5,030 research outputs found

    HDL-based Synthesis of Reversible Circuits : A Scalable Design Approach

    Get PDF
    Reversible computing is a promising research field due to its applications in several emerging technologies. Accordingly, several approaches for the design of reversible circuits have been introduced. Hardware Description Languages approach scales better than other methodologies, however, its main drawback is substantial amounts of additional circuit lines. This dissertation is an important step towards an elaborated scalable design flow of reversible circuits. In which, HDL-based design of reversible circuit is optimised, with line-awareness considered as the main objective. A line-aware programming style for a dedicated reversible hardware description language SyReC is proposed. Another contribution is a line-aware computation of HDL expressions. Reversible circuits' synthesis from a conventional hardware description language (VHDL) is examined. Finally, syntactical extensions to the dedicated hardware description language SyReC are suggested

    Reconfigurable Computing Systems for Robotics using a Component-Oriented Approach

    Get PDF
    Robotic platforms are becoming more complex due to the wide range of modern applications, including multiple heterogeneous sensors and actuators. In order to comply with real-time and power-consumption constraints, these systems need to process a large amount of heterogeneous data from multiple sensors and take action (via actuators), which represents a problem as the resources of these systems have limitations in memory storage, bandwidth, and computational power. Field Programmable Gate Arrays (FPGAs) are programmable logic devices that offer high-speed parallel processing. FPGAs are particularly well-suited for applications that require real-time processing, high bandwidth, and low latency. One of the fundamental advantages of FPGAs is their flexibility in designing hardware tailored to specific needs, making them adaptable to a wide range of applications. They can be programmed to pre-process data close to sensors, which reduces the amount of data that needs to be transferred to other computing resources, improving overall system efficiency. Additionally, the reprogrammability of FPGAs enables them to be repurposed for different applications, providing a cost-effective solution that needs to adapt quickly to changing demands. FPGAs' performance per watt is close to that of Application-Specific Integrated Circuits (ASICs), with the added advantage of being reprogrammable. Despite all the advantages of FPGAs (e.g., energy efficiency, computing capabilities), the robotics community has not fully included them so far as part of their systems for several reasons. First, designing FPGA-based solutions requires hardware knowledge and longer development times as their programmability is more challenging than Central Processing Units (CPUs) or Graphics Processing Units (GPUs). Second, porting a robotics application (or parts of it) from software to an accelerator requires adequate interfaces between software and FPGAs. Third, the robotics workflow is already complex on its own, combining several fields such as mechanics, electronics, and software. There have been partial contributions in the state-of-the-art for FPGAs as part of robotics systems. However, a study of FPGAs as a whole for robotics systems is missing in the literature, which is the primary goal of this dissertation. Three main objectives have been established to accomplish this. (1) Define all components required for an FPGAs-based system for robotics applications as a whole. (2) Establish how all the defined components are related. (3) With the help of Model-Driven Engineering (MDE) techniques, generate these components, deploy them, and integrate them into existing solutions. The component-oriented approach proposed in this dissertation provides a proper solution for designing and implementing FPGA-based designs for robotics applications. The modular architecture, the tool 'FPGA Interfaces for Robotics Middlewares' (FIRM), and the toolchain 'FPGA Architectures for Robotics' (FAR) provide a set of tools and a comprehensive design process that enables the development of complex FPGA-based designs more straightforwardly and efficiently. The component-oriented approach contributed to the state-of-the-art in FPGA-based designs significantly for robotics applications and helps to promote their wider adoption and use by specialists with little FPGA knowledge

    Clafer: Lightweight Modeling of Structure, Behaviour, and Variability

    Get PDF
    Embedded software is growing fast in size and complexity, leading to intimate mixture of complex architectures and complex control. Consequently, software specification requires modeling both structures and behaviour of systems. Unfortunately, existing languages do not integrate these aspects well, usually prioritizing one of them. It is common to develop a separate language for each of these facets. In this paper, we contribute Clafer: a small language that attempts to tackle this challenge. It combines rich structural modeling with state of the art behavioural formalisms. We are not aware of any other modeling language that seamlessly combines these facets common to system and software modeling. We show how Clafer, in a single unified syntax and semantics, allows capturing feature models (variability), component models, discrete control models (automata) and variability encompassing all these aspects. The language is built on top of first order logic with quantifiers over basic entities (for modeling structures) combined with linear temporal logic (for modeling behaviour). On top of this semantic foundation we build a simple but expressive syntax, enriched with carefully selected syntactic expansions that cover hierarchical modeling, associations, automata, scenarios, and Dwyer's property patterns. We evaluate Clafer using a power window case study, and comparing it against other notations that substantially overlap with its scope (SysML, AADL, Temporal OCL and Live Sequence Charts), discussing benefits and perils of using a single notation for the purpose

