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In reliability engineering, we need to understand system dependencies, cause-effect relations, identify critical
components, and analyze how they trigger failures. Three prominent graph models commonly used for these
purposes are fault trees (FTs), decision trees (DTs), and binary decision diagrams (BDDs). These models are popular
because they are easy to interpret, serve as a communication tool between stakeholders of various backgrounds, and
support decision-making processes. Moreover, these models help to understand real-world problems by computing
reliability metrics, minimum cut sets, logic rules, and displaying dependencies. Nevertheless, it is unclear how
these graph models compare. Thus, the goal of this paper is to understand the similarities and differences through
a systematic comparison based on their (i) purpose and application, (ii) structural representation, (iii) analysis
methods, (iv) construction, and (v) benefits & limitations. Furthermore, we use a running example based on
a Container Seal Design to showcase the models in practice. Our results show that, given that FTs, DTs and
BDDs have different purposes and application domains, they adopt different structural representations and analysis
methodologies that entail a variety of benefits and limitations, the latter can be addressed via conversion methods or
extensions. Specific remarks are that BDDs can be considered as a compact representation of binary DTs, since the
former allows sub-node sharing, which makes BDDs more efficient at representing logical rules than binary DTs.
It is possible to obtain cut sets from BDDs and DTs and construct a FT using the (con/dis)junctive normal form,
although this may result in a sub-optimal FT structure.

Keywords: fault tree analysis, decision tree, binary decision diagram, systematic comparison, reliability engineering,
decision making, graph models.

1. Introduction
Three commonly used graph models are Fault
Trees (FTs), Decision Trees (DTs), and Binary
Decision Diagrams (BDDs). These models are
popular because they provide a graphic represen-
tation of a hierarchical data structure. They are
widely used in different domains and applications
such as reliability engineering, system analysis,
and computer memory optimization (Lee et al.,
1985; Rokach and Maimon, 2014; Kubica et al.,
2021) (see Table 1).

This paper aims at understanding the explicit
similarities and differences between these models.
This comparison is important, for example, to
facilitate the selection of a model for a given ap-
plication, or to clarify terminology such as “Tree”
or “Decision” for less experienced users. To this
end, we focus on comparing these models system-

atically, as well as discuss conversion methods to
transform one model into another.

The structure of this paper is as follows. Section
2 describes our methodology, and Sections 3 to
5 present the results per model: FTs, DTs and
BDDs, respectively. In Section 6, we discuss the
conversion methods, and finally, Sections 7 and 8
contain the discussion and conclusions.

2. Methodology
Our comparison follows a systematic approach
proposed by Smith et al. (2017). Our main steps
are (1) to propose five main categories encom-
passing different aspects of interest, namely (i)
purpose & application, (ii) structural representa-
tion, (iii) analysis, (iv) construction, and (v) ben-
efits & limitations; (2) to refine each category
into aspects; (3) to adapt a running example from
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Table 1.: Comparison between FTs, DTs and BDDs.

Category Aspect FT DT BDD

(i) Purpose and 
application -

Reliability Engineering; 
Root Cause Analysis; 

Decision-Making

Classification; 
Regression; 

Decision-making

Model checking;
Protocol validation; 

Verification

(ii.a) Structure Top-down directed acyclic 
graph

Hierarchical top-down 
graph Directed acyclic graph

(ii.b) Main symbols Top/intermediate/basic 
events, logic gates Root / decision / leaf nodes Root / transitional nodes

(ii.c) Leaves information Failure frequency / 
probability density funct. Numeric & Nominal data Boolean data {0, 1}

(ii.d) No. of children Multiple 2* 2
(ii.e) Sub-node sharing? Yes No Yes
(ii.f) Gates/Nodes 
information

Logic rules (AND , OR , 
VOT ) Attribute splitting criteria Binary splitting criteria

(iii.a) Analysis direction Bottom-up Top-down Top-down

(iii.b) Type of analysis Qualitative &
Quantitative Quantitative Qualitative & Quantitative

