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Abstract
Textual database programming languages are computationally complete, but have the disadvantage of giving the user a

non-intuitive view of the database information that is being manipulated. Visual languages developed in recent years have
allowed naive users access to a direct representation of data, often in a graph form, but have concentrated on user interface
rather than complex programming tasks. There is a need for a system which combines the advantages of both these
programming methods.

We describe an implementation of Spider, an experimental visual database programming language aimed at
programmers. It uses a graph rewriting paradigm as a basis for a fully visual, computationally complete language. The
graphs it rewrites represent the schema and instances of a database.

The unique graph rewriting method used by Spider has syntactic and semantic simplicity. Its form of algorithmic
expression allows complex computation to be easily represented in short programs. Furthermore, Spider has greater power
than normally provided in textual systems, and we show that queries on the schema and associative queries can be performed
easily and without requiring any additions to the language.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


- 2 -

1: Introduction

We believe we have identified a need for a visual language for programmers who use complex data structures, such as
those found in databases. Graphs, when used wisely, can aid experienced users to comprehend complex concepts [1]. Most
previous work in the area of graph based visual languages has concentrated on allowing less expert users access to low
complexity programming facilities [2, 3, 4, 5] and these systems have met their aims with some success. However, attempts
to allow expert users access to the advantages of visualisation of data and programs has been less fruitful. This paper
describes Spider, a visual database language based on graph rewriting. It integrates complex programming facilities with a
graph based data representation in a seamless manner. We also discuss some types of query that show this paradigm has
benefits that are not available in most textual query languages.

Graph rewriting derives from the mathematical area of graph grammars [6]. Dactyl [7], is a textual programming
language that uses graph rewriting. Derived from graph grammars are  grammars, which have been used as a basis for a
powerful visual graph rewriting language by Loyall and Kaplan [8]. They give examples based both on state oriented and
data oriented applications. The definition of the rewrites suffer from restrictions on their appearance to a triangular form.
The rewrites work on a parallel basis, where the largest number of non conflicting subgraphs are rewritten.

PROGRES [9] and GOOD [10] are systems that have been developed for graph rewriting with databases. PROGRES
combines visual rewriting with a textual programming language. It has a non-deterministic approach to subgraph matching.
GOOD has a visual graph rewriting system using an object oriented database, where the primitive changes are specified
explicitly on one diagram. In this system rewrites operate in parallel on all the matching subgraphs.

Spider is an implemented database programming language. It is fully visual, using graphs to display both data and
programs. The language works by rewriting a graph containing the database and nodes initiating computation. This produces
a computationally complete, conceptually simple visual programming language that allows programmers direct access to a
representation of the data structure they are modifying. A program contains transformations similar in structure to the
functions or predicates of declarative textual languages. Transformations are composed of a series of graph rewrites. The
rewrites are formed in such a way as to maintain the visual structure of the data, with each rewrite having two graphs, one to
represent the graph to be matched, and the other to represent the changes to be made. Transformations are started simply by
the presence of application nodes in the host graph, called here the ‘application graph’. Application nodes do not represent
data, but are introduced into the application graph initially by the user, and then by the transformations that are executed as a
consequence. Execution halts when no application nodes remain in the application graph. This allows Spider to be
syntactically simple and flexible in the types of transformation that can be used.

Spider has a deterministic approach to rewriting a single subgraph of the application graph. This is achieved by sorting
the graph and then matching the highest ordered of the subgraphs. Rewriting only one of many potential subgraphs allows
the formation of more classes of non conflicting transformation.

Functionality not found in textual languages is present in Spider as a natural consequence of its paradigm. Programs that
query and alter the schema are possible. Such queries allow access to the meta data that forms the schema. Spider also has
the capability to perform associative queries. These examine the structure of the data and its connections, so that the
database can be treated as a graph and paths connecting specified nodes are the results.

The database integrated into Spider uses the binary-relational model [11]. Relational databases contain relations that may
have any number of entities, whereas a binary-relational database can only contain relations that have two entities. This
allows the database to be easily represented using a graph, as each relation can represent an arc between two set entities at
the schema level and represent a set of arcs that connect instance values at the instance level.

Section two of this paper contains an overview of Spiders’ user interface and programming method, using an update on
the schema and instances of a database as an example. Section three has a detailed description of the graph matching strategy
used by Spider. The associative queries are given in section four. We give our conclusions and further work in section five.
Appendix A contains a formal definition of spiders rewriting strategy. Appendix B has a demonstration of the computational
completeness of Spider by implementing normal order reduction of the lambda calculus, this program is then used to
compare graph rewriting with the functional paradigm.

2: Informal overview of Spider

In this section we introduce Spiders’ syntax and semantics in an informal manner, using a database update command as a
running example. The database is a small section of a London local election database. The update will find the people who
have at some time been a winner in a ward election. The method used is to first add the required meta data to the schema and
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then update the instance data. A more formal approach to the semantics of Spider is given in appendix A.

2.1: Graph primitives

Spiders data and programs are formed from various kinds of graph, which are constructed from two types of primitives,
nodes and arcs. The primitivecharacteristics described here are used when sorting the graph. The three possible node types
are:set nodes (circular border),instance nodes (oval), andapplication nodes (rectangular). All nodes must be labelled, and
may haveduplicate identifiers in some graphs (a superscript to the node label) to distinguish nodes with the same label. Set
and instance nodes describe data, whereas the application nodes are for performing graph transformations. The two arc types
arefunction arcs (black solid lines with labels) andinstance arcs (grey dotted lines without labels). Both types of arc must
be directional.

