753 research outputs found

    Boolean Expression Diagrams

    Get PDF
    This paper presents a new data structure called Boolean Expression Diagrams (BEDs) for representing and manipulating Boolean functions. BEDs are a generalization of Binary Decision Diagrams (BDDs) which can represent any Boolean circuit in linear space and still maintain many of the desirable properties of BDDs. Two algorithms are described for transforming a BED into a reduced ordered BDD. One is a generalized version of the BDD apply-operator while the other can exploit the structural information of the Boolean expression. This ability is demonstrated by verifying that two di erent circuit implementations of a 16-bit multiplier implement the same Boolean function. Using BEDs, this veri cation problem is solved in less than a second, while using standard BDD techniques this problem is infeasible. Generally, BEDs are useful in applications, for example tautology checking, where the end-result as a reduced ordered BDD is small

    Binary Decision Diagrams and Composite Classifiers for Analysis of Imbalanced Medical Datasets

    Get PDF
    oai:journal.ub.tu-berlin.de:article/1227Imbalanced datasets pose significant challenges in the development of accurate and robust classification models. In this research, we propose an approach that uses Binary Decision Diagrams (BDDs) to conduct pre-checks and suggest appropriate resampling techniques for imbalanced medical datasets as the application domain where we apply this technology is medical data collections. BDDs provide an efficient representation of the decision boundaries, enabling interpretability and providing valuable insights. In our experiments, we evaluate the proposed approach on various real-world imbalanced medical datasets, including Cerebralstroke dataset, Diabetes dataset and Sepsis dataset. Overall, our research contributes to the field of imbalanced medical dataset analysis by presenting a novel approach that uses BDDs and composite classifiers in a low-code/no-code environment. The results highlight the potential for our method to assist healthcare professionals in making informed decisions and improving patient outcomes in imbalanced medical datasets

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Fault Trees, Decision Trees, and Binary Decision Diagrams:A systematic comparison

    Get PDF
    Contains fulltext : 239924.pdf (Publisher’s version ) (Closed access)ESREL 202

    Advances in Functional Decomposition: Theory and Applications

    Get PDF
    Functional decomposition aims at finding efficient representations for Boolean functions. It is used in many applications, including multi-level logic synthesis, formal verification, and testing. This dissertation presents novel heuristic algorithms for functional decomposition. These algorithms take advantage of suitable representations of the Boolean functions in order to be efficient. The first two algorithms compute simple-disjoint and disjoint-support decompositions. They are based on representing the target function by a Reduced Ordered Binary Decision Diagram (BDD). Unlike other BDD-based algorithms, the presented ones can deal with larger target functions and produce more decompositions without requiring expensive manipulations of the representation, particularly BDD reordering. The third algorithm also finds disjoint-support decompositions, but it is based on a technique which integrates circuit graph analysis and BDD-based decomposition. The combination of the two approaches results in an algorithm which is more robust than a purely BDD-based one, and that improves both the quality of the results and the running time. The fourth algorithm uses circuit graph analysis to obtain non-disjoint decompositions. We show that the problem of computing non-disjoint decompositions can be reduced to the problem of computing multiple-vertex dominators. We also prove that multiple-vertex dominators can be found in polynomial time. This result is important because there is no known polynomial time algorithm for computing all non-disjoint decompositions of a Boolean function. The fifth algorithm provides an efficient means to decompose a function at the circuit graph level, by using information derived from a BDD representation. This is done without the expensive circuit re-synthesis normally associated with BDD-based decomposition approaches. Finally we present two publications that resulted from the many detours we have taken along the winding path of our research
    corecore