(iii.c) Allows cut sets 
computation Yes Yes** Yes

(iii.d) Extensions
Dynamic FT, Repairable 

FT, Attack FT, State/Event 
FT

Causal DT, Clustering DT, 
Binary DT, Survival DT, 

Oblivious DT

Ordered BDD, Reduced 
OBDD

(iv.a) Common way of 
construction

Manually built based on 
expert judgement

Data-driven: i.e., 
(un)supervised learning Through Boolean functions

(iv.b) Induction 
algorithms IFT, LIFT, DDFT, ILTA ID3, C4.5, CART Shannon expansion 

formula, IFT method

(v.a) Main benefits
Allows dependability 

analysis, and computation 
of reliability metrics

Intuitive and easy to 
follow. Easily derived from 

data

Since based on Boolean 
algebra, it allows faster 

computations

(v.b) Main limitations
Subjective, and based on 
assumptions of statistical 

independency

Changes in the root node 
can generate a whole new 

structure

Constrained to Boolean 
data. Changes in the root 
node can generate a new 

BDD
* Except when using multivariate splitting criteria, then it is > 2.
** Only when the DT maps to classes no failure  and failure.

(v) Benefits and 
limitations

(ii) Structural 
representation

(iii) Analysis

(iv) Construction

Stamatelatos et al. (2002) consisting of a FT for
a Container Seal Design, and model it by DTs
and BDDs; (4) to discuss conversion methods
to transform one model into another (here it is
important to clarify that minimum compatibility
requirements must be met between models, e.g.,
DTs must model diagnostic decision rules and
binary variables); and (5) summarize the different
aspects per model.

3. Fault Trees

3.1. Purpose and application
Fault Tree Analysis (FTA) is a key method in
reliability engineering and root cause analysis, to
support decisions in system design and mainte-
nance. FTA is ISO standardized (IEC, 2006) and
has been used in a wide range of domains includ-
ing automotive, aerospace, and nuclear industries
(Kabir, 2017).

Technically, a Fault Tree (FT) is a directed
acyclic graph that models why a system fails,
by identifying how low-level failures propagate
through the system and lead to the system-level
failure.

3.2. Structural representation
FTs are composed of different symbols (Fig. 1(a-
b)), whose objective is to model the logic relations
between the events (basic and intermediate, Fig.
1.(a)) and the top event. Logical transitions be-
tween events must meet the conditions set by the
gate symbols (Fig. 1.(b)).

FTs distinguish several event types (Fig. 1.(a)):

(i) Basic events, symbolized by a circle, corre-
sponds to an event that initiates the failure
of the system in question. The basic events
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Example:FaultTree forContainerSealDesignexample

2/3
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Seal fails
independently
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seal 2 fails
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G3

AND AND

OR

10-1 10-5

Fig. 1.: Elements in an FT: (a) event symbols, (b)
gate symbols, and (c) example of an FT, adapted from:
Stamatelatos et al. (2002).

do not require further refinement; in other
words, the resolution achieved is adequate.

(ii) The top event, symbolized by a rectangle,
is localized at the top of the FT. It mod-
els the failure of the complete system under
consideration. Intermediate events are asso-
ciated with (sub)system/component failures,
and are equipped with a logical gate.

Three commonly used gate types in FTs are
(Fig. 1.(b)):

(i) AND gates indicate that the associated event
will only occur if all the associated (basic or
intermediate) events occur.

(ii) OR gates indicate that the associated event
will only occur if at least one of the associated
(basic or intermediate) events occur.

(iii) k/N gates (or VOT gates) indicate that the
associated event will occur minimally k of the
N the events associated to the gate will occur.

Various FT extensions exist to model more
complex dependability patterns, see Vesely et al.
(1981); Dugan et al. (1992).

3.3. Fault Tree Analysis
FTA enables two types of analyses. Qualitative
analysis is based on the FT structure and aims at
finding the critical system components. Minimal
cut sets are minimal combinations of component
failures that lead to a system failure. Small cut
sets point to system vulnerabilities. For example,
a minimal cut set in Fig. 1.(c) is given by Con-
tamination tape fails (B1), and Basic cause seal
failure (B2).

Quantitative analyses aim at computing various
dependability metrics, such as system reliability
(i.e., probability that the system fails in a period of
time); the availability (i.e., the percentage of time
that the system remains operational); mean time to
failure (i.e., average time before the first failure).
These metrics require the leaves of the FT to be
equipped with failure probabilities, either as prob-
ability density functions or constant probabilities.
An extensive list of algorithms for analysis of FTs
is provided in Ruijters and Stoelinga (2015).

