
Abstract

This paper describes Grrr, a prototype visual graph
drawing tool. Previously there were no visual languages
for programming graph drawing algorithms despite the in-
herently visual nature of the process. The languages which
gave a diagrammatic view of graphs were not computa-
tionally complete and so could not be used to implement
complex graph drawing algorithms. Hence current graph
drawing tools are all text based.

Recent developments in graph rewriting systems have
produced computationally complete languages which give
a visual view of graphs both whilst programming and dur-
ing execution. Grrr, based on the Spider system, is a gen-
eral purpose graph rewriting programming language
which has now been extended in order to demonstrate the
feasibility of visual graph drawing.

1. Introduction

The use of graphs extends throughout computing. Ex-
amples of application areas are neural networks; database
modelling, software engineering, communication net-
works, and microprocessor design. Graphs are widely used
because they enable complex interactions to be expressed
visually. However, the visual representations quickly be-
come unusable unless they are presented in a comprehensi-
ble manner. This has motivated the ongoing research in
graph drawing algorithms, which attempt to automatically
display graphs according to some aesthetic criteria.

The purpose of graph drawing is to give a comprehen-
sible view of complex information by producing a visual
layout of it in graph form. Hence, when programming
graph drawing algorithms it would make sense to use a vis-
ual representation of the graph being manipulated. Howev-
er, the current graph drawing tools use textual
representations of graphs.

This paper describes Grrr, a visual graph rewriting lan-
guage for graph drawing. The principle advantage of the
system is to allow programmers to be closer to the final rep-
resentation of the graph they are manipulating. Allowing

an intuitive representation of data within a program means
graph drawing algorithms can be coded more quickly and
efficiently, and should encourage the development of novel
algorithms.

There are a large variety of graph drawing algorithms,
for various types of graph, such as hierarchical, planar and
general graphs [2]. Graph drawing algorithms attempt to
improve the appearance of graphs. A good drawing de-
pends on the type of graph and the application domain.
There are various desirable aesthetic criteria including:
minimising the number of arc crossings, minimising the
area the graph uses, or maximising the symmetry of the
graph. Most graph drawing algorithms produce a final re-
sult that is a compromise on several aesthetic criteria.

There are many tools for prototyping graph drawing
algorithms, discussed in Section 2.1. They all rely on some
form of textual representation for the graph and use a tex-
tual language for expressing graph drawing algorithms.
This clearly is at odds with the basic motivation for graph
drawing, which is visualising complex data in a graphical
manner. Textual representations fail to give an indication
of the interconnected nature of graphs and can force unde-
sired structure on them, which makes programming graph
drawing algorithms more complex.

Graph drawing is an algorithmically complex task, and
requires computational completeness. Computational com-
pleteness means that a programming language can be used
to encode any algorithm encodable by a computer lan-
guage. As graph drawing algorithms often make use of
complex iteration techniques, it is important that any lan-
guage designed as a general graph drawing language
should be computationally complete.

Until recent developments in graph rewriting languag-
es there was no visual language that both visually repre-
sented graph based data structures and was
computationally complete. DOODLE [5] is a visual system
for graph drawing, but it does not allow algorithms to be
encoded, instead it is designed for specifying declarative
constraints on existing algorithms. Other visual languages
such as G+ [6] and VQL [14] have a diagrammatic repre-
sentation of data graphs and use a notion of transitive clo-
sure, which allows simple recursion, but does not allow
algorithms which need complex recursion to be encoded

A Graph Rewriting Programming Language for Graph Drawing

P.J. Rodgers
Computing Laboratory, University of Kent, U.K. email: P.J.Rodgers@ukc.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63829?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(such as the example algorithm given in Section 4). There
are computationally complete dataflow visual languages
[8], which use graphs to represent programs, but do not al-
low a visual representation of graph data structures.

Graph rewriting programming languages have been
developed over the last decade. Based on graph grammars,
these systems attempt to program by rewriting a host graph
with user defined transformations. They share only the
process of graph rewriting and that they are computational-
ly complete visual languages. These languages differ wide-
ly in programming paradigm and application area. They are
discussed in more detail in Section 2.2.

Graph rewriting languages often use graph grammars
as a theoretical base, and graph grammars for graph draw-
ing, have been proposed [3, 21]. These are specialised to
certain sorts of graph (trees or DAGs) and allow a limited
class of algorithm to be applied. This contrasts with pro-
gramming languages for graph drawing which are often de-
signed to work with general graphs and allow a large
number of different algorithms to be specified.