2.2: The user interface

The Spider system has four main windows. Theschema window (figure 2.1) allows the user to define, save and load a
binary-relational database schema. Data is entered and deleted in theinstance window, where the schema also appears, but
which cannot be changed in this window. Thetransformations, which are used to manipulate the database, and constitute a
visual program, are defined in thetransformation window. Execution of the transformations is displayed in theapplication
window.

Every window has menus to access the functionality provided. User feedback is either written in the free space in the
menu bar of the windows or output via a dialogue box in the case of important messages. The position of the mouse pointer
is given as x y coordinates on the right of the menu bar.

All windows (including the application window) have facilities to edit the graphs in them. The basic operations described
here can be seen in the ‘Edit’ menu of the schema window (figure 2.1). A mouse button one click over a primitive, or a drag
over an area using button two, selects primitives for the editing operations that require it. Most windows have the following
editing options: adding and editing a node; moving nodes (by a mouse button three drag); adding an arc between two
selected nodes; editing the type and name of an arc; copying, cutting and deleting selected subgraphs (unconnected arcs are
not left in the graph, nor added to the clipboard); pasting copied or cut subgraphs to a graph from the clipboard. Pasted
subgraphs can originate in any graph as long as the primitives are valid for the destination graph. To ensure that all the
structures in the Spider system are valid graphs, (ie. that all the arcs have two connecting nodes) two terminal nodes must
first be selected before an arc can be added, and all the arcs that connect to a node are removed when that node is removed.
The restrictions on editing of specific graphs will be explained in due course. The primitive creating and editing commands
bring up a dialogue box which allows the input of the characteristics, this method means that invalid characteristic options
can be deactivated.

Figure 2.1: The Schema Window with its Menu Options Displayed
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The windows always have a ‘File’ menu which, at the very least, has commands to exit the window and print the window
contents to a postscript file (many of the diagrams in this paper have been produced using this).

The ‘View’ menu has two main functions: to access other windows; and redisplay the current window contents. In the
case of the schema window, all the other windows can be accessed. The ‘Rearrange’ option leads to a sub-menu that has a
‘redraw’ command to redisplay the window and may in the future contain access to graph rearranging algorithms (the
instance window is currently the only one with such functionality). The ‘Display Options’ sub-menu has facilities for
changing the colour, size and shape of the primitives in the graph.

2.3: Database schema window

The schema window is shown in figure 2.1, which also includes the menu options, which are discussed above, in the
section on user interface. Spider displays and manipulates the schema information in this window, allowing only set nodes
and function arcs. This window is the initial one displayed and allows access (via the ‘View’ menu) to the other windows of
the system. The schema consists of set nodes connected by function arcs. The schema window has in its ‘File’ menu
facilities for creating, saving and loading databases.

2.4: Instance window

Figure 2.2 shows the contents of the instance window: the example Election schema and the associated instance data.
This window is entered from the schema window by first selecting a subgraph of the schema to indicate the part of the
database that is to be displayed. Note that the instance nodes are connected by the same function arcs as their corresponding
set nodes. Each instance is connected to one (and only one) set node by an instance arc. There can only be a function arc
between instance nodes if there is one between their corresponding set nodes. An instance node or function arc is added to
this graph by first selecting a ‘template’ primitive. If this is a node, then it is automatically connected to the appropriate set
node. If it is a function arc, then the system ensures that the subsequently selected nodes at either end are correct. The
instance arcs can only be edited indirectly by adding or deleting an instance node. Set nodes cannot be edited here. Copying,
cutting and deleting of instance nodes and function arcs is allowed. Pasting of valid subgraphs is permitted. An additional
menu, ‘Execute’ is unique to this window. This has the commands ‘Query’ and ‘Update’ which start a user defined program,
discussed later.

The display of instances can be altered to some extent by hiding or revealing parts of the graph. The problem of
displaying instance data is a non-trivial one. Systems such as SQL which have a table format allow easy access to large
amounts of data, but only simple relationships can be seen. A graph representation allows an information rich display, where
the connections between instances are shown, but the diagram can easily become unmanageable. The problems associated
with visualising large amounts of data have been discussed by among others: Southerden [12]; Consens et al. [3]; and
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Goldman et al. [13].

Figure 2.3: The Transformation Window with ‘Winner’ Displayed
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2.5: Transformation window

A visual program written using Spider is comprised of a number oftransformations. The window for the ‘Winner’
transformation is shown in figure 2.3. This is the highest level transformation of the program, the rest of which are shown in
figures 2.4 and 2.5. The operation of the program is discussed during the explanation of the Spider programming language
that consists of the rest of this section. Transformations are defined by the user and must have a name. A transformation
consists of a sequence ofgraph rewrites (‘Winner’ has three of these). Each graph rewrite has anLHS graph(on the left
hand side) to specify a template of a subgraph to be found and changed, and anRHS graph(on the right hand side) to specify
the resultant alteration.

Transformations can be saved and loaded using the ‘File’ menu. LHS or RHS graphs cannot be directly edited in this
window, instead the ‘Edit’ menu has an option to create a graph editing sub-window for a particular graph. The ‘Edit’ menu
also has options to create and delete rewrites. It also allows the user to toggle the state of transformation between ‘Query’,
and ‘Update’, with the current state shown next to the ‘View’ menu in the window. We note that an update is usually more
complex than a query as it must maintain the database data, whereas a query can destructively rewrite the database graph.

2.5.1: LHS graph:The LHS graph defines a template to find the subgraph to be rewritten. Special forms of primitive, whose
effects are described later, arevariable nodes and arcs (drawn with italic labels), andnegative primitives (drawn with thick
lines). The nodes in this graph may be connected in any way, with either type of arc. There can only be at most one
application node in this type of graph, and it must have the same name as the transformation.

