
STRICT: A language and tool set 

for the design of 

Very Large Scale Integrated Circuits 

PhD Thesis 

by Albert Koelmans 

Department of Computing Science, 

University of Newcastle upon Tyne, 

March, 1995. 
NEWCASTL~ W~IVERSITY LIBRARY 

C)'.'(:i !',;:I,()f.>f:) <:i 



ABSTRACT 

An essential requirement for the design of large VLSI circuits is a design methodology 

which would allow the designer to overcome the complexity and correctness issues asso­

ciated with the building of such circuits. 

We propose that many of the problems of the design of large circuits can be solved by using 

a formal design notation based upon the functional programming paradigm, that embodies 

design concepts that have been used extensively as the framework for software construc­

tion. The design notation should permit parallel, sequential, and recursive decompositions 

of a design into smaller components, and it should allow large circuits to be constructed 

from simpler circuits that can be embedded in a design in a modular fashion. Consistency 

checking should be provided as early as possible in a design. Such a methodology would 

structure the design of a circuit in much the same way that procedures, classes, and control 

structures may be used to structure large software systems. 

However, such a design notation must be supported by tools which automatically check the 

consistency of the design, if the methodology is to be practical. In principle, the methodol­

ogy should impose constraints upon circuit design to reduce errors and provide' correctness 

by construction' . It should be possible to generate efficient and correct circuits, by provid­

ing a route to a large variety of design tools commonly found in design systems: simulators, 

automatic placement and routing tools, module generators, schematic capture tools, and 

formal verification and synthesis tools. 



Acknowledgements 

Scientific Research in the area of Microelectronic Circuit Design has traditionally never 

been performed in Ivory Towers. The work reported on in this thesis was partly done in 

collaboration with the other members of the VLSI Design Group at the University of New­

castle upon Tyne. 

Design of the STRICT language was done in collaboration with Martin McLauchlan, and 

involved extensive discussions with Roy Campbell, David Kinniment and Harry Whitfield. 

The STRICT grammar was written in collaboration with Martin McLauchlan. 

David Kinniment, as the most experienced member of the group, was heavily involved in 

discussions about all aspects of the language and design system. He is the author of the 

GAELIC layout subsystem. 

SERC sponsored Research Associates and Research Students programmed most of the sub­

systems discussed in the thesis. They include Frank Burns, Caroline Wawman, Adrian Rob­

son, Chris Parkin, Mike Fletcher, and Tim Busfield. 

I would like to thank all of my colleagues for creating such a positive working atmosphere, 

particularly since this involves collaboration between groups in different departments (in 

fact, in different faculties). Special thanks go to David Kinniment, Harry Whitfield and 

Fred de Geus for their efforts in reading and commenting upon drafts of this thesis. SERC 

is gratefully acknowledged for its financial support for the work at Newcastle. 

I would finally like to thank my wife Lydia and my two daughters Felicity and Helen for 

all their love and support over the years. 



LIST OF PUBLICATIONS 

The following papers were published as a result of the work reported upon in this thesis. 

JournaVConference publications 

Campbell, R.H., Koelmans, A.M., McLauchlan, M.R., "STRICT: a design language for 

strongly typed recursive integrated circuits", lEE Proc., Vol. 132, Pts E and I, no. 2, Marchi 

April 1985, pp. 85-96. 

Koelmans, AM., McLauchlan, M.R., Robson, AP., "The STRICT language and Design 

Methodology", Proc. 1987 Electronic Design Automation Conf., London, luly 1987, pp. 

79-86. 

Koelmans, A.M., McLauchlan, M.R. and Kinniment, D.l., "Asynchronous extensions to 

the STRICT high level design system", Proc. Int. Conf. on Custom Microelectronics, Lon­

don, 1988,pp. 57-62. 

Kuszynski, CA., Busfield, T., Koelmans, A.M., McLauchlan, M.R., Kinniment, D.1., 

"Graphical Representation of a Hardware Description Language", lEE Proc., Vol. 137, Pt. 

E, No.6, Nov. 1990, pp. 462-468. 

Burns, FP., Kinniment, D.1., Koelmans, AM., "Correct interactive transformational de­

sign of DSP hardware", Proc. EDAC-91, Amsterdam, 1991, IEEE Press, pp. 16-23. 

Burns, FP., Kinniment, D.1., Koelmans, AM., "STRIDE: a tool for formal interactive sys­

tem synthesis", lEE Proc. Compo Dig. Tech., Vol. 141, No.6, Nov. 1994, pp. 347-355. 

Book Chapters 

Koelmans, A.M, Burns, FP., Kinniment, D.l., "Use of a theorem prover for transforma­

tional synthesis", In: Algorithmic and Knowledge Based CAD for VLSI, Taylor and Russel 

(Eds). Peregrinus (lEE Press), 1992, pp. 24-46. 



Other publications 

Campbell, R.H., Koelmans, A.M., McLauchlan, M.R., "STRICT: a design language for 

strongly typed recursive integrated circuits", Computing Laboratory, University of New­

castle upon Tyne, Technical Report TR21 1. 

Koelmans, A.M., McLauchlan, M.R., Robson, A.P., "The STRICT language and Design 

Methodology", Computing Laboratory, University of Newcastle upon Tyne, Technical Re­

port TR244. 

Koelmans, A.M., McLauchlan, M.R. and Kinniment, OJ., "Asynchronous extensions to 

the STRICT high level design system", Computing Laboratory, University of Newcastle 

upon Tyne, Technical Report TR272. 

Kuszynski, c.A., Busfield, T., Koelmans, A.M., McLauchlan, M.R., Kinniment, OJ., 

"Graphical Representation of a Hardware Description Language", Computing Laboratory, 

University of Newcastle upon Tyne, Technical Report TR318. 

Burns, FP., Kinniment, OJ., Koelmans, A.M., "Correct interactive Transformational Syn­

thesis of DSP hardware", Computing Laboratory, University of Newcastle upon Tyne, 

Technical Report TR321. 

Koelmans, A.M., Burns, FP., Kinniment, 0.1., "Use of a theorem prover for Transforma­

tional Synthesis", Digest of Abstracts, Colloqium on Formal and Semiformal methods for 

Digital Design, Computing and Control Division, IEE, London, January 1991. 

Koelmans, A.M, Burns, FP., Kinniment, OJ., "Use of a theorem prover for transforma­

tional synthesis", Computing Laboratory, University of Newcastle upon Tyne, Technical 

Report TR426. 



TABLE OF CONTENTS 

1. INTRODUCTION ............................ 6 
1.1. Background .......................................... 7 
1.2. Hardware Description Languages. . . . . . . . . . . . . . . . . . . . . . . . 8 
1.3. Examples of HDLs .................................... 10 
1.4. Design Systems ....................................... 12 

1.4.1. Overview ......................................... 12 
1.4.2. Design path ....................................... 13 

1.5. Functional programming ............................... 15 
1.5.1. Recursion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
1.5.2. Functional languages ............................... 16 

1.6. Thesis overview ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
1.7. Author's contribution .................................. 18 

2. HARDWARE DESCRIPTION LANGUAGES ..... 20 
2.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
2.2. Requirements for HDLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
2.3. ELLA .............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
2.4. Verilog .............................................. 27 
2.5. VHDL .............................................. 28 
2.6. UDLjI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 
2.7. Discussion ........................................... 32 

3. LANGUAGE DEFINITION .................... 36 
3.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 
3.2. Requirements for STRICT ............................. 37 
3.3. Design concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 
3.4. The Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

3.4.1. Basics ............................................ 40 
3.4.2. Design parameters ................................. 40 
3.4.3. Interface specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
3.4.4. Block declarations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
3.4.5. Inherit statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 
3.4.6. Define statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 
3.4.7. Assert expression .................................. 45 
3.4.8. Size expression .................................... 45 

3.5. Type declaration ...................................... 45 
3.5.1. Basics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+5 
3.5.2. Type representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 
3.5.3. Representational functions .......................... 48 

3.6. Behavioural specifications .............................. 49 
3.6.1. Basics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
3.6.2. Example .......................................... 49 
3.6.3. States ............................................ 50 
3.6.4. Initial statements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 
3.6.5. Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 
3.6.6. Simulator Timing model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 
3.(J.7. Selection and Causal Guards. . . . . . . . . . . . . . . . . . . . . . . . . 53 



3.6.8. Ambiguity Time Delays ............................. 5.+ 
3.6.9. Effects ........................................... 5.+ 
3.6.10. Duration time delay ............................... 55 
3.6.11. Exception conditions .............................. 55 
3.6.12. Behavioural functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

3.7. Structural specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 
3.7.1. Basics ............................................ 57 
3.7.2. Use of recursion ................................... 57 
3.7.3. Inherit statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 
3.7.4. Instancing components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 
3.7.5. Hierarchy flattening ................................ 59 
3.7.6. Placing the components ............................. 59 
3.7.7. Module generator interface. . . . . . . . . . . . . . . . . . . . . . . . . . 60 
3.7.8. Interconnecting the components. . . . . . . . . . . . . . . . . . . . . . 60 
3.7.9. Connecting the interface ............................ 61 
3.7.10. Control modelling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

3.8. Design organisation ................................... 66 
3.9. Examples ............................................ 67 

3.9.1. Library cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 
3.9.2. Half adder ........................................ 69 
3.9.3. Full adder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 
3.9.4. n-input OR gate .................................. 73 
3.9.5. n-bit register ..................................... 76 
3.9.6. Systolic Array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 
3.9.7. Sigma function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 
3.9.8. Error Corrector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 
3.9.9. Traffic Light Controller ............................. 86 

4. DESIGN METHODOLOGY ... . . . . . . . . . . . . . . . . 90 
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 
4.2. Design Methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 
4.3. Design system ........................................ 92 
4.4. Syntax directed editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 
4.5. Simulator ............................................ 95 
4.6. Layout generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 
4.7. Module generation .................................... 96 
4.8. Graphical tools ....................................... 97 
4.9. Formal Verification tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 
4.10. Transformational synthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 
4.11. Interfaces with other systems. . . . . . . . . . . . . . . . . . . . . . . . . . . 99 

5. SYSTEM OVERVIEW ........................ 100 
5.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 
5.2. Author's contribution .................................. 101 
5.3. The SAGA editor. . . . ... .. .... .... .... .. . .... ... .. .. . . 102 
5.4.The BUILDER ....................................... 104 
5.5. Procedural interfaces .................................. 104 

5.5.1. Parse tree interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 
5.5.2. Design Hierarchy Tree interface - simulator ........... 105 
5.5.3. Design Hierarchy nee interface - layout .............. 105 

5.6. Tool interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 

ii 



5.6.1. The Simulator interface ................. " . . . . . . . . . . 105 
5.6.2.The Layout interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 
5.6.3. The Module Generator interface ..................... 106 
5.6.4. The Viewer ....................................... 106 
5.6.5. The Boyer-Moore interface . . . . . . . . . . . . . . . . . . . . . . . . . 106 
5.6.6. The Transformer interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 

5.7. Code developed by the author .......... " . . . . . . . . . . . . . . . 107 
5.8. System versions ....................................... 109 
5.9. Some code statistics ................................... 109 

6. THE FRONT END 111 
6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 
6.2. Setting up the Editor .................................. 112 
6.3. Overview of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 
6.4. Editor output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 

7. THE BUILDER SYSTEM ..................... 114 
7.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 
7.2. The 'builder' procedure ................................ 115 

7.2.1. Requirements ..................................... 115 
7.2.2. Overview of problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 
7.2.3. Chosen solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 
7.2.4. Success of method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 

7.3. Layout output ........................................ 120 
7.4. Simulator output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 
7.5. Other subsystems ..................................... 121 

8. INTERFACE TO TRADITIONAL TOOLS ....... 122 
8.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 
8.2. Simulator ............................................ 123 

8.2.1. Extraction ........................................ 123 
8.2.2. Language interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 
8.2.3. The stack language ................................. 124 

8.3. Layout interface ...................................... 128 
8.3.1. GAELIC interface ................................. 128 
8.3.2. EDIF interface .................................... 129 

8.4. Module generator interface .... . . . . . . . . . . . . . . . . . . . . . . . . . 129 
8.4.1. PLA generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 

9. THE VIEWER ............................... 131 
9.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 
9.2. Author's contribution .................................. 133 
9.3. Extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 
9.4. The example ......................................... 133 
9.5. Traversing the hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 
9.6. Structure and interconnect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 
9.7. Subcells ............................................. 139 

9.7.1. Windowing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 
9.7.2. Instance information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 
9.7.3. Port information ................................... 140 
9.7.4. Net information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 

iii 



9.8. Dual text - graphics representation . . . . . . . . . . . . . . . . . . . . . . . 141 
9.9. Control synthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.+3 
':1.1 O. Resource allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 

10. BOYER - MOORE INTERFACE. . . . . . . . . . . . . . . 150 
10.1. Introduction - formal methods ........................ 151 
10.2. Boyer- Moore versus HOL ............................ 151 
10.3. The Boyer-Moore prover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 
10.4. A proof example in Boyer- Moore . . . . . . . . . . . . . . . . . . . . . . 154 
10.5. Mathematical proof of hardware specifications. . . . . . . . . . . . 157 
10.6. Extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 
10.7. Output ............................................. 158 
10.8. Results ............................................. 160 

11. THE TRANSFORMER. . . . . . . . . . . . . . . . . . . . . . . 163 
11.1. Introduction .......... " .. ... . .. . . . . . . . . . .. .. . . .. . . . . 164 
11.2. Author's contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 
11.3. Transformational synthesis. . . . . . . . . . . .. . . . . . . . . . . . . . . . . 165 
11.4. Basic ideas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 
11.5. Extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 
11.6. Design procedure .................................... 166 
11.7. Overview of operation ................................ 167 
11.8. Results ............................................. 181 

12. CONCLUSIONS ............................ 182 
12.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 
12.2. Advantages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 
12.3. Disadvantages ....................................... 187 
12.4. Practical experience .................................. 191 
12.5. Final conclusions and future work ...................... 192 

13. REFERENCES ............................. 193 
A. SAMPLE OUTPUTS. . . . . . . . . . . . . . . . . . . . . . . . . 210 

A 1. Simulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 
A.2. Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 
A3 PLA generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 
A4. EDIF output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 
AS. Boyer-Moore Prover output ............... " ..... , .. " 231 
A6. Transformer output ................................... 239 

B. STRICT SYNTAX ... . .. . . . . . .. . . . . . . . . . . .. . . 244 

i\ 



LIST OF FIGURES 

Fig. 1. Typical design cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
Fig. 2. Ideal design path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
Fig. 3. Divider module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 
Fig. 4. Structure of inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 

Fig. 5. Structure of half adder. . . . . . . . . . . . . . . . . . . . . . . . . . 71 
Fig. 6. Structure of full adder .......................... 73 
Fig. 7. Recursive structure ofn-input OR gate, n > 4 ..... 76 

Fig. 8. Original hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 
Fig. 9. Flattened hierarchy ............................ 79 
Fig. 10. Overview of the STRICT system. . . . . . . . . . . . . . . . . 103 
Fig. 11. Developed code .............................. 108 
Fig. 12. Top level view ................................ 134 

Fig. 13. View Structure option ......................... 135 
Fig. 14. Option N > 1 selected. . . . . . . . . . . . . . . . . . . . . . . . . 136 
Fig. 15. Illustrating Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 

Fig. 16. Illustrating split, first part ...................... 138 
Fig. 17. Illustrating split, second part . . . . . . . . . . . . . . . . . . . . 138 
Fig. 18. Illustrating split, combined ..................... 138 
Fig. 19. A window on an area. . . . . . . . . . . . . . . . . . . . . . . . . . 140 

Fig. 20. Net information .............................. 1-+1 
Fig. 21. Find text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 

Fig. 22. Divider structure ............................. 145 
Fig. 23. Divider structure - pin names .................. 145 

Fig. 24. Control flow Petri Net ......................... 146 
Fig. 25. Gantt resource allocation chart. . . . . . . . . . . . . . . . . . 148 
Fig. 26. Main screen - control section present. . . . . . . . . . . . 149 
Fig. 27. Library operators ............................. 167 

Fig. 28. Main screen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 
Fig. 29. After click on leftmost multiplication. . . . . . . . . . . . . 172 
Fig. 30. After deletion of multiplication sub-tree. . . . . . . . . 173 
Fig. 31. Showing rewrite rule. . . . . . . . . . . . . . . . . . . . . . . . . . . 174 
Fig. 32. Applying rewrite rule .......................... 175 
Fig. 33. Applying rule 2 ............................... 176 
Fig. 34. Result of rule 2 ............................... 177 
Fig. 35. Applying rule 3 ............................... 178 

Fig. 36. Final result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 
Fig. 37. Hardware allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . 180 
Fig. 38. Block diagram of final result . . . . . . . . . . . . . . . . . . . . 181 
Fig. 39. Simulator screen dump ........................ 212 
Fig. 40. Full adder layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 
Fig. 41. 6 bit register layout.... .......... .. . ........... 21-+ 
Fig. 42. Systolic array layout ........................... 215 
Fig. 43. PLA plot .................................... 219 

v 



1. INTRODUCTION 

6 



1.1. Background 

The rapid pace of development of integrated circuit manufacturing technology has forced 

a great deal of change upon the designers of circuits. During the 1960's and 1970's, chip 

designers used to draw their designs by hand, by entering the appropriate mask shapes using 

low level graphical tools. Verification usually consisted of visual inspection of the mask 

patterns. Such techniques are simply no longer feasible now that the number of gates on 

a chip has increased so dramatically. 

The idea of using languages to describe chip designs dates back to the 1950's. However, 

only during the 1970's did computers become powerful and user friendly enough to allow 

development of computer languages for circuit layout to start in earnest. The first confer­

ence entirely devoted to Hardware Description Languages was held in 1973 at Rutgers U ni­

versity; it is currently a two-yearly event with a still rapidly growing attendance. 

A typical example of a language developed during the 1970's is elF [51], which describes 

layouts in terms of polygons (i.e. mask patterns), and in which it is the responsibility of the 

designer to enforce the design rules of the technology at hand. Because this design method 

was just as error prone as layout by hand, extensive simulation and verification was necess­

ary. Despite the fact that most languages like elF have macro facilities, a description of a 

non-trivial circuit is extremely verbose and hence unreadable. In order to provide these low 

level languages with more power of expression, layout systems were developed consisting 

of a set of procedures embedded in a conventional high-level language, each procedure 

generating a certain low level description. One of the earliest examples of these systems 

was LAP [46]. Despite the fact that systems like LAP make the familiar constructs of pro­

gramming languages, like loops and expressions, available, a circuit description is still like­

ly to be verbose because the designer is mainly concerned with gate placement. 

The main difficulty with languages such as elF is the large conceptual gap between the 

specification of the design on the one hand, and its implementation on the other hand. 

Specification defines the intended behaviour or functionality of the chip, whilst imple­

mentation refers to its physical properties - the actual layout, for example. It is obvious that 

7 



these are very different. The problem for the designer is that he somehow needs to translate 

the specification into an implementation, whilst hoping that no errors occur during the 

mental processes that direct the translation. 

Whilst a low level design method was acceptable for small chip designs, it rapidly became 

obvious that more advanced methods were necessary to design much larger chips, without 

losing all confidence in the correctness of the designs. This led to a rapid increase in re­

search into CAD tools for VLSI design, and an equal interest in the development of Hard­

ware Description Languages, or HDLs for short. 

This thesis is concerned with the design of an HDL called STRICT (meaning Strongly 

Typed Recursive Integrated CircuiTs) , and an investigation into its suitability as an input 

language for use with a number of important CAD tools. 

1.2. Hardware Description Languages 

Languages that describe integrated circuits can do this in fundamentally different ways. 

First there is the structural view of a design. This describes the design in terms of intercon­

nected hardware components. The designer who writes structural descriptions has already 

decided how he is going to implement his algorithm. Structural descriptions can take place 

at several levels: geometrical, in which the design is described in terms of mask shapes, 

electrical, in which the individual transistors form the basic units, switch, in which transis­

tors are reduced to simple switching devices, logic, at which boolean functionality is the 

basic operation, register transfer, in which the design is regarded as a collection of registers 

between which data passes, and architectural, which regards the design as a processor 

model with large building blocks. The geometrical view is the lowest level (SPICE [64] 

being the most widely used tool for modelling at this level), and the architectural the 

highest. Clearly, the higher the level, the more work needs to be done to translate this down 

to the lowest level; however, if the translation can be done automatically, much higher pro­

ductivity can be achieved, and there will be considerably less chance that errors will be in­

troduced. 

8 



The second view is the behavioural view. In this view, the algorithm which the circuit is 

to perform is described. No description is provided as to how this can be achieved in terms 

of hardware components. Since any designer must always start off with some sort of spec­

ification, the behavioural view is always present during the design process. However, the 

unambiguous specification of a complex algorithm is a difficult and time consuming task, 

perhaps requiring the use of formal mathematical techniques. This would only be benefi­

cial if appropriate design tools were available to translate the specification into an efficient 

structure. Behavioural descriptions also come at different levels, e.g. description of current 

flow behaviour at the lowest level, state transitions and (possibly conditional) signal and 

data flows at higher levels, and mathematical equations at the highest level. All levels re­

quire the inclusion of timing information - a description of the time bounds within which 

the operations must take place. 

Behavioural descriptions are commonly referred to as high level descriptions, while struc­

tural descriptions are regarded as low level descriptions. The process of translating a high 

level behavioural description into an efficient structure through the use of appropriate de­

sign tools is called high level synthesis [49]. 

The benefits of using high level behavioural HDLs can be summarised as follows. The de­

signer can achieve much greater productivity, since high level descriptions are much more 

concise. The designer thinks at the conceptual level, instead of at the gate level, which 

should be more natural and therefore less error prone. High level behavioural languages 

should allow improved design quality, through the use of automatic optimisation tech­

niques and the possibility of rapidly exploring a number of design alternatives (and choos­

ing the "best" one). They allow consistency between different levels of abstraction, through 

what is commonly called 'correctness by construction'. They allow people who are not 

necessarily experts on manufacturing details and design rules (so called "silicon hackers") 

to become competent designers. Designs in high level languages tend to be technology 

independent, so designs are not specifically targeted towards a specific technology or cell 

library. Modules, once debugged and verified, can be reused more easily in other designs. 

9 



Finally, if they are written in a suitable fonnalism, high level descriptions allow formal 

verification. 

Given all this, it is no surprise that recent research into HDLs has tended to move towards 

behavioural languages. In many cases, researchers have investigated the suitability of al­

ready existing formalisms. In practice, many newly developed languages combine descrip­

tions of both behaviour and structure to try to obtain the best of both worlds. 

1.3. Examples of HDLs 

There are almost as many HDLs as there are programming languages. We mention a few 

typical ones, and then concentrate on what we feel are currently the most important HDLs, 

namely VHDL, Verilog, ELLA, and UDLII. 

An example of a structurally oriented language is MODEL [34]. MODEL makes it poss­

ible to build systems in a modular, top down way. The language has programming language 

constructs such as loops and conditionals, and it makes parameterisation of modules poss­

ible. Connections between modules are indicated explicitly by arrows (the equivalent of 

the assignment statement). The target architecture is the gate array. 

There are many other languages in the same class as MODEL. Since they all describe net­

lists in one form or another, they can all be regarded as semantically equivalent. 

ISPS [4], is a register transfer language which is targeted towards the specification of pro­

cessor architectures. The language therefore has high level constructs specifically for this 

purpose, and allows efficient translation to silicon, but it cannot easily be used for the de­

sign of general hardware. 

Another one ofthe older generation languages with behavioural features is MacPitts [63]. 

This is an abstract, Lisp-like language which makes it possible to specify circuits by (poss­

ibly parallel) algorithms which are converted by the compiler into a ClF description. Be­

cause the compiler enforces design rules, correctness by construction is achieved. One dis­

advantage of the MacPitts approach is the fact that, like ISPS, the target architecture is 

embedded in the semantics of the language, which limits the range of its applications. 

10 



At around the time that behavioural HDLs became the focus of intensive research, the de­

bate about imperative versus functional programming was also going on in the software 

world, after Backus' Turing Lecture [3] and earlier research into software verification. Im­

perative programming languages are ones like FORTRAN and PASCAL. Imperative pro­

grams consist of sequences of statements that must be executed sequentially; they make use 

of global variables, and subroutines are allowed to modify those variables. Functional pro­

grams consist of a collection of statements that are performed in response to external stimu­

li; no sequence is assumed, and side-effects on variables are not allowed. The functional 

programming style is also frequently referred to as declarative. As the advocates of func­

tional programming point out, languages based on the imperative programming sty Ie suffer 

from correctness problems. Specifications in such languages are hard to verify, because 

they cannot be easily characterised in a mathematically rigorous manner. Their use of vari­

ables and functions with side-effects allows very complex and error prone specifications 

to be written. In functional programs, by contrast, the use of recursion to achieve iteration, 

and the absence in functions of side-effects on variables, allows the application of math­

ematical induction and other mathematically based techniques to achieve proof of correct­

ness. 

Because of the popularity of imperative programming languages, the first truly general 

high level behavioural HDLs were inspired by them. Dacapo[59] and Silage[69] are good 

examples. There were many others. It rapidly became clear, however, that such languages 

would not be a suitable vehicle for the formal specification and verification of hardware 

designs. 

As a result, many researchers started investigating non-imperative languages for use in 

hardware design, including already existing programming languages. These include for­

malisms such as denotational hardware models [29], a variation on the FP functional pro­

gramming language, called muFP [62], temporal logic [53], SCCS [13], Algebraic ap­

proaches [30], Concurrent Prolog [65], Higher Order Logic [31], and type theory [37]. 

Many of these formalisms allow pure specifications to written, without any reference to 

possible hardware implementations. The problem with this approach is that very sophisti-

11 



cated software systems are required to translate such specifications into silicon in an effi­

cient manner. In many cases it is not possible for the designer to have any influence at all 

on the way that the hardware is generated. 

During the second half of the 1980's three popular HDLs emerged: Verilog, VHDL and 

ELLA. ELLA (ELectronic design LAnguage[52]) was a project initiated by the UK 000, 

and developed by a team at RSRE. VHDL (VHSIC Hardware Design Language [ 41]) was 

a large effort on behalf of the US 000, and is now an IEEE standard. ELLA was widely 

used within the UK, and the language was used to specify and design a number of substan­

tial chips. Verilog[72] was first developed as a proprietary simulation product by a com­

pany called Gateway, which later merged with Cadence, and is widely used. A more recent 

development is the language UDLII, as a result of a Japanese standardisation effort. 

We will take a look at the features and deficiencies of these languages in chapter 2. 

1.4. Design Systems 

1.4.1. Overview 

Design systems usually consist of a set of software tools to enter a design in some form, 

validate it, and translate it into silicon. A good VLSI design system provides descriptions 

which are consistent at all levels. It must be easy to use, allow convenient generation of test 

vectors and test hardware, and also address issues such as performance of the design (speed, 

power, function), the size of chip (and therefore, its cost), design time, and others. A variety 

of design tools is essential, to tackle the different areas that require attention. This will in­

volve making trade-offs between parameters. Most modern design systems use HDL de­

scriptions as an input medium. In recent years, input from VHDL or Verilog has become 

essential. EDIF [24] is widely used for interchange between different CAD systems. 

Typically, a design system comprises tools for 

• layout (which includes floor planning, placement, routing, design rule checking, 

etc.); 

• simulation (at various levels); 

12 



• schematic capture, i.e. logic entry using graphical tools; 

• timing verification; 

• module generation, particularly for PLA and RAM; 

• language parsers, to allow input from HDLs (particularly VHDL) 

• formal verification/synthesis tools, if the underlying formalisms will allow it 

Most high level design systems originate in the academic research environment. SAGE 

[22] (Edinburgh), Lambda [27] (BruneI) and Veritas [35] (Kent) are systems developed in 

the UK. Other notable systems are Cathedral [69] (IMEC), CMU-DA [68] (Carnegie-Mel­

lon), OCCAM to Silicon [47] (Meiko), DSL[l6] and YSC [10] (IDM). Notable commer­

cial systems include those by CADENCE, Viewlogic and Mentor Graphics. Because of the 

importance of VHDL, many research efforts in the area of VHDL based synthesis are re­

ported, e.g. [18,23]. 

1.4.2. Design path 

A typical current design path is shown in Figure 1. This is a typical structural approach to 

designing integrated circuits. After the initial specification, provided by the customer, the 

designer first makes decisions about the overall architecture of the chip. The design effort 

then moves gradually down to the silicon level using appropriate tools to perform transla­

tion, simulation and design of new modules. This approach requires that a number of separ­

ate descriptions be verified for equivalence, and is very labour intensive and error prone. 

The behavioural approach, by contrast, would be to synthesize the design automatically 

after the top level specification was completed. One would then get the design path shown 

in Figure 2. The designer specifies the problem in terms ofthe algorithm to be implemented 

using an appropriate HDL, and leaves the design system to do the rest. 

In practice, the design space may be too large for such an approach, and some structural 

design will have to be done by the designer, perhaps using appropriate high level tools that 

preserve correctness. 

13 



problem specification 

architecture definition - - - - - - -~ Simulation 

logic design - - - - - - -~ Simulation 

circuit design - - - - - - -~ Simulation 

layout - - - - - - -~ Simulation 

fabrication 

Fig. 1. Typical design cycle 

problem specification 

manual entry 

behavioural specificatio 

automatic translation 

structural specification 

automatic translation 

physical specification 

fabrication 

Fig. 2. Ideal design path 

14 



1.5. Functional programming 

Functional programming is a discipline that has been around since the early 1960's, and 

it was put ftrmly on the map by Backus [3] in his Turing Award lecture. Functional pro­

gramming has been advocated as the solution to the so called 'software crisis' - the fact that 

it becomes more and more difficult to control the complexity and cost of software written 

in traditional imperative programming languages such as Pascal or C. Functional program­

ming is also advocated strongly as a convenient vehicle for VLSI applications, because of 

the inherent parallel nature of both functional programs and VLSI chips. 

Imperative languages tend to become very complex and error prone as their size increases. 

This is due to a number of basic features in such languages: 

• The possibility of performing arbitrary jumps between code segments; 

• the large variety of language constructs to perform repetition; 

• limitations in what procedures and functions can return; 

• global variables, and the possibility of assigning values to them from within func-

tions and procedures (so called side-effects). 

It is the possibility of side-effects that is the most serious deficiency in imperative program­

ming languages. It allows the same expression, evaluated twice in succession, to produce 

different results. This makes it extremely difficult to subject such code to mathematical 

proof techniques. 

Functional programs therefore ban side-effects. They consist of collections of functions. 

There are no global variables, and therefore no side-effects. A function will always return 

the same result if called with the same parameters. The most important data structure is the 

list, which may have an unlimited length. Functions use recursion to achieve iteration. This 

makes them amenable to the mathematical proof technique called induction. This in tum 

makes it far easier to verify the correctness of functional programs. 

1.5.1. Recursion 

Recursion is often regarded with suspicion by novice programmers. A recursive descrip-

tion is much more like a specification than an implementation - in other words, it describes 

15 



what needs to be done instead of how it is to be done. The classic example of recursion is 

of course the Towers of Hanoi problem, which can be expressed in Pascal as follows: 

procedure hanoi(n: integer; first, last, temp: char); 

begin if n > 0 then begin 

hanoi (n-1, first, last, temp); 

writeln('move disk from', first, 'to' last); 

hanoi (n-1, temp, first, last) 

end 

end 

This definition is very short. Imperative versions are much longer and more difficult to un­

derstand, once the basic concept of recursion has been understood. The parameter 'n' is 

used to detect the termination of the recursion; otherwise, no new values are assigned to 

variables. The description could be subjected to formal treatment if required. 

Another example, to show the use of recursion to perform a useful calculation, is the base-2 

logarithm: 

function log2(n: integer): integer; 

begin if n = 1 then log2 = 0 

else log2 = 1 + log2(n div 2) 

end 

Any form of repetition can be expressed in recursive form, so a programmer will not be 

subjected to unnecessary restrictions if he limits himself to its use. 

1.5.2. Functional languages 

There are several functional programming languages available. One of the oldest ones is 

LISP [80]. In LISP, the 'log2' function looks as follows: 

(define (((log2 (lambda (n) 

(cond ((equal n 1) 0) 

(T (plus 1 (log2 (div n 2))) 

) ) ) ) ) 

16 



The LISP notation has a number of advantages. It is very general, easy to parse, concise, 

powerful, and extensible. It has been used to define other languages, such as EDIF. How­

ever, not everyone likes it. Design engineers do not like the abundance of brackets and the 

absence of keywords, for example. Other languages simply look much more understand­

able. 

In KRC [79], the 'log2' function looks as follows. 

log2 1 = 0 

log2 n = 1 + log2 (n / 2) 

KRC obviously looks concise and readable, and would be a highly suitable basis for a lan­

guage to describe algorithms to be implemented in silicon. However, a notation for design­

ing VLSI circuits would have to be much more than just a set of equations in order to be 

acceptable to designers. It would have to have suitable keywords, and allow description of 

hierarchy and timing information amongst other things. The KRC notation is however an 

inspiration for the functional parts of an HDL. 

1.6. Thesis overview 

This thesis describes a new HDL called STRICT, which is inspired by functional program­

ming languages such as KRC. As mentioned earlier, the designers of functional languages 

argue, we believe, with some force, that programs written in such languages are amenable 

to rigourous mathematical proof techniques. It was therefore investigated whether they 

were suitable for application in the VLSI design area, where correctness of the design is 

absolutely crucial. 

In this thesis we adopt the following lexicographical conventions. Italics are used to em­

phasize important words. Boldface is used for keywords from various languages, whenever 

they are surrounded by normal text. Whenever we show self-contained examples of the 

STRICT language, we normally use uppercase letters to indicate keywords. These 

examples are shown in Courier font. Single quotes are used to indicate identifiers and syn­

tactical constructs. We use uppercase letters for names of languages and products (e.g. 

17 



STRICT, EDIF, CADENCE etc.}. Finally, when we use the word 'he' we mean 'he or she', 

and when we use 'his' we mean 'his or her'. 

The thesis is structured as follows. In chapter 2, we present and discuss the most important 

HDLs currently available, and defme the requirements for the STRICT language. In 

chapter 3 we define the STRICT language and present basic examples of hardware modules 

defined in STRICT. In chapter 4, we explore the practical use of the language in the design 

process. In chapter 5, we present a brief overview of the design system. The individual 

components of the design system are then described in subsequent chapters: the editor in 

chapter 6, the builder module in chapter 7, the interface to 'traditional' design tools such 

as the layout system, the simulator and the PLA generator in chapter 8, the viewer in chapter 

9, the theorem prover interface in chapter 10, and the transformer interface in chapter11. 

The thesis then finishes with conclusions and references, followed by two appendices, the 

first one with some example output from the various parts of the system, and the second 

one with the STRICT syntax in the form of railroad diagrams. 

1.7. Author's contribution 

The work reported on in this thesis was done in collaboration with the other members of 

the VLSI Design Group at the University of Newcastle upon Tyne. 