3.4. Construction of FTs
Traditionally, FTs are handcrafted by experts on
a system of interest. Automatic algorithms for
induction of FTs are IFT (Madden and Nolan,
1970), LIFT (Nauta et al., 2018), based on Evolu-
tionary Algorithms (Linard et al., 2019), Bayesian
Networks (Linard et al., 2019), ILTA (Waghen and
Ouali, 2019), and DDFT (Lazarova-Molnar et al.,
2020). Two main associated challenges are (i) dis-
covering the FT structure that efficiently and com-
pletely represents the system failure mechanisms
for a given top event, and (ii) finding patterns in
a dataset containing information about the system
failure mechanisms.

3.5. FT example
Fig. 1.(c) shows a fault tree modeling the failure of
a sealing mechanism for a container, adapted from
Stamatelatos et al. (2002). The sealing function
fails either due to a common cause of seal failure
occurs or if the seals fail independently. For the
former, it is necessary that the contamination tape
fails and a basic seal failure occurs. For the latter,
it is necessary for the metal-to-metal seal, the
fused plug, and at least two of the three compres-
sion seals to fail.

As shown in Fig. 1.(c), the top event is refined
in three intermediate events and independent basic
events. This example, for simplicity, only consid-
ers AND, OR and VOT gates. Since there is a
quantification of the failure probability of each
basic event, a qualitative analysis can be carried
out. Given the failure probabilities of the basic
events in Fig. 1.(c) and assuming independence
between all basic events, the failure probability
P (G1) of the top event Sealing function fails reads

P (G1) = P (G2) + P (G3)− P (G2)P (G3) ,
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where we have, with p = 10−3 the failure proba-
bility of the events B4 through B6,

P (G4) = 3p2(1− p) + p3 ≈ 3× 10−6

P (G3) = P (B3)P (G4)P (B7) ≈ 3× 10−12

P (G2) = P (B1)P (B2) = 1× 10−6 ,

and hence P (G1) ≈ 1× 10−6.

3.6. Benefits and limitations
Some important advantages of FTs are that they (i)
are based on probability theory, (ii) enable com-
putation of different metrics (e.g., reliability) to
aid decision making, (iii) due to its interpretabil-
ity, they serve as a communication tool across
multiple disciplines, helping to align stakehold-
ers, (iv) facilitate the interpretation of different
failure mechanisms, helping to identify critical
components. Limitations of FTs include (i) the
hand-made way in which they are traditionally
constructed makes them costly and time consum-
ing, (ii) the assumption that basic events are in-
dependent is not always fulfilled, (iii) validation
in FTs is carried out based on expert judgment,
which makes it subjective and prone to human
error, (iv) difficult to collect appropriate data, (v)
AND/OR gates are not always expressive enough.
Some of the above aspects were also pointed out
by Sarbayev et al. (2019).

4. Decision Trees

4.1. Purpose and application
Decision Trees (DT) are flowchart-like structures
that model decisions and their possible conse-
quences. DTs are used by decision makers, mainly
due to its intuitive interpretation. Technically, DTs
serve as a classifier presented as a hierarchical
top-down graph that generates a set of decision
rules (Thomas et al., 2020). DTs can cope with
numerical and nominal attributes, and are often
used in classification and regression problems.
DTs are applied in text classification, diagnosis
of diseases, fraud detection, speech recognition,
video analysis, among others (Rokach and Mai-
mon, 2014).

4.2. Structural representation
A DT is composed of nodes containing con-
trol statements based on attributes (or features).
Among the common elements in a DT (Fig. 2.(a-
b)) are the (i) decision nodes where the first on
top is known as the root node, (iii) incoming
and outgoing edges, and (iv) the leaf nodes at
the bottom of the structure representing the end
point of a decision path. Each decision node is
associated to an attribute, and the branches to a
discrete category or to a range of values.
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Example:DecisionTree forContainerSealDesignexample

Nodesymbols Edges

Root /Decision
node

Leafnode Alternative
edges

(c)

(a) (b)

B4

B7

0

B3

0

B6

10

B5

1B5

B6

1

0

0

B4

B7

0

0

B2

1

B6

10

B5

1B6

B5

1

0

0

B3

B1: Contamination tape fails.
B2: Common cause seal failure.
B3: Metal-to-metal seal fails.
B4: Compression seal 1 fails.

Nomenclature:

B5: Compression seal 2 fails.
B6: Compression seal 3 fails.
B7: Fused plug fails.

B1

Fig. 2.: (a) node symbols, (b) edges, (c) DT model
corresponding to the FT from Fig. 1.(c).