2.5.2: RHS graph:The new subgraph which is to replace that matched by the LHS graph is given by the RHS graph.
Excepting negative primitives, all the nodes and arcs valid for the LHS graph are valid in this graph, and may be connected
in any way. There may be any number of application nodes in this graph, which provides a mechanism for further calculation
and recursion.

2.5.3: Duplicate Identifiers: If two or more nodes of the same type have the same label in an LHS or RHS graph, then
duplicate identifiers must be used. These are written as a superscript to the node label. The use of duplicate identifiers can be
seen in figure 2.5.

WR

P2

GetBest

V11

CR1

V21

CR2

VN

P1

winner

in

within

gained

winner

withinof

best

gained

of

V11

CR

GetBest

V12 P

WR

best

in

gained
of

V21

CR2

P1

CR1

V22

V11

V12

P2

GetBest WR

Greatest

best

gained

within

arg2

of

best

gained

of

in

arg1

within

V12
P

CR

GetBest WRin

gained

winner

of

Figure 2.5: The transformation ‘GetBest’

GetBest

GetBest



- 7 -

2.6: Application graph

The application graph is the host graph to be rewritten. It contains set, instance and application nodes. There is no
restriction on how these may be connected by instance and function arcs (features such as loops, arcs with the same source
and destination, and duplicated labels are all possible). The initial application graph is created from an instance graph by
adding an application node to it, after specifying whether the execution will be in ‘Query’ or ‘Update’ mode. Queries have
no effect on the database, and therefore can rewrite the application graph in a destructive manner, whereas the resultant
graph of an update program is the database, so the data in it must be maintained. Note that updates which create invalid
databases (due to the structure of the new graph) are not allowed to change the database.

The application graph at the start of the ‘Winner’ update is shown in figure 2.6. Note that this is the database with the
simple addition of a ‘Winner’ application node. It is possible to edit application graphs in an arbitrary manner, with the
addition, deletion and changing of primitives. The ‘File’ menu allow graphs to saved and loaded. These editing and file
functions are not designed to be used during the evaluation of queries or updates, but mean that Spider is not constrained to
work only on a database, so that general programs may be written for any data structure. This also helps with testing the
operation of Spider, and there are commands in the ‘File’ menu to allow the formation and execution of a test bed. Within
the ‘View’ menu are the commands ‘Hide’, giving the user the facility to hide selected parts of the application graph without
affecting the rewriting process, and ‘Show All’ to reveal all the hidden primitives.

To initiate execution, two buttons are provided, ‘Step’ and ‘Run’. Step performs just the next execution step, whereas
‘Run’ performs all the execution steps until the program is completed.

2.7: Transformation step

A program is executed by performing a series oftransformation steps. A transformation step is the process of applying all
the most recently created (newest) application nodes in the application graph. Thesenode applications will cause the
transformation with the same name as the node label to be applied. This will rewrite the graph, creating and deleting
primitives. Execution stops when there are no longer any application nodes in the graph.

If there is more than one newest application node (ie. they were created by the same transformation step), then they are
considered to be applied in parallel. Anapplication conflict occurs if one node deletes an area of the graph that is matched by

Figure 2.6: The Application Window at the Start of Execution
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a different node, in the same step. In this situation, execution is halted with an error message. The responsibility for avoiding
application conflicts lies with the user.

When an application node is applied, the first graph rewrite in the transformation that matches with a subgraph of the
application graph will be used. If no rewrite of a transformation can be used, then the application node remains in the graph.

The application graph in figure 2.6 contains one application node, ‘Winner’, this then is the only newest node in the
graph, and so will be applied. The resultant rewrite will depend on which one of the three LHS graphs of ‘Winner’ (figure
2.3) can be matched in the application graph.

Thenewest first strategy for applying the application nodes creates a hierarchy of the transformations, so that the user
knows that the application nodes and those that are derived from it have to be applied before the older ones are activated
again. This allows the user to structure programs in a sensible and clear manner.

2.8: Finding a matching subgraph

Graph matching is the process of finding a part of the application graph that is a match of the LHS graph. The LHS graph
and application subgraph must have the same logical structure, and the primitive labels must be the same, unless the LHS
primitive is a variable. When there are several potential subgraphs only one of them is matched, the method for deciding
which is discussed later in the more detailed section on graph matching.

A node or arc in an LHS graph that has a variable label may match with any primitive of the same type in the application
graph. The variable is theninstantiated with that label. If it occurs more than once with the same kind of primitive in an LHS
graph, then it must match with the same label each time.

When negative nodes or arcs (drawn with thick lines) are in an LHS graph, it will only match if a subgraph matches with
the positive primitives, and is not part of a subgraph which matches the whole LHS graph (ie. both positive and negative
primitives). Any positive arcs connected to negative nodes are treated as if they were negative arcs. Note that only the
positive part of the subgraph is the ‘matched subgraph’.

We can see then that the first LHS graph of ‘Winner’ will find a match in the application graph of figure 2.6. This is
because the two set nodes ‘person’ and ‘ward res’ exist in the application graph, and are not connected by an arc labelled
‘winner’ (this arc is drawn with a thick line and so it is a negative arc).

2.9: Graph rewriting

Once an appropriate subgraph has been matched it will be rewritten. The rewrite is decided by comparing the positive
primitives in the LHS graph with the RHS graph. Later in this section the consequences of having anattractor node in the
RHS graph is explained, but the following gives the simple rules for graph rewriting:

•Leave in the application graph those primitives that are the same in both the
LHS and RHS graphs. Primitives which are in the LHS graph, but not the RHS graph are
deleted from the application graph. Primitives in the RHS graph, but not in the LHS
graph are created in the application graph. Arcs that have a source and/or
destination node deleted are deleted.