Design of the STRICT language was principally done in collaboration with Martin 

McLauchlan, and involved extensive discussions with other members of the group. The 

STRICT grammar was written and debugged in collaboration with Martin McLauchlan. 

Part of the work involved minor modifications to the SAGA software, principally the lexi­

cal analysis routines. 

The major part of the work involved writing the builder module and the various interfaces 

to the subsystems, as well as developing the ideas behind these interfaces. This was all done 

by the author, and amounts to nearly 20,000 lines of Pascal code. This code is described 

in much more detail in chapter 5. 

The author wrote the EDIF generator and the Boyer-Moore input generator subsystems. 

18 



The author was responsible for the development of the ideas that led to the development 

of the viewer and the transformer subsystems. However, SERe sponsored Research As­

sociates and Research Students actually programmed the simulator, layout, PLA generator, 

viewer and transformer subsystems. 

19 



2. HARDWARE DESCRIPTION LANGUAGES 



2.1. Introduction 

In this chapter we first look at the most essential requirements for HDLs, and then discuss 

the four most important HDLs currently available: ELLA, Verilog, VHDL and UDW. In 

each case, we illustrate the language by presenting an example. 

2.2. Requirements for HDLs 

It is possible to identify some important features that all HDLs should have in order to be 

of interest to designers. Most of these features have been discussed briefly in the introduc­

tion, but are discussed in greater detail here. Aylor et al [73] present a thorough, but other­

wise typical mid 1980's view, which excludes such important issues as formal verification 

and (formal) high level synthesis. These issues have become of much more concern during 

the late 1980's and 1990's. We specifically exclude analog design features, which have re­

cently been added to VHDL, from the discussion. 

• It is absolutely essential that a language should be able to describe both behaviour 

and structure. Behaviour and structure should be described separately, since they 

refer to completely different concepts, so it is necessary to make a distinction be­

tween the two. Behaviour describes a design module as a black box that produces 

outputs as a result of inputs and internal states. Structural description describes the 

internal decomposition of a module (which leads to the introduction of a design hier­

archy), and also includes the interface of a design module to its environment. 

• A language should allow description of the timing properties of a design. Description 

of timing properties allows accurate (usually event driven) simulation of a design. 

Timing description should allow for such features as timing granularity, propagation 

delay, and clock properties. Description of timing properties is part of a behavioural 

description. 

• Hierarchy should be an essential feature of any language. It allows a complex prob­

lem to be partitioned into smaller. less complex ones. A language should therefore 

be capable of describing designs at different levels. both in the behavioural and struc­

tural domain. It should be possible to describe collections of gates as well as entire 

21 



systems at the algorithmic level. In the behavioural domain, it should be possible to 

describe these levels efficiently, for example as a set of logic equations at a low level, 

a finite state machine at a higher level, or a program (possibly with explicit con­

currency and synchronisation information) at the highest level. There should be con­

sistency between adjacent levels, allowing design tools to achieve automatic transla­

tion and correctness by construction. 

• Each level should allow for simulation, even if the level below is incomplete. This 

allows the designer to gain confidence in the correctness of the current level before 

investing time and effort in an incorrect design that will have to be discarded later. 

An important issue here is the availability of pre-defined high level primitives, for 

example ones that relate to data communication and timing. Such primitives allow 

for much more efficient simulation than designer specified ones. There is therefore 

a trade-off between efficiency and the number of pre-defined primitives. 

• A language should be used in conjunction with tools that can work at all levels, and 

should therefore allow transfer of design data to/from these tools at all different le­

vels. This should also improve the effort of data management of large designs, poss­

ibly in a distributed fashion. Ideally, a language should be independent of its design 

tools, that is, it should not require the use of special constructs that are there to inter­

face to a specific (perhaps proprietary) tool, but are of no use to other tools. If for 

some reason such constructs are required, they should be optional. 

• A language should have an uncluttered and unambiguous syntax. Verbosity makes 

it more difficult and time consuming to understand an existing design, and it in­

creases the likelihood of making mistakes when entering the design. 

• A language should have unambiguous semantics. This prevents different interpreta­

tions of the same descriptions, and allows re-use of developed designs, possibly by 

different designers working in completely different environments. It also clearly aids 

the formal development of tools, e.g. through the use of compiler generators etc. 

22 



• A language should support abstract data types. The use of abstract data types allows 

concise and readable descriptions (which are in effect a form of documentation), and 

allows a designer to extend the language for his own purpose, perhaps to prepare for 

easy migration to new design tools in the future. Used in conjunction with strong typ­

ing, particularly with regards to the input and output ports of a module, abstract data 

types should assist consistency checking within a design, and therefore design cor­

rectness. 

• New chip designs are hardly ever designed from scratch. In many cases, it will be 

possible (and indeed desirable) to use components designed and verified earlier on. 

A language should therefore allow existing components to be re-used. This can be 

achieved by means of modularity, that is, the ability to split designs into modules that 

perform a well defined and self contained function. Re-use of components leads to 

higher design quality if a number of alternatives are available (typically for low level 

modules such as adders or mUltipliers, which can be implemented in several different 

ways), and the designer has the option of choosing the best possible alternative for 

his particular design. 

• A language should allow the design of generic components, i.e. families of designs 

which are available through a single, parameterised description. This will clearly re­

duce design effort, and also reduce the chance of design bugs. 

• A language should allow some form of formal verification. This is an essential re­

quirement in today's very complex systems, where exhaustive simulation is no 

longer possible due to the extreme complexity of the designs. In formal verification, 

mathematical formalisms and techniques are used to check or verify certain prop­

erties of a design, using a tool such as a theorem prover. This will be most difficult 

at the higher levels of a design. Lower level proofs can usually be done by exhaustive 

proof of simple cases, because of the lower complexity of modules at the lower levels 

of a design. 

23 



• A language should allow high level synthesis, that is, the automatic conversion of a 

behavioural description into a structure. Conversion of low level logic equations or 

structures is regarded as low level synthesis, and is currently widely available in de­

sign systems. This requires sophisticated tools to be available. High level synthesis 

greatly increases productivity and helps to achieve design correctness, and is now 

widely used in industrial design environments. In formal synthesis, a behavioural de­

scription is converted into a structure. This is usually not a problem at lower design 

levels, but may be difficult at higher design levels where abstractions such as concur­

rent processes and their synchronisation may be available. 

We investigate the four languages mentioned above in terms of these features, by giving 

examples of descriptions. We also investigate their facilities for writing behavioural de­

scriptions and structures in a recursive manner. 

2.3. ELLA 

The aims of ELLA were defined as follows[52]: To provide a design aid that could be used 

at all levels of abstraction; to allow the designer the freedom of setting his own design stylel 

methodology; and to allow easy mappings between different levels of abstraction. The 

basic philosophy is to offer very few built-in primiti ves and data and signal types, but rather 

to provide a vehicle for the designer to build his own models from the bottom up. 

ELLA has strong typing, and has the facility to build abstract data types through the use 

of type declarations. For example, 

TYPE beel = NEW (hll) , 

int = NEW i/(O .. 63), 

lint = NEW lil (0 .. 3969), 

llint = NEW llil (0 .. 500000) 

This declares a new type 'boo!' which can take the values 'h' and '1', and three integer sub­

range types with the bounds shown in brackets. ELLA does not have pre-defined types, 

so the typing mechanisms is a very important part of the language. ELLA supports hier-

24 



archy through the use of modules, which are called 'functions' and are started by the key­

word fD, followed by input/output declarations. An example of a simple function with two 

boolean inputs and one boolean output is 

FN BLOCK = (bool: inl in2) -> bool: 

"body" 

A complete description in the language consists of a set of nodes, each of which has an asso­

ciated behaviour, with signals flowing between the nodes by interconnecting them ap­

propriately. Because nodes may declare and use sub-nodes, a hierarchy is created. Oper­

ation of signal flow is implicitly concurrent. 

Although the language is said to be behavioural, a special keyword is required to start an 

arithmetical expression, and in fact behaviour may be completely absent from a function. 

An interesting example is the Sigma function (which performs the mathematical summa­

tion operation), which in ELLA would be described as follows. Line numbers have been 

added for the sake of discussion, but are not actually part of the ELLA description. 

1/ FN ADD = (lint: il,llint: i2) -> llint: ARITH il+i2 

2/ MAC SIGMA{INT n} = ([n)lint: ip) -> llint: 

3/ IF n=l THEN ip[l) ADD lli/O 

4/ ELSE ip[n) ADD SIGMA{n-l}ip[l .. (n-l)) 

5/ FI. 

The 'add' function (line 1) adds two integers as expected. The 'Sigma' function takes an 

n-bit integer as its input (line 2). If 'n' equals 1, the value of the single bit is used (line 3), 

otherwise the value of bit n is recursively added to the Sigma of the remaining (n-l) bits. 

This is a description which is hardly easily readable, and has a rather complex syntax. 

A typical ELLA version of the full adder could be as follows: 

1/ FN FULL_ADDER = (bool: x y cin) -> [2)bool: 

2/ BEGIN MAKE XOR: xl x2, 

3/ 

4/ 

AND: al a2, 

OR: orl. 

5/ JOIN (x,y) -> xl, (xl, cin) -> x2, 

25 



6/ (x1,cin) -> aI, (x,y) -> a2, 

7/ (a1,a2) -> or1. 

8/ OUTPUT (or1, x2) 

9/ END. 

This is a clearly a structural description. The description specifies two one-bit inputs and 

one two-bit output (line 1). Lines 2-4 instance a number of gates, which are then intercon­

nected by the 'join' statement of lines 5-7. The 'output' statement (line 8) connects the in­

ternal circuit to the outside world. 

Another version of the adder could be: 

1/ FN FULL_ADDER = (bool: x y cin) -> [2]bool: 

2/ BEGIN LET xor = XOR(x,y) . 

3/ OUTPUT 

4/ END. 

(xANDy) OR (cinANDxor), xorXORcin) 

which could be interpreted both as a behaviour (a set of logic equations) or as structure (if 

one regards the logic operators as hardware modules performing the appropriate operation, 

in which case a netlist can be generated). 

There are other ways of specifying behaviour in ELLA, for example as a truth table. This 

requires the use of a 'case' statement, or, in simpler cases, an 'if-then-else' statement. 

The ELLA timing model allows for propagation delay, inertial delay and ambiguity delay. 

This is achieved by means of a standard function called DELAY which can be inserted into 

functions. 

ELLA comes with a set of tools: a language compiler, a multi-level simulator, and a tool 

called EASE (ELLA Application Support Environment), which includes database sup­

port. Anecdotal evidence would support the view that these tools are easy to use and fairly 

efficient, although the syntax of stimulus files for the simulator is very low level and repeti­

tive. We are not aware of tools that allow the full language to be formally verified. 

ELLA allows the description of generic components. 

26 



2.4. Verilog 

Verilog was first introduced in the mid-eighties as part of a commercial product called Veri­

log-XL, a simulator package [74]. It is widely used in industry, particularly in the us. 

A typical full adder description in Verilog would look like this: 

1/ module fullAdder(eOut, sum, aln, bIn, eln): 

2/ output eOut, sum: 

3/ input aln, bIn, eln; 

4/ wire x2; 

5/ nand (x2, aln, bIn) , 

6/ (eOut, x2, x8) ; 

7/ xnor (x9, x5, x6) ; 

8/ nor (x5, xl, x3) , 

9/ (xl, aln, bIn) ; 

10/ or (x8, xl, x7) ; 

11/ not (sum, x9) , 

12/ (x3, x2) , 

13/ (x6, x4) , 

14/ (x4, eln) , 

15/ (x7, x6) ; 

16/ assign #5 sum = aln A bIn A eln, 

17/ eOut = ( aln & bIn) I (bIn & eln) I (aln & eln); 

18/ endmodule 

Lines 1-3 declare the input and output ports to the module. Line 4 declares an internal sig­

nal. Lines 5-15 describes the internal structure of the module, by using various (pre-de­

fined) components, and connecting them up via internal signals that are used on the fly. 

Finally, lines 16-17 declare the behaviour, which is a simple logic equation that also spec­

ifies a delay of 5 time units. 

27 



As the above description clearly shows, Verilog has a large number of built-in models for 

the most basic logic gates, and a large set of behavioural operators corresponding to the 

operation of these logic gates. This allows very efficient simulation. The language also has 

a 'table' statement, allowing the output of a design to be expressed as a truth table. 

Obviously, all the essential elements of the description are put together within the module. 

In general, behavioural descriptions in Verilog closely resemble statements in the Pascal 

programming language [72]. A behaviour is usually described in terms of variables (which 

in turn often correspond to bit patterns on ports), arithmetical expressions on these vari­

ables, 'for', 'while', and' if-then-else' statements, together with appropriate timing condi­

tions, often synchronised to rising or falling clock edges. The language has a 'wait' state­

ment similar to that in VHDL, to allow more general event conditions. The most general 

case of a behaviour is an endless loop. The language also has an 'initial' statement that al­

lows it to initialise input waveforms and variables before the start of simulation. 

Verilog has a limited capacity for explicitly describing concurrency, by enclosing the ap­

propriate statements within the keywords fork and join. 

Apart from simulators, there are also commercially available high level synthesis tools 

available for this language. We are not aware of the existence of any formal verification 

tools. 

Verilog does not appear to allow the description of generic components. 

2.5. VHDL 

VHDL was defined, from the mid 1980's onwards, by a large committee on behalf of the 

American Department of Defense (DoD), in an attempt to introduce some uniformity into 

the hardware design process, for which the American Defense Industry is a very large ap­

plication area. Because of this, VHDL has become a widely used language. It is based upon 

ADA, an imperative programming language which was earlier adopted by DoD as the pre­

ferred programming language. The main aim ofVHDL is to provide very accurate model­

ling of hardware systems at all levels. 

28 



VHDL supports hierarchy through the use of 'entity' and 'architecture' declarations. It al­

lows data abstraction, since it is based upon the ADA programming language. VHDL al­

lows descriptions both in the structural and behavioural domains, although these cannot be 

integrated. The language also allows data flow descriptions, which are descriptions of RTL 

statements which are concurrently executed. Behavioural descriptions can make use of 

familiar imperative programming language constructs such as 'for' and 'while' loops. The 

timing model is quite powerful, and the whole language is geared towards event driven si­

mulation. 

A VHDL description of a full adder might be as follows: 

1/ entity FULL~DDER is 

2/ port (X, Y:in BIT; 

3/ CIN: in BIT:='O'; 

4/ COUT, SUM: out BIT); 

5/ end FULL_ADDER; 

This describes the ports of the adder (input ports on lines 2 and 3, output port on line 4). 

We might describe the structure as follows: 

6/ architecture MY_STRUCTURE of FULL_ADDER is 

7/ component andgate port(A,B: in BIT; C:out BIT); 

8/ end component; 

9/ component xorgate port (A,B:in BIT; C:out BIT); 

10/ end component; 

11/ component orgate port (A,B: in BIT; C:out BIT); 

12/ end component; 

13/ signal Sl, S2, S3: BIT; 

14/ begin 

15/ Xl: xorgate port map (X, Y, S 1) ; 

16/ X2: xorgate port map(Sl,CIN,SUM); 

17/ A1: andgate port map(X,y,S3); 

18/ OR1: orgate port map(S2,S3,COUT); 

19/ end MY_STRUCTURE; 

29 



This declares the required sub-components on lines 7-12. Note that the entire parameter 

list of each component must be declared, which greatly increases the length of the descrip­

tion and decreases the readability. Internal signals are declared on line 13. Lines 15-18 then 

describe the connectivity, including another verbose description of the port connections. 

Another description provides us with a possible description of the behaviour: 

architecture BEHAVIOUR of FULL-ADDER is 

20/ signal S: BITi 

21/ begin 

22/ S <= X XOR Y after 10 nSi 

23/ SUM <= S XOR CIN after 10 nSi 

24/ COUT <= (X AND Y) OR (S AND CIN) after 20 nSi 

25/ end BEHAVIOURi 

Lines 22-24 describe the assignments, including delays, that lead to assignment of values 

to the output ports of the module. This again includes the use of an internal signal. VHDL 

has many keywords for specifying the length of delays. There are two kinds of delay: iner­

tial and transport. Transport delays can supersede (Le. cancel) events that have already been 

scheduled. 

The most general form of a behavioural description in VHDL is the 'process' statement, 

which is in effect an endless loop that contains a program based upon the ADA program­

ming language, enhanced with hardware specific features. This includes a comprehensive 

range of arithmetical operators and constructs. VHDL allows the declaration and use of 

(possibly recursive) procedures and functions. Synchronisation is achieved by means of a 

'wait' statement, which allows the program to wait for the occurence of specific conditions 

on ports, variables, and other processes. Attributes of signals, such as rising edges, are de­

clared by following the name of the signal by an apostrophe, followed by the name of the 

attribute, optionally followed by a parameter in brackets. 

VHDL has comprehensive data management and documentation facilities through the dec­

laration and use of packages and libraries of types and components. 

30 



There are formal verification and formal synthesis tools available for VHDL, but these 

tools normally allow only a subset of the language to be used. 

VHDL allows the description of generic components, although this requires the use of 

special keywords, and the resulting syntax is rather verbose. 

2.6. UDUI 

UDLII [39] is a Japanese HDL that is currently attracting a great deal of attention. It is in­

tended as a standard and is widely used as such in Japan. Among the attractive features of 

UDLII are strong support for data management, testing and accurate timing modelling. On 

the negative side are the wordiness of structural descriptions (in particular netlists). Al­

though the language allows modelling of behaviour, the available constructs appear to be 

extremely limited, in order to ensure that direct translation into logic is possible. The lan­

guage appears to be mostly suited for low level structural descriptions and simulation. 

An example of a D-type flip-flop in UDLII is now shown: 

1/ name dff_cl-pr; 

2/ purpose funcsym, logsyn; 

3/ process ttl; 

4/ inputs d; 

5/ clock clk; 

6/ reset cl, pr; 

7/ outputs q; 

8/ behaviour_section; 

9/ register : regq delay 1.0ns; 

10/ begin 

11/ .q.- regq; 

12/ at rise{.clk) do regq := .d; end_do; 

13/ if .cl then reset{regq); 

14/ else if .pr then preset{regq); end_if; 

15/ end_if; 

16/ end; 

31 



17/ end_section; 

18/ end; 

This description includes data management features (lines 1-3), structural features (lines 

4-7), and a behavioural description (lines 8-17). 

The language obviously supports many hardware oriented constructs. It has a formal de-

finition of the syntax and semantics, in order to ensure that all simulators produce the same 

n:~ults. 

UDLII allows the description of generic components. 

2.7. Discussion 

Features discussed in this chapter can be summarised briefly in the following table. 

Feature VHDL ELLA Verilog UDLII 

behaviour - structure yes mixed yes logic level 

timing yes yes yes yes 

hierarchy yes yes yes yes 

simulation at each level yes yes yes yes 

tools interfaces limited yes yes yes 

syntax verbose difficult concise ok 

scmantics yes no no yes 

abstract data types yes yes no adequate 

re-use and modularity yes yes yes yes 

generic components yes yes no yes 

formal verification limited limited unknown no 

high level synthesis limited limited yes no 

recursive structures limited yes no no 

All languages are orthodox hardware description languages, i.e. they have special con­

structs to describe h~u'dware specific properties. 

UDLII appears to be a language specifically designed for \Cry accurate descriptions at the 

logic lc\'c I. Due to the absence of examples and design tools, we cannot make a useful com-

32 



parison with the other languages. The discussion below is therefore limited to ELLA, Veri­

log and VHDL. 

Behaviour and structure is supported in all these languages. All languages have similar fea­

tures for describing netlists. This is not particularly surprising, since netlists are a fairly low 

level feature of any design, and there are simply not very many fundamentally different 

ways of describing them. The use of internal signals, such as in Verilog, is a possible source 

of errors. Such a feature should not be present in an HDL. Behavioural constructs are also 

similar in all languages, with sequential and concurrent constructs supported. One of the 

drawbacks of a VHDL description is that parts of a design may be scattered across a ftle 

- there are separate declarations for the input/output interfaces (the 'entity' declaration) 

and the declarations for internal structure and behaviour (' architecture' declaration). A de­

signer would normally keep behavioural and structural descriptions in separate files (called 

configurations) and swap between them for the purpose of simulation. Architecture declar­

ations are not mandatory. In ELLA, behavioural descriptions are not mandatory either; it 

is possible in ELLA to write specifications that can be regarded as either behavioural or 

structural (as discussed above). Verilog structural descriptions look quite similar to those 

in VHDL, but they must be present within a single textual unit. 

The timing model in ELLA is rather inflexible. The language deliberately does not provide 

pre-defined operators such as "at the positive edge of', causing very complex descriptions 

as the designer has to define his own functions for this purpose. Delay information can be 

scattered over several functions, causing more difficulty in understanding. The VHDL tim­

ing model is extremely powerful, but it is therefore hard to learn, and there are many pit­

falls. Verilog's timing model is less powerful than VHDL, but compares well. 

Hierarchy is supported in all languages. All languages can be simulated at different levels. 

As far as syntax is concerned, is is clear that VHDL is a very rich language - it has a very 

large number of keywords, operators and syntax constructs. This means that the language 

is hard to learn, and that tool development is slow, because there are many different ways 

of describing the same behaviour. Verilog, by contrast, is much simpler. 

33 



The very fact that VHDL is a very rich language may make it more difficult to learn than 

Verilog. It also takes more time to learn to avoid the common pitfalls of VHDL. As a result, 

VHDL descriptions are longer and more complex than their Verilog equivalents, which is 

one of the reasons that Verilog has a large user base. For example, the Verilog statement 

that detects a rising edge of a clock signal would be declared as 

@(posedge elk) 

This would have to be declared in VHDL as 

if ((elk'EVENT) and (elk = '1') and (elk'LAST_VALUE=O)) then 

One can safely assume that the Verilog statement would allow more efficient simulation. 

Currently, only VHDL has been subjected to attempts to define its semantics formally [75]. 

It is unknown as to whether any of the attempts were completely successful or not. 

All languages use data types as a way of improving readability of design descriptions. All 

of the languages except Verilog allow basic types to be combined into composite types, 

thereby allowing the definition of complex data types. The ELLA philosophy means that 

no pre-defined types are available. This may lead to models that are more complex than 

is desirable. Verilog and VHDL have a good set of pre-defined functions, and in the case 

of VHDL there are large libraries of types available. Verilog's pre-defined types are at a 

fairly high level, allowing concise descriptions and fast simulation. 

All languages allow modules to be specified, although in the case of VHDL (as discussed 

above) parts may be scattered across different textual descriptions. These modules can be 

re-used in other designs, or made available as part of a library. 

The fact that both VHDL and Verilog behavioural descriptions are based upon imperative 

programming languages (ADA and Pascal, respectively) means that they have limited use 

as an input language for a formal verification tool. Formal verification tools for Verilog are 

currently not available. There are formal tools for VHDL [78], but these only allow a subset 

of VHDL to be used. ELLA appears to be more suited to formal verification, although ef­

forts to verify the Viper chip [77] using HOL have not been entirely satisfactory; work on 

a restricted subset called picoELLA [76] appears to be successful. 

34 



High level synthesis tools are now available for Verilog and subsets ofVHDL, for example 

within the CADENCE framework. None of the current approaches appears to be based on 

formal methods. This is not surprising, since both languages were specifically designed for 

modelling and simulation. DeSigning synthesis tools for these languages is difficult, and 

has taken a long time. 

Recursive descriptions of structures are available in ELLA and VHDL. Recursive behav­

iour can be provided in VHDL, although its use is frequently discouraged by high level syn­

thesis tools. Only ELLA regards recursion as central to the philosophy of the language. 

VHDL is in widespread use, because it was adopted by the US Department of Defense, and 

very many people were involved in its design. Verilog is very popular in industrial and aca­

demic environments, with a user base comparable to VHDL. The ELLA user base is mainly 

concentrated in the UK, and its size and influence is diminishing. 

It should be clear that none of the languages can claim all of the important aims and features 

set out at the start of this chapter, particularly with respect to the important use of functional 

features and associated formal verification and synthesis techniques. 

We now introduce the features of the STRICT language which is intended to fIll the gaps. 

35 



3. LANGUAGE DEFINITION 



3.1. Introduction 

This chapter introduces the STRICT language. We first summarise the requirements for the 

language. We then describe the features of the language resulting from these requirements: 

• Design concepts - the use of blocks; 

• The structure of blocks: interfaces, types, behaviour, structure and control; 

• The overall design organisation. 

Appendix B shows the entire STRICT grammar in the form of so called 'railroad' dia­

grams. 

3.2. Requirements for STRICT 

STRICT would have to have the desirable general features identified in the previous 

chapter. We briefly summarise these aims here, and also elaborate on how they could be 

achieved. In addition, the language should avoid what we believe are the main deficiencies 

of ELLA and VHDL. The main points are as follows: 

• The language should be capable of describing behaviour, structure, and timing prop­

erties at different levels. It should show a clear separation between behavioural and 

structural descriptions, unlike ELLA, which allows them to be mixed together and 

interpreted according to need. We believe that behaviour and structure are two entire­

ly different concepts, and that a designer should initially think purely in behavioural 

terms. Allowing mixed behavioural/structural descriptions would allow the designer 

to give in to the temptation to implement a structure at a very early stage of the design 

process. This would make it much more likely that inappropriate design choices 

would be made that would be very difficult to reverse later on. 

• The language should allow flexible specification of timing requirements, and should 

be able to model both synchronous and asynchronous design features. 

• In order to allow designs to be built hierarchically, STRICT should require the de­

signer to specify his design in terms of blocks. All blocks may be made up out of sub­

blocks in a recursive and hierarchical manner. 

37 



• STRICT should be well suited to formal verification and formal high level synthesis. 

The language must therefore be designed as a functional language. That is, it should 

express both structural and arithmetical expressions in functional form. Repetition 

should only be achieved through the use of recursive function calls, without the use 

of side-effects on global variables. In fact, STRICT should not allow global variables 

at all. 

• Because of the intention to perform formal verification, it is essential to have a beha­

vioural specification available. STRICT would therefore have a mandatory specifi­

cation section, unlike ELLA and VHDL. STRICT would allow optional structure to 

be described, with the expectation that if the structure was absent, this could be filled 

in later, either by the designer or by automatic behaviour-to-structure translation 

(Le. formal synthesis) tools. STRICT would not allow different parts of a definition 

to be scattered about, as in VHDL; all relevant information about a hardware module 

would be present within the same textual unit. 

• Each level should allow simulation and verification, in conjunction with powerful 

tools, even if the level below was incomplete. It should also be possible to interface 

to other tools. For example, it should be possible for designs produced with the new 

language to be fabricated (it should not be just a modelling language). Although the 

language should be completely layout independent, it might be necessary to include 

the use of pragmats which would allow the designer to provide hints about certain 

low level design properties to the design system. Three kinds of such hints are necess­

ary: one to specify a rudimentary form of floorplanning; one to indicate on which 

edge of a block a particular bus is situated; and one to collapse hierarchy caused by 

the use of recursion to achieve iteration. 

• STRICT should have a clear syntax and semantics. We believe that the examples 

shown in the previous chapter clearly show that the syntax of both VHDL and ELLA 

(see again the ELLA 'Sigma' function) is too complex. STRICT should use familiar 

keywords and constructs wherever possible, in order to allow maximum readability 

38 



and understanding of descriptions in the language. So a STRICf description should 

not just be a set of equations, and should not use the LISP syntax. 

• STRICT should support abstract data types. It should enforce a strong typing disci­

pline (similar to the way this is done in programming languages such as PASCAL) 

upon the definition of busses, and require that only busses of the same type may be 

interconnected. This enables a certain class of errors to be detected before any layout 

is generated, which would speed up the design cycle. In addition, the designer should 

be able to specify assertions to make the design system perform extra checks on de­

sign properties which would not otherwise be performed. The language should in­

clude a basic set of operators for manipulating the standard data types of the lan­

guage, including those for doing arithmetical and boolean operations. 

• STRICT should allow description of generic components. This could be achieved by 

allowing blocks to have generic parameters. The STRICT design system should be 

able to expand the formal description when a particular member of the family is used. 

For example, it should be possible to design an n-bit register, without having to spec­

ify the actual value of' n'; it would then be the task of the design tools to expand the 

definition of the register when the actual value became available. 

• STRICT should encourage re-use of components, by allowing a design to be speci­

fied as a collection of self-<:ontained modules. It should allow parts of designs to be 

imported from libraries, in order to prevent 're-inventing the wheel', and to be able 

to interface to fabrication facilities. 

We now introduce the language that follows from these requirements. 

3.3. Design concepts 

Hierarchy is a basic part of the language. This is achieved by building a STRICT descrip­

tion as a hierarchy of interconnected modular blocks. The blocks are connected together 

via interfaces. Data abstraction is achieved by requiring each interface to be of a particular 

type. Interfaces are then only allowed to be connected to other interfaces of a matching 

type. The type specifies the representation of the information that flows through interfaces 

39 



between blocks. STRICT enforces a regime of strong typing. A bus transmits information 

of a specific type from one part of the circuit to another. A block transforms information 

to implement functions or to change its representation. STRICT declares the connections 

between the blocks but does not define the final physical layout. A particular bus may inter­

connect several blocks. Each block interface has an input or output attribute. An output 

(input) interface of a block may only be connected by a bus to an input (output) interface 

of another block. Each block is designed independently from any of the other blocks, and 

must have a behavioural section that describes functions that are to be implemented in the 

electrical design. 

Wherever possible, language descriptions will be in a functional form, and they will use 

appropriate keywords to enhance readability. 

3.4. The Block 

3.4.1. Basics 

A block defines a set of devices that transform data. Each block is identified by a block 

header, contains a declaration of the components within the block, and defines the design 

of a circuit made up of those components. Since the components are frequently themselves 

defined in terms of blocks, a hierarchy of components is thus created. 

A block description has the following outline. As in other parts of the language, meaningful 

keywords are used where appropriate. 

block <identifier> <design-parameters> 

<interfaces> 

<block_declarations> 

<block_definition> 

and 

The block identifier is used to identify a block; a particular block can be retrieved from a 

library of blocks so that an instance of that block may be incorporated in further designs. 

3.4.2. Design parameters 

One of the requirements of the STRICT language is that it should allow a block to be de-

signed in a generic manner, for example, with respect to the number of wires in the inter-

40 



face. This allows a whole class of devices to be designed with one description. This is 

achieved through the use of design parameters, which play the same role (and have a similar 

syntax to) formal parameters in function definitions. Design parameters play an important 

part in building a device as a structure amenable to formal verification, using theorem 

provers that are capable of performing mathematical induction. 

The following are examples of block headers with design parameters: 

block parallelfulladder (size : integer) 

block traffic_light_control (light_sequence : country_code 

number_lights : integer) 

The parallel full adder has a design that is parameterised by the size of the operands that 

are to be added. The traffic light controller is parameterised by the light sequence used to 

signal traffic directions, and the number of lights for which signals must be produced. 

3.4.3. Interface specifications 

One of the STRICT requirements is the use of strong typing, popularised by programming 

languages such as PASCAL. The syntax for type definitions used in STRICT is clearly in­

spired by PASCAL, but requires optional additional elements in order to allow simulators 

to use these types efficiently. As explained above, types are used in the description of inter­

faces between components, and are also widely used in functional descriptions. An inter­

face specification is started by the keyword having. For example, the following example 

includes declarations for interfaces to a parallel full adder: 

block parallel_full_adder (size : integer) 

having (a,b @w,c @w : posint(size)) 

(s @e : sum) 

The parallel full adder block is declared with three input interfaces 'a' ,'b', and 'c' of type 

'posint(size)'. The output interface is identified by the identifier's' which is of type 'sum'. 

In addition to specifying the interfaces, the interface specification can optionally position 

the individual interfaces on particular sides of the block, using edge identifiers. This (ad­

mittedly inelegant) construct provides for another aim of the language: i.e. ensuring that 

41 



layout tools can achieve a degree of efficiency in generating silicon. The four edge ident­

ifiers, @n, @s, @e and @w are appended to those interfaces that are explicitly positioned. 

Any interfaces that are not explicitly positioned, are positioned automatically by the layout 

system. 

There are occasions when a tri-state output would be used. STRICT indicates the presence 

of such a tri-state by simply appending an asterisk to the appropriate pin-name in the out­

put interface. 

3.4.4. Block declarations 

When a design makes use of generic parameters, not all possible values may be legal. 

STRICT therefore includes block declarations, which describe any restrictions imposed on 

the generic parameters. In addition, block declarations may introduce convenient defini­

tions and macros for subsequent use, define the types of the interfaces used in the construc­

tion of the block, and specify the functions that are implemented by the block. 

An example of the header and declarations of a block describing an integrated circuit for 

a multiplier is as follows: 

block multiplier(n : word_range) 

having (a,b : posint(n)) : 

(prod: posint(2*n)) 

inherit 

max word_size from 'standard_library' 

define 

maxmultsize = 32 

power2(n:integer) :boolean .. -

if (n < 0) then 

power2(0-n) 

else 

if ((n mod 2) 

false 

else 

1) then 

42 



type 

if (n == 2) then 

true 

else 

power2(n div 2) 

word_range ::= {is [2 .. max_word_size]} 

posint(n:integer) ::= { is [0 .. (2**n)-1]) 

Block design: A recursive multiplier for 

use in Signal Processing Applications 

assert 

(2 <= n) and (n <= maxmultsize) and power2(n) 

size 

10 by 10 

with behaviour 

end 

The multiplier has a design parameter 'n' that specifies the size of the busses which carry 

the multiplicands. It has two input interfaces 'a' and 'b' and an output interface 'prod'. 

The two input interfaces are of type 'posint(n)' declared as a subrange of base type integer 

by the type declaration section headed with the keyword type. The upper bound varies de­

pending on the value of 'n'. The output interface is of type 'posint(2*n)" which is declared 

as another subrange of base type integer. The types restrict the use of the block so that it 

can only be connected to another block with interfaces of type 'posint(n)' or 'posint(2*n)'. 

The design parameter' n' is checked for conformity when an instance of the multiplier is 

created for use in another design. 

The 'define' statement is used to define constants and functions. Functions are examined 

in more detail below. 

43 



In order to allow the use of components from cell libraries, or the re-use of already defined 

STRICT components, the' inherit' statement is available. In this case, it is used to retrieve 

the definition of the constant' max_ word_size' from a library. 

The 'assert' statement restricts the design parameters of the multiplier so that 'n' is a power 

of 2, and in addition ensures it lies in the range 2 to 'maxmultsize', a constant defined 

earlier. This encourages visual checking of the design as well as providing a means for the 

STRICT translator to check the consistency of use of a block in a design. 

The 'size' statement gives an estimation of the size of the block. This is again used as an 

aid to achieving efficient layout, particularly for use with floorplanning tools. 

STRICT designs are commented by placing text after an exclamation mark. The comment 

terminates at the end of the line. 

Definitions, types, size and assertions may be optionally omitted if unnecessary, but the 

behaviour must always be present, as explained above. 

We now take a closer look at the various kinds of block declaration. 