    STRICT: a language and tool set for the design of very large scale integrated circuits

    Get PDF
    PhD ThesisAn essential requirement for the design of large VLSI circuits is a design methodology which would allow the designer to overcome the complexity and correctness issues associated with the building of such circuits. We propose that many of the problems of the design of large circuits can be solved by using a formal design notation based upon the functional programming paradigm, that embodies design concepts that have been used extensively as the framework for software construction. The design notation should permit parallel, sequential, and recursive decompositions of a design into smaller components, and it should allow large circuits to be constructed from simpler circuits that can be embedded in a design in a modular fashion. Consistency checking should be provided as early as possible in a design. Such a methodology would structure the design of a circuit in much the same way that procedures, classes, and control structures may be used to structure large software systems. However, such a design notation must be supported by tools which automatically check the consistency of the design, if the methodology is to be practical. In principle, the methodology should impose constraints upon circuit design to reduce errors and provide' correctness by construction' . It should be possible to generate efficient and correct circuits, by providing a route to a large variety of design tools commonly found in design systems: simulators, automatic placement and routing tools, module generators, schematic capture tools, and formal verification and synthesis tools

    An Intermediate Representation for Composable Typed Streaming Dataflow Designs

    Full text link
    Tydi is an open specification for streaming dataflow designs in digital circuits, allowing designers to express how composite and variable-length data structures are transferred over streams using clear, data-centric types. These data types are extensively used in a many application domains, such as big data and SQL applications. This way, Tydi provides a higher-level method for defining interfaces between components as opposed to existing bit and byte-based interface specifications. In this paper, we introduce an open-source intermediate representation (IR) which allows for the declaration of Tydi's types. The IR enables creating and connecting components with Tydi Streams as interfaces, called Streamlets. It also lets backends for synthesis and simulation retain high-level information, such as documentation. Types and Streamlets can be easily reused between multiple projects, and Tydi's streams and type hierarchy can be used to define interface contracts, which aid collaboration when designing a larger system. The IR codifies the rules and properties established in the Tydi specification and serves to complement computation-oriented hardware design tools with a data-centric view on interfaces. To support different backends and targets, the IR is focused on expressing interfaces, and complements behavior described by hardware description languages and other IRs. Additionally, a testing syntax for the verification of inputs and outputs against abstract streams of data, and for substituting interdependent components, is presented which allows for the specification of behavior. To demonstrate this IR, we have created a grammar, parser, and query system, and paired these with a backend targeting VHDL.Comment: arXiv admin note: substantial text overlap with arXiv:2212.1200

    MPEG Reconfigurable Video Coding

    Get PDF
    WOS - ISBN: 978-1-4419-6344-4The currentmonolithic and lengthy scheme behind the standardization and the design of new video coding standards is becoming inappropriate to satisfy the dynamism and changing needs of the video coding community. Such a scheme and specification formalism do not enable designers to exploit the clear commonalities between the different codecs, neither at the level of the specification nor at the level of the implementation. Such a problem is one of the main reasons for the typical long time interval elapsing between the time a new idea is validated until it is implemented in consumer products as part of a worldwide standard. The analysis of this problem originated a new standard initiative within the ISO/IEC MPEG committee, called Reconfigurable Video Coding (RVC). The main idea is to develop a video coding standard that overcomes many shortcomings of the current standardization and specification process by updating and progressively incrementing a modular library of components. As the name implies, flexibility and reconfigurability are new attractive features of the RVC standard. The RVC framework is based on the usage of a new actor/dataflow oriented language called CAL for the specification of the standard library and the instantiation of the RVC decoder model. CAL dataflow models expose the intrinsic concurrency of the algorithms by employing the notions of actor programming and dataflow. This chapter gives an overview of the concepts and technologies building the standard RVC framework and the non standard tools supporting the RVC model from the instantiation and simulation of the CAL model to the software and/or hardware code synthesis

    Synthesis of hardware systems from very high level behavioural specifications

    Get PDF
    • 

    corecore