•Variable primitives that get created are given their instantiated label, if they
have not been instantiated (as the variable name is in the RHS but not the LHS),
then they are given a unique label.

•If a set node is deleted, then all its instances not explicitly defined (ie. in
both the LHS and RHS graph), are deleted as well.

[Note that Nodes are defined to be the same if they have the same type, label and duplicate identifier (superscript to the
label). Arcs are defined to be the same if they have the same type, label, and the source and destination nodes are the same.]

Comparing the first LHS and RHS graphs of the first rewrite of ‘Winner’ in figure 2.3 we can see that the application node
‘Winner’ is in both graphs, so it will not be changed in the application graph. This is true also of the set nodes ‘person’ and
‘ward res’, but that a new arc ‘winner’ is created between these set nodes as it is in the RHS graph but not the LHS graph (a
negative arc of the same name is in it, but has no effect on the rewriting process). The resultant application graph is then the
same as that of figure 2.6, with the addition of a function arc ‘winner’. This rewrite performs a query and update of the
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database schema.

For the next transformation step the only application node in the application graph is ‘Winner’ again. The first LHS graph
will not match this time as the negative arc will match with the ‘winner’ arc created in the first step, so the second LHS graph
will be tried. This is successful, as the variable node ‘WR’ will match with any of the ‘ward res’ instances, and none of them
have a ‘person’ node attached by a ‘winner’ arc. The graph matched is that containing the node ‘_wr3’ (the later section on
graph matching explains the method used for determining the matched subgraph) and ‘WR’ is then instantiated to this value.
The comparison with the second RHS graph indicates that a ‘FindWinner’ application node connected to ‘_wr3’ by an ‘in’
function arc is created. The result of this rewrite can be seen in figure 2.7.

There are now 2 application nodes in the graph, of which ‘FindWinner’ is the newest, and so will be applied in the next
step. ‘Winner’ will not be applied again until ‘FindWinner’ and any subsequent application nodes have disappeared.

The first rewrite of ‘FindWinner’ takes any ‘person’ connected via a ‘candidate res’ arc to the specified ‘ward res’
instance without a ‘winner’ arc and attaches such an arc to it. When all the relevant people have a ‘winner’ arc attached the
first rewrite will no longer be applied and the second rewrite will be used. This removes the ‘FindWinner’ application node
and adds a ‘GetBest’ application node.

The ‘GetBest’ transformation will remove all these recently created ‘winner’ arcs, except the one for the person with the
highest vote. It does this by first copying two of the vote nodes of people with ‘winner’ arcs (deleting those two ‘winner’ arcs
as well) and uses the builtin transformation ‘Greatest’ to delete the least of these duplicate nodes. The second rewrite takes
the remaining duplicate node and finds the original that matches, reattatching the ‘winner’ arc for the relevant person. This
continues until neither of the first two rewrites will match (ie. there is only one winner arc left), leaving the third rewrite to
delete the application node.

Figure 2.7: The Application Window Contents After Step 2
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‘Winner’ is left as the only application node in the graph. It takes the next ‘ward res’ instance that has not been dealt with
and repeats the above process. This continues until the second ‘Winner’ rewrite cannot be used, meaning the third will
match, deleting the application node and finishing execution to leave just the updated database (figure 2.8).

We note that the above program deals nicely with a partially updated database. If new ‘ward res’ instances were added
after the program had been run once, the program could be run again to find the new winners without adversely affecting the
updates from the first run.

2.10: Attractor nodes

Attractor nodes modify the rewriting process. If only one of the source or destination node of an arc is deleted, then that
end of the arc is attached to the attractor node (if one exists). Attractor nodes have a shaded appearance. They become
normal nodes when they appear in the application graph. Attractor nodes can only be in the RHS graph, and at most one is
allowed.

2.11: Built-in transformations

Some hard coded transformations exist, such as the transformations which expect two instance nodes connected to the
application node by the arcs ‘arg1’ and ‘arg2’. They have an attractor instance as their result instance node. These include:
‘Add’, ‘Multiply’, ‘Minus’, ‘Divide’, ‘Least’ and ‘Greatest’. Others do similar calculations, but upon all the instances of a
set, including: ‘AddSet’, ‘MultiplySet’, ‘LeastSet’, ‘GreatestSet’, ‘CountSet’ and ‘CopySet’. These produce a result
calculated from the instances of the set node. There are some built in transformations that simply alter the display features of
the primitives they act on. For example ‘Highlight’ causes its argument node to become outlined in bold. Any arcs between
two highlighted nodes becomes highlighted.

Figure 2.8: The Application Window After the Execution halts on Step 26
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3: The graph matching method

Graph matching was introduced briefly in the previous section. Here we discuss the method Spider uses in more detail.
Previous rewriting systems have taken different approaches to graph rewriting. In GOOD [10] all matching subgraphs are
rewritten. If this was used in Spider then the only rewrite in the transformation of figure 3.1 (that deletes two connected
nodes and the application node) would cause a conflict when used in the application graph in figure 3.2, as the LHS graph
could match in three overlapping ways. A conflict could be avoided if only one subgraph was rewritten. PROGRES [9] takes
this approach, arbitrarily selecting the rewritten subgraph out of the candidate matches. This unfortunately causes non-
deterministic behaviour. A variation on this idea is that of Loyall and Kaplan [7], who rewrite the largest subset of non
conflict causing subgraphs, this would also result in non-determinism if implemented in Spider. In the example of figures 3.1
and 3.2 both the last two methods would leave a single node in the graph, but it is not defined which one it would be.