3.4.5. Inherit statement 

STRICT requirements include facilities for accessing libraries, to facilitate re-use of com­

ponents. The language therefore includes the' inherit' statement, which is used to indicate 

the inclusion of cells, blocks, pre-defined types, functions and constants. These definitions 

may reside in other blocks defined within the current design file, or in completely separate 

design files, such as standard libraries. 

An example of an 'inherit' statement is: 

inherit 

a, b, c from 'library' 

x, y, z from block_identifier 

When a 'library' or 'block_identifier' are not explicitly defined, the system defined stan­

dard design library is assumed. 

44 



3.4.6. Define statement 

At this point in a block, it is possible to define new constants and functions which will be 

available from everywhere inside the current block. The 'define' statement can be used to 

define constants and function definitions. 

3.4.7. Assert expression 

The 'assert' statement provides a mechanism for restricting the design parameters of the 

block. Blocks are designed to be as general as possible. When a block is needed, a request 

for a particular implementation will be made. The request is made by providing actual de­

sign parameters to replace the formal design parameters in which the design is expressed. 

The assertion expression is evaluated. If it fails, an error exception occurs. 

An example of an assertion is: 

assert (n <= 32) 

3.4.8. Size expression 

When the design of a block is first attempted, generally only the design parameters, inter-

faces and behaviour are provided. When the initial STRICT notation for this block is sup­

plied to the STRICT design system, it is possible to provide an initial estimate of the overall 

size of the block. This estimate can be used by some of the design tools, such as the viewer, 

to estimate the overall size of a component built hierarchically out of multiple sub-compo­

nents. The 'size' construct is used to indicate this initial size, as follows: 

size 10 by 8 

The dimensions used are 'standard units'. 

The final block declaration statement is the type declaration. This is now explored in the 

following section. 

3.5. Type declaration 

3.5.1. Basics 

The basic types supported for design parameters are scalar or enumerated types. A scalar 

type can be an integer, sub-range of integers or character. Some examples: 

45 



type x ::= integer 

y :: = {is [1 .. 51 } 

z .. - {is (red, yellow, green)} 

User defined basic types are declared as part of the block declarations. They could also be 

inherited from a library of basic type definitions. 

In addition to the provision of the basic types, 'array' and 'record' constructs are available 

to construct aggregate types. The notation for declaring arrays and records is very much 

inspired by the Pascal programming language. Some examples: 

type singlebit 

pair 

sum : := 

{is (0,1)} 

{s,c : singlebit} 

pair[n1 

The basic type 'singlebit' is a simple enumerated type. It is then used by the type 'pair' 

which is a record of two variables of type 'singlebit' , one called's' and the other called' c' . 

The type 'sum' is an 'n'-element array of type 'pair'. The index of the first element of an 

array is always number zero. 

Closely connected with the type declarations are the mechanisms for implementing the 

types that are used as interfaces to the block. So far. the type declaration has specified what 

values the type will take but it has not specified how the type may be represented as a bus. 

This is the responsibility of the representation and conversion statements which optionally 

appear after the primitive type. 

3.5.2. Type representations 

Type representations specify the means by which the input and output interface types are 

to be physically supported (this is needed by most of the design tools). So far. the types will 

have been specified in terms of the standard types of STRICT. It is now necessary for the 

physical implementation of these types to be defined within the type declaration. This is 

done by means of two additional parts to the type declaration. The first explicitly specifies 

how a type will be represented in terms of an interface type called wire. and the second part 

states how the electrical patterns on wires are mapped to values associated with the type. 

46 



A wire is capable of carrying one bit of information. To carry more complicated informa­

tion, arrays of wires will be required, and they can be thought of as typed busses. 

Consider the following example, in which the type 'posint' and 'colours' are both used in 

the block interface. 

type 

posint(n:integer) 

{ is [0 .. (2**n) - 1] 

colour 

represented by posints: wire[n] 

with mapping 

Sigma(l,n,posints) 

is (red, green, amber) 

represented by colours: wire[2] 

with mapping 

if (colours[O] == low) then 

if (colours[l] == low) then 

green 

else 

red 

else 

amber 

The two types have been defined to take a particular range of values; 'posint' is a sub-range 

of integers up to some maximum based on 'n' which is assumed to be non-zero, and 'co­

lours' the three colours 'red', 'green', and 'amber'. The representation has defined a physi­

cal definition in terms of wires. That is, 'posint' will be represented by n-bit wires and 'co­

lours' by 2-bit wires. 

The values of the type 'posint' are obtained from the wire specification (i.e. 'posints') by 

calling the function' Sigma' (see the next section) with arguments '1', 'n', and 'posints'. 

47 



The type 'colour' however just uses an expression to detennine how the values 'red', 

'green' and 'amber' are represented in two wires. 

3.5.3. Representational functions 

The 'posint' example of the previous section shows that there will frequently be types 

where the mapping from the physical representation to the range of values of that type is 

relatively complicated. It may well depend upon functions (or operations) that are not im­

mediately available in STRICT. Therefore, the facility is provided for a designer to define 

his own functions to map the physical representation onto the range of values. 

General purpose functions can be defined at the head of blocks and implementations, and 

also as part of behavioural specifications. 

Representation functions are defined in a similar manner to other functions except that they 

appear after the type declarations they refer to. 

For example, the functions 'Sigma' and 'Decode' can be defined as follows: 

where 

Sigma (lower,upper: integer, 

w: wire[*]) : integer 

if (upper == lower) then 

Decode(w[lower-l]) 

else 

Decode(w[lower-l]) + 

2 * Sigma(lower+l,upper,w) 

Decode (w:wire) : integer 

if (w == low) then 

o 

else 

1 

This concludes our definition of types and associated functions. We now tum our attention 

to the behavioural declaration section in a block. 

48 



3.6. Behavioural specifications 

3.6.1. Basics 

The aims of the STRICT language require that behavioural specifications are compulsory. 

Ensuring that every block has a behaviour means that we can achieve another aim of the 

STRICT language: that a design can always be checked, no matter how incomplete it is. 

A simulator or formal verification tool can check the behaviour of a given block, with the 

implementation of that block and the behaviour of all the sub-blocks used in that definition. 

The design of this part of STRICT has probably been the most difficult, as designers may 

be very reluctant to specify beforehand, in a formal manner, the behaviour of the block that 

they are about to design. Once the block had been designed, they are usually prepared to 

provide a model of their design for simulation, but quite often by that time, the design is 

already different from what they had set out to design initially. 

A designer using STRICT however will be required to provide a behavioural specification, 

before he attempts to implement the block, thereby enabling a check to be made on the de­

sign to ensure it still matches the specification provided at the beginning of the design pro-

cess. 

3.6.2. Example 

We again illustrate typical behaviour with an example. Previously, a block declaration for 

a multiplier was provided. The (missing) behavioural specification could be as follows: 

with behaviour 

whenever 

change (a) or change (b) : 

within (10 * sigbits(max(a,b))) 

set prod a * b; 

where 

sigbits(x integer) integer 

if (x <= 1) then 

1 

else 

49 



1 + sigbits(x div 2) 

max(x,y:integer) : integer 

if (x > y) then 

x 

else 

y 

The specification of the block, denoted by the keyword behaviour, describes the intended 

function of the multiplier. The pre-condition for the multiplication is that either input 

identifiers' a' or 'b' must change before the appropriate action is performed. 

Given the pre-condition, the specification provides the post-<:ondition for the output inter­

face 'prod' after the multiplication has occurred. The post-<:ondition includes a temporal 

expression denoted by the keyword within. The temporal expression specifies a maximum 

possible delay from the start of the multiplication of the two multiplicands to the output 

of the result in 'standard time units'. The result of the multiplication is specified with the 

'set' clause, using the integer multiply operation. 

Apart from the features shown in the example, the language also allows for the declaration 

of state variables, initial values of state variables, and invariant expressions on state vari­

ables. 

3.6.3. States 

Most circuits require the concept of state. That is, they use a knowledge of what has hap-

pened in the past, to calculate their next set of outputs. 

To capture this concept in a behavioural description involves either the use of state vari­

ables, to record the past values of interest, or the ability to inspect past histories of an input 

or output, and make use of the values found there. 

It was decided to use the state variable approach in STRICT, because it was easier to imple­

ment. Examples of state declarations are as follows: 

state idle : := boolean 

owner : := (pl,p2) 

mem char[n] 

50 



In this example, three state variables are identified. The first, 'idle', is of type boolean. The 

second, 'owner' is an enumerated type. The third, 'mem' is an 'n' element array of type 

'char'. It is assumed that both 'n' and 'char' will have been defined previously. 

3.6.4. Initial statements 

Once a state variable has been declared, it is often useful to specify what the initial value 

of that variable must be. The' initial' statement specifies what particular values state vari­

ables must start with. Any non-structured type may be given an initial value and an array 

of non-structured types may also, in a single statement, be assigned a starting value. Any 

record based types must have their fields assigned separately. 

The following are typical of the use of the 'initial' statement. The example uses the state 

variables declared above. 

initially idle = true 

mem = 0 

The boolean identifier 'idle' is given the initial value of true. Each element of the array 

'mem' is given the value of 0 in the second assignment. The only way to initialise individual 

elements of an array to different values, is to initialise each element individually. 

3.6.5. Invariants 

Within the behavioural specification it may be possible to identify particular states that the 

block must never reach. These states may specify particular input or output values or com­

binations of values. STRICT allows for these states to be identified and therefore checked. 

An invariant can be provided within the behavioural specification which must remain true 

while the behavioural specification is being exercised. If the invariant is found to be false, 

an error exception occurs. 

For example, when designing a traffic light controller, it would be crucial not to allow both 

sets of lights to be 'green' at the same time. This could be specified with the following in­

variant. 

invariant not ((roadl green) and (road2 -- green)) 

51 



'road 1 ' and 'road2' are the output interfaces to the traffic light controller and specify what 

colour the attached light should show. This invariant therefore specifies that at all times, 

at least one of the two roads should not be showing a ' green' light. 

3.6.6. Simulator Timing model 

The basic principles of timing description are presented by Aylor [73]. A series of state­

ments should be presented. The linear ordering of these statements defmes the normal se­

quence of processing. Statements should be combined with boolean conditions or guards 

to control the execution of each statement. All statements with conditions executing to true 

should be executed. Conditions should be allowed to have states. States should be evaluated 

as part of the conditions, to let designers create any desired sequence of operations. 

STRICT conforms to these requirements, but additionally allows the specification of ex­

ception conditions. The formal simulation model is defined as follows [71]. 

Behaviours associated with blocks are executed in response to the arrival of signals from 

the outside world. A behaviour is defined as a set of at least one causal event 'E' and an 

associated assignment set ' A' : 

B = {(E,A)}+ 

Each assignment set' A' consists of a number of elements: a selection condition 'c' (which 

determines the conditions under which the assignment can occur), an assignment function 

set'S' (which must contain at least one element), and a temporal constraint 'T': 

A = {C,{S}+,T)}+ 

The temporal constraint defines the ambiguity delay after which the assignment can occur, 

and an associated guard 'G': 

T = (w, G), 1 <= w 

The simulator will of course have to decide the precise moment at which the assignment 

will have to be scheduled within the specified interval. The current version of the simulator 

performs the assignment two thirds of the way through the interval. 

'G' is defined as 

52 



G = (f, U) 

where 'f' is a guard period during which the assigned values must not change, and 'u' is 

a causal event which can pre-empt the completion of the block. 'G' may be empty. 

The STRICT description will specify all of these elements for each block in the hierarchy. 

Let us now consider the elements of the timing model in more detail. 

The assignment set (i.e. the behaviour) is specified by a sequence of actions. The execution 

of an action is guarded by a cause from the event set 'E' which must evaluate to true before 

the action is executed. In addition, there may be some additional conditions (from the set 

'C') that are associated with the cause (typically, state variables), and they too must evalu­

ate to true before the action is executed. All the causes within the specified behaviour are 

evaluated concurrently with no implicit priority being assumed. Once a particular cause 

and associated conditions, if any, has evaluated to true, then the specified action is taken. 

A temporal constraint, i.e. an ambiguity delay, specifies the time after which a particular 

effect will have been achieved. This effect can be held for a certain duration, or until some 

other exception occurs which then interrupts the effect, leaving the block in its new state. 

3.6.7. Selection and Causal Guards 

The causal guard is responsible for identifying when an event occurs, so that the appropriate 

action may be performed. Events are in general the changing of values on input interfaces. 

For example, an input interface called 'elk' may be used as a causal guard by requesting 

that the cause becomes true when the 'elk' line rises. STRICT has a standard type called 

'clock' which can be parameterised to specify how long the line will be high, and how long 

the line will be low. Two standard values, called high and low, are available which would 

correspond to the particular technology's way of representing a bit. There is also a standard 

function called 'change' which takes any input interface as an argument, and returns an 

event as soon as the argument changes its value. An event is very similar to a boolean, in 

that it can take the values true and false, but in addition a time is also associated with the 

truth value. This time indicates the exact moment that the event occurred. A suitable clause 

to detect the rise of a clock would be 

53 



change (elk) and (elk == high) 

It is possible in a causal guard to form the conjunction and disjunction with any other bool­

ean expression. Therefore in the above example, the conjunction is formed with the ex­

pression' (e lk = = high)' to check if the clock has just risen. 

Along with the causal guard, it is also possible to associate selection guards. These are used 

to make additional checks on the state of the block before a particular action is allowed to 

occur. They are represented by boolean expressions. For example, the following is a selec­

tion guard. 

(road1 == green) and (-car) 

This condition guard compares the value of 'road l' with the constant 'green' and then 

forms the conjunction with the negation of the boolean identifier 'car'. 

3.6.8. Ambiguity Time Delays 

Before the action requested by the causal and selection guards is actually performed, it is 

possible to specify a time delay after which the results of that action will be guaranteed to 

be stable. If another block should try to make use of these results before the ambiguity delay 

has passed some form of race condition will be indicated to the design system. 

The ambiguity delay is specified using the within expression. For example, 

within (17) 

within (10 * sigbits(max(a,b))) 

The first example specifies a fixed delay of 17 'time units'. The second specifies a variable 

time delay which is based on the value of a couple of user defined functions. i.e. 'sigbits' 

and 'max'. 

3.6.9. Effects 

The effect of the action is performed by the 'set' statement. This specifies which identifiers 

are to be assigned new values. For example, 

set 

prod = a * b 

idle = true 

54 



In the example above the identifier 'prod' is given the value of the identifier 'a' multiplied 

by 'b'. Then 'idle' is given the value true. 

3.6.10. Duration time delay 

Once the ambiguity delay for an effect has elapsed, that value is usable by any other part 

of the behavioural description. It is sometimes required, however, that an effect should last 

for a minimum period of time after the end of the ambiguity delay. This situation is pro­

vided for in the provision of a duration delay associated with each ambiguity delay, called 

'G' above - an indication that the previous effect must last for a certain minimum period 

of time. The 'for' clause specifies the appropriate duration time delay. For example, it may 

be used as follows: 

for 10 

for 25 * cycle(clk) 

In the first example, a duration delay of 10 'standard time units' is specified. The second 

example, assuming that the identifier 'clk' has been defined to be a clock input interface, 

specifies that the duration delay is twenty five times the period of the clock identifier 'clk'. 

It is also possible for users to define their own functions. 

3.6.11. Exception conditions 

We now describe the features of the set called 'U' above. 

Once a duration delay has been provided, if it is executed, then it guarantees that the effect 

it follows will last for the specified duration without any interruption. It is sometimes 

necessary, to provide the facility for interrupting a duration by the arrival of a particular 

event. This is called an exception condition and the 'unless' clause is provided to provide 

this facility. The following example demonstrates how it can be used. 

set 

road1 = red 

road2 green 

for 10 * cycle(tick} 

unless rise(clk}} and (-car); 

55 



This examples specifies an effect of setting two identifiers' road 1, and ' road2' to ' red' and 

, green' respectively for a certain duration. This duration can however be interrupted before 

it is finished if the exception condition becomes true. The exception condition becomes true 

ifthe input interface 'elk' rises and the boolean identifier 'car' has the value false. 

Occasionally, it is required to provide an infinite duration delay which can be only inter­

rupted by certain exception conditions. Instead of specifying an infinite duration explicitly, 

the 'until' clause is used. For example, consider the example above where the two ident­

ifiers 'roadl' and 'road2' are being given the values 'red' and 'green' respectively. Instead 

of these values only being present for a specified duration, it might be necessary to assign 

them forever, but with the same exception conditions being present. This may be done as 

follows: 

set 

roadl = red 

road2 green 

until rise(clk) and (-car); 

Once an exception condition is true, the action that was being performed is terminated, and 

the causal and condition guards are once again checked for a match. The block stays in the 

new state specified by the interrupted action. 

3.6.12. Behavioural functions 

In the examples given so far, a number of standard operations have been provided for use 

within a STRICT design. In accordance with the STRICT functional philosophy, the lan­

guage uses functional forms as its main specification mechanism. The language allows the 

designer to define his own functions at the end of the behavioural specification, in particu­

lar those functions that have already been used in the rest of the specification, plus any addi­

tional ones as required. 

For example, the user defined functions called 'rise' and 'max' have been used but not de­

fined. Therefore they must be provided at the end of the behavioural specification, pre­

ceded by the keyword where: 

56 



where 

rise(x:clock) :boolean 

change (x) and (x == high) 

max(x,y: integer): integer::= 

if (x>y) then 

x 

else 

y 

'rise' returns the value true whenever there has been a change on its parameter, and the 

current value is high. 'max' returns the maximum of its two parameters in the usual manner. 

Both functions specify their argument types and the single result type of the function. There 

then follows the expression which calculates the value of the function using the supplied 

arguments. Any type defined by the user or provided for in the implementation of STRICT 

can be returned as the result of a function. 

This completes the description of the behavioural specification of a STRICT block. We 

now turn our attention to structural specifications. 

3.7. Structural specification 

One of the requirements of STRICT was that it should be capable of describing structure. 

As explained before, structural description is optional. 

3.7. I. Basics 

The structural specification refers to the way in which a block is implemented in terms of 

other blocks, and how these blocks connect with each other. It is also able to suggest, via 

hints within the definition, how the constituent blocks should be arranged. 

The block definition is again made up of a number of smaller sections. Each section is re­

sponsible for part of the definition, and is preceded by an appropriate keyword. 

3.7.2. Use of recursion 

One of the requirements of STRICT is to use recursion as the only means of achieving iter-

ation. This recursion is most noticeable in the implementation section. It is controlled by 

57 



the generic design parameters of the block. When an implementation requires that a recur­

sive calIon the block being defined is necessary, it will modify the design parameters it was 

initially given, usually making them simpler, before requesting an instance of that block. 

For example, suppose the implementation of a particular block depended upon the generic 

design parameter 'n'. If 'n' was less than or equal to 1 then one particular implementation 

was required, otherwise another was required. It would be presented as follows: 

use structure 

(n <== 1) : 

{ ... implementation version 1 ... } 

(n > 1) 

{ ... implementation version 2 ... } 

When the design system is asked for a particular implementation by the binding of the de­

sign parameters to actual values, it evaluates the guards in turn. The first guard that is found 

to be true then specifies the particular implementation to be used. If none of the guards is 

true, an error exception occurs. 

3.7.3. Inherit statement 

The 'inherit' statement, first introduced in the block declarations section, when used in this 

particular context, allows for the inclusion of other blocks, thereby encouraging re-use of 

existing components. All blocks used within a particular implementation, must either exist 

within the current design file or be explicitly inherited from the design file in which they 

were defined. If an 'inherit' statement is used, but no explicit design file or library is re­

quested, then the standard design library is assumed. 

3.7.4. Instancing components 

Before a block is used within an implementation, it requires a local name to differentiate 

it from other blocks. For example, the implementation of a recursive multiplier requires 

the following blocks. 

instance 

lowmult,midmult1,midmult2,highmult: mUltiplier (multsize) 

58 



cp carrypropagateadder(n) 

pa parallelfulladder(n) 

Six blocks are declared, four of which have the same block identifier. The identifiers 'n' 

and ' multsize' are the actual design parameters. 

3.7.5. Hierarchy flattening 

In order to increase efficiency in the case where a component is defined recursively with 

many levels of recursion, it is possible to add the optional keyword collapse as a last para­

meter in the parameter list of a component. For example, the statement 

instance 

reg: register(16, collapse) 

would indicate to the layout software that the register should be flattened. It is again hoped 

that such a construct would be unnecessary in the future. 

3.7.6. Placing the components 

STRICT allows the designer to specify some form of placement strategy. It provides the 

'place' statement which may be used by the layout system to place blocks. If a placement 

is not suggested, then the layout system will attempt to provide an appropriate placement 

strategy of its own. 

STRICT makes the assumption that all layout blocks are rectangular in shape. This means 

that only two placement operators are provided: ';' which corresponds to 'right-of/left-of' 

and '/' which corresponds to 'abovelbelow'. 

An example of a placement statement is 

place 

Adder/ShifteriPLA 

That is, the block identified as 'Adder' is to be placed above the remaining blocks. Of the 

remaining blocks, 'Shifter' is to be placed to the left of 'PLA'. Brackets can be used to 

group together blocks that are to be treated as one. 

This would arrange the three components as follows: 

59 



Adder 

Any placement that can be described by a tree can therefore be described in STRICT. The 

'place' statement is optional, in keeping with the requirement that tool specific keywords 

must be optional. If it is omitted, the f100rplan is determined automatically. 

3.7.7. Module generator interface 

STRICT is required to interface to module generators, again in order to allow efficiency. 

As a result, the language allows a second form of the 'use structure' statement, which has 

a string between the two keywords. For example, the statement 

USE 'PLA' STRUCTURE 

would indicate that a call to a PLA generator was required at this stage of the layout process. 

3.7.S. Interconnecting the components 

The final two sections of a block definition are concerned with connecting the instanced 

sub-blocks together and then connecting the block interface to the appropriate sUHompo­

nents. 

Interconnection of the sub-blocks requires the 'using' statement. For each block, it is 

necessary to identify the actual input interface to be used. This may simply be the input 

interface of the block being defined, or the output interfaces of one or more of the sub­

blocks being interconnected. 

STRICT, being strongly typed, requires that the actual interface parameters agree 'by 

name'. There may be occasions when two or more interfaces need to be combined together, 

or one interface needs to be split into several. before connection to a sub-block is possible. 

A standard set of functions is a\"ailable to provide the basic facilities. More complicated 

60 



methods may be designed by defining suitable functions which operate on the appropriate 

interfaces. 

The following examples illustrate some of the above points. 

using 

cp(join(pabus(n) Ipa.s[l].carry,tail(pa.s», 

mostsighalf(highrnult.prod» 

pa(mostsighalf(lowmult.prod), midmultl.prod, 

midmult2.prod,leastsighalf(highrnult.prod» 

lowmult(leastsighalf(a) , leastsighalf(b» 

highrnult (mostsighalf (a) , mostsighalf(b» 

midmultl(leastsighalf(a) , mostsighalf(b» 

midmult2(mostsighalf(a) , leastsighalf(b» 

There are six sub-blocks in this example which are being interconnected. The functions 

'mostsighalf' and 'leastsighalf' are responsible for breaking the type representation of 

their arguments into two equal halves. (If the representation cannot be broken into two 

identical halves, an error exception occurs). The standard function 'join' indicates that the 

type representations of the arguments after the bar are being concatenated, and then coerced 

into the appropriate type representation indicated before the bar. Output interfaces of sub­

blocks are indicated by the use of the block identifier followed by the output interface re­

quired. 

The syntax for the 'using' statement has deliberately been chosen to look like a function 

call. 

3.7.9. Connecting the interface 

The final section of a block definition involves specifying how the output interfaces are 

connected to the constituent blocks. Again it may be necessary to coerce the type represen­

tations into the appropriate form. 

The make statement is used as follows. 

make prod ::= join(posint(2*n) I 

leastsighalf(lowmult.prod), 

61 



pa.s[l].sum, 

cp.s) 

There will be one statement for each output interface in the block declaration. 

3.7.10. Control modelling 

One aim of the STRICT language not discussed so far is the modelling of asynchronous 

hardware. Asynchronous hardware uses the data flow paradigm. There is no global clock. 

Data is passed from one subsystem to the next, whenever computation is complete. The 

issue here is how the data transfer is controlled, that is, how the different subsystems within 

a block interact. 

In some design styles, particularly those aimed at the implementation of digital signal pro­

cessing algorithms, data passed from one component to the next uses point-to-point con­

nections between the two. In a network formed by components interconnected by connec­

tions of this type, the structure of the network implies the data flow, and hence separate 

control hardware is not necessary. 

Whilst it is possible to produce a wide range of systems using data flow methods, many 

architectures cannot be efficiently implemented without a separate controller, since they 

use a limited set of busses and general purpose arithmetic and other functional blocks each 

of which may be used for many different data transfers. Typically the CPU of a micropro­

cessor is designed in this way, with a datapath being used for different data and with differ­

ent operations during the course of a single instruction. 

In this case, the structure of the data path is insufficient to describe the behaviour of the 

system without an explicit view of the function of the control. In STRICT, a mechanism 

has been provided to capture the control flow. This allows the synthesis of a range of con­

troller architectures such as PLA's, microprogrammed memory, or self-timed architec­

tures, and it also allows display of the control flow in a graphical form. 

A block with a control section is indicated by the keyword asynch which prefixes the block 

keyword, and a special section within the block started by the keyword control. Such a 

block is assumed to have in addition to its explicit inputs and outputs, two control lines (cur-

62 



rently known as 'req' and 'ack'), which may only be manipulated by the behavioural and 

'control' section of the description. Two other keywords, wait and signal, manipulate con­

trol signals which are assumed to be single bits, capable of representing 1 or O. Wait is as­

sumed to detect a rising edge on the control signal specified. 

We now show an example: an asynchronous divider. The divider is a block which performs 

division by repeated subtraction. It requires a number of registers, a subtraction unit, and 

a test to see if the end of the computation has been reached. During the computation, hand-

shake signals cause the proper sequencing of signals. 

a 

a s 
mpx 

A register 

subtract 

R 
A 

b 

R 
A count 

>0 

Fig. 3. Divider module 

An overview of the divider is shown in Fig. 3. 

63 

mmusone 

R 
A 

R 
A 

-1 

count 

result 

R 
A 



The number to be divided is initially loaded into register' A', which requires setting the 

control signal 'selin!'. The divisor is loaded into register 'B'. This happens only once, and 

register B is not changed during the computation. Register' A' is used to hold the intermedi­

ate results of the repeated subtraction. During the computation, the control signal 'selin2' 

is set to ensure that' A' is updated from the subtraction module, not from the input port (this 

is the reason why a multiplexer is present). The 'test' module will indicate when' A' con­

tains a negative value, which means that the computation is finished. 

The circuit also contains a counter, which holds the number of iterations performed by the 

circuit (Le. the quotient). It is initially loaded with the value -1, because once the value 

in 'A' has become negative, the count process has gone one step too far. The counter has 

two control signals, one for loading -1 into it, and one for counting. 

All sub-modules have a request/acknowledge pair. 

The STRICT description is as follows. Line numbers have again been attached in order to 

make explanation of the description easier. 

1/ ASYNCH BLOCK divider 

2/ HAVING (a,b,rninusone : number): 

3/ (result number) 

4/ INTENDED BEHAVIOUR 

5/ WHENEVER 

6/ 

7/ 

8/ 

9/ 

10/ USE STRUCTURE 

11/ { 

WAIT divider: 

WITHIN (10) 

SET result = a DIV b 

SIGNAL divider; 

12/ INSTANCE breg: reg 

13/ 

14/ 

15/ 

16/ 

areg: rnuxreg 

sub: subtract 

test : greaterthanzero 

count: counter 

64 



17/ 

18/ 

19/ 

20/ 

21/ 

22/ 

23/ 

24/ 

25/ 

26/ 

27/ 

28/ 

29/ 

30/ 

31/ 

32/ 

33/ 

34/ 

35/ 

36/ 

37/ 

38/ 

39/ 

40/ 

41/ 

42/ END 

CONTROL 

WAIT divider: 

SIGNAL breg, areg, count, areg.selinl 

SET count. load = 1 

count.incr = 0 

WAIT breg, areg, count, areg.selinl: 

SIGNAL test 

SET areg.selinl = 0 

WAIT areg, count, areg.selin2: 

SIGNAL test 

SET areg.selin2 = 0 

WAIT test: 

SET ack = -test. output, 

sub.req = test.output 

WAIT sub: 

SIGNAL areg, count, areg.selin2 

SET count. load = 0 

count.incr = 1 

USING areg(a,sub.s) 

test (areg) 

sub (areg, breg) 

breg(b) 

count (minusone) 

MAKE result::= count 

The explanation of the description is as follows. 

The behaviour (lines 5-9) specifies that after the block is activated (line 6), the output 

called 'result' will contain the quotient of inputs 'a' and 'b' after 10 time units. The next 

block in the chain (not shown in the picture, but connected to port 'result'), is then activated 

(line 9). 

65 



Of the 'use structure' section, only lines 17-34 are of interest here (the other lines just de­

clare the components and connect them). 

Lines 18-21 specify what happens when the divider is flrst activated, as indicated by line 

18. Registers' A' and 'B', the counter, and the multiplexer are all involved, so their control 

signals are set (line 19). Since the multiplexer has explicit control signals, the name of the 

signal must be provided. The other blocks just use the standard req/ack pair. In lines 20 and 

21, the 'load' and 'count' inputs to the counter are set to appropriate values. 

Once this been completed (line 22) it is checked whether' A' is negative already (i.e. we 

should stop straight away) in line 23, and the 'selinl' line is reset in line 24. 

The results of the 'test' module (line 28) causes the subtraction module to be activated if 

the contents of' A' were still positive (line 30), and completion to be signalled to the outside 

world if the contents of 'A' were negative (line 29). 

The remaining two sections (lines 25-27 and lines 32-34) control the operation of the re­

peated subtraction loop. 

The whole control scheme can conveniently be drawn in the form of a Petri Net. The viewer 

subsystem can do this automatically. The result is shown in the chapter on the viewer. 

3.8. Design organisation 

A complete STRICT design is in general organised as a sequence of complete block declar­

ations, preceded by a request for the top level block, i.e. the entire chip design. This is the 

root of the design hierarchy tree. 

An example format of a complete design is as follows: 

build 

instance m:multiplier(16) 

using m(ain,bin) 

make cout ::= m.prod 

given 

block multiplier ...... end 

66 



block carrypropagateadder ..... end 

block parallelfulladder ..... end 

The top level block is responsible for specifying what device is actually being requested. 

Its form is exactly the same as before, except that the input and output interfaces will not 

exist explicitly and that all design parameters must be constants or constant expressions. 

All input and output interfaces will correspond with input and output pads of the appropri­

ate type and number. That is, if an input (output) interface is requested, an input (output) 

pad is used. 

In addition to the pads explicitly requested by the design, extra pads will also be placed 

by the layout system, to handle power and ground connections, and any other outside con­

nections that are required. 

This completes our description of the language. We now illustrate the language with a 

number of examples. 

3.9. Examples 

This section shows some typical examples of hardware modules, coded in STRICT. They 

have been chosen with a number of criteria in mind: 

• To demonstrate the use of the more important features of the language; 

• To demonstrate (later on) the use of some of the tools; 

• To describe typical design examples widely used in the literature. 

In order to facilitate explanation, line numbers have again been inserted at the start of lines. 

3.9.1. Library cell 

This example shows how to include a basic cell from the design library, using the 'inherit' 

statement. The block, called 'inverter', has a single bit input called 'a' and a single bit out­

put called 'out' (lines 2-3). The block inherits 'ntg' from the system library (line 4), de­

clares it behaviour (lines 5-10), instances a single version (line 13), connects the single 

input port of 'x' to port 'a' (line 14), and connects the output port of 'x' to port 'out' (line 

67 



15). The behaviour essentially specifies that the output is set to the inverse ofthe input after 

4 time units (lines 8-10). The description relies on knowledge that the library cell has an 

output called 'qb' (line 15). 

1/ BLOCK inverter 

2/ HAVING (a: WIRE) 

3/ (out: WIRE) 

4/ INHERIT ntg from '$cells$libcmos' 

5/ INTENDED BEHAVIOUR 

6/ WHENEVER 

7/ change (a) : 

8/ WITHIN (4) 

9/ SET 

10/ out = - ai 

11/ USE STRUCTURE 

12/ { 

13/ INSTANCE x:ntg 

14/ USING x(a) 

15/ MAKE out .. - x.qb 

16/ 

17/ END 

The structural picture of the resulting block is shown in Fig. 4. Note that it is not necessary 

to know what the input port of 'x' is called. 

68 



inverter 

x: ntg 

a qb out 

Fig. 4. Structure of inverter 

3.9.2. Half adder 

The half adder is a frequently used example in the literature. It takes two single bit inputs, 

(called 'x' and 'y', line 2) and produces a 'sum' and 'carry' bit as output (line 3). It is im­

plemented using three AND gates, one OR gate and two inverters (declared at lines 26-28). 

The example shows a straightforward composition (lines 30-38) and specification (lines 

17-22), and uses a type called 'bit' (lines 5-9), which uses a local function' decode' (lines 

11-15) to map voltage patterns into bits. 

1/ BLOCK hal 

2/ HAVING (x, y: bit) : 

3/ (sum, carry: bit) 

4/ TYPE 

5/ bit .. -

6/ IS [0 .. 1] 

7/ REPRESENT BY b: WIRE 

8/ WITH MAPPING decode (b) 

9/ 

69 



10/ 

11/ 

12/ 

13/ 

14/ 

15/ 

16/ 

17/ 

18/ 

19/ 

20/ 

21/ 

22/ 

23/ 

24/ 

25/ 

26/ 

27/ 

28/ 

29/ 

30/ 

31/ 

32/ 

33/ 

34/ 

35/ 

36/ 

37/ 

38/ 

WHERE 

decode(w: WIRE): integer 

IF (w == low) THEN 

o 

ELSE 

1 

INTENDED BEHAVIOUR 

WHENEVER 

CHANGE (x) OR CHANGE(y) : 

WITHIN (15) 

SET 

sum = (x + y) MOD 2 

carry = (x + y) DIV 2; 

USE STRUCTURE 

{ 

INSTANCE 

nl, n2: inverter 

al, a2, a3: andgate2 

01: orgate2 

USING 

al(x,y) 

a2 ( x, nl . ou t ) 

a3(n2.out,y) 

nl(y) 

n2(x) 

01( a2.out, a3.out) 

MAKE 

carry al.out 

sum ol.out 

39/ } 

40/ END 

70 



The resulting ~tructural view i" as shown in Fig. 5. 

Half adder 

al 

x a2 can, 
r--

I---

nl 01 

y a3 sum 

n2 
t--

I '---

Fig. 5. Structure of half adder 

3.9.3. Full adder 

As an example of introduction of a complex hierarchy, the full adder uses two half adder~ 

(declared in line IS, and defined above) plus an OR gate. It takes three inputs (two data bits 

and a carry bit, defined in line 2), and produces a sum and carry bit as output (line 3). The 

actual composition is similar to the half adder example. For example, 'hb' (line 15) takes 

as its inputs full adder ports 'x' and 'y' (line 18). The behaviour is defined in lines 7-11. 