Section 3 discusses Grrr and the changes made to it for
graph drawing. The main alteration is the integration of ge-
ometric operators. These allow the programmer to query
and change the position of single nodes and arcs in the
graph, or to work on groups of primitives. The operations
that are now built into Grrr and the issues concerning their
implementation are discussed in Section 3.2. The syntax
and semantics of Grrr that make it a practical programming
language are discussed in Section 3.1. Also discussed are
the features that make it a suitable system for producing
complex algorithms, such as graph drawing algorithms.

An example of use, detailing the implementation of a
graph drawing algorithm for hierarchical graphs is given in
Section 4. Section 5 contains the conclusions and discusses
possible further work to enhance this prototype system.

2. Background

2.1. Graph drawing tools

Graph drawing tools allow users to display specified
graphs by programming their own graph drawing algo-
rithms or accessing already coded algorithms. They are de-
signed to allow algorithms to be expressed as easily as
possible in textual languages, such as Java or C.

The manner in which the graph is represented as a data
structure influences the ease in which certain types of
graph can manipulated. When working with hierarchical
graphs a term based representation can be used, such as that
employed by daVinci [7], however this representation
method has an implicit ordering of the nodes in the graph
and so makes cyclic graphs hard to manipulate. Many other
systems use a variant of the GML method [10] which has

two discrete sets, one for the nodes and another for the arcs.
The arcs have references to the source node and the desti-
nation node. This allows more general graphs to be manip-
ulated, but any connection between nodes is difficult to
derive by inspection of the graph representation. Another
method is the adjacency method, where the arcs are speci-
fied by the relationship between node definitions. This al-
lows the arcs to be placed in context, but because a node
may be connected to any number of other nodes multiple
redundant node definitions are required.

The most general graph drawing tools provide built in
algorithms and user editing facilities as well as the capabil-
ity to produce graph drawing algorithms. Graphlet [9] is
one such publicly available tool. It uses the GML represen-
tation method. GDS [4] is a Java applet that supports graph
editing and graph drawing algorithms. There are commer-
cial systems such as Graphviz, a suite of graph drawing al-
gorithms and graph editors, and GLT, which includes
graph drawing and editing functionality, with incremental
layout of dynamic graphs.

Other graph drawing tools have algorithm creation fa-
cilities but do not provide interactive graph editing. VGJ
[13] is a Java based tool for graph layout and drawing with-
out editing capabilities. DAWG [17], which uses a similar
graph definition to GML, is a Tcl/Tk based display tool that
allows graph editing facilities to be built onto it.

2.2. Graph rewriting programming languages

Graph rewriting programming languages compute by
rewriting a host graph according to user defined transfor-
mations. A key advantage to this approach is the combina-
tion of computational completeness and visual view of both
the graph being rewritten and the transformations that re-
write the graph. These are the only forms of visual lan-
guage in which complex algorithms on graphs can be
programmed.

Graph rewriting languages vary in several important
aspects: the host graph that is to be rewritten may be any
graph, or it may be restricted by disallowing duplicate
nodes or arcs; there are several different methods for re-
writing graphs given a set of transformations; and there are
alternative ways that the user can specify the transforma-
tions. The consequence of this is that, although there are
several systems that use graph rewriting, their programs
work in very different ways.

GOOD [15] is a language for database programming.
It rewrites a host graph that is restricted by not having du-
plicated node labels. This means that algebraic expressions
are difficult to formulate, but allows GOOD to rewrite the
graph in a parallel manner, that is, all the subgraphs of the
host graph that match will be rewritten in one step (the al-
ternative is to rewrite subgraphs in a serial manner, chang-

ing only one subgraph at a time). In GOOD, rewrites are
initiated by special ‘trigger’ nodes in the host graph, which
can be viewed as corresponding to function or procedure
calls in textual programming languages. As with subgraph
rewriting, all the trigger nodes in the graph are initiated in
parallel. GOOD has a single graph method for specifying
rewrites, so that all the graph items to be matched, deleted
and added are placed on the same graph, but displayed dif-
ferently (in bold, or with double outlines), which can lead
to cluttered displays.

Progres [18] is designed for rapid prototyping of com-
puter languages and environments [19]. The graphs rewrit-
ten are general. The host graph is rewritten serially in a
non-deterministic backtracking manner, so that a target
graph is specified, and where more than subgraph can be
matched, one is chosen in a non-deterministic way. If the
target graph can be found the execution ends, otherwise if
it is not found then the system backtracks to the last alter-
nate subgraph match. Progres does not have trigger nodes
in the host graph, instead rewrites are initiated by a textual
language. The rewrites contain two diagrams, a left hand
side (LHS) for the graph to be matched, and a right hand
side (RHS) which specifies the changes to be made to the
host graph.