Spider rewrites a single subgraph to gain the advantages of increasing the number of classes of rewrites allowed. We
solve the problem of maintaining a deterministic programming language by sorting the candidate subgraphs. This sorting
first considers the subgraphs themselves, and then the surrounding areas of the application graph. The result is to
differentiate subgraphs, except where they are entirely equivalent (which means that rewriting any one of equivalent
subgraphs results in the same application graph). In most cases, comparing the surrounding subgraph will be unnecessary, as
there will be differences in the two candidate subgraphs. These are ordered by comparing the highest ordered nodes first, an
intuitive method that makes it easy for the user to decide which subgraph will be chosen.

Although the above paragraph gives the users perception of the method we use, it is equivalent to say that we sort both the
application graph and LHS graph and use a backtracking search of the application graph, starting with the highest valued
primitives, for each node in the LHS graph in turn. This node matching must ensure both that the node characteristics are the
same, and that the arcs which are connected to previously matched nodes can be satisfactorily matched.

Taking the application graph sorting view improves the implementation efficiency of the system, as the highest ordered
subgraph is always the first matched. this means only one subgraph has to be found in the application graph, rather than a
large number, in the case where the LHS graph contains mostly variable primitives. This large number would then have to be
sorted at a large processing cost.

Efficiency can be maximised if the sorting algorithm orders more specific primitives (for instance: constants; and nodes
with a large number of arc connections) higher, so that they will be matched first. This should reduce the amount of
backtracking performed, and would not be possible if we were to take a number of equal subgraphs and attempt to sort them
by their surrounding graph.

After the initial sort of the application graph, changes to it due to graph rewriting tend to leave the majority of primitives
unchanged, so that the graph sort after a transformation step has only to integrate the unsorted new primitives, rather than
performing a sort of the entire graph.

3.1: Graph sorting algorithm

The graph is represented by a list of nodes and a list of arcs. The sorting will change the order of the primitives in each list
and add a position value to each primitive. This is its position in the list, with position 1 being the highest valued. If two
primitives are not separable, then they have the same position. The sorting algorithm uses a variety of comparison functions,
which take either two nodes or two arcs and return less than, equal or greater than. Sorting is based on the principle of
constant refinement of the position of the nodes and arcs, so that if the position of a pair of primitives has already been
discovered to be different, then they will not be compared again at a later stage. An outline of the algorithm is as follows:

BEGIN
Sort nodes by characteristic
Sort arc by characteristic
Repeat until no more changes in position:

Sort arcs by connection
Sort nodes by connecting arcs

END
First the nodes and arcs are sorted by characteristic. Here they are given with the most significant first. The order of the

node characteristics is: positive higher than negative; constant higher than variable; application higher than instance higher
than set; node names by the C string comparison function (strcmp), which is defined so that the string “b” is valued higher
than the string “aa”, which in turn is valued higher than the string “a”; finally duplicate identifiers also by strcmp. The order
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of the arc characteristics is: positive higher that negative; constant higher than variable; instance higher than function; finally
function arc names by the C function strcmp.

The nodes are then sorted according to their neighbouring nodes. This requires a series of iterations to propagate any
difference through the graph. To this end a loop is performed, which sorts the arcs by their connecting nodes and then the
nodes by the position and number of arcs connected, until there are no more improvements in the ordering of the graph.

The arc connection sort in the loop compares first the position of the source nodes of the arcs, and then if no difference is
found the destination nodes are compared.

The “sort nodes by connecting arcs” is by the first difference found in the position values of the connecting arcs, with the
arcs paired by taking then in order of position. Otherwise, if a node has more connecting arcs, then it is ordered higher. The
algorithm must take account of the possibility of multiple duplicate arcs between duplicate nodes. This is resolved by
ordering higher the node with the largest number of duplicate arcs to the same node. Figure 3.3 shows a graph with this type
of duplicate arc. In this case the node ordering is first the rightmost one labelled ‘r’, then the leftmost ‘r’ node, and finally the
node labelled ‘p’.

The complexity of this algorithm is not much greater than a standard sorting algorithm, as the routines in the middle sort
only the elements which have previously not been changed. These sorts are effectively on ‘pockets’ of primitives that a
previous comparison has not been able to distinguish.

Figure 3.4 shows an example application graph with each primitives position, to illustrate some of the features of sorting.
We note that the two ‘a’ nodes are inseparable unless we consider all the graph that surrounds them. The only difference in
this graph is that the top 'c' and ‘b’ nodes have more 'n' arcs connected, so they have a higher position. Differences can then
be found with some of the 'n' arcs (but the two at the top are entirely equivalent and therefore have the same position).
Eventually the algorithm propagates the differences through to the 'a' nodes, which means the 'k' arcs can be separated (the
one leaving the highest valued node has a higher value). The ordering is then as shown by the numbers next to the primitives.

Applying this method to the example of figures 3.1 and 3.2 shows us that the highest valued instance node in the LHS
graph, ‘Y’ will match with the highest valued instance node in the application graph, ‘r’. It follows that the connecting arc
‘Z’ matches with ‘b’ and the node ‘X’ must match with ‘q’. The resultant graph is simply the node ‘p’.

4: Associative queries

Associative queries were introduced by Ayres and King [14] in the Hydra system. The principle is that the information
about the relationships between data in a database can be as useful as the data itself. An example given is that of a criminal
investigation database, where “pathways” between suspects can be of major interest, as also can the objects closely linked to
a particular individual (in the “vicinity” of the individual). In order to allow associative queries of this sort Hydra has special
commands to return the functions and instances that make up the associations. This has knock on effects throughout the
language. (For instance dealing with the problem of functions as data elements). Associations in graphs are also used in
semantic networks [15].