This is a typical behaviour of a piece of combinatorial logic: whenever any of the inputs 

clumgc (line 7), some time later (line 8) the outputs change with values dependent upon the 

inputs (lines 10 and 11). The example also shows how types can be inherited from other 

blocks (line 4). 

1/ BLOCK full 

2/ HAVING (x, y, cin: bit): 

71 



3/ (cout, sum: bit) 

4/ INHERIT bit FROM hal 

5/ INTENDED BEHAVIOUR 

6/ WHENEVER 

7/ CHANGE (x) OR CHANGE(y) OR CHANGE (cin) : 

8/ WITHIN (40) 

9/ SET 

10/ cout = (x + y + cin) DIV 2 

11/ sum = (x + y + cin) MOD 2; 

12/ USE STRUCTURE 

13/ { 

14/ INSTANCE 

15/ ht, hb: hal 

16/ 0: orgate2 

17/ USING 

18/ hb(x, y) 

19/ ht (hb. sum, cin) 

20/ o( ht.carry, hb.carry) 

21/ MAKE 

22/ cout ::= o.out 

23/ sum::=ht.sum 

24/ 

25/ END 

A diagram of the structure is shown in Fig. 6. 

72 



full adder 

cin s sum 
ht 

r-- C f---

y I--- S f---

hb 
0 "-- cout 

x r-- C 

Fig. 6. Structure of full adder 

3.9.4. n-input OR gate 

As an example of parameterisation, we show a design for a general n-input OR gate. This 

is indicated by the presence of the formal parameter' n' on line 1. The input bus (called' in' 

on line 2) is therefore an n-bit one, the value of 'n' being determined by outside factors. 

The behaviour shows the use (at line 10) of a locally defined function called 'orarray' (de­

fined at lines 12-16), which recursively goes through the individual wires of the input bus 

whilst OR-ing the bit values held on them together. This function exhibits typical recursive 

behaviour: if the bus which is the actual parameter only has one wire, it returns the bit value 

and stops the recursion (line 13), otherwise it returns the bit value of the lowest order bit 

and recursively ORs it with the rest of the bus (line 14), using the pre-defined 'tail' func­

tion. 

The structure shows the use of the 'case' statement in recursive implementations. When 

the value of 'n' is smaller than 4, the implementation is simple. For example, in the case 

where 'n' equals 2 (lines 21-24), 'n' equals 3 (lines 26-29), or 'n' equals 4 (lines 31-34) 

just an OR gate with the appropriate number of inputs is used. When 'n' is greater than 4, 

the gate is recursively implemented as a tree of or gates. In this case (lines 37-39) three 

73 



blocks are used: a 4-input OR gate, an (n-4)-ioput OR gate (which is the recursive part), 

and a 2-input OR gate to deal with the results of the previous two structures. A diagram 

of the structure when' n' is greater than 4 is shown in Fig. 7, which shows the structure plus 

the number of wires in the busses. The 'using' section (lines 40-44) uses the 'head' and 

'tail' functions which are usually required in recursive implementations, because the actual 

value of 'n' is unknown. For example, the call 'tail(tail(tail(tail(in))))' produces a bus 

which contains the least significant (n-4) wires of 'in'. 

1/ BLOCK orgt(n: integer) 

2/ HAVING (in: posint(n)): 

3/ (out: bit) 

4/ 

5/ 

6/ 

7/ 

8/ 

9/ 

10/ 

11/ 

12/ 

13/ 

14/ 

15/ 

16/ 

INHERIT bit FROM hal 

posint FROM Register 

INTENDED BEHAVIOUR 

WHENEVER 

change (in) : 

WITHIN(10) 

SET out = orarray(in); 

WHERE 

orarray(w:WIRE[*]) :boolean -

IF (bussize(w) == 1) THEN decode(w[O]) 

ELSE decode(w[O]) OR orarray(tail(w)) 

decode(w: WIRE): integer -

IF (w == low) THEN 0 ELSE 1 

17/ USE STRUCTURE 

18/ (n -- 1): 

19/ { MAKE out .. = in 

20/ 

21/ 

22/ 

23/ 

(n -- 2): 

INSTANCE 0: orgate2 

USING o(head(in),tail(in)) 

74 



24/ 

25/ 

26/ 

27/ 

28/ 

29/ 

30/ 

31/ 

32/ 

33/ 

34/ 

35/ 

36/ 

37/ 

38/ 

39/ 

40/ 

41/ 

42/ 

43/ 

44/ 

45/ 

46/ 

47/ END 

MAKE out o.out 

} 

(n 3): 

INSTANCE 0: orgate3 

USING o(in[O], in[1],in[2]) 

MAKE out ::= o.out 

(n 4): 

INSTANCE 0: orgate4 

USING o(in[O], in[l], in[2], in[3]) 

MAKE out ::= o.out 

(n > 4): 

INSTANCE 02: orgate2 

04: orgate4 

og: orgt(n-4) 

USING 02(04.out, og.out) 

04 (head(in), head(tail(in», 

head(tail(tail(in») , 

head(tail(tail(tail(in»») 

og(tail(tail(tail(tail(in»») 

MAKE out::= 02.out 

75 



4 1 
.------ 04 n 

in f--- 02 
N 1 out 

'--- og -
N-4 1 

Fig. 7. Recursive structure of n-input OR gate, n > 4 

3.9.5. n-bit register 

The n-bit register is another parameterised cell, popular as a layout benchmark (the layout 

generated for this example is shown in Appendix A). The description shows the use of re-

cursion to achieve iteration. If 'n' equals 1, only the basic register cell (called 'flip_flop', 

not shown here) is used (lines 23-27). Otherwise, a basic cell plus an (n-l )-bit register are 

used (lines 28-34). The example also shows the use of the 'join' function to join busses 

together (line 33). In this case, the output bus 'out' is formed by joining together two inter-

nal busses, the output busses of instances 'f' and 'tailreg'. 

1/ BLOCK Register (n : integer) 

2/ 

3/ 

4/ 

5/ 

6/ 

7/ 

8/ 

9/ 

HAVING (in: posint(n) 

clock : bit) : 

(out: posint(n» 

INHERIT bit FROM hal 

TYPE 

posint(n: integer) ::= 

IS [0 .. (2 ** n) - 1) 

REPRESENT BY nbits: WIRE [n] 

76 



10/ 

11/ 

WITH MAPPING sigma(O, n - 1, nbits) 

} 

WHERE 12/ 

13/ 

14/ 

15/ 

decode(w: WIRE): integer 

IF (w == low) THEN 

o 

16/ ELSE 

17/ 1 

18/ INTENDED BEHAVIOUR 

19/ WHENEVER change (clock) 

20/ WITHIN (10) 

21/ SET out = in; 

22/ USE STRUCTURE 

23/ (n == 1): 

24/ INSTANCE f: flip_flop 

25/ USING f(in, clock) 

26/ MAKE out::= f.out 

27/ } 

28/ (n > 1): 

29/ INSTANCE f: flip_flop 

30/ tailreg: Register (n-1) 

31/ USING f(head(in), clock) 

32/ tailreg(tail(in) , clock) 

33/ MAKE out::= JOIN(posint(n) If.out, tailreg.out) 

34/ 

END 

The n-bit register is the main example used in the chapter on the viewer. Diagrams can be 

found there. 

In general. an implementation that recursively implements a structure of N elements pro­

duces the following kind of design hierarchy (see Fig. 8): 

77 



N 

·----r 
, ___ _ t ______ . 

N-J 

·----r 
, ___ _ t ______ . 

N-2 

_ ... 1 .... _ 
2 

·----r------
, ___ _ t ______ . 

Fig. 8. Original hierarchy 

In this picture, dotted boxes denote recursive calls, while the solid boxes indicate a single 

implementation of a basic cell. The numbers in the dotted boxes refer to the value of the 

actual parameter used in the recursive call. 

Such a structure is ideal for the purpose of formal verification, but highly inefficient when 

it comes to producing layout. In this case, the structure must be flattened first. Flattening 

produces the following hierarchy (see Fig. 9): 

78 



N 

1 

Fig. 9. Flattened hierarchy 

3.9.6. Systolic Array 

This example shows the use of recursion in two dimensions, to create a rectangular array 

of cells (frequently called a systolic array). The design consists of a square array of alternat­

ing cells called 'black' and 'white' for convenience. The design has a block called 'wr' 

(meaning 'white row', lines 8-37), which recursively builds a row of cells in a way similar 

to the n-bit register from the previous example, except that in the recursive call it uses a 

block called 'br' (meaning 'black row') which has a black cell at the front (line 30). The 

'br' block (lines 38-67) does something similar with 'wr' (line 60). What we in fact have 

here, then, is daisy chain recursion whose effect is a row of alternating black and white cells. 

These are called from within the block 'wrs' (lines 68-96) which builds rows on top of each 

other in order to build a rectangular grid. This is again done recursively, in a similar manner 

as the 'wr' block, by calling a block called 'brs' (line 88). The example also shows the use 

of the collapse keyword (e.g. line 30) and the 'place' statement (e.g. line 31) to achieve 

satisfactory layout, and the use of the wire keyword (e.g. lines 9-12). 

1/ BUILD 

2/ {INSTANCE c: wrs(16, 16) 

3/ USING c(ain, bin) 

4/ MAKE aout ::= c.oute 

5/ bout ::= c.outs 

6/ 

7/ GIVEN 

79 



8/ 

9/ 

10/ 

11/ 

12/ 

13/ 

14/ 

15/ 

16/ 

17/ 

18/ 

19/ 

20/ 

21/ 

22/ 

23/ 

24/ 

25/ 

26/ 

27/ 

28/ 

29/ 

30/ 

31/ 

32/ 

33/ 

34/ 

35/ 

36/ 

BLOCK wr(n: integer) 

HAVING (inn @n: WIRE[n] 

inw @w: WIRE ) 

(outs @s: WIRE[n] 

oute @e: WIRE ) 

INHERIT 

whitecell FROM '$layout$test:' 

INTENDED BEHAVIOUR 

WHENEVER 

(rise (clock) ) : 

WITHIN (10 * n) 

SET 

oute = inwi 

USE STRUCTURE 

(n == 1): 

{ INSTANCE W: whitecell 

USING w(inn, inw) 

MAKE oute ::= w.oute 

outs :: = w. outs 

(n > 1): 

{ INSTANCE w: whitecell 

b: br(n-1, COLLAPSE) 

PLACE w i b 

USING w(head(inn), inw 

b(tail(inn), w.oute) 

MAKE oute ::= b.oute 

outs ::= join (WIRE [n] I w.outs,b.outs) 

37/ END 

80 



38/ BLOCK br(n: integer) 

39/ HAVING (inn @n: WIRE[n] 

40/ 

41/ 

42/ 

43/ 

44/ 

45/ 

46/ 

47/ 

48/ 

49/ 

50/ 

51/ 

52/ 

53/ 

54/ 

55/ 

56/ 

57/ 

58/ 

59/ 

60/ 

61/ 

62/ 

63/ 

64/ 

65/ 

66/ 

INHERIT 

inw @w: WIRE): 

(outs @s: WIRE[n] 

oute @e: WIRE) 

blackcell FROM '$layout$test:' 

INTENDED BEHAVIOUR 

WHENEVER 

(rise(clock)) : 

WITHIN (10 * n) 

SET 

USE STRUCTURE 

(n == 1): 

oute = inw; 

{ INSTANCE b: blackcell 

USING blinn, inw) 

MAKE oute ::= b.oute 

outs :: = b. outs 

(n > 1): 

INSTANCE b: blackcell 

W: wr(n-l, COLLAPSE) 

PLACE b ; w 

USING b(head(inn), inw) 

w(tail(inn), b.oute) 

MAKE oute ::= w.oute 

outs ::= join(WIRE[n] I b.outs,w.outs) 

67/ END 

81 



68/ BLOCK wrs(n, siz: integer) 

69/ HAVING (inn @n: WIRE[siz] 

70/ inw @w: WIRE[n] ): 

71/ (outs @s: WIRE[siz] 

72/ oute @e: WIRE[n] 

73/ INTENDED BEHAVIOUR 

74/ WHENEVER 

75/ (rise(clock»: 

76/ WITHIN (10 * n) 

77/ SET 

78/ 

79/ 

80/ 

81/ 

82/ 

83/ 

84/ 

85/ 

86/ 

87/ 

88/ 

89/ 

90/ 

91/ 

92/ 

93/ 

94/ 

95/ 

outs == inn; 

USE STRUCTURE 

(n ==== 1) 

{ INSTANCE w : wr (siz, COLLAPSE) 

USING w (inn, inw) 

MAKE 

outs w.outs 

oute w.oute 

(n > 1): 

INSTANCE b: brs(n-1, siz, COLLAPSE) 

w: wr(siz, COLLAPSE) 

PLACE b / w 

USING w(b.outs, head(inw» 

b(inn, tail (inw» 

MAKE outs ::= w.outs 

oute ::= join(WIRE[n] I w.oute,b.oute) 

96/ END 

97/ BLOCK brs(n, siz: integer) 

98/ HAVING (inn @n: WIRE[siz] 

82 



99/ 

100/ 

101/ 

102/ 

103/ 

104/ 

105/ 

106/ 

107/ 

108/ 

109/ 

110/ 

111/ 

112/ 

113/ 

114/ 

115/ 

116/ 

117/ 

118/ 

119/ 

120/ 

121/ 

122/ 

123/ 

124/ 

125/ END 

inw @w: WIRE[n] ): 

(outs @s: WIRE[siz] 

oute @e: WIRE[n] 

INTENDED BEHAVIOUR 

WHENEVER 

(rise(clock» : 

WITHIN (10 * n) 

SET 

USE STRUCTURE 

(n == 1): 

outs = inn; 

{ INSTANCE b: br(siz, COLLAPSE) 

USING b(inn, inw) 

MAKE 

outs b.outs 

oute b.oute 

(n > 1): 

INSTANCE w: wrs(n-1, siz, COLLAPSE) 

b: br(siz, COLLAPSE) 

PLACE w / b 

USING b(w.outs, head(inw» 

w(inn, tail (inw» 

MAKE outs ::= b.outs 

oute ::= join(WIRE[n] Ib.oute,w.oute) 

3.9.7. Sigma function 

The 'sigma' function is an important behavioural function: it converts a bit pattern on a bus 

into an (unsigned) integer. This function is of course named after the well known math­

ematical operator with the same name. It makes use of the ' decode' function which converts 

83 



the value on a single bit wire to 0 or 1 as appropriate. Again, recursion is used as the basic 

mechanism to access all the wires of the bus; if there is only one wire in the bus it is just 

decoded, otherwise the low order bit is decoded and 2 times the recursive call on the rest 

of the bus is added (line 5). 

1/ Sigma (lower, upper: integer, W: WIRE[*]) integer 

2/ IF (upper == lower) THEN 

3/ Decode(w[lower-1]) 

4/ ELSE 

5/ Decode(w[lower-1]) + 2*Sigma(lower+1,upper,w) 

6/ Decode(w:WIRE):integer ::= 
7/ IF (w == low) THEN 

8/ 0 

9/ ELSE 

10/ 1 

3.9.8. Error Corrector 

This example of a behavioural description is in fact a complete program; it shows a non-tri­

vial signal processing example - an error correcting function for a decoder. The decoder 

is taken from [42]. It takes as its input a 32 bit number, performs an error check on it, and 

corrects a specified set of disturbances. The specification suggests that when the function 

is activated, the input is stored at a specific array variable' a[i)' (line 6) on each rising edge 

of a clock signal (neither 'a' nor'i' have been declared in the example for the sake ofbrev­

ity). When output is required, it is set to ' a[i)' , with an error correction determined by the 

function' error' (line 11). The actual program (lines 13-43) consists of a collection of nine 

functions, many of which are recursive. 

1/ WHENEVER rise(clock) => 

2/ 

3/ 

4/ 

5/ 

6/ 

(select1 == 1): 

WITHIN (t1) 

SET 

i = (i + 1) MOD 32 

a[i] = input; 

84 



7/ 

8/ 

9/ 

10/ 

11/ 

12/ 

13/ 

14/ 

15/ 

16/ 

17/ 

18/ 

19/ 

20/ 

21/ 

22/ 

23/ 

24/ 

25/ 

26/ 

27/ 

28/ 

29/ 

30/ 

31/ 

32/ 

33/ 

(select2 == 1): 

WITHIN (t2) 

SET 

i = (i + 1) MOD 32 

output = a[i] + error(a[i],i); 

WHERE 

error(a: byte[32], i: integer) :byte 

IF correctable(a[i] ,i) THEN eval(a, 0) 

ELSE 0 

correctable (a: byte[32], i: integer) : BOOLEAN ::= 

(eval(a, 0) -- alfapow(O*i, eval(a, 0») AND 

(eval(a, 1) alfapow(l*i, eval(a, 0») AND 

(eval(a, 2) alfapow(2*i, eval(a, 0») AND 

(eval(a, 3) -- alfapow(3*i, eval(a, 0») 
• 

eval(a: byte[32], j: integer) :byte 

sum ( 31, a, j) 

sum(i: integer, a: byte[32], j:integer) : byte .. -

IF (i == 1) THEN partsum(a, i, j) 

ELSE exor(partsum(a, i, j), sum(i-1, a, j» 

partsum(a: byte[32], i, j: integer) :byte 

alfapow(j*i, a[i]) 

alfapow(n: integer, g: byte) : byte .. -

IF (n == 0) THEN g 

ELSE alfax«alfapow(n-1, g», 1, 8) 

alfax( g: byte, i, j: integer) : byte 

IF (i < 6) AND (i > 2) 

THEN (EXOR(g[j], g[i-1]) + 

85 



34/ 

35/ 

36/ 

37/ 

38/ 

39/ 

40/ 

41/ 

42/ 

43/ 

2*(alfax(g, i+1, j») 

ELSE IF (i -- 1) THEN (g[j) + 

2*(alfax(g, i+1, j») 

ELSE IF (i == j) THEN g[i-1) 

ELSE g[i-1) + 2*(alfax(g, i+1, j» 

exor(g, a: byte, i: integer) :byte ::= 

IF (i == 8) THEN EXOR(g(i), a(i» 

ELSE EXOR(g[i), a[i) + 2* (exor(g, a, i-I» 

EXOR(a,b: bit): bit ::= 

((-a) AND b) OR ((-b) AND a) 

The details of the algorithm are not of great interest here. The Transformer chapter shows 

how this behavioural description can be subjected to formal interactive transformations, 

and then converted into a correct structural implementation. This demonstrates the benefits 

of using high level synthesis tools. 

3.9.9. Traffic Light Controller 

This section describes a popular example of a finite state machine description: the Mead 

and Conway traffic light controller. The behaviour describes the operation of a controller 

of a set of traffic lights at a junction between a busy main road and a quiet farm road. The 

controller takes inputs from road sensors and from a timing device (line 3), and cycles the 

lights as appropriate (line 4), whilst giving higher priority to the main road. The example 

shows the use of a mapping function within the type declaration for the light colours (lines 

8-18). The specification of the behaviour (lines 19-93) shows the use of a number of state 

variables (lines 20-21), e.g. for remembering the state of the timers. Line 27 shows that 

it is the clock tick which is the main event in the system. When this happens, the simulator 

will find the conditions (as specified on lines 29, 34,39, 47, 52, 65, 73, 80 and 85) that are 

true, and will execute the statements following the condition. This generally leads to as­

signment of new values to state variables, and therefore to execution of new statements at 

the next clock tick. 

86 



1/ BLOCK tlc 

2/ HAVING (carhere,longtimeout,shorttimeout: WIRE): 

3/ (timer:WIRE 

4/ road,farmroad: colour) 

5/ TYPE colour ::= { IS (green, yellow, red) 

6/ REPRESENT BY lcols: WIRE [2] 

7/ WITH MAPPING 

8/ 

9/ 

IF (lcols [1] low) THEN 

10/ 

11/ 

12/ 

13/ 

14/ 

15/ 

16/ 

17/ 

18/ 

19/ INTENDED BEHAVIOUR 

ELSE 

IF (lcols[2] 

(green) 

ELSE 

red) 

IF (lcols[2] 

(yellow) 

-- low) 

low) 

20/ STATE roadgreen, roadyellow, farmroadgreen, 

21/ farmroadyellow ::= boolean 

22/ INITIALLY roadgreen=true, 

23/ roadyellow = false, 

24/ farmroadgreen = false, 

25/ farmroadyellow = false 

26/ WHENEVER 

27/ rise(clock) => 

28/ 

29/ 

30/ 

31/ 

32/ 

-carhere AND roadgreen: 

WITHIN (1) 

SET 

road=green 

87 

THEN 

THEN 



33/ 

34/ 

35/ 

36/ 

37/ 

38/ 

39/ 

40/ 

41/ 

42/ 

43/ 

44/ 

45/ 

46/ 

47/ 

48/ 

49/ 

50/ 

51/ 

52/ 

53/ 

54/ 

55/ 

56/ 

57/ 

58/ 

59/ 

60/ 

61/ 

62/ 

63/ 

64/ 

farmroad=red; 

roadgreen AND -longtimeout: 

WITHIN (1) 

SET 

road=green 

farmroad=red; 

roadgreen AND carhere AND longtimeout: 

WITHIN (1) 

SET 

road=green 

farrnroad=red 

timer = 1 

roadgreen = false 

roadyellow = true; 

roadyellow AND -shorttimeout: 

WITHIN (1) 

SET 

road=yellow 

farmroad=red; 

roadyellow AND shorttimeout: 

WITHIN (1) 

SET 

road=yellow 

farmroad=red 

timer=l 

farrnroadgreen=true 

farmroadyellow=false; 

farmroadgreen AND carhere AND -longtimeout: 

WITHIN (1) 

SET 

road=red 

farrnroad=green; 

88 



65/ 

66/ 

67/ 

68/ 

69/ 

70/ 

71/ 

72/ 

73/ 

74/ 

75/ 

76/ 

77/ 

78/ 

79/ 

80/ 

81/ 

82/ 

83/ 

84/ 

85/ 

86/ 

87/ 

88/ 

89/ 

90/ 

91/ 

92/ 

93/ END 

farmroadgreen AND -carhere: 

WITHIN (1) 

SET 

road=red 

farmroad=green 

tirner=l 

farmroadgreen=false 

farmroadyellow=true; 

farmroadgreen AND longtirneout: 

WITHIN (1) 

SET 

road=red 

farmroad=green 

farmroadyellow=true 

farmroadgreen=false; 

farrnroadyellow AND -shorttirneout: 

WITHIN (1) 

SET 

road=red 

farrnroad=yellow; 

farrnroadyellow AND shorttirneout: 

WITHIN (1) 

SET 

road=red 

farmroad=yellow 

roadgreen=true 

farrnroadyellow=false; 

The layout generated by the module generator tool for this example is shown in appendix 

A. 

89 



4. DESIGN METHODOLOGY 

90 



4.1. Introduction 

After definition of the language, we now discuss how the language should be used during 

the design process. Designing a circuit takes the form of a loop in which ideas are formu­

lated in the language, design tools are applied to test the validity of the work, the results 

of which are then used to formulate new ideas, and so on. Historically, designers worked 

in a bottom-up fashion, i.e. they decided what basic building blocks were required for the 

design, perhaps at the register transfer level or even lower, and the simulated the design to 

check the correctness. Such a methodology is not really suitable for a language such as 

STRICT, which is intended to be used at high levels, and which is first of all intended to 

be used with formal verification and transformation tools. 

4.2. Design Methodology 

The design process is divided into two distinct stages. The first tackles the production of 

a top-down design definition of the required component, while the second involves the de­

velopment, bottom-up, of a suitable implementation for the design. The first stage attempts 

to partition the design, and to ensure that realistic progress towards a solution is made using 

that particular partitioning. Early identification of design problems is possible using such 

an approach. Having completed the design, the implementation is produced by piecing to­

gether the simplest components, and then using them to construct the next level up, and so 

on. 

This methodology therefore results in designs which are hierarchical (or tree-structured) 

in organisation. The external nodes of the structure (or leaf cells) identify three types of 

object. The first are primitives. Primitives are objects which are provided by a particular 

implementation of STRICT and its design environment. They are organised into libraries, 

and will define the basic building blocks of the design system. As primitives, they will be 

'hard'. That is, if used, they will always appear the same in function or visible layout. The 

second form of external node are objects which are defined in the STRICT notation, and 

are therefore 'soft' , but which have been tried and tested previously. These objects will ef­

fectively be the entry points to previously completed designs which are now located in 

91 



public libraries. These two objects, as a consequence, provide two forms of library for use 

by a designer. The third form of external nodes are incomplete. That is, they contain no 

information regarding the implementation, and just provide a behavioural description. 

Such nodes cannot be fabricated and require further design work to be done by the designer. 

Every node (or component) in the design tree has a specification, and ultimately, an imple­

mentation. The specifications are used in validating the design as it progresses and the im­

plementation ultimately enables the layout to be generated. An incomplete design can still 

be validated as a whole, since the upper level nodes 'simulate' the required function of the 

currently missing lower level nodes. 

The STRICT designer is responsible for initially identifying the required behaviour, plus 

any constraints that must be satisfied, and capturing this information in the STRICf lan­

guage. He is then responsible for decomposing the design into suitable sub-components 

and providing suitable specifications and constraints, perhaps by using appropriate high 

level synthesis tools. He then defines the connectivity between the upper and lower level 

components. Once this is completed, he is responsible for checking the validity of his de­

composition, unless the decomposition was generated automatically by design tools. This 

may result in the need to modify the design as stated at either the upper or lower level. For 

example, constraints at the upper level may need to be relaxed or sub-components changed 

for better alternatives. Once the designer is satisfied, he may then resume the process with 

one of the sub-components, using its specification as the required behaviour. This process 

is repeated until the availability of primitives or previously defined components renders 

further decomposition superfluous. 

4.3. Design system 

In order to support the above design methodology, it is obvious that a variety of design tools 

are required. Such tools need to handle the validation of designs, the production of layout, 

the provision of feedback to the designer, the definition of new primitives, and so on. It is 

vital, however, that these tools are integrated. That is, it must be possible for a designer to 

switch easily between say simulating a portion of a design, to altering it and then simulating 

92 



it once again. This means that the tools must be designed in such a way that communication 

between them is straightforward. 

The tools provided within the design system must be able to support partial as well as com­

plete designs. Part of the strength of the design methodology is the ability of a designer to 

ask questions about the current state of a design. The answers to such questions will govern 

the direction in which the design should proceed. This is as true of the simulator as the 

layout system. A designer may wish to layout a small piece of the design, and then store 

it for future use. The designer should not be forced into having to produce the layout for 

the entire design at the same time, unless that is really what is wanted. This use of the design 

tools leads quite naturally to the idea of Incremental Silicon Compilation; that is, the pro­

cess of tackling self-contained parts of the design, before tackling and completing the over­

all design. 

The editor is used to enter all designer generated information. It initially accepts STRICT 

descriptions, and, as mentioned before, checks them for syntactic as well as certain seman­

tic errors, so that a design once accepted by the design environment will be known to be 

syntactically correct, and can therefore be processed with minimal checks. A designer is 

prevented from leaving syntactically incorrect and incomplete STRICT programs in the 

system. The alternative textual and graphical interface to the editor will allow alternative 

views of the same design to be shown. Such alternative views will permit a designer to get 

a feel for how the design is fitting together in two dimensions, as well as providing a con­

venient mechanism for navigating around it. At all times, however, the language is the 

master description. 

A rudimentary form of design validation is achieved through simulation. STRICT allows 

the designer to specify both intended behaviour and the structure the design requires to 

achieve this behaviour, thus making it possible for a simulator to provide feedback on 

whether the intended behaviour is properly implemented by the structure. 

The layout suite of tools is responsible for ultimately producing the masks for the chip in 

the appropriate technology. The STRICT language is seen as being technology indepen-

93 



dent, and only at the level of the primitives do issues such as which layer of metal to use, 

etc. become important. As mentioned before, the designer can, through the use of editor 

and STRICT language, influence the placement of components to a certain extent. In the 

short term, this is obviously desirable, but in the longer term, it is felt that as much as poss­

ible should be left to the design tools, so that the designer is not forced to specify informa­

tion which is not critical to the functional design. 

The simulator is not intended to be the ultimate tool as regards the validation of designs. 

Simulation is not able to provide a formal proof that two descriptions of the same thing are 

equivalent. A similar problem exists here ~ in the issue of testing software. Therefore vali­

dation of a design requires that formal mathematical proof on the design is necessary. Such 

a proof would be performed by a theorem prover, and would show that the implementation 

of the final circuit was an alternative version of the initial specification given by the de­

signer at the beginning. The theorem prover would be used in much the same way as the 

simulator, except that the prover would operate on the formal specification. The prover 

would therefore be able to validate parameterised designs. 

An alternative approach to using a theorem prover for post-hoc verification of an existing 

design is the use of formal transformations. This approach ensures that no errors are intro­

duced during the design process, by using transformations that are known to replace one 

specification by an equivalent other one. The approach allows the designer to partition and 

optimise the design without inadvertently changing the specification. 

The designer should also be allowed to import (parts of) designs from other design systems, 

or transport STRICT designs to other design systems, particularly if other design systems 

contain superior layout and fabrication facilities. 

The tool set should therefore contain: 

• a syntax directed text editor 

• a graphics tool 

• a simulator 

• a layout sub-system 

94 



• a theorem prover 

• a formal transformation tool 

• an EDIF interface 

Let us examine each of these tools in more detail. 

4.4. Syntax directed editor 

The use of a syntax directed editor, i.e. a text editor with built-in knowledge of the syntax 

of the language being edited, should help the designer to avoid introducing syntax errors 

into the text of the design, thereby eliminating one class of errors from the design process. 

Since a syntax directed editor will be able to build a parse tree of the text, the design system 

can take this parse tree as its input instead of the original text. 

4.5. Simulator 

In spite of the well known disadvantage of simulation ( the inability to exercise large de­

signs completely), simulators are still state of the art verification tools, although formal 

verification techniques are slowly making progress. 

The objective of a simulator is to validate that the functional and temporal operations of 

the design being simulated meet their specified requirements. This will not result in a for­

mal proof that the design is correct, but it will certainly increase confidence in its correct­

ness. 

The simulator should reflect the hierarchical design methodology which is encouraged by 

the STRICT language. The simulation process involves decomposing the design through 

the hierarchical structure defined by its linguistic description. The units of simulation are 

directly equivalent to the blocks of the STRICT language. 

The designer, through using the simulator, should attempt to validate the intended behav­

iours of the blocks in the design in a top-down manner. The intended behaviour of a block 

in the hierarchical design tree is validated by comparing it with a simulation of the intercon­

nected block behaviours from the next level down in the hierarchy. If the validation fails 

95 



this indicates a design error in the lower level of the hierarchy, or a need to relax the design 

constraints implied by the specification of intended behaviour at the higher level. When 

the validation has been completed, the designer may proceed down the design hierarchy 

validating adjacent levels in a similar manner. 

The top-down approach to simulation is totally compatible with the idea of an incremental 

design environment; simulation is carried out as the design evolves within the design sys­

tem. 

4.6. Layout generator 

An incremental approach to layout is compatible with a hierarchical design methodology; 

the natural partitions derived from the top-down design are used for the bottom-up imple­

mentation of the layout. The bottom-up activity iteratively refines the layout. The parti­

tioning also allows libraries of predefined STRICT blocks and primitives to be used with­

out disrupting the layout process. 

Layout information should be manipulated symbolically. This allows the high level parts 

of the design system to be technology (production rule) independent. The final stages of 

physical layout for mask definition are automatic. Thus the design system is able to, and 

does, support multiple technologies. Furthermore, design tools such as design rule checkers 

will not be required since the design will be correct by construction. 

4.7. Module generation 

In order to make it possible to generate silicon with some efficiency, the STRICT software 

should incorporate a general module generator interface, and in particular a PLA generator, 

which can make use of certain functional specifications of components. In addition, a li­

mited amount of interaction with the resulting layout should be achieved through the tex­

tual STRICT description, thus allowing the designer to influence the placement of compo­

nents in order to optimise the layout produced. 

96 



4.8. Graphical tools 

Graphical representation is a powerful method for representing designs. Graphical displays 

have the drawback that they cannot be used for formal manipulation, but they can give very 

accurate feedback to the designer, something that pages of text cannot easily do. 

The design system would therefore have a tool that would allow STRICT descriptions to 

be viewed in graphical form, but would otherwise not allow modifications to the design 

to be made. Modifications are only allowed on the original STRICT description. 

There are several aspects of a design that need to be represented, ideally in a form that iso­

lates the key information to be conveyed, and suppresses other data which are not relevant 

to the purpose: 

• The behaviour; 

• The structure; 

• The control flow; 

• The resource usage. 

The behaviour is better presented in textual form (it needs to be a concise model for simula­

tion or a formal specification for use in a theorem prover). The others are better expressed 

in a graphical form because of the need for human interaction. An example is the allocation 

of resources. Both structure and control flow could be represented either textually or 

graphically, and there is a case for doing both. Present schematic diagrams usually repre­

sent the structure of a system by showing graphically the major components and their inter­

connection [6]. Additionally, many chip architectures use a common data path to imple­

ment several different operations. A structural diagram of the data path must therefore be 

complemented by a control flow diagram such as a Petri Net, which can then be used as 

an aid to comprehension. A graphical view of the resources used by a particular imple­

mentation would also give useful insight into the state of the design. To summarise, the aim 

is to provide a comprehensive set of graphical tools to support the STRICT language which 

captures both the behaviour and the structure of hardware designs, even though it has fea­

tures like recursion, which are not easily shown in graphical form. 

97 



4.9. Formal Verification tools 

A relatively new development in the area of VLSI design is the use of theorem provers to 

verify circuit descriptions. These require the specification of the behaviour of a hardware 

design in a formal mathematical manner. Such specifications can subsequently be manipu­

lated to prove the equivalence of hierarchical or temporal properties of hardware designs, 

a process known as post hoc verification. Since (as explained before) it is claimed that func­

tional programs can be subjected to formal verification techniques, the designer should be 

able to submit a proposed decomposition of a specification to a theorem prover. Successful 

proof of such a decomposition should give great confidence in the correctness of a design. 

The design of theorem provers is a research area in its own right, and it was never the inten­

tion to write one from scratch as part of the STRICT design environment. 

We therefore examined the theorem provers which were currently available, to determine 

how suitable they were for the verification of hardware, and whether they would fit into 

the STRICT environment. The prover eventually chosen was the Boyer-Moore Theorem 

Prover [9] for reasons explained in chapter 10. 

4.10. Transformational synthesis 

One of the major problems of post hoc verification is that it requires considerable effort, 

and a large amount of expertise. An alternative approach is the use offormal transform­

ations, which allow the designer to start with a specification and perform correctness pre­

serving transformations on this specification, until an efficient design has been generated. 

The designer can then automatically generate a final implementation, whilst being confi­

dent of its correctness, due to the correctness preserving properties of the transformations 

used. 