4.3. Evaluation of DTs
There are two main types of DTs: classification
trees and regression trees. The first represents
a function that maps all available samples (i.e.,
input data) into a predefined set of discrete cate-
gories, also known as labels. The second attempts
to predict a continuously-valued target attribute
based on a set of input attributes. An example
of how to evaluate the decision rules in a DT is
presented in Section 4.5.

4.4. Construction of DTs
Induction algorithms, also called inducers, build
a model that generalizes the relationship between
input attributes and target attributes based on a
given training set of examples (Rokach and Mai-
mon, 2014). DT inducers look for the best feature
upon which to perform split by means of splitting
criteria. Among the most commonly used are the
Gini index, and gain ratio. C4.5 (Quinlan, 1993)
is a well-known DT induction algorithm. Rokach
and Maimon (2014) provides a detailed list of
other DTs inducers.

4.5. DT example
To learn a DT that represents the same qualitative
information as the FT in Fig 1.(c), we proceeded
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as follows. First, we randomly generated 1000
data points, by drawing the basic events indepen-
dently from a binomial distribution with proba-
bility of success equal to 0.5 and calculating the
corresponding top event (0 for no failure and 1 for
failure) by following the logical rules of the FT.
The randomly drawn values for the basic events
represent the input x and the value of the top event
the output y.

Then, a Binary Decision Tree for classification
was induced based on the above described dataset
in a supervised fashion (i.e., mapping x into y),
using the function fitctree in Matlab which uses
the CART algorithm (Breiman et al., 1984). The
results are presented in Fig. 2.(c). The basic events
in the FT (Fig. 1.(c)) become decision nodes in
the DT. The leaf nodes in the DT are Boolean,
representing the classes no failure and failure.

By interpreting the decision rules of the DT one
could say that if the contamination tape does not
fail (B1 = 0) and the metal-to-meal seal does
not fail (B3 = 0) the system will not fail. Or if
the contamination tape fails (B1 = 1) and the
basic cause seal failure occurs (B2 = 1), the
system fails. This DT encodes all cut sets of the
FT, which can be obtained by concatenating all
decision nodes with value 1 that lie on a path to a
leaf node with value 1, yielding for example: {B3,
B7, B4, B5}, {B3, B7, B4, B6}, etc.

4.6. Benefits and limitations of DT
DTs have the following benefits (i) they are in-
tuitive and easy to follow by technical and non-
expert users, (ii) navigating through the branches
associated to fault states enables the identification
of useful logical rules (similar to the concept of
cut sets in FTs), (iii) there are many algorithms
for learning DTs from data that scale favorably
with the number of data points. DTs have the fol-
lowing limitations (i) it is possible to have several
identical sub-trees, which affects efficiency and
computational performance. (ii) small variations
in a splitting node located near the root of the tree
can result in a completely new structure.

5. Binary Decision Diagrams

5.1. Purpose and application
Binary Decision Diagrams (BDDs) were origi-
nally introduced by Lee (1959) and are heavily
used in model checking (Bryant, 2018), hardware
design & verification, protocol validation, and
automated deduction (Rauzy and Dutuit, 1997).
BDDs also provide efficient algorithms to calcu-
late the failure probabilities and minimal cut sets
in a fault tree (Bryant, 1992; Reay, 2002).

Syntactically, a BDD is a (connected and
single-rooted) directed acyclic graph (see Fig. 3).
It provides a very succinct representation and ma-
nipulations of Boolean expressions Bryant (1992).

5.2. Structural representation
BDDs consist of Transitional nodes, or non-
terminal vertices. These are depicted by circles
and contain binary control statements or function
variables. Terminal nodes, also called leaf nodes
or terminal vertices, are represented by squares,
and are labeled with either 1: True or, 0: False.
Conventionally, the vertices (Fig. 3.(b)) are de-
picted as a solid line if the output of the transi-
tional node is 1, and dashed lines if the output is
0.

5.3. Evaluation of BDDs
A reason for the popularity of BDDs is their ef-
ficient handling of many operations on Boolean
functions, including negation, conjunction and
disjunction: Given BDD representations of F and
G over the same variable ordering, efficient algo-
rithms exist to compute a compact BDD for ¬F ,
F ∧G and F ∨G (Bryant, 1986).

Given a BDD over a set of variables V , one
easily evaluates this BDD over an assignment of
V : One starts from the root, and for each variable
v ∈ V , one takes the left branch / solid line if
v = 1, and right branch / dashed line if v = 0.
Eventually, one reaches a leaf yielding the output
for this assignment.