In this section we show that associative queries can be written in Spider without the need for any extensions to the
language.
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4.1: Shortest Path Queries

Figures 4.1 to 4.4 show the transformations that make up the ‘ShortestPath’ query. This will find a connection between
two nodes by a shortest path, or add a ‘FAILED’ instance node to the graph if there is no such path (ie. the nodes are in
unconnected subgraphs). Figure 4.5 shows how it might be used with the Election database (as with all the application
graphs in this section, the set nodes are hidden from view) to find a connection between the two people ‘Hemp M’ and
‘Banks S’. These two nodes have been connected to the ‘ShortestPath’ application node by the arcs ‘arg1’ and ‘arg2’. Figure
4.6 shows the application graph after execution has been completed. We can see that they have both stood for election in the
‘Shrewsbury’ ward. Note that we have chosen, for ease of comprehension, to present the results by deleting all nodes not in
the path.

Figure 4.6: The Application Graph with the result of ‘ShortestPath’
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4.2: Vicinity Queries

A vicinity query finds the instances close to the chosen center. The user decides how deep to make the search. Figures 4.7,
4.8 and 4.9 show the transformations for this query. Figure 4.10 shows how it might be used to find all the instances within 2
arcs of the candidature ‘_cr2’. The result is shown in figure 4.11. Note that this query makes use of the built in
transformation ‘Highlight’ to emphasise the resultant instances. The primitives in the highlighted subgraph appear with thick
borders, but are not to be confused with negative primitives that are also drawn with thick borders, but cannot appear in an
application graph. This is an alternative method of showing the result to that used in the path query.

5: Conclusions and further work

In this paper we have given an informal overview of Spider, including its syntax, semantics and user interface. For
illustration purposes we performed a relatively complex calculation on an example database. We have also shown how
Spider enables programmers to perform queries not normally available in database programming languages.

The paradigm introduced in this paper differs greatly from the ones currently used by database programmers. Although
we believe that it could form the basis of a practical system, hard empirical evidence of Spiders suitability as a useful
programming language is an area of future work.

Other interesting avenues of research include looking at useful primitives that might be added to the system. Here we
have presented a syntactically simple system. Making it more complex might add substantially to its semantics. Among
candidates for inclusion are LHS ‘fold’ nodes (that may match with several different nodes) and LHS ‘once only’ primitives
that will match at most one time with the same application graph primitive, perhaps reducing the need for tagging used
nodes. A method of encapsulating subgraphs into a single node might be useful. One approach is Hypernodes [16], where
the subgraphs have only one arc connecting to the outside graph. A more general approach, where arbitrary subgraphs are

Figure 4.10: The Application Graph at the Start of ‘Vicinity’
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encapsulated, is more difficult, but possible.
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Appendix A: Formal definition

This section gives a formal treatment of the graphs and structures introduced in a more informal way in section 2. This
allows us to define the graph matching and rewriting method used in the Spider system. We also use this formal definition to
specify restrictions on the graphs.

A.1: Definition - Spider Graph

We define a Spider Graph to be a tuple, , where:

•  is the set of nodes in the graph;

•  is the set of arcs;

∆

G N A LN L A, , ,( )=

N

A
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•  is a tuple containing functions which describe the nodes. The node characteristics can be

described in a single function instead of this tuple, but for convenience the functions are kept separate;
•  is a tuple containing functions which describe the arcs. As with the similar node tuple the

functions describing the arc characteristics are kept separate;
•  is a function that associates nodes with labels.  is the set of possible node labels;

•  is a function that associates nodes with duplicate identifiers.  is the set of possible duplicate

identifiers;
• ,  and  each

describes a characteristic of the nodes. The elements of the codomains are atomic values;
•  is a function that associates arcs with labels.  is the set of possible arc labels;

•  and  each describes a characteristic of arcs. The elements

of the codomains are atomic values;
•  and  are the functions which give the source and destination nodes of the arcs, respectively.

Empty node labels, arc labels and duplicate identifiers are given the value .

The following restrictions hold for every Spider Graph:
• , that is, nodes cannot have empty labels;

• , that is, function arcs cannot have empty labels;

• , that is, instance arcs must have empty labels.

• , that is, instance arcs must be constant.

A.2: Definition - Application Graph

An Application Graph is a Spider Graph where the following restrictions apply:
• ;

• ;

• ;

• .

A.3: Definition - LHS Graph

A LHS Graph is a Spider Graph where the following four sets are defined: , ,  and , where  and

 partition , and similarly  and  partition . (A partition of a set is a collection of non-intersecting subsets

whose union is the set.) Informally, these sets divide the graph into positive and negative primitives.

The following restrictions also hold:
• , that is, an arc connected to a negative node must be a negative arc;

• , that is, at most one Application node is allowed

in the graph;
• , that is, the application node is positive;

• , that is, if two or more node labels are the same, then their

duplicate identifiers must be different.
• .