There are very good reasons for wanting to do transformations. Suppose we need to imple­

ment a module that performs the calculation out= (a+b) * (a+b). A direct translation 

would yield a design with two adders and one multiplier. However, a competent designer 

would see that both multiplicands are the same, and that the design could therefore be im­

plemented using only one adder instead of two, in effect replacing the original calculation 

98 



with c=a+bi out=c*c. This is an example ofa transfonnation that reduces silicon area 

without affecting circuit speed. Other transformations involve trade-{)ffs between speed 

and area. For example, a module to implement the calculation out=a *b*c*d could do 

this in parallel using three multipliers (which would be fast, but take up a lot of area), or 

it could be done serially with one multiplier and a register to hold intennediate result (which 

would use less area, but would be slower). 

4.11. Interfaces with other systems 

The only standard formalism currently in use for the exchange of designs between different 

CAD systems is EDIF. We therefore investigated whether an EDIF interface could be inte­

grated into the STRICT system. 

99 



5. SYSTEM OVERVIEW 

100 



5.1. Introduction 

This chapter presents an overview of the design system. A diagram of the system is pres­

ented in Figure 10. Boxes generally refer to software systems; solid lines indicate the flow 

of data between them. Dotted lines refer to software systems outside of the STRICT system, 

such as CADENCE and the Boyer-Moore theorem prover. 

The main user interface to the system is the SAGA editor. It produces a parse tree of the 

STRICT description, which is written into a file. 

Some of the tools in the system require the parse tree. However, the STRICT description 

may contain parameterised cells, which must be further processed before they can be used, 

for example, for layout. This is the task of the Builder module, which produces a so called 

Design Hierarchy Tree from the parse tree. The design hierarchy tree is also written to a 

file. 

The system is essentially based around the SAGA editor and the builder, and uses interfaces 

to the parse tree and the design hierarchy tree to provide a path to the various subsystems. 

5.2. Author's contribution 

The following parts of the system as shown in Fig. 10 are the author's work. 

The author wrote the STRICT grammar (in conjunction with M.R.McLaucblan). The 

author wrote a set of lexical routines needed by the grammar. 

The author was solely responsible for writing the BUILDER module, which generates the 

design hierarchy tree from the parse tree. 

In order to be able to read or write the parse tree or design hierarchy tree as required, the 

author developed a set of procedural interfaces. These are used to: 

• take a data structure such as the design hierarchy tree, generated by the builder, and 

write it to a file in a suitable format. 

• read a file containing a parse tree or a design hierarchy tree, and generate appropriate 

data structures which can be used by the various tools. 

101 



The interface to the simulator contains a compiler that converts STRICf behavioural ex­

pressions into an assembly language format that is executed by the simulator. This compiler 

was also written by the author. 

A very detailed overview of the various parts of the code and how they fit together are pres­

ented later in this chapter. All in all, the total number of lines of code is about 20,000. 

In addition, the author was mainly responsible for development of the ideas behind the 

Transformer subsystem and the Viewer subsystem. However, these tools were all implem­

ented by others. All tools imported from elsewhere were of course also implemented by 

others. 

We now briefly describe the various parts of the system. 

5.3. The SAGA editor 

The SAGA editor [15] is a syntax-directed text editor, i.e. it has built-in knowledge of the 

syntax of the input language through the presence of a table driven parser subsystem. It can 

therefore locate syntax errors, and it can give hints as to what kind of input is expected at 

every position in the input file. 

Use of the editor requires the complete STRICT syntax to be made available in the ap­

propriate format, and it also requires some rewriting of the lexical input routines that come 

with the SAGA system. A parser generator then produces a file with parse tables, which 

is compiled with the editor. 

The editor offers the user general text editing facilities, as well as special commands that 

operate on entire syntactic units (sub-trees in the design), and it has special modes of oper­

ation which prevent the user from exiting the editing session after the introduction of syn­

tactic errors. 

When editing is completed, the editor dumps the entire parse tree to the file system, with 

the result that the parse tree is then ready to be picked up by the next set of tools. 

The editor is described in chapter 6. 

102 



parser 

generator 

STRICT 

grammar 

USER Saga 

Editor 

PLA 
generator 

Parser 

CMOS 
cells 
library 

File 
System 

Builder-+--........... 

Edif 
file . 

~----:. 
Simulator Cadence 

USER 
L--___ --J - - - ~'__ ___ _____' 

GKS 

rules 

libra 

Boyer­
Moore 
in ut file 

Boyer-Moore 
Theorem Prover 

USER Transformer 

GKS, rules library 

File 
System 

Fig. 10. Overview of the STRICT system 

103 



5.4.The BUILDER 

The BUILDER module is used in cases where design tools need the actual design hierarchy. 

This is particularly so in the case of the layout subsystem and the simulator. For example, 

if the parse tree contains the parameterised description for an n-bit register, and the 'build' 

section asks for a 16-bit version, BUILDER will produce a design hierarchy tree with 16 

levels, assuming that the register was specified recursively. All top level constants, as speci­

fied in the 'build' section, will permeate throughout the entire design, determining the 

actual sizes of busses, the depth of recursive calls, which parts of' case' statements will be 

used, and so on. The similarity with the difference between formal and actual procedure 

parameters in programming languages is quite appropriate here. 

BUILDER uses the procedural interface to the parse tree (see the section on procedural in­

terfaces below), and it will generate a file with the complete design hierarchy tree, includ­

ing modules fetched from libraries. 

BUILDER is described in chapter 7. 

5.5. Procedural interfaces 

In order to allow various tools to access the design, a set of procedural interfaces were 

written for this purpose. These correspond to the boxes marked 'extract' in Figure 10. 

There are two different interfaces: one to access the parse tree, and one to access the design 

hierarchy tree. The latter comes in two variations: one to extract the structure, and one to 

extract the structure and the behaviour. The second version was written specially for inter­

facing the simulator. 

5.5.1. Parse tree interface 

The parse tree access interface performs the following functions: 

• it opens the parse tree file if required; 

• it performs a recursive descent of the tree, and builds a data structure from it. 

The data structure is then available to the calling program. The calling program can then 

locate the required data, using a comprehensive set of search routines which accompany 

the interface. 

104 



5.5.2. Design Hierarchy Tree interface - simulator 

The interface takes the form of a number of procedures, which perform the following func­

tions. 

• retrieve the root instance of the tree. 

• retrieve the list of block instances generated by the decomposition of a block. If the 

specified instance cannot be decomposed then an appropriate flag is set. This pro­

cedure can be used to extract the design hierarchy in a recursive fashion, by calling 

it using the instances returned by a previous call. 

• retrieve a generic block record and its associated data structure, which includes the 

behavioural description. 

• initialise the interface. A flag is set if this is successful. 

• terminate the interface. 

5.5.3. Design Hierarchy Tree interface - layout 

One obvious difference between the simulator and the layout interfaces is that the simulator 

only reads data, while the layout interface both reads and writes data, for example to update 

routing information or add different versions of cells. 

The interface contains procedures to: 

• read or write the first record from the design hierarchy tree file, in order to extract 

or deposit technology related and other information. 

• read or write complete cell descriptions, including netlists and other information. 

• initialise or terminate the interface. 

5.6. Tool interfaces 

5.6.1. The Simulator interface 

The STRICT simulator interfaces to the design hierarchy tree, and has been written to make 

maximum use of STRICT languages features with a view to efficiency. 

The simulator interface is described in chapter 8. 

105 



5.6.2. The Layout interface 

The STRICT system has two layout interfaces. The ftrst is a GAELIC based system devel­

oped at Newcastle by Kinniment [45], which was used as a research tool into layout gener­

ation and routing algorithms. The second is an EDIF interface for input to other design sys­

tems, notably CADENCE which is available at Newcastle. Currently, only CADENCE 

offers a direct route to silicon. All development work on the GAELIC based system has 

now stopped. 

The layout interfaces are described fully in chapter 8. Example outputs are shown in appen­

dix A. 

5.6.3. The Module Generator interface 

Since the STRICT language has a facility for designating module generators, an extraction 

mechanism is available. PLA's are an obviously important part of most designs, and so an 

interface to a PLA generator has been provided. This is targeted towards the GAELIC based 

system, and uses a separate language called STATIC to achieve optimisation and generation 

of layout. 

The module generator interface is described in chapter 8. Example output from the module 

generator is shown in appendix A. 

5.6.4. The Viewer 

The viewer sub-system allows the designer to inspect the design in graphical form, using 

a mouse driven window interface. It has facilities for moving through the hierarchy of the 

design, inspecting connections, calculating the resource usage, reducing information over­

load, etc. The viewer interfaces to the parse tree produced by the SAGA editor. 

It is described in chapter 9. 

5.6.5. The Boyer-Moore interface 

In order to investigate the suitability of STRICT for the purpose of formal veriftcation, the 

STRICT system has been equipped with an interface to the Boyer-Moore Theorem Prover, 

a widely used tool for formal veriftcation. It interfaces to the parse tree, and produces a set 

of input statements for the prover, which have to be processed off-line. 

106 



Formal verification issues and the Boyer-Moore interface are discussed in chapter 10; ap­

pendix A shows some output from the prover for a simple STRICT example. 

5.6.6. The Transformer interface 

The transformer tool is interfaced to the parse tree, and uses Boyer-Moore rewrite rules 

as its underlying transformation mechanism. 

The interface is described in chapter 11, and some example output of the transformer is 

shown in appendix A. 

5.7. Code developed by the author 

A detailed overview of the main modules is shown in Fig. 11. Each module shows the ap­

proximate number of lines of code in brackets. 

All modules make use of the parse tree interface. The PLA generator, viewer and trans­

former directly use the generated data structure, as does the Boyer-Moore input file gener­

ator. 

The builder produces the design hierarchy tree. It accesses leaf cells from a library of com­

ponents. This library contains both layout level information and behavioural information, 

contained in a collection of pre-built parse trees for each component. Both kinds of in­

formation are attached to the tree, in order to make both simulation and layout possible. 

It was decided to implement the layout and simulator interfaces as two separate modules, 

largely because there is very little overlap between them. 

The layout systems need all interconnections at each level in the hierarchy to be decom­

posed down to the pin level. Behavioural information is not needed. In addition, the 

GAELIC interface performs some flattening for the sake of efficiency. The data structures 

used (simple linked lists) are quite straightforward and allow the required operations to be 

performed without any difficulty. 

107 



parse tree 

+ 
parse tree interface 

Boyer-Moore 

input file 

generator 
(1500) builder 

(5000) 

" simulator 
PLA generator 

high level netlist viewer 
transformer generator (2000) 

simulator behavioural 

language compiler (3000) 

simulator 

procedural 

interface ( 1000) 

1 
simulator 

Fig. 11. Developed code 

(3500) 

layout 

netlist 

generator 

(1000) 

EDIF 
file 
generator 

(1500) 

cell 

library 

access 

(1500) 

layout 
procedural 
interface 

( 1000) 

flattening 
(500) 

GAELIC 
layout 

The simulator interface, however, requires all interconnections at each level in the hier­

archy to be specified at the highest possible level, in order to gain the greatest possible effi-

ciency during simulation. For example, whilst the layout interface would regard a 32-bit 

bus as a collection of 32 pins, the simulator will start off with regarding it as a single entity. 

If the bus is split. for example using the 'mostsighalf' and 'leastsighalf' functions, it will 

be regarded as two 16-bit busses. Since the calls to these functions may be performed in 

108 



different parts of the STRICT description, and may also be nested to arbitrary depths, much 

more complex data structures are needed to keep track of the number of operations per­

formed on the busses. The advantage is that the simulator can achieve much higher effi­

ciency when operating on these high level structures. 

The simulator also requires the behavioural statements to be converted into a simple assem­

bly language. This part of the system is a fully operational code generator, as found in com­

pilers for high level languages. 

As a result, the procedural interfaces for layout and simulation, including the file formats, 

are completely different. 

5.8. System versions 

There are in fact two versions of the design system. 

The first and original one, called the SAGA system, runs under VAXNMS, and was 

written in Pascal. It uses VAX GKS for screen displays. It does not contain the EDIF inter­

face as described above. 

The second version is a C translation of the first system, and runs under Unix on SUN 

workstations, using X-Windows as the screen interface. It uses XGKS to drive the screen 

display under X. It does not contain the simulator and the GAELIC layout interface, whose 

usefulness is now doubtful. The front-end is the second generation SAGA editor, known 

as Leif, which is based upon the well known GNU Emacs editor, and is written in C. 

For the purpose of this thesis, we will make no distinction between these two versions since 

they accept entirely the same input language. 

5.9. Some code statistics 

We present some statistics about the size of the various subsystems, in terms of lines of 

code. Although the amount of code developed by the author is quite substantial, it can be 

seen that it forms only a small part of the overall system. 

109 



SAGA parser generator 
SAGA user interface 
SAGA editor 
LEIF parser generator 
LEIF user interface 
LEIF editor 
builder 
interfaces/generators 
viewer 
simulator 
transformer 
GAELIC layout system 
Boyer-Moore prover 

6000 
6000 
26000 
12000 
60000 
19000 
5000 
15000 
13000 
14000 
7000 
50000 
90000 

110 



6. THE FRONT END 

III 



6.1. Introduction 

The STRICT design system front end is a syntax directed text editor called SAGA[l5]. It 

contains a table-driven parser, and it therefore knows the syntax of the language being 

edited. Apart from the usual text editing operations, it can detect when syntactic errors are 

made by the user. 

Any text based system will need some text editing facility as its front end. Since the empha­

sis in the STRICT system is on correctness, it seems wholly appropriate to start at the very 

point where the text is typed by the user, so a syntax directed editor like SAGA is a natural 

choice. 

The editor is screen-oriented, with most commands represented by a single keystroke. 

Some less frequent commands have to be typed as ordinary words. The editor operates in 

four different modes: view mode, select mode, modify mode, and argument mode. In view 

mode and modify mode the editor operates as any screen oriented text editor. In argument 

mode, a number of sophisticated combinations and repetitions of ordinary commands can 

be typed. Select mode provides tree operations, i.e. operations that work on syntactic units 

of the STRICT language. 

SAGA is a large software system, containing a sophisticated parser generator, a window 

interface for VT220 terminals and a version control system, as well as the actual text editor. 

A number of modifications to the source code had to be made in order to make it suitable 

for STRICT editing, including modifications to the lexical scanning routines and addition 

of extra commands to call the appropriate design tools. For example, a special routine was 

necessary to detect the start and end of a STRICT comment. 

6.2. Setting up the Editor 

Before compiling the editor, it is necessary to specify a grammar for a particular language, 

in this case STRICT. This grammar is written in a BNF type notation, and must be suitable 

for LALR parsing. A parser generator will produce a number of tables from the grammar, 

which are included in the source code of the editor at compile time. 

112 



The STRICT grammar contains more than 300 production rules. 

6.3. Overview of Operation 

Once the editor has been successfully compiled, it will accept input fIles and allow them 

to be edited as ordinary text fIles. This includes the usual text insertion, deletion, copying, 

searching, replacement, etc. etc. of text. It also, however, passes all input to the parser sub­

system, which uses Ghezzi's incremental parsing algorithm [28]. The parser is capable of 

building and modifying a parse tree for the input text. The user has the option of asking the 

editor for the state of the parser (e.g. are there currently any syntax errors?), and the editor 

is then able to tell the user where errors occur and what kind of tokens are legal at any point 

in the input stream. All of these features help the user to avoid and quickly rectify syntactic 

errors. 

6.4. Editor output 

Once the user exits the editor, the input file is rewritten if necessary, and also the complete 

parse tree is written into a separate file. If the user exits the editor whilst there are still syn­

tactic errors present, he will be warned about this, and the parse tree will be invalidated. 

An invalid parse tree will be detected by subsequent tools in the design system. Some tools 

will actually use the memory based parse tree if possible. 

Once a correct parse tree has been created, other tools in the design system will be able to 

use it. These tools are described in subsequent chapters. 

113 



7. THE BUILDER SYSTEM 

114 



7.1. Introduction 

As explained in the chapter 5, BUILDER is used in cases where tools need the actual design 

hierarchy, particularly in the case of the layout subsystem and the simulator. BUILDER 

performs a large number of semantic checks, and generates appropriate diagnostics when 

required, including a dump of the design tree when an exception occurs. It also builds ap­

propriate data structures for subsequent tools. It compiles behavioural expressions into the 

symbolic machine language required by the simulator. 

7.2. The 'builder' procedure 

7.2.1. Requirements 

BUILDER is required to perform the following tasks: 

• Firstly, to open the parse tree file, and check that it is valid. 

• Secondly, to perform a recursive descent of the parse tree, using an appropriate part 

of the procedural interface, with the aim of building data structures in memory. These 

data structures are generally in the form oflinked lists, which contain all information 

originally present in the text file containing the STRICT description of the design. 

Since a STRICT design is a collection of blocks, the top level of the data structure 

is a linked list which contains the names ofthese blocks, as well as pointers to linked 

lists that describe the individual properties of these blocks. The recursive descent 

makes use of grammar rule numbers, stored within the parse tree by the parser sub­

system of the SAGA editor, to decide which right hand side alternatives of grammar 

rules have been applied during parsing. Since a complete parse tree is available, 

BUILDER is able to locate and process all type declarations within a block first, be­

fore proceeding to other parts of the block. This allows it to process block headers, 

which may contain typed busses, after the type information has become available. 

• Thirdly, to create, after the recursive descent has been completed, a complete mem­

ory based data structure describing the entire design hierarchy tree. 

• Finally, to output the design hierarchy tree in a format that is suitable for either layout 

or simulation. This involves generating netlists in the appropriate format, and, in the 

115 



case of simulator output, calling upon a language compiler to convert behavioural 

expressions into a stack language format that can be executed by the simulator. 

The major part of this work, which is actually performed within the module itself, involves 

building the design hierarchy tree and the appropriate netlists. Building the actual design 

tree involves, amongst other things, replacing formal parameters with actual parameters, 

resolving 'if' and 'case' statements based upon the values obtained, calculating the sizes 

of busses and the values offunction calls based upon the values of actual parameters, locat­

ing definitions of functions and blocks, and so on. All of this work has to be performed 

whilst descending recursively down the hierarchical levels of the design tree, and building 

appropriate data structures whilst doing so. 

This work is done by a recursive procedure, which has the following outline: 

Procedure BUILDER 

If we do not have an empty tree then locate the 'build' section, 

and locate the function call that requests the top level of the design. 

Locate the block that was requested. 

Locate pointers to definitions of parameters, constants, types etc. 

Check any assertions that may be present, and quit if they fail. 

Determine sizes of all busses by expanding types. 

Find the appropriate lists of instances, by checking guards if necessary. 

If the instance is a copy of a previous cell, indicate this and return. 

For all instances in the instance list: 

allocate records, initialise, and link into the tree. 

if instances have subcells, call BUILDER recursively. 

if instances use library cells, locate and extract them. 

If layout information is required: 

build the netlist at this level. 

If simulator information is required: 

build the required netlists, 

116 



compile all behavioural expressions. 

end BUILDER 

The most difficult parts of this list of tasks are the determination of bus sizes and the build­

ing of netlists, both for the layout system and the simulator. A discussion of the problems 

follows in the next section. 

As discussed above, the compilation of behavioural expressions is performed by a language 

compiler, which is held in a separate module. It is discussed in more detail in the next 

chapter. 

7.2.2. Overview of problems 

Let us look at a STRICT description in order to demonstrate the problems that arise during 

the creation of a design hierarchy tree. First, let us look at how hierarchy is created in the 

following (partial) example: 

build { 

instance f: foo(16) 

where 

block foo(n: integer) 

having (x, y: posint(n)) 

type posint(n: integer) .. - ..... . 

structure 

instance a,b: bar(n-2) 

using a(head(x) , tail(y)) 

BUILDER goes through the following steps: 

117 



• It locates the function call 'foo(16)' within the 'build' section. It then searches for 

the definition for block 'faa', extracts its formal parameter list, and binds the name 

'n' to the actual value 16. 

• It calculates the sizes of busses 'x' and 'y' of 'faa'. This involves evaluating 'po_ 

sint(n)'. A search for 'n' will find it as the formal parameter of 'faa', with actual 

value 16. The definition of 'posint' is located within 'foo', and its formal parameter, 

also called 'n', is now bound to the actual value offormal parameter 'n' of 'foo', i.e. 

16. Note that we have different scopes for the same identifier here. Any reference to 

identifier 'n' within the definition of 'posint' will refer to the formal parameter 'n' 

of posint; if we had chosen to call the formal parameter of' posint' , say, 'm', the value 

of formal parameter 'n' of 'foo' would have been used instead. After the type 'po­

sint(n)' has been evaluated, 'x' and 'y' are known to be 16 bits wide. 

• A new level in the design hierarchy is created for 'foo'. BUILDER then turns its 

attention to the sub-modules of 'foo'. 

• BUILDER finds that there are two sub-modules of type 'bar(n-2)'. It attempts to 

calculate the value 'n-2'. It locates 'n' as the formal parameter of 'foo' with actual 

value 16, and calculates 'n-2' to have the value 14. It then recursively deals with 'bar' 

in the same way as it did with 'foo'. 

• Finally, the netlist between 'a', 'b', and 'foo' is determined, by evaluating the func-

• tion calls in the 'using' section. This involves dealing with the actual parameters of 

the function call 'a(head(x), tail(y)" which in turn involves locating the function de­

finitions for 'head' and 'tail' (both pre-defined), dealing with their actual para-

meters, and executing them. 

Let us now look in more detail at the steps required to evaluate function calls. This is clearly 

a recursive process: the actual parameters are expressions that may involve calls to func­

tions. As an example, let us look at the arithmetical function 'log2' discussed in the Intro­

duction: 

118 



10g2(100) 

where 

10g2(n: integer): integer 

if (n -- 1) 

then 0 

else 1 + 10g2(n div 2) 

The steps taken by BUILDER are as follows: 

• The definition of 'log2' is located. There are again scope rules that must be observed; 

first the local 'where' section is searched, then the 'where' section associated with 

the behavioural specification, then the 'define' section within the block, and finally 

the list of predefined functions. 

• The formal parameter 'n' of 'log2' is bound to value 100. 

• The body of 'log2' is executed. This involves calculating the condition 'n==l' and 

subsequently evaluating the 'then' or 'else' branch as appropriate. 

• If the' else' branch is executed, 'log2' will be evaluated recursively, with a new actual 

value for formal parameter' n' . 

7.2.3. Chosen solution 

In order to deal with the recursive nature of the STRICT descriptions, the BUILDER code 

defines a routine to deal with each structure. This routine then calls itself recursively when 

required. 

Apart from this, it should be obvious from the description above that a lot of searching is 

required, determined by scope rules for various parts ofthe language. An efficient method 

for doing this is as follows. Each routine associated with each language structure has 

amongst its parameters a number of pointers. One of these points to the recursive structure 

itself. The other ones point to a set of so called search environments which are used to search 

for identifiers and their values. The environments are searched in the order in which they 

are passed to the routine. This order must obviously be chosen carefully, so that the scope 

rules are obeyed. If a routine calls itself recursively, it will normally pass the same search 

environments in the same order. Obviously, different language structures (such as types and 

119 



functions) will require different search environments, although in some cases they might 

have similar search environments which are passed in a different order. 

Search environments are therefore very important. They are implemented as follows. 

Each search environments is a linked list. Each structure in the list contains pairs of names 

and pointers to associated information. This information might for example be an integer 

value (if the name was defined as a constant or an actual value of a function parameter), 

or it might be a pointer to a data structure (for example if the name refers to a type definition 

or a function definition). Such structures can be concisely implemented using the PASCAL 

'variant record' feature, or the C 'union' feature. As a result, a uniform search mechanism 

can easily be implemented. 

7.2.4. Success of method 

The use of recursive programming techniques appears to have had two major advantages: 

• Keeping the size of the module within reasonable bounds 

• Increasing the reliability of the software. 

We regard BUILDER as an example of a concise and reliable software module. No signifi­

cant bugs have come to light, even though the software has been extensively used by stu­

dents. 

Once the design hierarchy tree has been created, output is generated for the layout tools or 

the simulator. 

7.3. Layout output 

Layout output consists of a hierarchical tree description of the design, which is written into 

a file in a compact format. The file includes a header, which describes a number of general 

features such as the technology used. For each block in the tree, the following information 

is generated: 

• names of busses, with their sizes (number of pins), types (input, output, or in-out), 

and the edge on which they reside; 

• a list of subblocks, and perhaps their relative placement; 

120 



• a netlist, i.e. a description of the interconnections between the pins. 

The file can then be processed by the placement and routing tools of the layout subsystem, 

before GAELIC output is fmally created. 

7.4. Simulator output 

Simulator output also consist of a hierarchical tree description ofthe design. which is again 

written onto a file in a compact format. For each block in the tree, the following information 

is generated: 

• names of busses, with their sizes (number of pins); 

• a list of subblocks; 

• a high level netlist. Unlike the layout system, simulator netlists are not decomposed 

down to the pin level, since the simulator can operate more efficiently on entire 

busses. If a 16 bit output from one block is connected to a 16 bit input bus from 

another block, it is not necessary to split this net up into 16 separate subnets; 

• the behavioural expressions, compiled into symbolic machine language. These will 

be used by the simulator to schedule timing events and calculate appropriate data va­

lues. 

7.5. Other subsystems 

Other subsystems not mentioned above do not rely on the BUILDER, but interface directly 

to the parse tree. They therefore use the appropriate procedural interface to extract the re­

quired data structures. 

121 



8. INTERFACE TO TRADITIONAL TOOLS 



8.1. Introduction 

This chapter discusses the interfaces to what we regard as 'traditional' VLSI design tools, 

namely the simulator (in particular, the language compiler), the layout tools, and the mod­

ule generator. These interfaces were written as part of the requirement that STRICT should 

not just be a high level modelling language for use with new formal verification and syn­

thesis tools, but that the language should also be able to interface to tools that allow de­

signers to apply traditional low level simulation techniques, and generate efficient layout 

at the end of the day. 

8.2. Simulator 

8.2.1. Extraction 

The simulator uses the procedural interface on the design hierarchy tree which is generated 

by the builder program. The interface procedures themselves were described in chapter 5. 

Here we describe the data structures used in the interface. 

8.2.2. Language interface 

STRICT is used to define a design in a hierarchical manner. Since each level in the hier-

archy must have a behavioural specification, it is possible to perform two different kinds 

of simulation: 

• The usual kind, in which the simulator receives some input values for a decomposi­

tion at a certain level, and calculates the resulting output values. These then need to 

be inspected for correctness; 

• So called behavioural comparison: first calculate the result of the top level specifica­

tion, then simulate the low level decomposition, and finally compare the results, 

which should be identical. 

The simulation model consists of interconnected, high level functional blocks. The func­

tional blocks have behaviours which are derived from the STRICT behavioural descrip­

tions. As a result, the interface can be divided into two areas, generic and schematic. 

The schematic interface provides structural information about the block instances, their in­

terconnections, and which generic descriptions are required. This part of the interface can 

123 



therefore be regarded as a high level netlist. The connections are not usually decomposed 

down to the individual pin level, but only as far as required by the STRICf description. 

We will not describe this part of the interface in any detail. 

The generic interface provides behavioural descriptions of the simulation blocks, and their 

ports. This is done by converting the behavioural specification section into an appropriate 

data structure, and converting the actual behavioural expressions into assembly language 

instructions which simulate a stack machine. These instructions are then interpreted by the 

simulator. This stack language is now described in some detail. 

8.2.3. The stack language 

Behavioural descriptions must be passed across the interface between STRICT designs and 

the simulator. An important part of the operation of the simulator consists of evaluating the 

behaviour of functional blocks within the design hierarchy. The interface provides the 

simulator with a behavioural description of these blocks, in terms of lists of stack language 

operators and operands. 

The operators are composed into expressions which are associated with the various 

STRICT clauses. There are four major data types: integer, real, boolean and bit-string. The 

integer, real and boolean operators do not require a detailed description here. Bit strings, 

which are associated with signals and ports, may be of variable length. Operators which 

address a pair of bit strings left pad the shorter string with zeros before processing them. 

Leading zeros are stripped from the resulting string before entry onto the stack. 

A short notation used to describe the stacked data items in the list is given below. A data 

item is shown as a single letter, indicating the type of the item, and a number. The number 

uniquely identifies the item. The letter can be either 'i' (integer), 'r' (real), 's' (bit string), 

or 'd' (any type). The notation 't(sl)' means the start position within string 'sl', while 

'}(sl)' means the length of 'sl'. 

The list of instructions is as follows. 

124 



operator operands old stack new stack purpose 

LOADS port name dl Load signal data to stack 

STORS port name dl Store signal data from stack 

LOADV var name dl Load a state var 

STORY var name var dat Store state var 

CALLS funct no depends Call standard function 

MARK Mark parameter list 

CALLU funct name depends Call user function 

LOADP number dl Load param 

RETU dl Return from user function 

LOADC data item dl Load constant onto the stack 

CEQ dl,d2 d2=dl Compare: equal? 

CNE dl,d2 d2<>dl Compare: not equal? 

CLT dl,d2 d2<dl Compare: less than') 

COT dl,d2 d2>dl Compare: greater than" 

CLE dl,d2 d2<=dl Compare: less than or equaJ'l 

COE dl,d2 d2>=dl Compare: greater than or equal? 

ANDB bl,b2 bl AND b2 AND booleans 

ORB bl,b2 bl OR b2 OR booleans 

EXORB bl,b2 bl XOR b2 Exclusive OR booleans 

NOTB bl NOTbl NOT boolean 

LABL label num Define label 

JMPT labelnum bl Jump forward on TRUE 

JMPF label num bl Jump forward on FALSE 

JMPA label num Jump forward always 

ADDI il,i2 i2+i I Add integers 

SUBI iI.i2 i2-il Subtract integers 

MULTI il,i2 i2*i I Multiply integers 

D1YI il,i2 i2D1Y il Divide integers 

MODI i l,i2 i2MODil Modulus 

NEG! il -il Negate integer 

EXPI i l,i2 i21\il Power of an integer 

ADDR r1.r2 r2+r1 Add reals 

SUBR rl,r2 r2-rl Subtract reals 

MULTR rl,r2 r2*r I Multiply reals 

DIYR r1.r2 r2/r I Divide reals 

NEGR rl -rl Negate real 

EXPR rl,r2 r2"r I Power of a real 

ANDS s I.s2 sl AND s2 AND bit strings 

ORS sl,s2 51 OR s2 OR bit strings 

NOTS sl.l(s2) NOTs2 NOT bit string s I and pad 

EXORS s I.s2 51 XOR s2 EX OR bit strings 

12:' 



SUBS sl,t(s2),I(s2) s2 substring from bit string 

CONS s I,I( s I ),s2 s(s2+51) Concatinate bit strings 

RLSS sl,shift s2 Right logical shift 

LLSS sl,shift s2 Left logical shift 

CBS bl sl Convert boolean to bit string 

CSB sl bl Convert low order to boolean 

CSIS isl sl Convert signed int to bit string 

CSSI sl isl Convert bit string to signed int 

cms iul sl Convert unsigned int to bit string 

csm sl iul Convert bit string to unsigned int 

The list shows a typical set of arithmetical, logical, comparison, conversion, and flow con­

trol operations. Most instructions can only handle data items of one particular type. The 

conversion operators are needed particularly when operations are performed on bit strings 

associated with ports; these usually need converting to integers or booleans before it is 

possible to proceed. 

We now describe how user functions are supported. The relevant operators are: 

• MARK. This marks the bottom of a stack frame. Input parameters are loaded onto the 

stack after the MARK but before the function is called. 

• CALLU <name>. Evaluate the function <name>, where <name> is a character 

string that is unique within the behaviour description of the simulation function 

block. 

• LOADP <number>. Retrieve a parameter and pop it onto the stack. <number> indi­

cates the position of the input parameter in the stack, up from the MARK. 

• RETU. Return to calling routine. The function's output value is assumed to be on the 

top of the function's stack frame. The stack is restored to its pre-MARK state, but 

with the function output value on the top. 

For example, the function call'max(a, b)' with the STRICT definition of 'max' as follows: 

max(x, y: integer): integer ::= 

if (x > y) then x else y 

will be expressed in the calling code as: 

126 



MARK 

LOADS a 

CSUI 

LOADS b 

CSUI 

CALLU max 

Where the 'max' routine is compiled as follows: 

LOADP 1 

LOADP 2 

CGTI 

JMPF 99 

LOADP 1 

RETU 

LABL 99 

LOADP 2 

RETU 

The calling code loads the parameters and converts them to integers, before calling the rou­

tine. The routine itself loads the parameters on the stack, performs a comparison, and then 

performs a conditional jump, which results in the biggest of both parameters to be loaded 

onto the stack before the routine returns to the calling program. Note that the functional 

notation used in STRICT does not require the use of backward jumps, which would have 

made the interface data structures more complex, and the simulator algorithms less effi­

cient and thus slower. 

The 'calls' operator is used to execute predefined functions. The following special func­

tions are currently available: 

• CHANGE. This indicates whether a port's signal data has changed during the current 

simulation cycle. The input stack must contain the port's name. After execution, the 

output stack contains a boolean data item: true if changed, false otherwise. 

127 



• SIZE. This function returns the binary width of a port, i.e. the number of bits or wires 

in the net connected to the port. The input stack contains the port's name. After execu­

tion, the output stack contains an integer data item: the port's width. 

8.3. Layout interface 

The STRICT system has access to a suite oflocally developed automatic floorplanniog and 

routing tools for physical layout. These consist of a library of CMOS cells including gates, 

flip-flops and input/output pads; a chip planner which constructs a hierarchical floorplan; 

and a two layer metal router which puts in the detailed connections. These tools are fully 

automatic. The floorplanner works by modifying the STRICT design hierarchy to be more 

suitable for layout. It may flatten some areas, or partition others, the aim being to create 

a hierarchy of cells with similar numbers of connected subcells. Subcells are then collected 

together in groups, either horizontally or vertically, or in combinations of the two, so as to 

fit the required cell area with the smallest overlap. When the floorplan is complete, the 

router establishes a graph representing the channels between cells, and uses a greedy chan­

nel router to determine how wide each channel needs to be in order to contain the connec­

tions. This is an iterative process; first the horizontal channels are expanded, and then the 

vertical channel routing is done. Vertical channel routing may require alteration of the hori­

zontal routing, and so on. Iterations continue until the layout is complete. The final product 

is a GAELIC file. 

8.3.1. GAELIC interface 

All necessary data is extracted from the design hierarchy tree created by the BUILDER pro-

gram, using the appropriate procedural interface. 

After extraction, it is often be necessary to flatten the design. Flattening is a form of opti­

misation. Due to the frequent use of recursion in STRICT, designs will have many levels 

of hierarchy, which may not result in efficient layout. Every recursive function call will 

create a new level in the hierarchy, and each new level will have its own bounding box 

(causing waste of silicon area, and less efficient routing). Flattening was discussed in sec­

tion 3.9.5. 