5.4. Construction of BDDs
Given a Boolean function F , the BDDs repre-
sentation for F can be constructed recursively
applying the Shannon expansion formula (Akers,
1978)

F (x1, x2, ...) = x1F (1, x2, ...)∨(1−x1)F (0, x2, ...)

Here F is a Boolean function; and xi are binary
values. In addition, compact representations of
BDDs (known as reduced BDDs) for a given or-
der of variables can be obtained using collapsing
operations by eliminating/merging nodes and sub-
diagrams (Friedman and Supowit, 1987).

5.5. BDD example
By applying the Shannon expansion formula (Sec-
tion 5.4), we convert the FT in Fig. 1.(c) into
a BDD (Fig. 3.(c)), with the associated Boolean
function:
F1(B1, B2, ..., B7) = F2(B1, B2) + F3(B3, ..., B7)

F2(B1, B2) = B1 ·B2

F3(B3, ..., B7) = B3 ·B7 · (B4 ·B5+

B4 ·B6 +B5 ·B6)

Here F2 and F3 are Boolean functions that model
respectively the intermediate events in Fig. 1.(c).
One can see great similarity between this BDD
and the DT in Fig. 2.(c), except that a BDD allows
shared nodes and the DT cannot.
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B1: Contamination tape fails.
B2: Common cause seal failure.

B3: Metal-to-metal seal fails.
B4: Compression seal 1 fails.

B5: Compression seal 2 fails.
B6: Compression seal 3 fails.

B7: Fused plug fails.

Example:BinaryDecisionDiagramforContainerSealDesign ReducedBDDNodesymbols
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Fig. 3.: (a) BDD node symbols, (b) BDD vertices, (c) BDD for FT from Fig. 1.(c), (d) Reduced BDD.

Through collapsing operations, like merging
the nodes B3 and all the terminal nodes, the Re-
duced BDD in Fig. 3.(d) is obtained. The lat-
ter, easily identify the minimum cut sets, i.e.,
all 1-edge vertices that connect to the terminal
node of value 1: {B1, B2}, {B3, B4, B5, B7},
{B3, B5, B6, B7}, and {B3, B4, B6, B7}.

5.6. Benefits and limitations
Among the advantages offered by BDDs are that
(i) they enable a representation of any Boolean
function; (ii) there is a wide variety of algorithms
that allow performing operations of Boolean func-
tions. One limitation is that finding the order of
variables that minimizes the resulting BDD is an
NP-hard problem (Bollig and Wegener, 1996).

6. Conversion methods
Conversion methods are mathematical transfor-
mations that convert one formalism into another,
while preserving relevant properties. So we look
for those that allow transitions between FTs, DTs
and BDDs (see Fig. 4).

In the transformation FT → BDD, the basic
events in the FT become transitional nodes in the
BDD, and the top event in the FT is represented
in the terminal nodes of the BDD. We identified
a few methods where the main idea is to recur-
sively apply the (i) Shannon expansion until all ba-
sic events are converted into BDD nodes (Akers,
1978). Since the variable ordering has a crucial
effect on the size of a BDD, a number of heuristic
approaches have been developed to find a good
order. Examples include (ii) structural importance
of each basic event (Bartlett and Andrews, 2001),
(iii) a neural network approach to choose the best
heuristic from a set of alternatives (Bartlett and
Andrews, 2002), (iv) the if-then-else method that
focuses on the gates in the fault tree (Remenyte-

FT

DT

Cut sets +
C/DNFCu

t s
ets
+
C/
DN
F

if-then-else
Shannon

expansion

Neural Networks

Structural im
portance

Com
ponent connection

...

(T
ao
et
al.
20
09
)

(A
ss
af
an
d
Du
ga
n
20
04
)

Unfold terminal nodes

M
on
te
Ca
rlo

(ii
i)(ii
)(i)

(i)To
cho
ose

heu
rist
ics(ii)(iii)(iv)(v)

Collapsing rules

BDD

Fig. 4.: Conversion methods among FT, DT, and BDD.

Prescott and Andrews, 2008), and (v) the com-
ponent connection method, where gates with only
basic events as inputs are considered (Remenyte-
Prescott and Andrews, 2008).