LN QN I N TN CN VN, , , ,( )=

L A QA T A V A SA DA, , , ,( )=

QN: N Nname→ Nname

I N: N Ndup→ Ndup

TN: N Set, Instance, Application{ }→ CN: N Attractor, Nonattractor{ }→ VN: N Variable, Constant{ }→

QA: A Aname→ Aname

TA : A Function Instance,{ }→ VA : A Variable, Constant{ }→

SA: A N→ DA: A N→

nil

n∀ N∈ Q, N n( ) nil≠

a∀ A∈ T, A a( ) Function QA a( ) nil≠⇒=

a∀ A∈ T, A a( ) Instance QA a( )⇒ nil= =

a∀ A∈ T, A a( ) Instance VA a( )⇒ Cons ttan= =

n∀ N∈ I, N n( ) nil=

n∀ N∈ V, N n( ) Constant=

n∀ N∈ C, N n( ) Nonattractor=

a∀ A∈ V, A a( ) Constant=

N pos A pos Nneg Aneg N pos

Nneg N A pos Aneg A

a∀ A∈ SA a( ) Nneg∈, DA a( ) Nneg∈ a Aneg∈⇒∨

n1 n2,∀ N∈˙ TN n1( ), Application= TN n2( ) Application=∧ n1⇒ n2=

n∀ Nneg∈ TN n( ) Application≠,

n1 n2,∀ N∈ n1 n2≠ Q∧, N n1( ) QN n2( ) I N n1( ) I N n2( )≠⇒=

n∀ N∈ CN n( ), Nonattractor=
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A.4: Definition - RHS Graph

A RHS Graph is a Spider Graph with the following restrictions:

• , that is, at most one Attractor node is allowed in the

graph;
• , that is, if two or more node labels are the same, then their

duplicate identifiers must be different;

A.5: Definition - Transformation Definition and Program

A Transformation Definition,  is a label  and a sequence of pairs  where

 is the set of possible Transformation Definition labels. Each  is a LHS Graph and each  is a RHS Graph

for . The following must be also true:

[In the formulae that follow in the rest of this section we do not distinguish the functions by their particular node and arc
sets where it is obvious, so that  represents  in the formula immediately below.]

•  where , that is, an application node in any left hand side graph

must have the same label as the Transformation Definition.

A Program,  consists of a set of Transformation Definitions.
A.6: Definition - Graph Submatch

Given 2 node sets  and , and 2 arc sets  and , where  and  are subsets of node and arc

sets of the same LHS graph, and the sets  and  are the nodes and arcs of an Application Graph, then a Graph

Submatch is a pair of injective functions  where  and  (an injective

function is one in which two different members of the domain cannot be mapped to the same member of the codomain).
Informally, it is two functions mapping each given primitive of the LHS Graph to a unique primitive of the Application
Graph. This definition will be used later to define a Graph Match. The following restrictions also apply:

• , that is a node must map to a node of the same type;

• , that is, a constant node must map to a node of the same label;

•

That is variable nodes of the same label must map to nodes of the same label;

• , that is, an arc must map to an arc of the same type;

• , that is, constant arcs must map to an arc of the same label;

•

That is, variable arcs of the same label must map to arcs of the same label;

n1 n2,∀ N∈ CN n1( ), Attractor= CN n2( ) Attractor=∧ n1⇒ n2=

n1 n2,∀ N∈ n1 n2≠ Q∧, N n1( ) QN n2( ) I N n1( ) I N n2( )≠⇒=

K lK Kname∈ G1
LHS

G1
RHS,( )... Gr

LHS
Gr

RHS,( )

Kname Gi
LHS

Gi
RHS

i 1...r=

TN n( ) T
N i

LHS n( )

n N i
LHS∈∀ TN n( ), Application QN n( ) lK=⇒= i 1...r=

SP

N
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N
App
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N
App
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App

M N M A,( ) M N: N
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App→ M A: A
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App→
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LHS

TN n( ),∈∀ TN M( N n( ) )=

n N
LHS

VN n( ),∈∀ Constant QN n( )⇒ QN M( N n( ) )= =

n1 n2, N
LHS

VN n1( ) Variable=( ) VN n2( ) Variable=( ) QN n1( ) QN n2( )=( )∧ ∧

QN M( N n1( ) )⇒

,∈∀

QN M( N n2( ) )=

a A
LHS

TA a( ),∈∀ TA M( A a( ) )=
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• , that is the node that matches with the source of an arc must be the same as the

source of the matched arc;

• , that is the node that matches with the destination of an arc must be the same as

the destination of the matched arc.

A.7: Definition - Graph Match

Let  be an Application Graph and  be a LHS Graph. Then we define a Graph Match to be a Graph Submatch,

 of , ,  and , where there is no Graph Submatch  of , ,  and

 such that:

• , that is positive nodes map to the same Application Graph node in both Submatches.

• , that is positive arcs map to the same Application Graph arc in both Submatches.

Informally, a Graph Match is a mapping of the positive primitives of the LHS Graph to primitives of the Application
Graph as long as there is not also a mapping of all the LHS negative primitives of the LHS Graph to unmapped primitives in
the Application Graph.

We note that for simplicity we do not define which subgraph of the application graph is to be matched.

A.8: Definition - Rewrite Rule

A Rewrite Rule , where  is a LHS Graph and  is a RHS Graph, is a tuple, ,where

 and  are both injective partial functions. (Note that a partial function is not strictly a

function at all, as it maps from a subset of the domain to a subset of the codomain.) These will be useful as they indicate that

a node is deleted if  and  is not defined, similarly an arc is deleted if  and  is not

defined. Also a node is created if  and  is not defined, and an arc is created if  and  is

not defined.

We define  as follows:

•

That is  exists for a LHS node if the node is positive and it is equal in all characteristics to a RHS node.

Let  be a function from the set of pairs,  to a boolean value, where  is true if:

•

That is the characteristics, source and destination are equal. We note that if  does not exist for the source or destination

of the arc, then the value of  for that arc is false.

 is a one-to-one function between  and , where  and  are the largest possible subsets of
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and  that can be defined by:

•

 is a partial function where each possible arc in  is mapped to an arc in . This definition is necessary

because duplicate arcs between the same nodes can exist. If less duplicates exist in one graph, then an injective partial
function is preserved.