Visual ∆-grammar programming [11] was introduced
as a method of writing concurrent programs. The method of
specifying the productions is via a single diagram, where
the items to be removed and added are given by their posi-
tion in relation to a triangular structure. The system is vis-
ual, but the requirement to place added and deleted nodes
and arcs in particular locations means that it is hard to
maintain the appearance of the original data structure in the
transformations. The graphs rewritten are general. Both
trigger initiation and subgraph rewriting is in parallel, and
to prevent cases where the rewritten subgraphs overlap, a
conflict resolution algorithm is used. This is not given for
a particular implementation, but it should select the maxi-
mum number of rewritable subgraphs. This leaves an im-
portant section of the programming paradigm unspecified.

∆ has interesting modifications to the rewriting proc-
ess. Sections of the graph that are marked with a ‘Kleene *’
operator may match a number of times in the host graph.
Several nodes may be marked with a ‘Fold’ operator. Such
nodes may match with a single node in the host graph.

3. Grrr

Grrr is a development of the Spider graph rewriting
programming language [16]. Spider is a prototype system
for database programming. Modified, it forms the basis of
Grrr, a general purpose programming language. The im-
portant changes are: true serial trigger initiation; removing
any semantic differences between node and arc types; im-

provements to the algorithm animation facilities; and al-
lowing new built in triggers to be easily integrated into the
language, such as those for graph drawing, described in
Section 3.2. Section 3.1 discusses the unmodified Grrr pro-
gramming language.

3.1. Standard syntax and semantics

 Grrr uses a two graph rewrite specification method in-
tegrated into a fully visual language. It has trigger nodes
and a serial newest first trigger rewrite strategy. This com-
bined with a serial subgraph rewriting technique means
programs can be structured sensibly. It does not use a back-
tracking method for serial rewriting, rather it uses a deter-
ministic subgraph matching strategy.

Grrr is deterministic in the method it uses for graph
matching. This is achieved by a graph sorting method that
takes into account the surrounding subgraph of each graph
element. Once sorted, the graphs can be matched with a
backtracking algorithm.

As with Spider, the triggers in Grrr are initiated newest
first, which means they are applied serially. For example,
Figure 4.1 shows the toplevel transformation ‘Layout-
Graph’. The third rewrite calls ‘DoChildBCs’, shown in
Figure 4.2. Now all the programming associated with ‘Do-
ChildBCs’ will be completed before ‘LayoutGraph’ is
called again. This means a nested, hierarchical structure
can be given to programs. Under parallel rewriting, mutual
recursion is required to enable one trigger to pass execution
on to another, so the ‘Layout Graph’ trigger would have to
be deleted at the same time as ‘DoChildBCs’ was initiated,
and recreated again later as ‘DoChildBCs’ terminates.

Grrr has serial trigger initiation for triggers that are the
same age. In this case the next trigger node to be initiated
is determined by the ordering of the nodes. Previously, trig-
gers in Spider were executed in parallel which could cause
conflicts, forcing the restructuring of those programs.

There are other Grrr features that are designed to make
it a more usable programming language: it has a LHS/RHS
specification for the rewrites, and the rewrites within a
transformation definition have a top-down order of match-
ing, similar to that often used in textual functional and log-
ical programming languages.

The data graph (that is the part of the host graph that
holds application data) and the nodes and arcs that hold as-
sociated information (that is, information derived from the
data graph and information concerning execution) can be
separated using different node types. A node type specified
in a rewrite will only match with that node type in the host
graph, avoiding potential confusion. The example given in
Section 4 prevents the nodes holding associated informa-
tion about the data graph to be confused with nodes in the
data graph itself by using circular node types for the data

graph and oval node types for the associated information,
such as the X and Y positions of the data nodes, or for tags
to indicate whether data nodes have already been matched.

The types of primitive in the language is kept to a
small number, but the addition of attractor nodes and neg-
atives improves the expressive capabilities. Attractor nodes
(shown with a shaded center) force arcs that have been left
dangling by node deletion to be attached to another node.
This allows the easy expression of node replacement and
algebraic expressions. Negatives (shown with thick lines in
the diagrams in this paper, but on the screen they are col-
oured red) allow the user to specify that a certain subgraph
should not be matched.