128 



Another problem in extraction is the fact that GAELIC allows only 6--character identifier 

names, so the layout interface will map names wherever appropriate. Again, this means 

avoiding name clashes. 

GAELIC is a low level layout language similar to CIF [51]. It is used to define geometric 

shapes, and has support for defining hierarchy, scaling and rotating of shapes. None of the 

STRICT software directly generates GAELIC statements. 

8.3.2. EDIF interface 

EDIF (Electronic Design Interchange Format) [24] was developed to facilitate the inter-

change of data between CAD systems, possibly of different vendors, and has rapidly be­

come the most popular format for this purpose. 

EDIF is S-expression based, and allows the capturing of different views of a design, includ­

ing that of a netlist. 

The CADENCE VLSI Design system, a commercial package obtained through Eurochip, 

and with a route through to silicon, comes with EDIF input and output, and so a basic EDIF 

interface was written for STRICT. 

Extraction uses the same procedural interface as the GAELIC interface. Generation of 

EDIF statements is done bottom-up, since blocks cannot be used before they have been 

declared. 

8.4. Module generator interface 

Module generators are an important part of any VLSI design system. They allow efficient 

design of possibly large subsystems of a design, and therefore contribute significantly to 

keeping the overall design cost down. 

STRICT has a language construct to allow the designer to designate a particular module 

generator for the design of a structure. This is done through a variation of the 'use structure' 

statement, which allows a string to be specified between the words 'use' and 'structure'. 

Only one module generator is currently implemented: the PLA generator; this generator 

can therefore be called by writing use ' PLA I structure. Other generators can eas­

ily be added to the system. 

129 



A module generator uses the procedural interface to the parse tree to extract an internal data 

structure from the design. This data structure is then subsequently scanned for the presence 

of the required 'structure' statement, followed by an extraction of all relevant information. 

We now describe the operation of the PLA generator. 

8.4.1. PLA generation 

Since the GAELIC layout system already has a PLA generator, including appropriate mini­

misation tools, the STRICT description of the PLA is simply translated into the input lan­

guage for this system, called STATIC. Further operation is then carried out off-line. 

The programming language STATIC can be used to describe the state transitions for a finite 

state machine (FSM). The aim of the PLA generator is to take a STRICT description and 

convert it into an equivalent STATIC program which, when used in conjunction with other 

existing programs, can be used to generate the GAELIC layout description of a PLA. 

An example is shown below. 

The program is called from within the STRICT Editor, running automatically when the 

command to build layout is entered. As described above, it is called only when the STRICT 

program contains the call to the PLA generator. For each FSM in the description a STATIC 

program is generated and placed into its own file. Each file is then processed in the back­

ground while the STRICT editing session progresses. 

130 



9. THE VIEWER 

131 



9.1. Introduction 

Conventionally, hardware design has been achieved by the use of a series of schematic dia­

grams. These diagrams are well established [6], and a convenient way to express low level 

descriptions. However, a language such as STRICT is intended for the design of higher 

level and more complex systems. One of the problems is that STRICT has features such 

as recursion, which are not easily shown in graphical form. 

Whilst some high level tools already exist [22], the design process, especially at high levels, 

is still a manual task relying on the skill and experience of the designer to trade off the extra 

hardware needed for most parallel implementations of an algorithm against the time re­

quired for a serial implementation. This makes it very important for a designer to be able 

to see the resources used by a particular implementation and how the implementation might 

be altered to fit with constraints of speed, silicon area or complexity. Here an appropriate 

representation medium can significantly reduce the design time if key aspects of the design 

data are provided clearly. Textual descriptions rarely express the concepts of control and 

data flow which may be necessary to give the designer the insight he requires into the opti­

misation of his algorithm and its implementation, and it is useful to illustrate the resources 

used during operation of the hardware by showing the total time taken and the silicon area 

used. 

The Viewer is a high level tool intended to capture and display such properties of STRICT 

designs. In particular, we wish to represent the following: 

• parameterisation, where present; 

• recursive properties of cells; 

• structure, including hierarchy, port information and netlists; 

• control flow, where specified; 

• resource usage, including area and speed. 

It is important to realise that the aim here is to represent all properties, particularly the struc­

tural ones, in a form which makes them very clear to the user. There need be no correspon-

132 



dence whatsoever with the eventual layout generated by automated routing tools. The dis­

play should be purely symbolic, and should be optimised for clarity towards the human 

user. 

9.2. Author's contribution 

The author was responsible for the ideas behind this tool, and for the parse tree interface 

that it uses. Programming of the viewer was done by a Research Associate, under the direc­

tion of the author. The ideas are presented here in the form of screen dumps that show the 

output of the viewer when used on the recursive n-bit register. 

9.3. Extraction 

The viewer uses the procedural parse tree interface to build an internal data structure from 

the design. This data structure is subsequently used to extract all relevant information. 

9.4. The example 

The description of the n-bit register presented in chapter 3 illustrates the ideas behind and 

the use of the viewer. In this example the input, 'in', of the register is of type 'posint(n)', 

an n-bit positive integer, and the intended behaviour is that the 'out' port of the register is 

set to the value of the 'in' port 10 time units after a clock change. The structure of the regis­

ter is recursive. An n-bit version is composed of an instance of an (n-l)-bit version with 

a flip flop: 

BLOCK Register (n : integer) 

HAVING (in : posint (n) 

clock : binary) : 

(out: posint (n)) 

INTENDED BEHAVIOUR 

WHENEVER change (clock) 

WITHIN (10) 

USE STRUCTURE 

(n == 1) : 

SET out = in; 

133 



END 

INSTANCE f : flip_flop 

USING f(in, clock ) 

MAKE out: : = f . out 

(n > 1) 

INSTANCE f : flip_flop 

tailreg : Register (n-1 ) 

USING f(head(in ) , clock) 

tailreg (tail(in), clock) 

MAKE out :: = J OIN(pos int (n) If. out, tailreg. out ) 

regist 

CLOCl\ 

IN UT 
REGISTER 

Fig. 12. Top level view 

u h ' tructures annot normall be di pIa ed in schematic form. In general , in tance are 

repr ' ented a rectangl s, and conne lions are represented b lines joining the rectangle . 

134 



When the viewer is entered, the top level of the hierarchy i hown in a window on the 

creen. Figure 12 shows the register a it would appear initially on the creen . 

The top level view shows a named box representing the block with its ports . Input ports are 

shown on the left and output ports on the right. Ports which can be u ed both as input and 

outputs are shown with the inputs. 

9.5. Traversing the hierarchy 

A menu on the right hand side of the screen shows the options available to the u er. At the 

top level of the design hierarchy the user can choose to view the block structure, and at 

lower levels options are available to descend further, or ascend one leve l. For the regi ter 

example, the structure takes the form of a case statement, becau e the regi ter i de cribed 

recursively, and the user must choose which condition to view. Havi ng cho en to iew the 

structure, the prompt 'choose condition' and a menu of the condition will be di played ( ee 

Figure 13). 

regist 

ICHOOSE CONDITION I 

QQ~ REGISTER 
IN LIT 

( N ) 

Fig. 13. View Structure option 

The user picks a condition, and the tru ture for that condition is di spla ed. If the user later 

wants to see th ' tructure fo r another condition, it is necessar to ascend to the hierarchical 

135 



level at which the choice was made and selec t 'view structure ' (or ' view ubcelJ' ) agai n to 

obtain the appropriate condition choices. Figure 14 show the case when condi tion > 1 

is cho en. 

regist 

IREGI STER 

T II.ILRE ! 
rr---t-~ REG I ST 

(rr1) 

Fig. 14. Option N > 1 selected 

9.6. Structure and interconnect 

In a structural view such as that shown in Figure 14, instances are represented by boxes with 

text. The tex t inside the boxes takes the form: 

<insta nce name > : <b l ock type> [ « parameter»] 

All names shown on the picture are truncated to avoid the use of different fo nt sizes. As in 

the top level, representation inputs are on the left and output on the right. The dimen ion 

of the boxes in the diagram are not related to physical size , but have been determi ned for 

viewing purposes : all boxes in a view have the same length , and the height depends on the 

number of ports in an instance. 

136 



TAILREG wr f;.-

Fig. 15. Illustrating Join 

If the user wishes to see the direct representation of a particular interconnection, a 'net info' 

facility is available. The representation of interconnect is the most complex part of the 

viewer. Conventional schematics usually show interconnect much as it will occur in the 

physical layout. However, in STRICT, interconnect is described at a higher level, and the 

aim of the viewer is to keep a one to one correspondence with the text. Interconnect is de­

fined in the 'using' and 'make' sections. Each statement in the 'make' section consists of 

the name of an output port for the block and all the signals that connect to this port. Each 

statement is considered by the viewer to be an entity, that is, a net. In the 'make' statement 

represented in Figure 15, the wire from 'f.out' joins the bus of type 'posint(n-l)' from 'tail­

reg.out' to form a bus oftype 'posint(n)' at port' out' . The viewer represents this statement 

by one net. Each statement in the 'using' section is more complex. There is one statement 

for each sub block instance. Within a statement there is an entry for each input port for that 

instance. An entry identifies the signals connected to each input port, and each port entry 

is considered as a net. In the two statements shown in Figures 16, 17, and 18, the n-bit bus 

entering the register at port 'in' splits so that the first bit, 'head(in)', goes to the 'in' port 

of instance 'f' and the remaining bits, 'tail(in}', go to the in port of instance 'tailreg'. The 

viewer represents this by two nets. 

Figure 16 shows the situation where the net representing inputs to the 'in' port of instance 

'f' has been selected. 

137 



QJ...o:. a...ocK 

IN Ho---------i IN F 

Fig. 16. Illustrating split, first part 

Figure 17 shows the situation where the net representing inputs to the' in' port of instance 

'tailreg' has been selected. 

a..a:K 

IN~ 

a..a:K 

r+----j IN TAILREG 

Fig. 17. Illustrating split, second part 

In Figure 18, the two nets that use the 'in' signal are seen superimposed in the default view 

of the structure. 

QCTh 

IN 

r- a..a:K 

IN 

run 

IN 

AILREG T 

F 

Fig. 18. Illustrating split, combined 

138 



Thus in the STRICT description, the joining of signals is described explicitly and the 

viewer draws the joined signals as one net. Branching of signals is represented by the super­

position of the lines representing the nets at the common port as in Figure 15. Some nets 

may only use parts of a bus from a given port. No distinction is made between using the 

whole bus or only a part in the diagram, in order to keep the diagram simple. 

The instances in the diagram have been arranged so that, wherever possible, data flows 

from left to right. When feedback loops exist signals will flow right to left. This will be indi­

cated by the arrows on the interconnect lines. 

9.7. Subcells 

Display of the structure of the parent block of a given instance is done by selecting the rel­

evant instance. If there is only one instance in the current hierarchical level, then this in­

stance is automatically selected. If there are more than one, the user is prompted to select 

one. 

The information displayed on entry to a particular point in the hierarchy has been deliber­

ately restricted for clarity, but a number of options are provided to the user to allow a fuller 

exploration of the design at any level. These are now described. 

9.7.1. Windowing 

Having chosen the option 'window in', the user must select the bottom left corner and the 

top right corner of the area to be viewed. The selected area will be displayed as large as poss­

ible, as shown in Figure 19, keeping the proportions the same. 

9.7.2. Instance information 

The option 'inst info' allows the user to see the instance name, block name, and parameters 

displayed in full for a selected instance. After selection the information is presented in a 

note section at the top of the screen. 

139 



regist 

IREGISTER 

T I\ ILRE: 
REGIST 
(n-l ) 

.~1~~@~ .... ............ ......... 

_~l~l~ 
_1~1~1~1@ 
~ I" .J', ,",'to,",",","," 

~\~\~~~\~1~ 
_H~U1~ .... ' . ..... '.'.'.'.' . ......... ;.;.;.;.; .. ,~,~,~,~~~;~=~~~~~ 
.. , , , ~ .. : .. ~ .. ~ .. ~ .. ; .. ; .. ~ .. ; .. 

gl~l~\~\~~\~ 

Fig. 19. A window on an area 

9.7.3. Port information 

Choosing the option ' ports on' causes the names of the port , truncated to ix character , 

to be displayed on the diagram and , in order not to clutter the diagram, in tance name are 

no longer displayed ( ee F igure 20) . 

Choosing the option ' port info' gives further data concern ing a elected port. The informa-

tion is displ ayed in the note section in the fo llowi ng form : 

<por t n ame> : <port type> 

for example 

out : p osint (n) 

9.7.4. Net information 

This option allows the user to elect a single net to view. As the cursor i moved over the 

diagram sections of nets become highlighted . The desired net can be selected and the lew 

redrawn with onl y th e l cted net shown ( ee Figure 20). 

140 



regist 

I S8..ECTlt~ 6 AN'! CHOI(£ fULL r.ESTCf£ ALL I>ETS I 

C1.JJ.X 

ItI wr -

cur 

Fig. 20. Net information 

9.8. Dual text-graphics representation 

There are advantages in presenting a design both textually, and graphically, and the u er 

hou ld not be restricted solely to one or the other for e ither des ign capture or review. How-

ever, the viewer does not permit modification of STRICT design via the graphical route, 

only location of data in the text from the graphics. In other words, the text repre entation 

is the master description at al l times. 

On selecting dual text/graphjcs mode, the window showing the graphics hrink 0 that a 

window display ing the text becomes visible. When view structure Isubcell ' i selected, the 

blo k header for the block who e structure is to be viewed is fo und in the text (the cur or 

is positioned at the start of the appropriate statement). 

141 



end 

(n ) 1): 
{ 

ins t ance 
f : flip _ flop 
t ailreg: register (n - 1 ) 

us i ng 
f (h e ad ( in). c l ock) 
tai l reg (tai l (in). c l ock ) 

mak e 
lut :: = join (pos i nt (n ) 1 f . out. 

t ai l reg.ou t ) 

TAILRE : 
REG 1ST 
(n-l ) 

F: 
FLIPJ 

Fig. 21. Find text 

If the structure is conditional on selecting the conru tion, the case statement for that condi-

tion is found . When a net is selected using' net info ' , the appropriate statement is found ( ee 

Figure 2 1). When an instance is selec ted using ' inst info ' , the appropriate entry in the in-

tance li st is found . When a port is selected using ' port info ', the appropriate port entry in 

the block header is fo und , if there is a block header or if the cell comes from a library the 

appropriate inherit tatement i fo und . 

142 



9.9. Control synthesis 

As discussed before, in some cases the structure of the data path is insufficient to describe 

the behaviour of the system without an explicit view of the function of the control. In 

STRICT, a mechanism has been provided to capture the control flow. This allows the syn­

thesis of a range of controller architectures such as PLA's, microprogrammed memory or 

asynchronous architectures, but it also allows display of the control flow in a graphical 

form. 

The form chosen for display is that of a Petri Net, and an example of this is shown by the 

following STRICT description of the integer divider first shown in chapter 3. Here two in­

tegers 'a' and 'b' are held in registers 'areg' and 'breg'. 'b' is then repeatedly subtracted 

from 'a' until the remainder in 'areg' is less than zero. The number of subtractions less one 

is then the result. For the sake of convenience, the example is shown again: 

ASYNCH BLOCK divider 

HAVING (a,b,minusone : number): 

(result number) 

INTENDED BEHAVIOUR 

WHENEVER 

WAIT divider: 

WITHIN (10) 

SET result = a DIV b 

SIGNAL divider; 

USE STRUCTURE 

{ 

INSTANCE breg: reg 

areg: muxreg 

sub: subtract 

test : greaterthanzero 

count: counter 

CONTROL 

WAIT divider: 

143 



END 

SIGNAL breg, areg, count, areg.selinl 

SET count. load = 1 

count.incr = 0 

WAIT breg, areg, count, areg.selinl: 

SIGNAL test 

SET areg.selinl = 0 

WAIT areg, count, areg.selin2: 

SIGNAL test 

SET areg.selin2 = 0 

WAIT test: 

SET ack = -test. output, 

sub.req = test.output 

WAIT sub: 

SIGNAL areg, count, areg.selin2 

SET count. load = 0 

count.incr = 1 

USING areg(a,sub.s) 

test (areg) 

sub(areg,breg) 

breg(b) 

count (minusone) 

MAKE result ::= count 

A block with a control section, which can be identified by the keyword asynch which pre­

fixes block, is assumed to have in addition to its explicit inputs and outputs, two control 

lines. All ports involved in control handshaking are indicated by arrows by the viewer. 

144 



~" -, I 
UJ 1 
ffij~ 1 ~ .l~:::IF 1 eI G" 1. 1RA 

T I J 
~ ~ 

b j, .J. J. J 
~~6: t--~ rrt~~ j lCRAtr 

~ 
1 

~ ~ .!-
~ 

~ 

~ 

Fig. 22. Divider structure 

~ L,l 1. '""'''''.,.., ..... I 

I 1m 

I ~ IN WI" IN] 6 

I.NS. "'" ,), J. 

1: ~ J J.. t 
~~ ","U I±l- ""'- ~ 

B 

~ 
H----< 1m 

<PIN (l..1r ~ ~ IN] ,ur IN o..rr ~!->-< 

=- .i" ..,.. 
,), ,), t 

~" 

I 

0 I 

~ 

Fig. 23. Divider structure - pin names 

145 



n 
IiT/RI' 

I 
.. -.. -.. -... _ .. -.. -.. -........ 

p ~ ~ lH;EJ;·lnlNl 

r--~-.c.,-,~---~~\ r-- --:, 
~/ 

Fig. 24. Control flow Petri Net 

The stlUcture of the divider, produced from the STRICT text, is illustrated in Figures 22 

(which shows the instance names) and 23 (which shows the pin names), whilst the control 

flow is shown in Figure 24. Since there is a one to one correspondence between statements 

1 .. 6 



in the' control' section of the language, and the resulting Petri Net form of the control dia­

gram, both representation and synthesis of the control hardware are straightforward. In Fig­

ure 24 each 'wait' statement corresponds to a transition in the Petri Net, and each 'signal' 

variable represents a place in the net which receives a token when the preceding transition 

is fired. Places also provide the means by which the operation of a component in the struc­

tural diagram is invoked, and signalling between the control graph and the data path, or 

structural graph is shown by arrows in or out of the components. 

9.10. Resource allocation 

The development of efficient automatic physical design tools has placed an increasing em­

phasis on the need for tools to assist in the synthesis process, by providing the means by 

which insights into the nature of an algorithm and its implementation can be gained. 

The major constraints on a hardware system are the function that must be implemented to­

gether with the resources that must be deployed in order to achieve that implementation. 

In some cases it is important to compute the required function in the minimum time, and 

in others the most significant factor is that the silicon area must fit within a predefined limit. 

Often there is a possible trade off between the time and area used, but it is always necessary 

for the designer to be aware of the resources required by different algorithms and imple­

mentations as well as being able to optimise a particular implementation for either time or 

area. 

STRICT captures both the structure and the detailed timing of an implementation in the 

structural and behavioural sections respectively. Given that an annotation mechanism also 

exists for indicating the silicon area of each block, it is possible to show the relationship 

between area and time, using a Gantt Chart [19], in a way which aids understanding of the 

resource usage. The assumption here is that an implementation has already been done in 

which the scheduling of operations on to blocks is explicit in the control flow description. 

147 



.Ii 

.0-

A 
R 

25. 

24. 

23. 

22. 

21. 

19. 

lB. 

17. 

16. 

15. 

1~. 

1~. 

12. 

11. 

10. 

E 9.0 

A 8. 0 

7.0 

B.O 

5.0 

4.0 

3. 0 

2.0 

1.0 

0.0 

" Ii 

0-

0-

Ii 

0-

0-

Ii 

Ii 

0-

" 
Ii: _ 

0-

l)-

Ii 

0-

0.0 

-ri~l 

~ 

!fI~j~ 
@~~~j~1~j~j 

O.S 1.0 1.5 

TIME 

Fig. 25. Gantt resource allocation chart 

In Figure 25 the algorithm of the di vider described earlier is shown a it appear on the 

creen in this mode of the viewer. Time is plotted horizontal ly, and area vertically, with al l 

the components being represented by rectangles scaled accordjng to their computation time 

and area. If, as in this case the total time required for the control is dependent on the value 

of the data. the user will be asked to define a maximum time in the behavioural de cription 

so that re ource al location djagrams using that block can be displ ayed. Sirilllarly, loop in 

the conlrol must have the number of iterations defined by the user before di play. In the 

diagram of Figure 25, each in ocation of an operation performed in a particular component 

is shown had d. and each indi idual component occupies a specific sec tion of the area 

14 



axis . Blank regions therefore represent time when component are inactive, and may allow 

for optimisation of the algorithm by rescheduling operations on to those components at the 

times they are inactive. For example, an ascending diagonal sequence of haded are 

representing similar operations with a blank region bel ow may suggest the po sib ilit of 

re cheduling all the operations on to a single resource, thus saving area . 

Traversing the hierarchy using the viewer is the same whether or not control is pre ent. 

However if the description at the current hierarchical level has a control section then as-

suming no errors are detected in the control , there will be two additional menu option 

'view control' and 'area/time ' (see Figure 26), which allow the u er to ee the contro l and 

resource usage illustrated graphicall y. The presence of control aloha an effect on the 

structural or data flow view. 

divide 

IDI VIDER 

. 1111 
111111 
~,-. 
~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~~;~;~;~;~;~;~: 

II!!!I 

Fig. 26. Main screen - control section present 

149 



10. BOYER-MOORE INTERFACE 

150 



10.1. Introduction - formal methods 

The Boyer-Moore interface tool was written to address one of the major aims of the 

STRICT language and system - correctness. As we have stated before, the main reason for 

choosing the functional programming paradigm for STRICT was the belief that such a 

notation would be amenable to formal verification of correctness. 

Correctness is one of the major problems in VLSI design. VLSI designs must be correct 

before submission for fabrication, because fabrication is very expensive and takes a long 

time. Faults cannot be corrected on the chip, unless very special provisions are made, but 

this is unusual. Traditionally, simulation has been used to gain confidence in the correctness 

of a design, but simulation can no longer exercise design models completely due to the very 

large number of possible states[54]. As a result, formal methods have become a very active 

research area. The tutorial paper by McFarland[50] presents a good overview. 

Formal methods in VLSI design are based on logics with a sound mathematical basis[8, 

11], for example first order and higher order logics[33, 36]. Frequently, use is made of a 

theorem prover [7] for the manipulation and verification of formulae in the chosen lan­

guage. The aim is to prove in a symbolic manner that a design meets its specification, there­

by doing away with the need for simulation. 

There are a number of theorem provers available, including Boyer-Moore[9], HOL[33], 

Nuprl[5] and EHDM[60]. Of these, Boyer-Moore and HOL both have a track record in the 

area of hardware design; Hunt[40] has used it to describe and verify microprocessor de­

signs, while Cohn has used HOL verify some properties of the Viper chip[20]. The work 

by Hunt and Cohn is known as post hoc ve rification - the work was performed on an already 

completed design. 

The Boyer-Moore and HOL provers were available in the public domain, so we investi­

gated these for possible use with STRICT. 

10.2. Boyer-Moore versus HOl 

The relative advantages and disadvantages of the Boyer-Moore and HOL theorem provers, 

as perceived in the literature (e.g. [32.33] about HOL and [9, 57. 58. 66. 67] about Boyer-

151 



Moore), software demonstrations, personal use and from comments made by several exper­

ienced users of these systems, are as follows. 

The formalisms underlying both Boyer-Moore (first order logic, using a variant of LISP) 

and HOL (higher order logic, using ML) both have formal semantics, and both systems 

have been used for proving correctness of hardware designs. Both systems are relatively 

free of bugs. Both systems are widely used in the research community. 

The Boyer-Moore prover attempts to do a proof without interactive user input, using built­

in heuristics and libraries of theorems. Its output is considerable, and it attempts to give as 

much explanation as possible about the proof. Documentation about the system is excel­

lent, provided in a book [9] which explains both the logic and the system in some detail. 

The input language is easy to learn, and a non-expert user can quickly get to grips with it. 

The learning curve is therefore not very steep. 

HOL, by contrast, is an interactive system that requires the user to guide the proof through 

its various stages. No attempt is made to perform the proof automatically. Its output can 

only be described as terse, an there is no detailed documentation about the system. This 

means that HOL is much more difficult to come to grips with for a non-expert, and the 

learning curve is quite steep. All of his was deemed to be a major disadvantage in the 

STRICT environment. 

It was therefore decided to investigate the Boyer-Moore prover more closely. 

10.3. The Boyer-Moore prover 

The Boyer-Moore theorem prover was initially developed at the University of Austin as 

a tool for research in Artificial Intelligence applications. It has been successfully applied 

in such diverse areas as list processing, number theory, protocols, real time control, and 

concurrency. The largest proof performed to date is that of Goedel's Incompleteness The­

orem (more than 20,000 lines of proof code). The prover was used by Hunt [40] to verify 

the correctness of a microprocessor design, thereby confirming that it could be used in the 

VLSI design area. It is written in Common Lisp, and is distributed with a specially modified 

152 



version of the Kyoto Common Lisp interpreter. The software runs on a wide range of ma­

chines. 

The Boyer-Moore logic is a quantifier free, first order logic with equality and function 

symbols. The input language to the prover is a variant of Pure Lisp. This input language 

is used to present the prover with a sequence of so called events. The most important events 

are: definitions of (often recursive) functions to be used in proofs, and theorems. The key­

word defn starts the description of a function; all functions must conform to certain rules 

with respect to termination, which are checked by the prover before accepting the function 

definition. If a function calls other functions, these must have been previously defined. The 

keyword prove-lemma initiates the description of a theorem. A theorem will be acceptable 

if it can be proven by the prover. The prover will attempt to do this using its built-in logic 

inference rules, definitions, and previously proved theorems. It is in general necessary to 

build a database of carefully chosen and carefully ordered theorems to perform complex 

proofs. 

As an example, we can define a function 'double' which doubles an integer by adding the 

integer to itself, and we then prove that this is the same as mUltiplying by 2: 

(defn double (x) 
(plus x x)) 

(prove-lemma double-is-times-2 (rewrite) 
(implies (numberp x) 

(equal (double x) (times 2 x)) 

The theorem includes the hypothesis that' x' must be a number, and requires it to be stored 

as a rewrite rule. After it has been proved, the prover will subsequently replace occurrences 

of '(double x)' by '(times 2 x)'. 

The prover has a number of powerful built-in heuristics, one of which is the capability of 

performing mathematical induction. This means it can cope most efficiently with recur­

sively defined functions. Since recursion is used in STRICT specifications to achieve iter­

ation, the fact that Boyer-Moore seems to cope well with recursion appears to be a clear 

vindication of the decision to introduce this feature in the STRICT language. The prover 

153 



is also distributed with a number of databases of useful functions and theorems which it 

frequently uses in proofs. These can be loaded at the request of the user. 

The prover has a facility whereby the user can define his own abstract data types. This is 

usually referred to as the Shell principle. For the purpose of hardware verification, Hunt 

[40] has added a data type for use with bit vectors, and a whole set of associated theorems. 

These can be loaded automatically when the prover is started. 

If the prover fails to complete a proof, this does not necessarily mean that there is something 

wrong with the theorem. It may be that the proof is rather complex, and that the prover can­

not 'see' the right path through the proof. In this case it will be necessary to 'educate' the 

prover, by first proving smaller theorems which prove parts of the big proof, so that it will 

subsequently use these to complete the big proof. In many cases these smaller theorems will 

be useful in themselves, and can be added to the user's database if he wishes. The prover 

will therefore frequently need help from the user, which means that in a sense it is not fully 

automatic. 

The 'prove-lemma' construct can have as an optional parameter a list of hints, which can 

tell the prover to use certain theorems with certain parameters, ignore other theorems, or 

perform inductions in a specified manner. Some of these features are shown in the example 

which now follows. 

A special sub-system allows the prover to be used interactively, in a similar way to HOL. 

The important advantages of Boyer-Moore therefore appear to be automatic operation, ex­

cellent documentation, short familiarisation time, and the fact that it comes with large hard-

ware database. 

We now take a closer look at a proof example. 

10.4. A proof example in Boyer-Moore 

We want to prove that for all positive n the integer quotient of n*x and n*y is equal to the 

integer quotient of x and y, i.e. we will try to prove that 

(equal (quotient (times n xl 
(times n yl I 

154 



(quotient x 
y» 

Such a theorem occurs frequently when trying to prove properties of bit vectors, with 'n' 

having the value 2. We will call this theorem 'quotient-times-times'. Trying to prove it 

without the aid of additional theorems fails - the prover tries to solve the problem by using 

induction, which is not the right approach. 

A substantial portion of Hunt's database was loaded flrst. The recursive deflnition of' quo­

tient' is [9]: 

(defn quotient (i j) 
(if (equal j 0) 0 

(if (lessp i j) 0 
(addl (quotient (difference (i j) j») 

That is, the quotient is performed by repeated subtraction, while counting the number of 

subtractions performed. 

The proof can be split up in three cases: x < y, x == y and x > y. The first case is described 

by the following lemma: 

(prove-lemma ql (rewrite) 
(implies (and (greaterp y x) 

(greaterp n 0) 

(equal (quotient (times n x) (times n y» 
(quotient x y) 

The pre-deflned arithmetic rules are not sophisticated enough to cope with this, so we flrst 

prove another lemma to tell it that if x < y then n*x < n*y: 

(prove-lemma ql-first (rewrite) 
(implies (and (greaterp y x) 

(greaterp nO) 

(greaterp (times n y) (times n x) 
) 

Now lemma 'q I' is proved, using 'q I-flrst' and the pre-defmed rules. The case x = y 

is easily proved from pre-deflned rules: 

155 



(prove-lemma q2 (rewrite) 
(implies (and (equal y x) 

(greaterp nO) 

(equal (quotient (times n x) (times n y) 
(quotient x y) 

The third case, x > y, is the most general one and fails if tried on its own. It can be proven 

if one realises that if x > y, then x = a*y + b, where a >0, and b < y. Thus we first try the 

following lemma: 

(prove-lemma q3-first (rewrite) 
(implies (and (greaterp a 0) 

(greaterp y b) 
(greaterp nO) 
(equal (plus (times a y) b) x) 

(equal (quotient (times n x) (times n y)) 
(quotient x y) 

The proof of this lemma is achieved by using various database rules. In order to prove the 

lemma for the case x > y we need to tell the prover to use this lemma, while substituting 

'(quotient x y)' for 'a', and '(remainder x y)' for 'b'. This will allow the prover to check 

that the hypothesis '(greaterp x y)' holds. Note the use of a hint in this lemma: 

(prove-lemma q3 (rewrite) 
(implies (and (greaterp x y) 

(greaterp n 0) 

(equal (quotient (times n x) (times n y)) 
(quotient x y) 

«use (q3-first (a (quotient x y)) 
(b (remainder x y)) 

) 

) 

The main lemma still cannot be proven - we have to tell the prover that the previous three 

cases together constitute any possible combination of x and y: 

156 



(prove-lemma q-bridge (rewrite) 
(implies (and (greaterp n 0) 

(or (greaterp y x) 
(equal y x) 
(greaterp x y) 

(equal (quotient (times n x) (times n y» 
(quotient x y) 

«use (ql» 
(use (q2» 
(use (q3» 

We are now ready to do the final proof: 

(prove-lemma quotient-times-times (rewrite) 
(implies (and (greaterp n 0) 

(numberp x) 
(numberp y) 

(equal (quotient (times n x) (times n y» 
(quotient x y) 

«use (q-bridge») 

After the proof has been completed, all but the last lemma should be disabled, since they 

are only a special case of' quotient-times-times' . In other proof efforts, some might be use­

ful, and should therefore be kept. [9] contains several examples. Unfortunately, is it not 

possible to provide a general rule to determine whether a lemma should be kept or not. 

This example shows the process of educating the prover. It should be obvious that it is very 

difficult to automate this. 

10.5. Mathematical proof of hardware specifications 

The question is now: how do we prove the correctness of a hardware module using the 

Boyer-Moore prover? The problem can be stated as follows: 

given a block, its specification, its immediate subblocks and its structure, and the specifica­

tion of the subblocks, verify that the sub-block specifications, composed as specified by 

the structure of the top level block, form the top level specification. 

157 



By performing this proof at all levels of the hierarchy, the top level specification of the en­

tire design has been proved. Since we have made sure that STRICf allows hierarchical de­

signs which contain behavioural specifications at all levels, such a proof is possible. The 

major problem is (as demonstrated in the proof example of the previous section) that the 

resulting proof may be too complex for the theorem prover at the higher levels of the de­

sign, and that manual intervention of the designer is required. This is not an ideal situation, 

since designers are likely to lack the highly specialised skills required. 

10.6. Extraction 

The interface uses the procedural interface to the parse tree. The resulting data structure 

is then used to extract all relevant information. 

10.7. Output 

We demonstrate a correctness proof by means of an example. Shown below is a typical 

module, a half adder which is composed of an AND gate and an XOR gate: 

block halfadder 

having (x, y: wire): 

(out: wire[2]) 

intended behaviour 

whenever 

change (x) or change(y) : 

within (22) 

set out = plus(x,y); 

use structure 

{ instance 

al: andgate2 

xl: xorgate 

using 

al(x,y) 

xl(x,y) 

158 



make 

out .. - join(wire[2] lal.out,xl.out) 

} 

end 

block andgate2 

having (a,b: wire) : (out: wire) 

intended behaviour 

end 

whenever 

change (a) or change (b) : 

within (9) 

set 

out = v_and(a,b)i 

block xorgate 

having (a,b: wire) : (out: wire) 

intended behaviour 

end 

whenever 

change (a) or change (b) : 

within (9) 

set 

out = v_xor(a,b)i 

The Boyer-Moore logic requires all input to be defined before use, so the logic is generated 

in a bottom-up fashion. The following sections are generated in turn: 

• all function definitions from the subblocks; 

• behavioural specifications of the subblocks. This requires application of the beha­

vioural statements to the appropriate input busses, followed by conversion into an 

integer using the Boyer-Moore function 'bv-to-nat' (which converts bit vectors to 

natural numbers); 

• all function definitions from the top level; 

159 



• the high level specification. This does not require the use of 'bv-t<r-nat'; 

• the top level structure, as defined in the 'using' and 'make' sections from the STRICf 

description; 

• the final prove-lemma that asks the prover to carry out the actual proof. 

Note that some of these sections may be missing, since not all are mandatory in the STRICf 

description. 

10.8. Results 

The half adder example generates the following Boyer-Moore input fIle. 

(proveall "bm" I ( 

I I I I I I defs from low level WHERE 

;; iii i low level specs 

(defn xorgate-spec (a b) 

(bv-to-nat (v-xor a b)) 

(defn andgate2-spec (a b) 

(bv-to-nat(v-and a b)) 

;;;;; ; defs from high level WHERE 

, I I I' I high level spec 

(defn halfadder-spec (x y) 

(plus x y) 

, I I I" defs corresponding to USING 

(defn al (x y) 

(andgate2-spec x y)) 

(defn xl (x y) 

(xorgate-spec x y)) 

160 



iii;;; high level structure from MAKE 

(defn halfadder-circuit (x y) 

(bv-append (nat-to-bv(x1 x y) 1) 

(nat-to-bv(a1 x y) 1) 

) ) 

iii;;; finally, the proof 

(prove-lemma halfadder-circuit-ok (rewrite) 

(implies (and (bitvp x) 

(bitvp y) 

(equal (size x) 1) 

(equal (size y) 1) 

(equal (bv-to-nat (halfadder-circuit x y)) 

(halfadder-spec (bv-to-nat x) 

(bv-to-nat y))))) 

I' I I I' end of proof 

) ) 

The following should be noted about this. 