A.9: Definition - Labelling Functions

We define two Labelling Functions,  and  of  and

 where  is the Graph Match of  and , and  is . These are for finding

the labels of the new and matched primitives, defined as follows:

[We note that the functions , ,  and  are assumed to be the appropriate ones for the primitive.]

• , that is, constant nodes keep their label.

• , that is, deleted variable nodes are given no label.

• , that is, variable nodes kept in the graph are

given their instantiated label.

•

That is, new variable nodes that are instantiated are given the instantiated label.

•

That is, new variable nodes that are not instantiated are given a unique label.

• , that is, constant arcs keep their label.

• , that is, deleted variable arcs are given no label.

• , that is, variable arcs kept in the graph are given

their instantiated label.

•

•That is, new variable arcs that are instantiated are given the instantiated label.

•

That is, new variable arcs that are not instantiated are given a unique label.

These two functions give the label of the primitive when it appears in the application graph, with a constant primitive
retaining the same label as the corresponding primitive in the LHS or RHS graph. A primitive in an application graph that is
an instantiated variable gets the label from the matched application graph primitive of the variable. If it has not been
instantiated, then the label is an undefined unique new label.
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A.10: Definition - Graph Rewrite

We are now in a position to formally define what a Graph Rewrite is. A Graph Rewrite,  where

is an Application Graph,  is a LHS Graph and  is a RHS Graph, is a new Application Graph,

. It is derived from the Application Graph using a Graph Match of the LHS Graph and a

Rewrite Rule derived from the LHS and RHS Graphs:

If there is no Graph Match of  and  then . Otherwise:

Let  be a Graph Match of  and .

Let  be , the Rewrite Rule formed from  and .

Let  and  be the Labelling Functions of  and .

[We note that the definition of an application graph requires nodes to be constant, nonattractors with a  duplicate
identifier and requires arcs to be constant.]

Unmatched primitives:

•

That is, unmatched Application nodes (that are not instance nodes with their set node deleted) are members of the New
Application Graph, with the same label and type.

•

That is, unmatched App arcs are members of the New Application Graph if both their source and destination nodes are in
the new graph.

Matched but unchanged primitives:

•

That is, for each matched but not deleted node in the Application graph, put it in the new graph.

•

That is, for each matched but not deleted arc in the Application graph that has its source and destination in the new graph,
put it in the new graph.

New primitives:

• , that is, for each new node in the

RHS graph, put it in the new graph.
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•

That is, for each new arc in the RHS graph, put it in the new graph.

Attracted arcs:

If

•

•

Informally an attracted arc is an Application arc that has not been matched and with either a source or destination node
deleted. It has the same characteristics, and one of its end nodes is the existing one in the application graph, however the
unconnected end is attached to the attractor node. If there is no attractor node then these arcs are not created.

A.11: Definition - Node Application

If we have an Application Graph, , a node  where , and a Transformation

Definition  consisting of  and a sequence of pairs . A Node Application is an

Application Graph  defined as:

• , that is, if the node label and Transformation Definition label are different, then the new

graph is the old graph.

• , where  is the first pair in the Transformation Definition

sequence, where there is a Graph Match,  of  and .

Informally, a Node Application is an Application Graph that is formed the rewrite of a LHS & RHS pair where the LHS
Graph is the first one in the sequence that matches.

A.12: Definition - Transformation Step

If we have an Application Graph, , with the set of most recently created nodes  (created at the same time),

where , and a Program, . Then a Transformation Step, , is

the Application Graph formed, from the parallel Node Application of those nodes most recently created, by the following
method.

Let  be the set of Node Applications formed from , , and either the Transformation Definition

where , or  if there is no such transformation label.

Then  is the set of graphs where:

[Let  be the graph match of  and the LHS graph , of ]

• , ie the matched and new node subset.

• , ie the matched and new arc subset.
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Let  be a pair containing the nodes and arcs not matched by any LHS graph, defined by:

• , that is, the application nodes that are in all the

rewritten graphs (ie. they are not deleted by being an instance node with a deleted set node) and have no match.

• , that is, the application arcs that are in all the rewritten

graphs (ie. they are not deleted by disconnected source or destination) and have no match.

A Transformation Step cannot be defined for the Application Graph and Program if an Application Conflict occurs. An

App l i ca t ion  Confl i c t  occurs  i f ,  fo r  any ,  o r

. That is, an Application Conflict occurs if there are any primitives deleted in

one Node Application and matched in another.

We can now define the Transformation Step, :

•

•

•Let , then

•Let , then

•Let , then

•Let , then

•Let , then

•Let , then

Informally, a Transformation Step is formed from all the rewrites of the newest nodes in the Application Graph, as long as
none of the rewrites deletes a primitive matched in another rewrite.

Appendix B: Computational completeness

In this appendix we give an implementation of the lambda calculus in order to demonstrate that Spider is computationally
complete.
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Figures B.1 to B.5 give the program to calculate the normal order reduction of a lambda calculus expression. A simple
example expression is given in the application graph of figure B.6. with the result (a single node) in figure B.7. This program
uses a pure version of the lambda calculus with constants, but it is easily extendable to include builtin functions such as ‘if’
and ‘add’ by adding appropriate reduction rewrites to the ‘NormalOrder’ transformation.

The implementation of this program takes less effort than would be required in a traditional textual language. This is due
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to two main features: the ability to make explicit changes in the lambda tree; and the rewriting nature of the lambda calculus
reduction. The specifics of the reduction, such as requiring no substitutions of variables in lambda subexpressions with the
same variable on the left, make the program less simple. Another major difference is the requirement to copy whole subtrees,
which requires a Spider transformation to achieve.