Where duplicate labels appear in the LHS or RHS they
must be identified by the user to avoid confusion. The iden-
tifier is an integer superscripted to the node label. An ex-
ample of identification is shown in Figure 4.3, where the
fourth rewrite contains identifiers for both ‘P’ and ‘X’. The
identifiers do not affect matching, but ensure that there is
no ambiguity when duplicating or removing primitives.

Graph theoretic operations, sometimes called graph
associations [1], are expressible in Grrr as a direct conse-
quence of the paradigm that it uses. These operations allow
paths through the graph to be found, or allow semantic dis-
tance to be calculated. These sort of operations are widely
used in graph drawing. In textual languages these opera-
tions require new primitives to be added to the language.

Grrr algorithm animation is improved from the func-
tionality in Spider. Previously, the user had a debugging
feature that allowed the user to step through the rewriting
in the host graph. In Grrr the functionality has been im-
proved to animate algorithms by showing the changes in
the host graph whilst the rewriting is progressing automat-
ically. Chosen node types can be selected by the user to be
hidden, so ensuring an uncluttered view of changes made
to the graph. For example, in Section 3.2, the oval nodes
that represent associated information might be hidden, so
ensuring that only changes to the data graph can be seen.

3.2. Graph drawing facilities

To be a useable graph drawing language Grrr has been
augmented with triggers that perform geometric opera-
tions, to measure the position of nodes in the graph and al-
low nodes and arcs to be placed in specific positions. These
use either screen pixels or the size of nodes as units of
measurement.

Some geometric triggers are atomic and so must be
built in. These provide basic information, such as: the X Y
coordinate position of nodes; the height and width of the
nodes themselves; and the length of arcs. Correspondingly,
to alter the appearance of the graph, there are atomic trig-
gers to specify the X Y position of nodes, and the points at

which non-straight arcs bend. The last of these requires a
slight change to the rewriting method used by Grrr to give
a high priority to initiating these triggers. The addition of
the arc bend trigger temporarily alters the graph theoretic
structure of the data graph, so that any rewrite which would
normally match the repositioned arc would not do so with
such a trigger in place, hence arc bends must be initiated
before any other trigger.

Other operations for graph drawing can be derived
from the above triggers, but to improve efficiency, many of
these are built in. Enclosure operations in particular are in-
efficient to derive. These include finding the nodes within
a particular bounding rectangle, or the nodes within a cer-
tain radius of a centre point. To derive these, each node in
the graph would have to be examined, and the results proc-
essed. Instead of this heavy computational overhead they
are hard coded in Grrr. Their analogs, finding a particular
area, rectangular or circular, that encloses a set of nodes,
are similarly built in.

There are further built in triggers. Finding the distance
between two nodes is a common operation, and a hard cod-
ed trigger to perform this operation reduces execution time.
For other operations it is not so clear that the balance of
time spent on implementation is worth the saving in execu-
tion time. If it becomes clear that certain operations, such
as finding the angle between two arcs, or placing a set of
nodes in a straight line are becoming bottlenecks, then they
can be added as built in triggers.

Graph drawing algorithms often work on higher level
units than pixels, and operations on units based on node
size are present, so that the node width is one unit in the X
direction and node height one unit the Y direction. The im-
plementation of these triggers shares a large amount of
code with the triggers that operate on pixels, given above.

The use of geometric triggers can be seen in the ‘Clos-
estPoint’ transformation of Figure 4.3. ‘XPixelPlace’ can
be seen in the fourth RHS. This puts the node attached by
a ‘move’ arc at the X pixel coordinate specified by the node
attached to a ‘point’ arc. There is a ‘YPixelPlace’ for the
placing nodes at a Y pixel coordinate. The position in terms
of node width and height can be specified by ‘XIntPlace’
and ‘YIntPlace’, the latter is used by the ‘LayoutY’ trans-
formation, not shown due to space reasons. The corre-
sponding triggers which find the coordinates of a node are
‘XPixelCoord’, shown in Figure 4.3 and ‘YPixelCoord’.
These produce a new attractor node containing the coordi-
nate of the node attached to an ‘arg’ arc. ‘XIntCoord’ and
‘YIntCoord’ find the X and Y coordinates in terms of node
width and height, rounding to the nearest integer.
‘NodeWidth’ can be seen in the fourth RHS. This returns
the width, in pixels, of the node attached by an ‘arg’ arc.
The result is an attractor node. ‘NodeHeight’ finds the
height, in pixels of the ‘arg’ node.

