming language DiaPlan can be used to program visual systems. DiaPlan is a visual rule-based language that is founded on the computational model of graph transformation. The language supports object-oriented programming since its graphs are hierarchically structured. Typing allows the shape of these graphs to be specified recursively in order to increase program security. Thanks to its genericity, DiaPlan allows to implement systems that represent and manipulate data in arbitrary diagram notations. The environment for the language exploits the diagram editor generator DiaGen for providing genericity, and for implementing its user interface and type checker.Comment: 15 pages, 16 figures contribution to the First International Workshop on Rule-Based Programming (RULE'2000), September 19, 2000, Montreal, Canad

    A graph rewriting programming language for graph drawing

    Get PDF
    This paper describes Grrr, a prototype visual graph drawing tool. Previously there were no visual languages for programming graph drawing algorithms despite the inherently visual nature of the process. The languages which gave a diagrammatic view of graphs were not computationally complete and so could not be used to implement complex graph drawing algorithms. Hence current graph drawing tools are all text based. Recent developments in graph rewriting systems have produced computationally complete languages which give a visual view of graphs both whilst programming and during execution. Grrr, based on the Spider system, is a general purpose graph rewriting programming language which has now been extended in order to demonstrate the feasibility of visual graph drawing

    Contraction of Unconnected Diagrams using Least Cost Parsing

    Get PDF
    A free-hand diagram editor allows the user to place diagram components on the pane without any restrictions. This increase in flexibility often comes at the cost of editing performance, though. In particular it is tedious to manually establish the spatial relations between diagram components that are required by the visual language. Even worse are certain graph-like languages where it is a quite annoying task to explicitly link the node components. In this paper diagram contraction is proposed for solving these issues. The editor user can just roughly arrange a set of diagram components. On request the editor automatically creates a correct diagram from these components while preserving their layout as far as possible. Moreover, for several languages diagram contraction corresponds to linking node components appropriately. Such auto-linking is considered useful. It even has been integrated into first commercial modeling tools. The proposed approach can be applied to visual languages that are specified by means of hypergraph grammars. For syntax analysis an error-tolerant hypergraph parser is used, which computes a cost function by attribute evaluation. That way, unfavorable derivation (sub-)trees can be excluded at an early stage, and combinatorial explosion is mostly prevented

    Substitution-based approach for linguistic steganography using antonym

    Get PDF
    Steganography has been a part of information technology security since a long time ago. The study of steganography is getting attention from researchers because it helps to strengthen the security in protecting content message during this era of Information Technology. In this study, the use of substitution-based approach for linguistic steganography using antonym is proposed where it is expected to be an alternative to the existing substitution approach that using synonym. This approach still hides the message as existing approach but its will change the semantic of the stego text from cover text. A tool has been developed to test the proposed approach and it has been verified and validated. This proposed approach has been verified based on its character length stego text towards the cover text, bit size types of the secret text towards the stego text and bit size types of the cover text towards the stego text. It has also been validated using four parameters, which are precision, recall, f-measure, and accuracy. All the results showed that the proposed approach was very effective and comparable to the existing synonym-based substitution approach

    A Graph Rewriting Visual Language for Database Programming

    Get PDF
    Textual database programming languages are computationally complete, but have the disadvantage of giving the user a non-intuitive view of the database information that is being manipulated. Visual languages developed in recent years have allowed naive users access to a direct representation of data, often in a graph form, but have concentrated on user interface rather than complex programming tasks. There is a need for a system which combines the advantages of both these programming methods. We describe an implementation of Spider, an experimental visual database programming language aimed at programmers. It uses a graph rewriting paradigm as a basis for a fully visual, computationally complete language. The graphs it rewrites represent the schema and instances of a database. The unique graph rewriting method used by Spider has syntactic and semantic simplicity. Its form of algorithmic expression allows complex computation to be easily represented in short programs. Furthermore, Spider has greater power than normally provided in textual systems, and we show that queries on the schema and associative queries can be performed easily and without requiring any additions to the language

    Generating Meta-Model-Based Freehand Editors

    Get PDF
    Most visual languages as of today (e.g., UML) are specified using a model in a meta-model-based approach. Editors for such languages have supported structured editing as the only editing mode so far. Free-hand editing that leaves the user more freedom during editing was not supported by any editor or editor framework since parsing has not yet been considered for meta-model-based specifications. This paper describes the diagram editor generator framework DiaMeta that makes use of meta-model-based language specifications and supports free-hand as well as structured editing. For analyzing freely drawn diagrams, DiaMeta parses a graph representation of the diagram by solving a constraint satisfaction problem

    Exploiting the Layout Engine to Assess Diagram Completions

    Get PDF
    A practicable approach to diagram completion is to first compute model completions on the abstract syntax level. These can be translated to corresponding diagram changes by the layout engine afterwards. Normally, several different model completions are possible though. One way to deal with this issue is to let the user choose among them explicitly, which is already helpful. However, such a choice step is a quite time-consuming interruption of the editing process. We argue that users often are mainly interested in completions that preserve their original diagram as far as possible. This criterion cannot be checked on the abstract syntax level though. In fact, minimal model changes might still result in enormous changes of the original diagram. Therefore, we suggest to use the layout engine in advance for assessing all possible model completions with respect to the diagram changes they eventually cause
    • …
    corecore