In the transformation BDD → FT, the terminal
nodes of the BDD become the top event of the
FT, and the transitional nodes of the BDD the
basic events of the FT. We did not find specific
techniques in the literature that accomplish this
transition. Not every BDD can be transformed into
a FT, since FTs do not support a NOT function.
One approach could be to obtain the cut sets from
the BDD and then reconstruct the associated FT
e.g., by means of the (con/dis)junctive normal
form (C/DNF). Since the resulting FT may not be
optimal (e.g., redundant elements), minimization
rules should be applied on the FT (Junges et al.,
2017).

In the transformation FT → DT the basic
events in the FT become decision nodes in the
DT, and the top event of the FT the leaf nodes in
the DT. A few methods have been developed to
accomplish this task. (i) Assaf and Dugan (2004)
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translate a dynamic fault tree (DFT) to a Markov
chain model, and then to a Diagnostic Decision
Tree (DDT). (ii) Tao et al. (2009) compute from
the fault tree the minimal cut sets, top event prob-
abilities and the Vesely-Fusell measure, and with
this information build the DDT. One may also
apply (iii) the method that we applied in Section
4.5 to the running example: randomly generate a
binary data set using the FT (i.e., Monte Carlo
method), and then learn the corresponding DT.

In the transformation DT → FT the decision
nodes in the DT become basic events in the FT,
and the leaf nodes in the DT the top events in the
FT. We did not find any publication to accomplish
this transition. Nevertheless, by using all decision
rules that connect to a leaf node of value 1, one
can get cut sets and build the FT as suggested in
the transition BDD → FT.

The transformation DT ↔ BDD is trivial. For
DT → BDD collapsing operations are needed,
which aim at eliminating redundant nodes, redi-
recting the edges, and applying isomorphism rules
to eliminate transitional nodes with two terminal
nodes of same value (Zheng, 2018). Vice versa,
BDD → DT can be achieved by unfolding the
terminal nodes in the BDD until each node has a
single parent node (except for the root node).

7. Discussion
Section 6 provides different algorithms that enable
the transition FT → BDD. By representing FTs
as BDDs, standard techniques can be applied for
qualitative and quantitative analysis. The transi-
tion FT → DT has been proposed to obtain Diag-
nostic Decision Trees (DDTs), which are arguably
easier to interpret by non-expert users. We did
not find any official publication that addresses the
transition BDD → FT or DT → FT, we suspect
this is because it is not clear what the added value
of the transition BDD → FT is, and that making
the transition DT → FT needs further exploration.
However, a way to carry out such transformation
is by first obtaining the cut sets from either the
BDD or the DT, and then build the FT in its
(con/dis)junctive normal form. Since, the resulting
FT may be sub-obtimal, it is necessary to apply
minimization rules. The transition in both sides
of binary DT ↔ BDD is straightforward since
a binary DT is a special case of a BDD, where
the former is less efficient than a reduced ordered
BDD.

In Table 1 we summarized the aspects to com-
pare between models. Although all three models
were born in graph theory, they serve very dif-
ferent purposes and application domains. Conse-
quently, they adopt different structural require-
ments and analysis methods. Regarding the con-
struction of these models, DTs stands out by the
availability of efficient induction algorithms, FTs
on the other hand are mainly “handmade”. An or-

dered BDD and a binary DT have the same struc-
ture, but since BDDs allow node-sharing, they
can be more compact than binary DTs. All three
models carry all sorts of benefits and limitations.
The limitations can be addressed via extensions or
conversion methods.

8. Conclusions
We compared three well-known graph models,
fault trees (FT), decision trees (DT) and binary
decision diagrams (BDD). We used a running ex-
ample to exemplify the properties offered by each
model, and discuss conversion methods to transi-
tion from one model to the formulation of another.
We observed that the transformation FT → BDD
is well investigated, the transformations DT → FT
or BDD → FT are not investigated and we briefly
discussed how to carry them out, and that the
transformation DT ↔ BDD is trivial. We conclude
that, given their different purposes and application
domains, these models adopt different structural
representations and analysis methodologies that
entail a variety of benefits and limitations. These
limitations may be addressed via conversion meth-
ods or extensions. Specific remarks are that BDDs
can be considered as a compact representation
of binary DTs, since the former allow sub-node
sharing, which makes BDDs more efficient at rep-
resenting logical rules than binary DTs. It is pos-
sible to obtain cut sets from BDDs and DTs and
construct a FT using the (con/dis)junctive normal
form, although this may result in a sub-optimal FT
structure.
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