The transformation shown in Figure 4.3 also makes
use of ‘BBox’, which finds the bounding rectangle of one
or more nodes attached to it by ‘arg’ arcs, and returns the
coordinates as pixels attached to the specified result node.
The values are attached to ‘min X’, ‘min Y’, ‘max X’ and
‘max Y’ arcs, giving the rectangle in terms of the bottom
left point and the top right point. This method of returning
a result means that other related triggers can easily make
use of the information returned, in particular in this figure,
the trigger ‘OverlapBox’ uses the result. It finds the nodes
wholly or partially contained within a specified rectangle,
given in the format above. The ‘InBox’ trigger is not
shown, but returns the nodes contained wholly in a rectan-
gle. The corresponding commands for circular areas, again
not shown, use a center point specified by ‘X’ and ‘Y’ pixel
coordinates and an integer pixel ‘radius’.

4. Graph drawing example

In this section, graph drawing in Grrr is illustrated us-
ing a directed acyclic graph (DAG) drawing technique
based first on finding the Y location of nodes according to
their position in the hierarchy. Then the X coordinates are
specified using multiple passes though the graph, alternate-
ly down the hierarchy sorting on child barycenters, then up
sorting on parent barycenters. This is a visualised (and sim-
plified) version of the approach used bySugiyama et. al.
[20]. The Grrr system is not restricted to DAGs, or indeed
hierarchical or centred graphs. Any circular, general graph
may be manipulated. This example is given because it uses
complex recursion, and it highlights some interesting pro-
gramming and layout features of Grrr.

Figure 4.1, Figure 4.2 and Figure 4.3 show some trans-
formations in the program that lays out a hierarchical
graph. Figure 4.1 shows the top level transformation ‘Lay-
outGraph’. This is the entry point into the program. Figure
4.4 shows the host graph at the start of execution where the
trigger node ‘LayoutGraph’ is attached to a node indicating
the number of passes through the graph. In this case 3 pass-
es will be made. The data graph contains unlabelled (circu-
lar) nodes and unlabelled arcs to improve the clarity of the
diagram. However, the manner in which the transforma-
tions are written would mean that any labels could be used
for data graph nodes and arcs. The diagrams showing the
host graph indicate the number of steps that have been ex-
ecuted from the initial host graph. Each step is a single
graph rewrite.

‘LayoutGraph’ controls the execution order of the
lower level transformations by using flag nodes. The trans-
formation has four rewrites. Each rewrite has an LHS and
an RHS. On each application of the transformation matches
are attempted on each LHS in turn, starting with the top-
most LHS. The difference between the LHS and RHS spec-

ifies which nodes and arcs in the host graph are to be added
or deleted. The first LHS matches when the node attached
by a ‘passes’ arc is ‘0’, however at the start of execution the
number of passes is ‘3’, so the first rewrite is not used. The
second LHS matches in the case where there is no ‘done Y’
flag. This is because the ‘done Y’ node and connecting arc
are bold, indicating that they are negative, and so there will
be a match if that part of the LHS graph cannot be found in
the host graph. It prevents ‘LayoutY’ executing more than
once because the ‘done Y’ flag is created by this rewrite.
The ‘X’ node is a variable, indicated by an italic font. In
this example the start of variable labels is capitalised. The
third and fourth rewrites toggle between calling ‘DoChild-
BCs’ and ‘DoParentBCs’, as the ‘done Child’ flag is alter-
nately created and deleted by these two rewrites.

Figure 4.1. The transformation ‘LayoutGraph’

Each time the fourth rewrite is applied, the number of
passes is reduced by one. This means that eventually the
applications of ‘LayoutGraph’ will reduce it to ‘0’, when
the next application of ‘LayoutGraph’ will mean the LHS
of first rewrite will now match. This first rewrite of ‘Lay-
outGraph’ is the terminating case, deleting the ‘Layout-
Graph’ trigger from the host graph and replacing it with a
tidying trigger, ‘DeleteLevels’, which removes the nodes
holding information from the graph and leaving only the
repositioned data graph, as shown in Figure 4.6.

Figure 4.2 shows the transformation ‘DoChildBCs’
which iterates through the nodes in the data graph in the or-
der of the Y level of the nodes placing them at the average
of the X coordinates of their children. For reasons of space
other transformations are left out of this paper. In particu-

0 done Y

LayoutGraph

flag
passes DeleteLevels

done Y
X

LayoutGraph

passes
flag

done YX

LayoutYLayoutGraph

flag
passes

X

LayoutGraph

done Child

flag
passes

done Child

DoChildBCsLayoutGraph

X

passes
flag

X done Child

LayoutGraph

passes
flag

X 1

DoParentBCs

LayoutGraph

Minus

arg2

passes

arg1

lar, missing is the code for ‘LayoutY’, which sets the Y lev-
els of nodes and places them appropriately, and
‘DoParentBCs’ which is similar to ‘DoChildBCs’.