• Some of the sections are empty, because the corresponding STRICT sections are 

empty. 

• Because of the functional notation used in STRICT, translation of functions to 

Boyer-Moore format is quite straightforward - which again vindicates our belief in 

the functional notation employed in STRICT. 

• Similarly, because the 'using' and 'make' sections are written in a functional form, 

their translation to Boyer-Moore format is also very simple. It is not necessary to de­

compose the net structure, since the built-in heuristics will do all the work. For 

example, if the function 'head' is used anywhere in the using section, the first step 

taken by the prover is to apply this function, as part of the simplification heuristic. 

161 



The (partially reproduced) result of feeding the above statements into the prover is shown 

in appendix A. 

Unfortunately, only when very simple examples such as the half adder are used can the 

prover complete the required proof on its own. When more complex examples are at­

tempted, the user must generate hints to lead the prover through the proof, which requires 

a great deal of effort. Hunt's thesis gives an excellent impression of the work required. 

Because there is no obvious way in which such hints can be generated automatically, as also 

reported in [56], it was concluded that post-hoc verification is perhaps not the most con­

venient verification method. The next chapter shows how correct transformational syn­

thesis can be achieved using the Boyer-Moore prover. 

162 



11. THE TRANSFORMER 

163 



11.1. Introduction 

The transformer tool represents the second major aim of the STRICf language and system: 

to have the ability to generate a formally correct implementation of a high level behavioural 

description, a process known as High Level Synthesis [49]. 

The high level synthesis community is split into two camps: one which wants to fully auto­

mate the design process, and one which wants to make use of the designer's experience by 

providing interactive input during the design process. In fully automatic systems, much of 

the current research is focussed on the provision of algorithms to ensure that reasonably 

efficient hardware is generated from a large number of possible implementations. Typical 

research efforts are reported in [2, 12, 17,38,43,44,48,55,61]. The interactive approach 

encourages designers to investigate different designs through experimenting with different 

architectures generated from the same specification by, for instance, serialising operations 

upon the same device or by allocating many operations to devices operating in parallel. The 

most important effort in this area is the SAGE tool [22], but SAGE does not support verifi­

cation. Other important tools are LAMBDA[27] and VERITAS[37], which use poly­

morphic predicate calculus and type theory, respectively, as the underlying formalisms. We 

firmly believe in the interactive approach, but we would like to use the Boyer-Moore logic 

as the underlying formalism and the Boyer-Moore prover itself as the verification tool. 

A specification of an algorithm in a high level language is likely to be unsuitable for direct 

translation into silicon. It is necessary to perform transformations[14] which preserve the 

behaviour, but generate a much more compact silicon implementation [49]. The problem 

is then to ensure that the applied transformations preserve the behaviour [26, 14], and in 

general to verify the correctness of the ultimate design produced by the system against the 

initial specification. Research in this area is reported in [66,25,27]. As mentioned in the 

previous paragraph, our aim was to use the Boyer-Moore theorem prover to achieve this 

goal. 

164 



11.2. Author's contribution 

The author was deeply involved with the development of the ideas behind this tool, and for 

the parse tree interface that it uses. Programming of the tool was done by a research student. 

The ideas are again presented here in the form of screen dumps that show the output of the 

tool, when applied to the error corrector example of chapter 3. 

11.3. Transformational synthesis 

An excellent introduction to high level synthesis systems can be found in the overview 

paper by McFarland [49]. All high level synthesis systems initially operate upon a user 

specified behavioural description in an appropriate high level language. This description 

is parsed into an internal format. This is followed by the scheduling and allocation phase, 

during which the basic functional units of the design are determined and the basic hardware 

units are assigned to these functional units, together with memory elements and communi­

cation paths. The resulting design is then fed into conventional floorplanning and routing 

tools to produce the final chip layout. State of the art examples of high level synthesis sys­

tems are Cathedral [21] and the Yorktown Silicon Compiler [10]. No work using the 

Boyer-Moore prover has been reported. This chapter describes a transformational syn­

thesis tool that integrates the Boyer-Moore prover. 

11.4. Basic ideas 

The basic idea behind the transformer tool is as follows. A Boyer-Moore rewrite rule spec­

ifies an eqUality. In other words, the left hand side of the equality can be replaced by the 

right hand side, and vice versa. We can therefore regard such a rewrite rule as a correctness 

preserving transformation when viewed from the hardware correctness point of view. 

The idea is therefore to develop an interactive design tool that allows the designer only use 

of Boyer-Moore rewrite rules for introducing changes, thus guaranteeing the correctness 

of the design procedure. 

165 



11.5. Extraction 

In the previous chapter we showed that the translation of STRICT behavioural specifica­

tions into the Boyer-Moore format is relatively straightforward. The transformational tool 

interfaces to the STRICT parse tree by using the appropriate procedural interface. 

11.6. Design procedure 

The following design procedure is followed. 

• The transformer extracts a specification from the STRICT description through the 

procedural interface, and converts this into a functional tree, which is displayed on 

the screen. 

• The transformer makes use of a number oflibraries: a (fixed) library for basic Boyer­

Moore rules, a similar user defined library (which the user can modify), and a library 

of basic cells with their functional specifications. 

• The designer clicks on a node on the screen. The transformer will locate appropriate 

rewrite rules in its libraries, and show the results to the designer. 

• The designer then chooses one of the rewrite rules. The transformer applies the rule, 

adjusts the functional tree, and displays the resulting tree. 

• When the designer is satisfied with the design, he asks the tool to allocate hardware. 

Appropriate modules are located in the cell library, and a complete STRICT descrip­

tion is generated, completing the design cycle. 

The result is that a complete structure can be interactively generated from the behavioural 

description, whilst guaranteeing that the final result still implements the original specifica­

tion, because correctness preserving transformations were used during the entire design 

process. 

The design process is clearly dependent upon the fact that, in STRICT, behavioural descrip­

tions are mandatory, whilst structural descriptions are optional. 

166 



11.7. Overview of operation 

The behavioural specification for each block is captured in a set of functional expres\ions, 

along with temporal information. The tool transforms this specification into a functional 

tree. This tree is drawn on a screen by a graphical subsystem with which the designer can 

subsequently interact. In order to ensure that all interactions preserve the correctness of 

the design, only changes that correspond to a set of formal transformations are allowed, 

and these must first have been verified by the Boyer-Moore theorem prover. 

These transformations are kept in two libraries, one generated by the user of the tool (for 

use with the current user defined specification), and the other one a standard library of re-

write rules which can be applied to the set of operators built into the STRICT language. 

Both libraries come in the form of a text file, and their contents must be acceptable to the 

Boyer-Moore prover (it is the user's responsibility to ensure that they are). Both libraries 

are therefore generated separately, before the synthesis tool can be used. The standard li-

brary contains rules relating to the following STRICT operators: 

0 TIMES 0 GREATER G NOT 

0 ADD ~ CONDITION (0 AND 

0 MINUS () EQUALITY 8 OR 

0 DIVIDE G LESS 0) FUNCTI01\ 

Fig. 27. Library operators 

The library is arnmged in sections where each section corresponds to one of the nodes 

shown in Fig. 27. If, for example, the designer clicks on the + node on the screen, the 

rewrite rules relating to the add node are made available. A typical example of such a rule 

might be 

(equal (plus a (plus b c)) 

(plus a b c)) 

167 



which simplifies the functional tree by removing one plus operation. 

A behavioural specification in a high level language will usually not correspond to the most 

efficient hardware implementation. It will generally be necessary to modify its functional 

tree in order to improve the efficiency. Since only those changes can be made that have 

first been verified by the prover, all modifications are by definition correct. The theorem 

prover therefore ensures that all changes made are carried out within a formal framework. 

Once the designer has completed his work on the functional tree, hardware can be allocated, 

by fetching the appropriate modules corresponding to the various parts of the design from 

a hardware library. 

When the transformations and hardware allocation have been completed, a STRICT de­

scription of the complete design is generated, and the final layout can then be generated 

using standard floorplanning and routing tools. 

The interactive interface of the synthesis tool is shown in fig. 28. The functional tree for 

one level in the design hierarchy is displayed in the centre of the screen. Below it is its lisp 

description. Interaction with the functional tree takes place by clicking on the icons which 

are situated around the edges of the screen. To access the sub-trees of the functional tree, 

a small list of icons on the right hand side of the screen is available. It begins with 'eva' 

and ends in 'ret' (which stands for 'return', and which enables the user to move back up 

the design hierarchy). To carry out modifications to the tree the 'thsrch' icon at the bottom 

left of the screen is selected, followed by a node on the functional tree. The system responds 

by searching the rewrite rule library section associated with the chosen node and selects 

a list of applicable rewrite rules which are presented to the user as options. If the user wishes 

to carry out the modification, he selects it directly and applies the change. The 'store' icon 

which is above the 'thsrch' icon can be used to store a particular rule which the designer 

may wish to apply more than once. In this case the rule is passed to a small buffer where 

it can be selected and applied without searching the library for it. 

168 



AUTOA L 

MRG / SPL 

1121314 
5 [6171s 
910 r.l ~ 

~. ~ ill· ~ exn e v a 

* * 
alf ~ e D l,t... I'- cou ret 

~ ~ ~ V V ~ ~ 
f.£Ql!l 

lri I~ 
~ 
fi!l!& 

* e e 
Ik

a e ~ 
exo 

~ U lli 
IQ 

/ 
I ~ 

Ij V 
~ 

* e !J -
l.f- <.......J V L-

~ V Y II 
/' 

V 

r--6 ~ I~ V 
,./ 

e ka = /' 

V V 
V 

I~ 
/' 

18 
,./ 

,./ 
I 

/' 
V 

~. V 
/' 

ALLOC 
( Defn (co r rec t ab l e a i ) 

DEALLOC 

( AND (= (eval a 0) (a l fapo w (* 0 i ) (eval a 0») 
S TOR E (A ND ( = (eva l a 1) ( a l f apow (* 1 i ) (eval a 0») REWR ITE 

( AND (= (eva l a 2) (a l f apow (* 2 i ) (eval a 0») 

TH SRCH ( = (eva l a 3) (a l fapow (* 3 i ) (e va l a 0»»») EXIT 

Fig. 28. Main screen 

The ' rewri te ' icon at the bottom right hand corner of the screen is u ed to rewrite a ub-u'ee 

within a functional tree. The ' alloc ' and 'dealloc ' icon are u ed to allocate hardware to the 

functional tree. Allocation fo r a particul ar node on the functional tree is done by clicking 

on the ' alloc' icon fo llowed by the selec tion of a node on the functional tree. The y tern 

respond by searching a library of hardware modules, each of which has an associated beha-

vioural de cri ption. A list of modules with area and time information i provided. The e 

are guaranteed to impl menl the beha iour at the cho en node. The u er then elect a mod-

169 



ule, and the functional tree is modified at the node where the implementation is carried out, 

by exchanging it for a new node representing the hardware module. To deallocate, the 

'dealloc' icon is selected followed by a previously allocated node. In this case the node is 

replaced by the sub-tree representing the behaviour of the particular hardware module. Al­

location of a functional tree can be carried out automatically by clicking on the 'autoall' 

icon. This causes the tool to search the library of hardware modules and map them directly 

to the functional tree. The 'mrg/spl' icon is used for space-time transformations. Finally, 

the 'exit' icon is used to exit from the synthesis tool. 

To apply a change to a particular point, a node from the tree is selected. The change must 

be in the form of a Boyer-Moore rewrite rule, selected from one of the available libraries. 

The left hand side of this rule is matched against the tree from the chosen node (in the up­

ward direction). If a match is found the change will then be applied. The right hand side 

of the rewrite rule containing the new structure is substituted in place of the old structure, 

and all connecting nodes are appended to the new section of tree. 

Some designs may be of a regular nature and have a repetitive structure which can only be 

modified efficiently by applying a change repetitively throughout the design. For this pur­

pose a feature is provided which allows changes to be made globally throughout the design. 

Changes made to the original functional tree by the designer are recorded, by storing them 

in a text file. This is useful for a number of reasons. It enables the designer to check upon 

his own modifications, once the design is completed. Also, whilst changes are being made 

to the original specification by applying rewrite rules, the theorem prover may generate 

new rules which the designer may wish to keep. For example, a larger rewrite rule may 

result from a series of smaller changes, or the designer may be able to derive a new rewrite 

rule. If such a rewrite rule is stored, it could easily be added to the user library at a later 

point. 

Allocation of hardware is split into two stages, manual and automatic. The manual stage 

concerns the binding of operational units to the operators on the functional tree. For this 

purpose a library of hardware components is available, so that the designer can choose 

170 



from a possibly large set. Area and time information is shown in graphical form at the top 

of the screen as he chooses his components and allocates them. 

Synthesis example 

The screen of Fig. 28 shows an example function which was taken from a error decoder 

module described by Kalker [42] (the whole example is shown in section 3.9.8). The func­

tion is called 'correctable' and would be defined in STRICT as follows: 

correctable (a: byte[32], i: integer} : BOOLEAN .. -
(eval(a, O) alfapow(O*i, eval(a, O»} AND 

(eval(a, I) alfapow(l*i, eval(a, O»} AND 

(eval(a, 2) alfapow(2*i, eval(a, O»} AND 

(eval(a, 3) alfapow(3*i, eval(a, O»} 

The bottom of the screen shows the S-expression equivalent of this function. We demon­

strate the operation of the tool by showing how one can make this function more efficient 

by making formal transformations. 

Any modifications that might be applied to the tree rely upon the use of rewrite rules from 

the library, such as: 

1 / (equal ( (times i O) O} ) 

2 / (equal (equal a a) t» 

3 / (equal «and t a) a» 

4 / (equal (and a (and b c» 

(and (and a b) c»} 

In the rest of this section we will frequently refer back to these rewrite rules. 

We turn our attention to the leftmost sub-tree on the screen of Fig. 28. After clicking on 

the multiplication node, the screen of Fig. 29 appears. 

171 



AU OALL 

I'tRG / SPl 

LZ 13 4 
llil6716 
L2l.Q • 

~~ ~~ ~n ~ . . • e ~f -r 
~ ~ ~H V ~ Iri V ~ i • e e a e • 

mod 

~~ ~Iri 
r; jI V ~ 

Iri H 
f.=. 

• e e a 
l::::: 

~H V jI 
1M / 

VV 
lri V e a 

/" 
A 

jI 
lri /" 

/V 
1M V 

L.c:' A 

lri V 
VV 

V 
A 

ALLOe 
IIIIIIR!IIIR!I 

DEALLOe 
(e qu al (* 0 i) 

f---- 0) 
S TORE REWRITE 

f----
THSRC H EXIT 

Fig. 29. After click on leftmost multiplication 

Near the bottom of the screen 3 boxes have appeared, indicating that three rewrite ru le 

from the library are applicable at thi s point. The first of these rules is pri nted below the 

boxes, and , by c licking on each of the boxes in turn , the designe r can cycle through them. 

Application of rule 1 (which says that O*i equals 0) w ill result in de letion of the mu ltip lica-

tion sub- tree. This is shown in Fig. 30 . 

172 



AUTOAll 

I'RG / SPL 

LZ 4 

~71e 

li~ ~ ~ n eVlI. . e . e 

If_ 
r 

~~ ~ Iri 
r; r; ~ 

~ Iri ~ . e e . e a ~ ~ 
~ ~1r4 

jI 
ri 

r; 
H 

'I = 
e e[Jt 

, 
/' 

~ ~ 1r4 
jI 

Ir< ,./ / 
V 

e a , 
/ 

A 

M 
jI 

lri / 
v 

V 
/' A 

/' 
V-

IM /' 
9 

ALLOC 
(DeFn (co rrectable a i) 

DEAllOC 

I- (AND (, (eval a 0) (a 1 fapo ,* 0 (eval a 0)) 
S TORE (AND (, (eva l a 1) (alfapo,* ( . 1 i) (eval a 0») REURlTE 

I- (AND (, (eval a 2) (alfapo," ( - 2 1) (eval a 0») 

THSRCH (= (eval a 3) (a lfapow (10 3 i) (eval a 0»»» ) EXIT 

Fig. 30. After deletion of multiplication sub-tree 

We then have a sub- tree representing alfapow(O,evaJ(a ,O) ), which can be replaced by 

eval(a,O) by rewriting. The rewrite ru le is shown at the bottom of Fig. 3 1, and the re ul t 

of the applicati on of the rule in Fig. 32. 

173 



AUTOAll 

~G/SPl 

~4 
~ 16 

~ ~ ~ 91 exn eVA . e . e f -cou ret 

m ~ ~Iri 
Ij 

~Iri V ~ i . . elt e A 
lm!2.d. 

~ ~ V V V ~ 

Iri 1M 1M = . e A 
V 

ru ~ .r; V V 
~/.v 

1M V e A k-' A 

1,4 
V V 

f..-".Y 

M ./' 
A 

V 
V 

1M V 
9 

AL Loe 
II1II 

DEALLOe 
(equal (al fapoW' 0 ~) 

I--- S) I 
S TORE REl1RlTE 

I---
THSRCH EX IT 

Fig. 31. Showing rewrite rule 

174 



AUTQAll 

"'lG/SPL 

1213 • 
16 718 

illi ~ ~ ~ n v . . . • ~lf --""" .-et 

~ ~ ~H V ~ V ~ r1 ~ . 0 0 a e a 

~ 
r; V V =!!. 

1M H Iri 
..o.J<SI.. 

0 a 
/' 

illi illi r1 
/ 

I~ V 
~/y 

V 
• 0 

/ 
A 

~ 
V /' 

V 
M / 
A 

r< / V 
A 

ALLOC 
(Defn DEAllOC 

!-----
(cor r ectable a i) 
(AND (, (ova l a 0) (eval a 0» 

S TORE (AND (, (eva l a 1) (a l fapo,,", ( " 1 !) (oval a 0») REIi.RITE 

r-- (AND (, (ova l a 2) (alfapo,", ( . 2 1) (eva l a 0») 

THSRCH (: (eval a 3) (al fapo..... (tt 3 i) (oval a 0»»») EXI T 

Fig. 32. Applying rewrite rule 

The resulting sub- tree has two equal branches, 0 rule 2 can be applied ( ee Fig . 33) to the 

' = ' node to give the result T. This is shown in Fig. 34. 

175 



AUTOALL 

twRG / SPl 

lZ13 4 
l.hl.!i7~ 

~ BE ~ ~~ ne~. . 0 . e f 
cou rot 

~ ~ ~ 1M v ~ 1M 
V ~ . 0 0 .. 0 .. 

W v v V 1-= 

1M H 1M 
~ 

0 .. V' 

~ ~ V V 
V 

1r:S 1M V 
V o e 

,/ 
A 

ri V V 
V 

Ir' V A 

M / V 
A 

AL LOC 
II1II 

OEALLOC (equa l (= a a) r---- t) 
S TORE RE~ITE 

r----
THSRCH EXIT 

Fig. 33. Applying rule 2 

176 



AUTQALL 

~G /SPL 

lLl34 
L6J 71B 

~ ;IE ~~ ~C leva . e . e lalf -~ou ret 

illi ~ ~ V ~ V ~ ri IGi 
~ 
~ . e e ,k.a e ~ ~ 

~ V V V ~ 

~ M ri 
~ 

e 
,/ 

~ 
V lri ,/ 

/' v 

,/ 
,/ A 

lri /' /' 
V / 

A 

~ 
A 

ALLOC 
( De fn (correc t able a i ) 

DEALLOC 

- (AND t 
STORE (AND (0 (eva l a 1) (a lfa po ... ( * 1 i) (eval a 0») RE~lTE 

- (AND (0 (eval a 2) (a lf a po ... ( * 2 i) (eval a 0») 
THSRCH (= (e va l a 3) (a l f apo ... ( * 3 i) (eva l a 0»»») EXI T 

Fig. 34. Result of rule 2 

Since ANDing with T is a no-op operation ( ee bottom of Fig. 35) , rule 3 can be applied 

to the ' and ' node, resulting in the removal of the leftmost sub- tree. 

177 



AU OALL 

M'lG/SPL 

!J 4 
!516 7 1a 

~ ~ 1Ii ~( 
n leva . e . e !. : f ~ 
~ r et 

~ ~ ~ V 9Ji V ~ 
10 1M ~ . e e e lk"' 

~ V V / ~ 

1M d M 
~ 

e l1.a /' 

M V 
1r:1 V 

V/ 
/" 

/" 

/" 
V 

18 /" V 

~ 
A 

AL LOC 
IliI!lI!ll8 

(.qual (AND t a ) DEA L LDC 

f- a) 
STORE REWRI TE I 

I---
THSRCH EX IT 

Fig. 35. Applying rule 3 

The final functional tree , after the above changes have been applied, i shown in Fig . 36. 

The leftmost sub-tree has disappeared complete ly a a result of the transformation ap-

plied, thereby producing a more efficient design. The updated version of the ' correctable ' 

function is displayed near the bottom of the screen. 

17 



AUTOAll 

I'IlG / SPl 

1 J.zll 4 
l.filfL 71B 
9 0 . 

~i ~ ~f; ~ ~ e xn e va 
.. IF -e e l.QQ!.J re t 

l.f... "- Lt- ~ 

;lli ~ m y 
BE Y ~ 

~ I~ ~ 
12 1':' J.. t1 

~ 
~ 

~ 0 
V 

10 
/ 

b 
V 

~ V 

V II 
./"" 

/" 

Id I~ V V 
,.-/ 

A 

II 
./"" 

V 

IrS V 
V 

A 

AllOC 
( De Fn (corr e c t a b l e a i ) 

DEA l l OC 

r--- (A ND (, (ova l a 1 ) (a lfa po VJ ( 0 1 i ) (eval a 0») 
S TORE ( AND (, (o va l a 2) (a lF a po ... (. 2 i ) (oval a 0 ») REt.IH TE 

I--- ( , (ova l a 3 ) (a lfa po ...... ( * 3 i ) (o va l a 0» »» 
THSRCH EXIT 

Fig. 36. Final result 

At this point, it is possible for the des igner to allocate ac tual hardware. Thi hown in 

Fig. 37, where nodes that have been allocated are show n a shaded boxes. At the top of the 

screen, for each box an estimate of the area and the speed fo r each node is hown. The e 

in turn may prompt the designer to select a particular node, for example, one with a very 

large area, in order to do further optimisation. 

179 



(De fn (co rrectab l e a i) I 0 ~LOC 
(and2 (camp (eva l a 1) (al fape..", (mu 1 1 i ) (e val a 0») 

(and2 (ca mp (eval a 2) (alfa p ow (mul 2 i) (eva l a 0») IR rTE 
{camp (eva l a 3) (a l fap ow (mul 3 i ) ( e val a 0»»» 

Fig. 37. Hardware allocation 

A block diagram of the resulting implementation is shown in Fig. 38 . We have abbreviated 

eval(a,O) to EO e tc ., and alfapow(l *i, eval(a, 0)) to A I etc . Upon ex it , the tool wi ll generate 

a complete structural STRICT description of the design , which can ubsequently be u ed 

to generate its finaJ layout. 

180 



correctable A[i] 
j 

I EO I I EI I I E2 I I E3 1 
1 

I I I 

I AI I I A2 1 I A3 1 
I I I I 

I COMP I [ COMP I [ CO~lP I 
I T I 

[ AND I 
I 

Fig. 38. Block diagram of final result 

11.8. Results 

The rinal section of Appendix A shows how the error corrector is generated as a structural 

STRICT description after interactive optimisation. The result is a fairly complex structure, 

which is assured to implement the stated behaviour through the use of formal transform-

ations. The structure can be subjected to layout generation in the usual manner. 

181 



12. CONCLUSIONS 

182 



12.1. Introduction 

Inevitably, the work presented in this thesis shows both advantages and disadvantages 

when compared with other work. We first argue the case in favour of the language and sys­

tem, and then describe how the language could be improved. 

12.2. Advantages 

We specifically set out to investigate the use of a functional notation, using recursion equa­

tions with added timing information. Iteration was only allowed to be achieved through the 

use of recursion. The expectation was that this would allow formal verification and syn­

thesis of descriptions in the language, features which were simply not widely available in 

HDLs at the time the language was developed. The functional notation was to allow the 

capture of behaviour, structure and control flow in a hierarchical manner. Behavioural 

specifications was to be mandatory, structural decompositions optional. We added to this 

a list of desirable features, presented in chapter 2: hierarchy, library facilities, generic fea­

tures, data abstraction, strong typing, arithmetical operators, timing, synchronous and 

asynchronous design descriptions, and interfaces for module generators. The language, 

through the use of a number of procedural interfaces, was to fit into a sophisticated design 

environment, comprising the following tools: a syntax directed editor, a graphical viewer, 

a simulator, a layout system, a module generator, a theorem prover and an interactive trans­

formation tool. 

Most of the above aims have been achieved. We believe that we have also shown that the 

language is clearly superior in some respects to VHDL, Verilog and ELLA. 

A description in the language is a collection of blocks, each with mandatory behaviour and 

optional structure, as determined by a set of appropriate keywords. The functional aspects 

of the language come in the form of functions that can be specified in a number of places: 

• as part of the block declarations, 

• in type declarations, 

• at the end of the behaviour section. 

183 



These functions are subject to scoping rules; the last two kinds of functions are regarded 

as local, and the first kind global. These functions all require the use of recursion to achieve 

iteration. In addition, the syntactic forms of structural aspects of the language, such as block 

declarations, instance declarations, and the specification of netlists, have all been chosen 

to resemble function calls. 

Other features of the language fit into this framework, through the use appropriate key­

words. All information about a block is normally present within the same textual unit (un­

like VHDL), the only small exception being declarations of types and functions, which may 

optionally be imported from other blocks or from libraries. 

Let us examine the language in the light of the list of requirements specified in chapter 3. 

The language obviously describes both behaviour and structure. We have taken the view 

that behaviour and structure should be completely separate (unlike ELLA), in sections de­

noted by the keywords behaviour and structure. Specification of behaviour is mandatory, 

whilst specification of structure is optional, reflecting the aim of allowing automatic 

translation of behaviour to structure using appropriate design tools. The STRICT timing 

model (see for example sections 3.9.2 and 3.9.9) is a simple 'cause and effect' model that 

is easy to understand. A large class of behaviours can be expressed effectively using such 

a model. By contrast, the VHDL model has different kinds of delays (e.g. inertial and trans­

port) whose effects must be understood in terms of a stack of output drivers which may 

cause cancellation of previous events, possibly in the context of multiple concurrent pro­

cesses. This takes a lot of effort to understand and to learn to use, but allows very accurate 

modelling of very complex circuits. The STRICT timing model is much more flexible than 

the ELLA timing model. However, it also has disadvantages, which are discussed below. 

The way finite state machines are described in the language (see the traffic light controller 

example, section 3.9.9) is rather similar to the way this is done in the other languages, so 

we cannot claim any major advantage here. The reasoning for choosing a particular syntax 

for the FSM model are again discussed below. 

184 



The language allows designs to be built hierarchically, by specifying a collection of blocks. 

Each block is started by the keyword block. The block specifies a number of named ports 

(input, output or inout) which allows the block to communicate with the outside world 

through connections to ports on other blocks (or, in the case of the top level of the design, 

to the output pins of the chip). By allowing blocks to instance other blocks, a hierarchical 

tree of blocks is created. 

Each level in the hierarchy allows simulation, even if the level below is incomplete. 

The language allows one of the main aims: formal verification and formal synthesis. In fact, 

this comes naturally with the language. The use of recursive behavioural functions (see for 

example the error corrector, section 3.9.8) has allowed us to do this efficiently. Through 

the Boyer-Moore interface, STRICT descriptions can be fed to a theorem prover, and, for 

simple examples, a fully automatic proof of correctness can be obtained. This is entirely 

due to the fact that the Boyer-Moore prover was specially written for use with functional 

languages such as LISP, and, more specifically, handles recursive functions quite well. The 

functional form of 'using' statements allows us to feed them in most cases unchanged to 

the prover, a major benefit of the chosen notation. The prover interface clearly vindicates 

claims that functional programs are amenable to formal verification techniques. The 

Boyer-Moore interface is a major positive point for the STRICT language, even though 

development of the interface was abandoned when it became clear that limitations of the 

prover heuristics would prevent it from handling complex proofs. This is currently a gen­

eral problem with theorem provers, but the situation can be expected to improve with time. 

We have also shown that the transformer subsystem allows, in conjunction with the Boyer­

Moore prover, the generation of a correct implementation of a functional behaviour, with­

out the need for the designer to specify any form of structure. Boyer-Moore rewrite rules 

allow correct formal interactive changes to be applied. The transformer subsystem is 

another major positive point for the STRICT language. 

We have shown examples (albeit rather simple ones) of how the language allows traditional 

techniques such as layout and simulation to be applied, with satisfactory results. Whether 

or not the results are competitive with those obtained from other design tools falls outside 

185 



the scope of the thesis; however, it can be expected that highly sophisticated design tools 

such as those from Berkeley will produce a more compact layout than the GAELIC system. 

This can only be expected, given the relative amounts of effort invested in these tools. The 

language constructs for control modelling allow high level graphical views, iocluding 

Gantt charts. To the best of our knowledge these are a novel feature, and have proven to 

be very popular with users. 

We strongly believe that STRICT is more concise than VHDL. Structural descriptions in 

STRICT are very concise and well integrated (see, for example, sections 3.9.2 and 3.9.3). 

Every block must include the header with information about its ports - there is no separate 

architecture declaration. The functional form of the 'using' statement is very concise. 

There is no need, when declaring components, to repeat port names, as in VHDL (which 

adds considerably to the verbosity ofVHDL). The use of recursion in STRICT, particularly 

when describing parameterised cells, allows very concise descriptions oflarge and possibly 

complex blocks (for example, the n-input OR gate of section 3.9.4). In addition, the seman­

tics of behaviour in STRICT are much easier to understand than those ofVHDL. STRICT 

also has explicit constructs for modelling control. The syntax of this part of the language 

is quite concise. The other languages discussed in this thesis do not have special control 

features, although it would be possible, for example, to extract control information from 

VHDL descriptions if appropriate behavioural descriptions were present. STRICT is more 

readable than ELLA. This can be seen by comparing the recursive Sigma functions in both 

languages: the ELLA version from section 2.3 and the STRICT version from section 3.9.7. 

In contrast to ELLA, STRICT clearly separates the behaviour from the structure. This al­

lows different graphical views of both to be presented, increasing the understanding of the 

design. The requirement that behaviour must always be present makes it easier for the de­

signer to avoid the temptation of thinking straight away in terms of hardware implementa­

tion, thereby possibly avoiding incorrect design decisions early in the design process. 

STRICT supports abstract data types, using a typing mechanism inspired by the PASCAL 

programming language, with added functions to provide mappiogs between abstract values 

and underlying bit patterns. 

186 



STRICT supports the design of generic components, by allowing blocks to declare formal 

parameters in the block heading. The actual parameters, which have to be specified when 

a block is instanced, are then used in the structure section by recursively instancing the same 

component, but with a different actual parameter (usually a smaller one). As remarked 

above, this leads to very concise descriptions which are highly amenable to formal verifica­

tion. 

Since STRICT allows blocks to be imported from other designs or from design libraries, 

reuse of components is possible and straightforward. 

12.3. Disadvantages 

We now turn our attention to some of the drawbacks of the language, and the lessons that 

can be learned from them. 

The hints used to generate acceptable layout (pin placement, 'place' statements, collapse 

keyword) look like a 'hack'. They were bolted on to the language as an afterthought, they 

clutter up design descriptions, and are too limited anyway. For example, an underlying as­

sumption is that all layout shapes are rectangular, which is clearly not always the case. 

The mechanism to select a module generator was also bolted on as an afterthought, and 

clearly looks like it. 

The same applies to the' control' statement. This again looks like a language in itself, and 

should as a minimum have been designed in a functional notation. It was added to the lan­

guage because it was originally not realised that control could not be extracted from just 

the behaviour and the structure (the behaviour section describes a design as a 'black box' , 

i.e. how the outputs are generated as a result of current inputs and current states. The inter­

action between internal components is not described, partly because we wanted to move 

away from structural descriptions altogether). 

The use of special keywords to provide hints to individual design tools violates one of the 

requirements of the language. In retrospect, these keywords should clearly not have been 

made available. even though they are optional. It should be left to the design tools to sort 

187 



out their own problems - the design language should be kept as clean and tool independeot 

as possible. 

The timing model is the most limited part of the language. It does not allow absolute time 

measures, such as the VHDLconstructs 'ps', 'os', 'ms', etc. This can cause major problems 

when importing cells from libraries - it is not assured that these cells use exactly the same 

timescales (a possible source of serious design bugs). The 'within' statement is not accurate 

enough - while it is true that the exact moment at which switching takes place may vary, 

designers would normally want to model it accurately anyway, using conservatively chosen 

values. The 'set' statement does not allow a range of values to be assigned, which would 

be important in accurate modelling. To be fair, the work reported upon in this thesis was 

mainly aimed at the formal verification and synthesis aspects of the language, and we are 

quite happy with a timing model that is adequate for most purposes. 

Our description of finite state machines (and sequential systems in general) is somewhat 

different from non-sequential ones. In fact, it looks like a separate language altogether. 

This is the result of compromises made during (often heated) discussions with the electrical 

engineers in the group, who were unhappy at the thought of simulating a novel language 

which did not clearly spell out the states used during simulation. The language would clear­

ly have benefited from a more uniform notation, in which function calls would have been 

semantically mapped onto states. Such an alternative notation would have made a descrip­

tion look more uniformly like a collection of function definitions and function calls. We 

believe this would now be more acceptable to electrical engineers. 

An important cornerstone of the STRICT philosophy is that behavioural specification is 

mandatory. However, since the layout interface ignores the behavioural section completel y, 

it is quite possible for a designer to insert a syntactically correct dummy behaviour such 

as 

whenever rise(clock) => 

within (1) 

sat out=in; 

188 



and go ahead with old style structural design methods. This problem is largely unavoidable, 

and is reminiscent of the old saying that' a determined programmer can write FORTRAN 

in any programming language'; this applies to chip designers as well! Only when it comes 

to using advanced behavioural tools such as the transformer, it is no longer possible to avoid 

writing proper behavioural specifications. 

A number of desirable features have not ended up in the language. In particular, the func­

tional expressions in the behavioural sections are rather limited; they do not support lists 

and higher order functions. Integers are limited in size to those of the host machine (i.e. 

mUlti-precision arithmetic is not provided). 