The trigger that initiates ‘DoChildBCs’ is created by
the third rewrite of ‘LayoutGraph’. Because Grrr uses a
newest first execution strategy, this new trigger, and all
triggers that are created as a result of its application will
complete execution before ‘LayoutGraph’ is called again.

Figure 4.2. The transformation ‘DoChildBCs’

The first rewrite is called when there is no node at-
tached to a ‘current y’ arc. The rewrite creates the ‘current
y’ arc and attached node which has a value set to the top of
the hierarchy, ‘1’. The second rewrite is the terminating
case which calls a tidying transformation ‘RemoveAll’. It
matches when there is no level corresponding to the current
level, hence the bottom of the hierarchy must have been
passed. The third transformation matches a node at the cur-
rent level and calls ‘GetChildBC’, which is not shown. It
calculates the barycenters and attempts to place the node
sensibly, using the ‘ClosestPoint’ transformation, de-
scribed below. The fourth rewrite increments the current
level. If the increment is more than any current level then
the next application of the transformation will mean the
second LHS matches, and the trigger will be deleted.

Figure 4.3 shows the transformation ‘ClosestPoint’.
This illustrates some of the built in geometric triggers. It is
designed to find a reasonably close X coordinate for the ar-
gument node which does not overlap with any other nodes.
It does this by alternately moving the node right then left
with bigger steps until a clear location is found. This trans-
formation also illustrates the high level programming pos-
sible with Grrr, because there is a large amount of
processing performed by the five rewrites.

DoChildBCs

L

current y
DoChildBCs

1

current y

DoChildBCs

L 1

L 2

current y done BCRemoveAll arg

L 1

done BC

L 2

DoChildBCs

A

current y

y

tag L 1

GetChildBC

done BC

L 2

A

DoChildBCs

arg

y

tag

current y

DoChildBCs

L

current y

L

Add

DoChildBCs

1

arg2

current y

arg1

Figure 4.3. The transformation ‘ClosestPoint’

‘ClosestPoint’ is designed to be called with only the
node to be positioned attached, so the second rewrite is the
first to be called, as the first requires ‘point’ and ‘next’ tag
nodes to be attached. The RHS creates a ‘test’, a ‘right’ and
a ‘1’ node. It also creates three geometric triggers, ‘XPix-
elCoord’, ‘OverlapBox’ and ‘BBox’. The triggers are the
same age but ‘XPixelCoord’ is executed first according to
the serial trigger resolution algorithm. It returns the value,

A

X

ClosestPoint

M

test

P

point

next flag

by

arg

X

A

M

test

P

BBox OverlapBox

ClosestPointnext

result

result

arg

flag

arg

by

point

A

ClosestPoint testflag

arg

ClosestPoint test

right

AXPixelCoord

OverlapBoxBBox

1

point

flag

arg

next

arg

by

result

result

arg

testClosestPoint

P
A

M

X

B

by

flag

argpoint
arg

next

arg
A

right

A
P 1

test

B

ClosestPoint

X 1

by

arg

arg

point

flag
next

arg

B

P 2

left

NodeWidth

XPixelPlace

Multiply

X 2

Add

ClosestPoint

2

A

Multiply

X 1

P 1

arg2

arg

point

arg2

move

arg1
arg2

arg1

position

arg

arg1

by

next

left

ClosestPoint

A

X 1

P 1

B

test
flag

by

argpoint

arg

next

arg

Minus

X 2

Multiply

A

2

right

Multiply

ClosestPoint

XPixelPlace

NodeWidth

B

Add

1

P 1

P 2

X 1

arg1

position

arg2

arg2 arg1

arg1

arg

point

arg2

arg1

arg

move

arg2

by

next

in pixels of the X position of the argument node. This value
becomes the node attached to the ‘point’ arc, and is used in
later calculations. ‘OverlapBox’ cannot yet be called as
none of its RHSs will match, it requires associated coordi-
nates, hence ‘BBox’ will be the next executed. This returns,
attached to the node connected by the ‘result’ arc, the
bounding box of the nodes attached by ‘arg’ arcs. Here
there is only one such node. The point in execution after
‘BBox’ is called is shown in Figure 4.5. This figure also
shows the effect of the execution of ‘LayoutY’, with the
nodes in their correct level in the hierarchy, and with the
tags giving the level attached.

Figure 4.4. The initial host graph (Step 0)

Figure 4.5. The host graph after Step 167

Now ‘OverlapBox’ can match, as it has the required
coordinates, and this returns attached to the node connected
by the ‘result’ arc the nodes in the graph which are wholly
or partially contained within the given coordinates. If there
is only one (which will be the argument node, hence it does
not overlap another node) then the third LHS of ‘Closest-

LayoutGraph 3passes

88

LayoutGraph

done BC

test

1

done Child

4

right

1

152

3

2
2

done BC

DoChildBCs

1

2

1

292

356

ClosestPoint

3

3

3

done Y

4

4

OverlapBox

324

4

pointpasses

y

min Y

y

y

tag

y

y

y

flag

result

y

y

max Y

by

current y

flag

y

next

min X

tag

max X

y

arg

flag

y

y

Point’ will match next, and recursion will terminate. If
there is more than one, then depending on whether the next
move is left or right, the fourth or fifth rewrites will be next
used. In this case, two steps after the host graph in Figure
4.5 it is the fourth rewrite. The RHS of the fourth rewrite
has an algebraic expression which calculates the new loca-
tion of the node, according to the previous number of
moves, the original position and the node width (found us-
ing another geometric trigger, ‘NodeWidth’). The fourth
rewrite deletes the ‘test’ tag, so that the next application of
‘ClosestPoint’ will mean the first rewrite is used, which
sets up the graph for the next test of the position of the ar-
gument node. The fifth rewrite is similar to the fourth, but
increases the amount by which the node is moved.

Figure 4.6. The final host graph (Step 1584)

Execution finishes after 1584 rewriting steps, resulting
in the host graph as shown in Figure 4.6. Transformations
delete their associated triggers when they complete recur-
sion and tidying transformations have deleted all the asso-
ciated data, leaving only the data graph as the final result.

5. Conclusions and further work

This paper has demonstrated the feasibility of visual
graph drawing by giving an example of a concise, but pow-
erful hierarchical graph drawing algorithm which makes
use of the new geometric operators and previously availa-
ble implicit graph theoretic operations.

This paper has also shown a novel application area for
graph rewriting languages, an area for which these systems
are uniquely suited by virtue of their visual representation
of graphs and computational completeness.

With enhancements it is conceived that Grrr will be a
practical tool for the graph drawing community. The major
further work required to turn Grrr into a serious develop-
ment tool are improvements in user interface and execution
efficiency. The former requires resources, but the latter is

more interesting in research terms. Grrr uses a general but
sometimes expensive serial graph matching algorithm. In
practice most graph matching operations can be optimised,
either at compile time by converting rewrites to a more ef-
ficient form, or during run time by using intelligent search-
es through the host graph. Such efficiency gains should be
achievable without altering the Grrr programming method.

Further programming features could be added to Grrr.
Because the semantics have been maintained at a simple
level there are various enhancements that the example pro-
gram highlights. Flags are used to control the order of exe-
cution of some lower level transformations. A more elegant
method might be to add a system of ensuring specified re-
writes are executed only once. Also widely used are tags,
and the situations in which tags are applied could be dealt
with by specifying nodes in LHS graphs that should be
matched only once by a particular trigger node application.

The extensions that enable graph drawing in Grrr have
been designed to integrate into the language without great-
ly affecting the semantics. Manipulation of graphs might
be more intuitive if the operations were directly embedded
into the rewriting process. For example, the repositioning
of a node could be specified by its position in the RHS rel-
ative to the LHS. New forms of arc are also possible. These
might alter the position of the connected nodes (bringing
them closer, or separating them). Grrr would then become
more expressive at the cost of simplicity.

Graph drawing is a large field, and work is in progress
to discover which classes of algorithm are amenable to vis-
ual graph drawing and to compare the effort required for
producing visual algorithms against producing their textual
duals. It is also conceivable that this new visual approach
to graph drawing will lead to the development of novel al-
gorithms.

There are graph drawing requirements other than dis-
cussed in this paper. In particular, it might be useful to add
operations that allow automatic measuring of aesthetic cri-
teria that is not easy to derive from current triggers. This in-
cludes measuring arc crossing in a graph and the symmetry
of a graph. Work in the area of constraints on graph draw-
ing [5] might also be applicable to this system.

There are a number of computational tasks related to
graph drawing, such as planarity testing. Interestingly, this
does not require geometric operations, only graph theoretic
operations. Implementing planarity testing and other relat-
ed tasks into Grrr is an area of further work.

References

1. R. Ayres and P.J.H. King. Extending the Semantic Power of
Functional Database Query Languages with Associational
Features. Congres INFORSID 1994. pp. 301-320. 1994.

2. G. Di Battista, P. Eades, R. Tamassia and I.G. Tollis. Algo-
rithms for Drawing Graphs: an Annotated Bibliography.

Computational Geometry: Theory and Applications, 4. pp.
235-282, 1994.

3. F.J. Brandenburg. Designing Graph Drawings by Layout
Graph Grammars. Graph Drawing ’94. LNCS 894. Springer-
Verlag. pp. 266-269. 1995.

4. S. Bridgeman, A. Garg and R. Tamassia. A Graph Drawing
and Translation Service on the WWW. Graph Drawing ’96.
Berkeley, CA, USA, LNCS 1190. Springer-Verlag. 1996

5. I.F. Cruz. Expressing Constraints for Data Display Specifica-
tion: A Visual Approach. Principles and Practice of Con-
straint Programming, eds. Vijay Saraswat and Pascal Van
Hentenryck. The MIT Press, pp. 443-468, 1995.

6. I.F. Cruz, A.O. Mendelzon and P.T. Wood. G+: Recursive
Queries Without Recursion. Proceedings of the 2nd Expert
Database Systems Conference. Benjamin-Cummings. pp.
645-666. 1989.

7. M. Fröhlich and M. Werner. Demonstration of the Interactive
Graph-Visualization System daVinci. Graph Drawing ’94.
LNCS 894. Springer-Verlag. pp. 266-269. 1995.

8. D. Hils. Visual Languages and Computing Survey: Data Flow
Visual Programming Languages. Journal of Visual Languag-
es and Computing 3(3), pp. 69-101. 1992

9. M. Himsolt. The Graphlet System. Graph Drawing ’96. LNCS
1190. Springer-Verlag. pp. 233-240. 1996

10. M. Himsolt. GML: A Portable Graph File Format. Technical
Report, Universität Passau, 1997.

11. S.M. Kaplan, S.K. Goering and R.H. Cambell. Specifying
Concurrent Systems with ∆-Grammars. Proceedings of the
Fifth International Workshop on Software Specification and
Design. Society Press. pp. 20-27. 1989.

12. E. Koutsofios and S.H. North. Drawing Graphs with DOT.
User Manual. AT&T Bell Laboratories. 1993.

13. C. McCreary. Visualizing Graphs with Java (VGJ) Manual.
Available from http://www.eng.auburn.edu/department/cse/
research/graph_drawing/manual/vgj_manual.html. 1997.

14. L. Mohan L. and R.L. Kashyap. A Visual Query Language for
Graphical Interaction With Schema-Intensive Databases.
IEEE Transactions on Knowledge and Data Engineering, 5,
5. pp. 843-858. 1993.

15. J. Paredaens, J. Van den Bussche, M. Andries, M. Gyssens
and I. Thyssens. An Overview of GOOD. ACM SIGMOD
Record, 21,1. pp. 25-31. March 1992.

16. P.J. Rodgers and P.J.H. King. A Graph Rewriting Visual Lan-
guage for Database Programming. The Journal of Visual Lan-
guages and Computing 8(6). Academic Press. pp. 641-674.
December 1997.

17. P. Rodgers, R. Gaizauskas, K. Humphreys and H. Cunning-
ham. Visual Execution and Data Visualisation in Natural Lan-
guage Processing. Proceedings of the VL‘97 IEEE
Symposium on Visual Languages. pp. 342-347. 1997.

18. A. Schürr. Rapid Programming with Graph Rewrite Rules.
Proceedings USENIX Symposium on Very High Level Lan-
guages (VHLL), Santa Fe. pp. 83-100. October 1994.

19. A. Schürr. BLD - A Nondeterministic Data Flow Program-
ming Language with Backtracking. Proceedings of the VL‘97
IEEE Symposium on Visual Languages. pp. 398-405. 1997.

20. K. Sugiyama, S. Tagawa and M.Toda. Methods for Visual
Understanding of Hierarchical Systems. IEEE Trans. on Sys-
tems, Man and Cybernetics, SMC-11(2). pp. 109-125. 1981.

21. G. Zinßmeister and C.L. McCreary. Drawing Graphs with At-
tribute Graph Grammars. Graph Drawing ’94. LNCS 894.
Springer-Verlag. pp. 266-269. 1995.