A minor irritation is that the syntax ofthe language could have been simpler, thereby mak­

ing descriptions even more concise. It was necessary to insert various punctuation marks 

in several places, because without them the grammar was not acceptable to the parser gen­

erator (the LALR requirement was violated). For example, the type definition 

type y::= {is [1. .5]} 

would have been much preferable in the form 

type y:: = is 1 .. 5 

but the parser generator simply would not allow this. 

In addition, the 'make' statement is really superfluous. Connections to the outside world 

could just as easily be specified in the 'using' statement. 

STRICT has as yet no formally defined semantics. We clearly felt this was outside the scope 

of this thesis, and there were no other members of the (small) group inclined to take up this 

issue. 

We believe that STRICT would benefit from a larger collection of built-in types and func­

tions, such as the Verilog ones that detect particular clock edges. This would clearly help 

in making STRICT descriptions yet more concise and readable, and would increase simula­

tion efficiency. 

We want to mention the fact that the language was evaluated, along with a number of other 

languages and formalisms (which included ELLA, LTS, Pascal, Occam, VDM and CCS), 

189 



as part of the Alvey CADOO2 project [1]. A substantial example, a Pythagoras DSP pro­

cessor, was coded in STRICT as part of the evaluation. The conclusion was, not surprising­

ly, that none of the formalisms investigated was perfect, due to the lack of high quality de­

sign tools and the difficulty of handling timing aspects, but that the use of behavioural 

languages, including STRICT, represented a significant step forward towards the aim of 

the correct design of large VLSI systems. The report also notes about the use of recursion: 

"Plessey Caswell engineers found this concept difficult. It is not clear whether this is a fun­

damental problem or a longer training period is necessary". Perhaps the problem will dim­

inish when a new generation of 'high level' designers take up jobs in industry. 

As far as the design system is concerned, we want to make the following points: 

• Having a syntax directed editor as the front end of a design system is extremely use­

ful. It prevents the user from making errors, and is able to give hints as to the correct 

syntax of language statements. From the point of view of the programmer, it is very 

helpful to be able to use the generated syntax tree. The programmer just needs to write 

a set of recursive descent routines to extract the information from the parse tree, 

which is a straightforward task. This produces a large but reliable software module. 

• The recursive descent module forms part of the set of procedural interface routines. 

Procedural interfaces are a popular concept in design systems where a large number 

of different tools must be interfaced to a language description. We have shown that 

we can interface a functional language to a large variety of tools using a procedural 

interface that extensively uses recursive programming techniques. This was most 

dramatically demonstrated with the Boyer-Moore prover, which was discovered as 

a possible tool well after the language had been defined. The Boyer-Moore interface 

clearly shows the effectiveness of the strategy used to interface to other systems. 

• The recursive structure of the language also played an important part in the design 

of the builder module. Recursive programming techniques were used to match the 

recursive structures in the language. This allowed the code to be developed quickly 

and concisely, and (we believe) relatively free of bugs. We would regard its recursive 

190 



structure as an excellent example of how to deal with the problem in hand. The use 

of recursion, even in procedural programming languages, is obviously an aid to cor­

rect software development. The builder has been extensively used by students, and 

very few bugs have come to light. 

A number of useful features are missing from the design system: 

• There are no module generators for RAM and ROM. Unfortunately, the CADENCE 

version installed at Newcastle does not support these either, nor does it have a PLA 

generator. 

• The design system does not support test generation or fault simulation. These how­

ever, are supported by CADENCE. 

• Every VLSI design system should interface to a database management/version con­

trol system because of the occurence of multiple versions and representations of de­

signs at various levels. This has not been done in the STRICT system. 

• If the whole system were to be rewritten from scratch, it would certainly be written 

in an object oriented language. This would vastly increase the ease with which new 

interfaces could be added. 

12.4. Practical experience 

Most of the comments made above about the language and design system have been con­

firmed by users. The language and system have been used for a number of years to teach 

VLSI design to postgraduate students. The main conclusions drawn from this experience 

are as follows: 

• students have no problems with the structural part of the language. 

• students do have problems with the behavioural part of the language, since the func­

tional style forces them to express the behaviour in a certain manner. This makes 

them think hard about the specification, which must be regarded as a positive point. 

• the viewer is the most popular part of the design system, and really seems to help the 

structural design effort quite a lot. 

191 



• few bugs have appeared during use of the system; it appears to be quite stable. This 

really seems to be a result of the recursive techniques used to implement data struc­

tures and functions. Again, the use of a functional notation appears to have been very 

helpful here. 

12.5. Final conclusions and future work 

As far as the timeliness of the STRICT language is concerned, we have shown that STRICT 

has some advantages over other languages, in particular the use of recursive functions as 

a central feature of the language. This is a feature absent from other languages, or present 

only in a limited form. The language could be improved in a number of areas. This is a 

matter of ongoing research. 

192 



13. REFERENCES 

193 



[1] The Alvey Directorate, "Behavioural languages for VLSI", Final Report, 

Project CADOO2, Ref. ALV/APP/CAD/OO2, 1986. 

[2] Balakrishnan, M., and Marwedel, P., "Integrated Scheduling and Binding: 

A Synthesis Approach for Design Space Exploration", Proc. 26th ACMlIEEE Design Au­

tomation Conference, pp. 68-74, 1989. 

[3] Backus, J. "Can programming be liberated from the Von Neumann style? 

Afunctional style plus its algebra of programs", CACM, Vol. 21, No.8, pp. 613-641. Aug. 

1978. 

[4] Barbacci, M.R., "Instruction Set Processor Specifications (lSPS): The 

Notation and Its Applications", IEEE Trans. Computers, vol. C-30, pp. 24-40, 1981. 

[5] Constable, R.L., "Implementing mathematics with the Nuprl Proof Devel-

opment System", Prentice-Hall, 1986. 

[6] Barth, R., Solet, B., and Snidhu, P., "Parameterized schematics", 25th 

ACM/lEEE Design Automation Conference Proceedings, pp. 243-249, 1988. 

[7] Boyer, R.S., and Moore, J.S., "Proving Theorems About LISP Functions", 

Journal of the Association for Computing Machinery, vol. 22, no. I, pp. 129-144, 1975. 

[8] Boute, R.T., "Current work on the Semantics of Digital Systems", Proc. 

1985 workshop on VLSI, Edinburgh, "Formal Aspects of VLSI Design", Elsevier, pp. 

99-112,1986. 

[9] Boyer, R.S., and Moore, J.S., "A Computational Logic Handbook", Aca-

demic Press, Boston, 1988. 

[10] Brayton, R.K., Camposano, R., DeMicheli, G., Otten, R.H, vanEijndhoven, 

J. "The Yorktown Silicon Compiler". In: "Silicon Compilation", Gajski, (Ed), Addison 

Wesley, pp. 122-152,1988. 

[11] Brock, B.C., and Hunt, W.A., "A Formal Introduction to a simple HDL", 

Technical Report 60, CLI Inc., Austin, 1990. 

194 



[12] Buset,O.A., and Elmasry, M.I., "ACE: A Hierarchical Graphical Interface 

for Architectural Synthesis", Proc. 26th ACMlIEEE Design Automation Conference, pp. 

537-542, 1989. 

[13] Cardelli, L., "An Algebraic approach to hardware description and verifica-

tion", PhD thesis, University of Edinburgh, 1982. 

[14] Camposano, R., "Behaviour-Preserving Transformations for High-Level 

Synthesis", LNCS 408, Springer, pp. 106-128, 1990. 

[15] Campbell, R.H., and Richards, P.G., "SAGA: a system to automate the man-

agement of software production", AFIPS 50, pp. 231-234, 1981. 

[16] Camposano, R., and Rosentiel, W., "Synthesizing Circuits From Behaviou-

ral Descriptions", IEEE Trans on CAD, vol. CAD-8, no. 2, pp. 171-180, 1989. 

[17] Camposano, R., "Structural Synthesis in the Yorktown Silicon Compiler", 

Proc. VLSI-87, North Holland, pp. 61-72, 1987. 

[18] Camposano, R., and Tabet, R.M., "Design Representation for the Synthesis 

of Behavioural VHDL Models", Proc. IFIP International Working Conference, "Hardware 

Description Languages & their Applications", pp. 49-58, 1990. 

[19] Clark, W., "The Gantt chart." 3rd ed., Pitman and sons, London, 1952. 

[20] Cohn, A. "Correctness properties of the Viper block Model: The Second 

Level", Technical Report 134, Computer Laboratory, University of Cambridge, 1988. 

[21] DeMan, H., Rabaey, J., Six, P., and Claesen, L., Cathedral II: A Silicon 

Compiler for Digital Signal Processing", IEEE Design and Test 3, 6, pp. 13-25, 1986. 

[22] Denyer, P.B., "SAGE: A Methodology and Toolset for Architectural Syn­

thesis", Technical Report SARI--035-B, Department of Electrical Engineering. Edinburgh 

University, 1988. 

[23] Dillinger, T.E., McCarthy, K.M., Masher, T.A., Neumann, D.R., and 

Schmidt, R.A., "A Logic Synthesis System for VHDL Design Descriptions", Proc. 

ICCAD-89, pp. 66-69, 1989. 

195 



[24] EDIF Steering Committee, "EDIF Electronic Design Interchange Format 

Version 2 0 0", Electronic Industries Association, 1987. 

[25] Elmasry, M.I., Buset, O.A. "ACE, A Hierarchical Graphical Interface for 

Architectural Synthesis", Proc. 26th ACMlIEEE Design Aut. Cont., pp. 378-381, 1989. 

[26] Eveking, H., "Verification, Synthesis and Correctness-Preserving Trans­

formations - Co-operative Approaches to correct Hardware design", Proc. IFIP Interna­

tional working conference, "From HDL descriptions to guaranteed correct circuit de­

signs", Grenoble, pp. 229-239, 1986. 

[27] Finn, S., Fourman, M.P., Francis, M., and Harris, R., "Formal System De­

sign - Interactive Synthesis based on Computer-Assisted Formal Reasoning", Proc. IFIP 

Workshop, "Applied Formal Methods for Correct VLSI Design", Belgium, pp.97-110, 

1989. 

[28] Ghezzi, C. and Mandroli, D. "Incremental Parsing", ACM TOPLAS, Vol. 

1, pp. 58-70, 1979. 

[29] Gordon, M.J., "Register Transfer Systems and Their Behaviour", Proc. 5th 

Int. Conf. on Hardware Description Languages, pp. 88-93, 1981. 

[30] Gordon, M., "Proving a Computer Correct", Technical Report 42, Univer-

sity of Cambridge, Computer Laboratory, 1983. 

[31] Gordon, M., "Hardware Verification using Higher Order Logic", Technical 

Report 91, University of Cambridge, Computer Laboratory, 1986. 

[32] Gordon, M., "Why higher-order logic is a good formalism for specifying 

and verifying hardware", Proc. 1985 workshop on VLSI, Edinburgh, "Formal Aspects of 

VLSI Design", Elsevier, pp. 153-157, 1986. 

[33] Gordon, M., "HOL: A Proof Generating System for Higher-Order Logic", 

Technical Report 103, University of Cambridge, Computer Laboratory, 1987. 

[34] Gray, J.P., Buchanan, I., Robertson, P.S., "Designing Gate Arrays using a 

Silicon Compiler", Proc. 19th Design Aut. Cont., pp. 178-183, 1982. 

196 



[35] Hanna, EK., and Daeche, N., "Specification and Verification of digital sys­

tems using higher-order predicate logic", lEE Proc, vol. 133, Pt. E, no. 5, pp.242-254, 

1986. 

[36] Hanna, EK., and Daeche, N., "Specification and Verification using 

Higher-Order Logic: A Case Study", Proc. 1985 workshop on VLSI, Edinburgh, "Formal 

Aspects of VLSI Design", Elsevier, pp. 179-213, 1986. 

[37] Hanna, EK., Daeche, N., and Longley, M., "VERITAS: A Specification 

Language based on Type Theory", Proc. Cornell Mathematical Sciences Institute Work­

shop, "Hardware Specification, Verification and Synthesis", pp. 358-379, 1989. 

[38] Hartley, R.I., and Jasica, J.R., "Behavioural to Structural Translation in a 

Bit-Serial Silicon Compiler", IEEE Trans on CAD, vol. CAD-7, no. 8, pp. 877-885, 1988. 

[39] Hoshino, T. "UDLII Version Two: A new horizon of HDL standards", Proc. 

CHDL '93, Ottawa, North Holland, pp. 437-452, 1993. 

[40] Hunt, W.A., "FM8501: A Verified Microprocessor", Ph.D. Thesis, Univer-

sity of Texas at Austin, December, 1985. 

[41] IEEE STD 1076-1987, "IEEE Standard VHDL Language Reference Man-

ual", IEEE, New York, 1988. 

[42] Kalker, T., HOL Semantics for DSP, Philips Research Labs Technical Re-

port, Eindhoven, The Netherlands, 1988. 

[43] Kramer, H., and Rosentiel, W., "System Synthesis using Behavioural De-

scriptions", Proc. EDAC-90, pp. 277-282,1990. 

[44] Lanneer, D., Catthoor, E, Goosens, G., Pauwels, M., Meerbergen, J.V., and 

Man, H.D., "Open-ended System for High-Level synthesis of Flexible Signal Pro­

cessors", Proc. EDAC-90, pp. 272-276, 1990. 

[45] Liesenberg, H., and Kinniment, D.J., "Placement expanding autolayout 

router", lEE Proc., Vol133, Pt. I, No.2, pp. 55-60, April 1986. 

197 



[46] Locanthi, B., LAP: A SIMULA Package for I.C. Layout. Cal. Tech. Display 

File No. 1862, 1978. 

[47] May, D., and Keane, C., "Compiling OCCAM into Silicon", Communicat-

ing Process Architecture Document, Meiko, April 1986. 

[48] McFarland, M.C., "Using Bottom-Up Techniques in the Synthesis of Digi­

tal Hardware from Abstract Behavioural Descriptions", Proc. 23rd ACMlIEEE Design 

Automation Conference, pp. 474-479, 1986. 

[49] McFarland, M.C., Parker, A.C., and Camposano, R., "Tutorial on High­

Level Synthesis", Proc. 25th ACMlIEEE Design Automation Conference, pp. 330-336, 

1988. 

[50] McFarland, M.C., "Formal Verification of Sequential Hardware: A Tu-

torial", IEEE Trans. CAD, Vol. 12, No.5, pp. 633-653, May 1993. 

[51] Mead, C. and Conway, L., "Introduction to VLSI Systems", Addison-

Wesley, 1980, pp. 115-127. 

[52] Morison, D., Peeling, N.E., and Thorp, T.L., "The design rationale of 

ELLA, a hardware design and description language", Proc. Computer Hardware descrip­

tion languages and their applications, Tokyo, pp. 303-320, 1985. 

[53] Moszkowski, B., "A Temporal Logic for Multilevel Reasoning about Hard-

ware", IEEE Computer, Vo1.18 No.2, pp. 10-19, 1985. 

[54] Mukherjee, A., "Introduction to nMOS and CMOS VLSI Systems Design", 

Prentice Hall, 1986. 

[55] Peng, Z., Kuchinski, K., and Lyles, B., "CAMAD: A Unified Data Path / 

Control Synthesis Environment", IFIP Conf. "Design Methodologies for VLSI and Com­

puter Architectures", pp. 53-67, 1989. 

[56] Pierre, L., "EECAP: A simple method to generalize the proof of equalities 

involving recursive functions with an accumulating parameter", Rapport de recherche 

MAIUP no. 89-09, Universite de Provence, Marseille, France, 1989. 

198 



[57] Pierre, L., "The Formal Proof of Sequential Circuits described in CAS­

CADE using the Boyer-Moore Theorem Prover", Proc. IFIP Workshop, Applied Formal 

Methods for Correct VLSI Design", Belgium, pp. 365-384, 1989. 

[58] Pierre, L., "The Formal Proof of the "Min-max" sequential benchmark de­

scribed in CASCADE using the Boyer-Moore Theorem Prover", Proc. IFIP Workshop, 

"Applied Formal Methods for Correct VLSI Design", Belgium, pp. 129-148, 1989. 

[59] Rammig, FJ., "Modelling and simulation concepts ofDACAPO ll", Dosis 

GmbH,1986. 

[60] Rushby, J., von Henke, F., and Owre, S., "An introduction to formal specifi­

cation and verification using EHDM" , Technical Report SRI-CSL-91-4, Computer 

Science Laboratory, SRI International, January 1991. 

[61] Scheichenzuber, J., Grass, W., Lauther, U., and Marz, S., "Global Hardware 

Synthesis from Behavioural Dataflow Descriptions", Proc. 27th ACMlIEEE Design Au­

tomation Conference, pp. 456-461, 1990. 

[62] Sheeran, M., "muFP, a Language for VLSI design", Proc. ACM Symp. on 

LISP and Functional Programming, pp. 104-112, 1984. 

[63] Siskind, J .M., Southard, J .R. and Grouch, K.W., "High-performance VLSI 

designs from Succinct Algorithmic descriptions", Proc. Conf. on advanced research in 

VLSI, MIT, pp. 69-79, 1982. 

[64] SPICE, "SPICE 3f2, Users Manual", Univ. of California at Berkeley, 1992. 

[65] Suzuki, N., "Concurrent Prolog as an efficient VLSI Design Language", 

IEEE Computer, Vol. 18, No.2, pp. 33-40, 1985. 

[66] Verkest, D., Johannes, P., Claesen, L., De Man, H. "Correctness proofs 

of parameterized hardware modules in the Cathedral-ll synthesis environment". In Proc. 

EDAC-90, pp. 62-66, 1990. 

[67] Verkest, D., Claesen, L., and Man, H.D., "On the use of the Boyer-Moore 

theorem prover for correctness proofs of parameterized hardware modules", Proc. IFIP 

199 



Workshop, "Applied Formal Methods for Correct VLSI Design", Belgium, pp. 405-422, 

1989. 

[68] Walker, R.A, and Thomas, D.E., "Behavioural transformation for Algo-

rithmic level IC Design", IEEE Trans. CAD, pp. 1115-1128, Vol. 8, No. to, 1989. 

[69] Zegers, J., Six, P., Rabaey, J., and Man, H.D., "CGE: Automatic Generation 

of Controllers in the CATHEDRAL-II Silicon Compiler", Proc. EDAC-90, pp. 617-621, 

1990. 

[70] Megson, G.M., "Sorting without exchanges on a bit-serial systolic array", 

lEE Proc., Vol. 137, Pt. G., No.5, pp. 345-352, 1990. 

[71] Robson, AP., "SIMSTRICT, a behavioural simulator for use with the 

STRICT Hardware Description Language", Technical Report, Dept. of Electrical and 

Electronic Engineering, Univ. of Newcastle upon Tyne, 1989. 

[72] Thomas, D.E., and Moorby, P., "The Verilog Hardware Description Lan-

guage", Kluwer Publishers, 1991. 

[73] Aylor, J.H., Waxman, R., and Scarratt, c., "VHDL - Feature Description 

and Analysis", IEEE Design and Test of Computers, pp. 17-27, April 1986. 

[74] "Verilog-XL: Product Description", Gateway Design Automation Corpor-

ation, 1989. 

[75] Kloos, C.D., "Formal Semantics for VHDL". Kluwer Publishers, 1995. 

[76] Goossens, K.G.w., "Semantics for picoELLA", Technical report, Dept. of 

Computer Science, University of Edinburgh, 1990. 

[77] Cohn, A, "Correctness properties of the VIPER block Model: The Second 

Level", in: Current Trends in Hardware Verification and Automatic Theorem Proving, 

Springer, pp. 1-91, 1989. 

[78] Borrione, D., Pierre, L., and Salem, A., "PREVAIL: A Proof Environment 

for VHDL Descriptions", in: Correct Hardware Design Methodologies, Elsevier, pp. 

163-186, 1992. 

200 



[79] Turner, D., "Recursion equations as a programming language" In: "Func-

tional programming and its applications", Cambridge University Press, pp. 1-28, 1982. 

[80] Henderson, P., "Functional Programming: Application and Implementa-

tion", Prentice-Hall International, Series in Computer Science, 1980. 

201 



BIBLIOGRAPHY 

The papers below, whilst not directly referenced in this thesis, give a good oven'iew of the 

general research climate in which the work was performed. 

[81] Arndt, RL., and Dietmeyer, D.L., "DDLSIM-A Digital Design Language 

Simulator", Proc. NEC, pp. 116-118, 1970. 

[82] Berman, CL., and Trevillyan, L.B. "Functional Comparison of Logic De-

signs for VLSI Circuits", Proc. ICCAD-89, pp. 45~59, 1989. 

[83] Bhasker, J., "Process-Graph Analyser: A Front-End Tool for VHDL Beha­

vioural Synthesis", SOFTWARE-PRACTICE AND EXPERIENCE, VOL. 18(5), pp. 

469-483, 1988. 

[84] Birtwistle, G., Graham, B., Simpson, T., Shnd, K., Williams, M., and Wi1-

liaims, S., "Verifying an SECD chip in HOL", Proc. IFIP Workshop, "Applied Formal 

Methods for Correct VLSI Design", Belgium, pp.149-158, 1989. 

[85] Blackman, T., Fox, J., and Rosebrugh, C, "The SILCtm SILICON COM­

PILER: Language and Features", Proc. 22nd ACMlIEEE Design Automation Conference, 

pp. 232-237, 1985. 

[86] Blackburn, RL., Thomas, D.E., and Koenig, P.M., "CORAL II: Linking 

Behaviour and Structure in an I.C Design System", Proc. 25th ACM/IEEE Design Au­

tomation Conference, pp. 529-535, 1988. 

187] Boyd, D.RS, "APECS: A Pascal Environment for Circuit Specification", 

Internal Memo, Rutherford Appleton Laboratories, Chiltern, Didcot, 1981. 

[88] Borrione, D., Paillet, J.L., and Pierre, L., "Formal Verification of CAS­

CADE descriptions", Proc. IFIP International Working Conference, 'The Fusion of Hard­

ware Design and Verification", U.K., pp. 185-210, 1988. 

2()~ 



[89] Brown, G.M., and Leeser, M.E., "Synthesizing Correct Sequential Cir­

cuits", Proc. IFIP International Working Conference, "Computer Hardware Descriptions 

& their Applications,", pp. 169-181, 1990. 

[90] Burns, EP., Kinniment, DJ., and Koelmans, A.M., "Correct Interactive 

Transformational Synthesis ofDSP Hardware", Proc. European Design Automation Con­

ference, pp. 16-21, 1991. 

[91] Camposano, R., "Synthesis techniques for Digital Systems Design", Proc. 

22nd ACMlIEEE Design Automation Conference, pp. 475-480,1985. 

[92] Camposano, R., "Design Process Model in the Yorktown Silicon Com-

piler", Proc. 25th ACMlIEEE Design Automation Conference", pp. 489-494, 1988. 

[93] Camilleri, A.J., "Simulation as an aid to Verification using the HOL The­

orem Prover", IFIP working conference, "Design Methodologies for VLSI and Computer 

Architectures", pp. 147-167, 1989. 

[94] Camurati, P., and Prinetto, P., "Formal Verification of Hardware Correct­

ness: Introduction and Survey of Current Research", IEEE COMPUTER, pp. 8-19, 1988. 

[95] Cadence, "Verilog-XL, Reference Manual", Volumes 1 and 2, 1991. 

[96] Chu, C.M., Potkonjak, M., Thaler, M., and Rabaey, J., "HYPER: An Inter­

active Synthesis Environment for High Performance Real Time Applications", IEEE De­

sign and Test of Computers, pp. 432-435, 1989. 

[97] Collavizza, H., "Functional Semantics of Microprocessors at the Micropro­

gram Level and Correspondence with the Machine Instruction Level", Proc. EDAC-90, 

pp. 52-56, 1990. 

[98] Director, S.W., Parker, A.c., Siewiorek, D.P., and Thomas, D.E., "A De­

sign Methodology and Computer Aids for Digital VLSI Systems", IEEE Trans. Circuits 

and Systems, vol. CAS-28, pp. 634-644, 1981. 

203 



[99] Dussault, J., Liaw, C.c., and Tong, M.M., "A High Level Synthesis Tool 

for MOS Chip Design", Proc. 21st ACMlIEEE Design Automation Conference, pp. 

308-313, 1984. 

[100] Dutt, N.D., and Gajski, D.O., "Designer Controlled Behavioural Syn-

thesis", Proc. 26th ACMlIEEE Design Automation Conference, pp. 754-757, 1989. 

[101] Dutt, N.D., and Gajski, D.O., EXEL: A Language for Interactive Beha­

vioural Synthesis", Proc. IFIP International Working Conference, "Computer Hardware 

Description Languages & their Applications", pp. 3-17, 1990. 

[102] Feldbusch, E, and Kumar, R., "Verification of Synthesized Circuits at Reg-

ister Transfer Level with Flow Graphs", pp. 22-26, 1991. 

[103] Gajski, D.D., "Silicon Compilers and Expert Systems", Proc. 21st ACMI 

IEEE Design Automation Conference, pp. 86-87, 1984. 

[104] Gaboury, P., and Elmasry, M.I., "Using Program Transformation for VLSI 

Design Automation", Proc. IFIP Workshop, "Applied Formal Methods for Correct VLSI 

Design", Belgium, pp. 40-56, 1989. 

[105] Ghosh, A, Devadas, S., and Newton, AR., "Verification ofInteracting Se­

quential Circuits", Proc. 27th ACMlIEEE Design Automation Conference, pp. 213-219, 

1990. 

[106] Gopalakrishnan, G.c., Smith, D.R., Shrivas, M.K., "An algebraic approach 

to the Specification and Realization of VLSI designs", In: "Computer Hardware Descrip­

tion Languages and their applications", North-Holland, pp. 16-38, 1985. 

[107] Haroun, B.S., and Elmasry, M.I., "SPAID: An Architectural Synthesis Tool 

for DSP Custom Applications", IEEE 1988 Custom Integrated Circuits Conference, pp. 

14.4.1-14.4.5, 1988. 

[108] Halbwachs, N., Lonchampt, A, and Pilaud, D., "Describing and designing 

circuits by means of a synchronous declarative language", IFIP International working con­

ference, "From HDL descriptions to guaranteed correct circuit designs", Grenoble, pp. 

255-268, 1986. 

204 



[109] Hanna, F.K., Longley, M., and Daeche, N., "Formal Synthesis of Digital 

Systems", Proc. IFIP Workshop, "Applied Formal Methods for Correct VLSI Design", 

Belgium, pp. 532-548, 1989. 

[110] Hilfinger, P.N., "A High-Level Language and Silicon Compiler for Digital 

Signal Processing", IEEE 1985 Custom Integrated Circuits Conf., pp.213-216, 1985. 

[111] Hodgson, S. "A Multilevel, Mixed State Simulator for Hierarchical Design 

Verification", Proc. IEEE Electronic Design Automation, pp. 107-110, 1984. 

[112] Hunt, W.A., "Microprocessor Design Verification", Technical Report 48. 

CLI Inc., Austin, 1989. 

[113] Jerraya, A., Varinot, P., Jamier, R., and Courtois, B., "Principles of the Syco 

Compiler", Proc. 23rd ACMlIEEE Design Automation Conference, pp. 715-721, 1986. 

[114] J oepen, H., and Glesner, M., "Optimal Structuring of Hierarchical Control-

Paths in a Silicon-Compiler System", Proc. ICCAD-86, pp. 264-267, 1986. 

[115] Johnson, S.D., "Synthesis of Digital Designs from Recursion Equations", 

ACM Distinguished Dissertation, MIT Press, 1983. 

[116] Johnson, S.D., "Digital Design in aFunctional Calculus", Proc. 1985 work­

shop on VLSI, Edinburgh, "Formal Aspects of VLSI Design", Elsevier Science Pub­

lishers, B.V. (North-Holland), pp. 45-57, 1986. 

[ 117] Johannsen, D., "Bristle Blocks: a Silicon Compiler", Proc. 16th Design Au-

tomation Conf., pp. 310-313. 1979. 

[118] Johnson, S.D., Wehrmeister, R.M .• and Bose, B., "On the Interplay of Syn­

thesis and Verification Experiments with the FM8501 Processor Description", Proc. IFIP 

Workshop, Applied Formal Methods for Correct VLSI Design", Belgium, pp.385-403, 

1989. 

[119] Kalker. T .• "Formal Methods for Silicon Compilation", Proc. European De-

sign Automation Conference. pp. 395-400, 1991. 

205 



[120] Kruatrachue, B., and Lewis, E., "Grain size determination for parallel pro-

cessing", IEEE Software, vol. 5, No 1, pp 23-31, 1988. 

[121] Losleben, P. "Computer Aided Design for VLSI" In: "Very Large Scale In-

tegration (VLSI) Fundamentals and Applications", Springer, pp. 89-127, 1982. 

[122] Luk, W., and Jones, G., "From Specification to Parameterized Architec­

tures", Proc. IFIP International Working Conference, "The Fusion of Hardware Design 

and Verification", pp. 267-288, 1988. 

[123] Martin, A.J., "A synthesis Method for Self-timed VLSI circuits", Proc. 

ICCD 87, International Conference on Computer Design, pp. 224-229, 1987. 

[124] Madre, J.e., and Billon, J.P., "Proving Circuit Correctness using Formal 

Comparison Between Expected and Extracted Behaviour", Proc. 25th ACMlIEEE Design 

Automation Conference, pp. 205-210, 1988. 

[125] De Man, l, "Transformational Design: A Case Study", Proc. IFIP Work­

shop, "Applied Formal Methods for Correct VLSI Design", Belgium, pp. 206-215,1989. 

[126] McFarland, M.e., and Parker, A.e., "An Abstract Model of Behaviour for 

Hardware Descriptions", IEEE Trans. Computers, vol. C-32, pp. 621-637, 1983. 

[127] Meshkinpour, F., and Ercegovac, M.D., "A Functional Language for De­

scription and Design of Digital Systems: Sequential Constructs", Proc. 22nd ACMlIEEE 

Design Automation Conference, pp. 238-244, 1985. 

[128] Milne, G.J., "Behavioural description and VLSI verification", lEE Proc., 

vol. 133, Pt E, no. 3, pp. 127-137, 1986. 

[129] Nash, lH. and Smith, S.G., "A Front End Graphics Interface To The First 

Silicon Compiler", Proc. IEEE Electronic Design Automation, pp. 120-124, 1984. 

[130] Narendran, p., and Stillman, J., "Formal Verification of the Sobel Image 

Processing Chip", Proc. 25th ACMlIEEE Design Automation Conference, pp. 211-217, 

1988. 

206 



[131] O'Donnell, J.T., "Hydra: Hardware description in a functional language 

using recursion equations and higher order combining forms", Proc. IFIP Conf. ''The 

Fusion of Hardware Design and Verification", pp. 309-328, 1988. 

[132] Orailoglu, A., and Gajski, D.D., "Flow Graph Representation", Proc. 23rd 

ACMlIEEE Design Automation Conference, pp. 503-509, 1986. 

[133] Paillet, J., "A Functional Model for Descriptions and Specifications of 

Digital Devices", Proc. IFIP International working conference", From HDL descriptions 

to guaranteed correct circuit designs", Grenoble, pp. 21-42, 1986. 

[134Pe86] Peng, Z., "Synthesis ofVLSI Systems with the CAMAD Design Aid", Proc. 

23rd ACMlIEEE Design Automation Conference, pp. 278-283, 1986. 

[135] Piloty, R, Borrione, D., "The CONLAN Project: Concepts, implementa-

tions, and Applications", IEEE Computer, pp. 81-92, Feb. 1985. 

[136] Razouk, RR, "The Use of Petri Nets for Modeling Pipelined Processors", 

Proc. 25th ACMlIEEE Design Automation Conference, pp. 548-553, 1988. 

[137] Rajopadhye, S.V., "Algebraic Transformations in Systolic Array Syn­

thesis: A Case Study", Proc. IFIP Workshop, "Applied Formal Methods for Correct VLSI 

Design", Belgium, pp. 281-290, 1989. 

[138] Russel, G., Kinniment, DJ., Chester, E.G., and McLauchlan, M.R, "CAD 

for VLSI", Van Nostrand Reinhold, U.K., 1985. 

[139] Sarma, Re., Dooley, M.D., Newman, N.e., and Hetherington, G., "High­

Level Synthesis: Technology Transfer To Industry", Proc. 27th ACMlIEEE Design Au­

tomation Conference, pp. 549-554, 1990. 

[140] Southard, J.R, "MacPitts: An Approach to Silicon Compilation", IEEE 

COMPUTER, pp. 74-82,1983. 

[141] Spreitzer, M., "Comparing Structurally Different Views of a VLSI De-

sign", Proc. 27th ACMlIEEE Design Automation Conference, pp. 200-206, 1990. 

207 



[142] Stavridou, V, Barringer, H., and Edwards, D.A., "Formal Specification and 

verification of Hardware: A Comparative Case Study", Proc. 25th ACMlIEEE Design Au­

tomation Conference, pp. 197-203, 1988. 

[143] Tamassia, R., Di Battista, G., and Batini., C., "Automatic graph drawing and 

the readability of diagrams" IEEE Transactions on systems, man, and cybernetics, Vol 18, 

no 1, pp. 61-79, 1988. 

[144] Thomas, D.E., Dirkes, E.M., Walker, R.A, Rajan, J.V., Nestor, J.A., and 

Blackburn, R.L., "The System Architect's Workbench", Proc. 25th ACMlIEEE Design 

Automation Conference, pp. 337-343, 1988. 

[145] Trickey, H., "Flamel: A High-Level Hardware Compiler", IEEE Trans on 

CAD, vol. CAD-6, no. 2, pp. 259-269, 1987. 

[146] Tseng, C.J., Wei, R.S., Rothweiler, S.G., Tong, M.M., and Bose, A.K., 

"Bridge: A Versatile Behavioural Synthesis System", Proc. 25th ACMlIEEE Design Au­

tomation Conference, pp. 415-420, 1988. 

[147] Vanhoof, J., Rabaey, J., and Man, H.D., "A Knowledge-Based CAD Sys­

tem for Synthesis of Multi-Processor Digital Signal Processing Chips", Proc. IFIP In­

ternational working conference, VLSI-87, pp. 73-88, 1987. 

[148] Vemuri, R., "A Formal Model for Register Transfer Level Structures and 

Its Applications in Verification and Synthesis", Proc. IFIP Workshop, "Applied Formal 

Methods for Correct VLSI Design", Belgium, pp. 77-96, 1989. 

[149] Walker, R.A, and Thomas, D.E., "Design Representation and Transform-

ation in the System Architect's Workbench", Proc. ICCAD-87, pp. 166-169, 1987. 

[150] Whitcomb, G.S., and Newton, A.R., "Abstract Data Types and High-Level 

Synthesis", Proc. 27th ACMlIEEE Design Automation Conference, pp. 680-685, 1990. 

[151] Wilk, A, and Pnuelli, A, "Specification and Verification of VLSI Sys­

tems", Proc. ICCAD-89, pp. 460-463, 1989. 

208 



APPENDICES 

209 



A. SAMPLE OUTPUTS 



A.1. Simulator 

Shown below in Fig. 39 is a screen dump for the full adder example of section 3.9.3. It 

shows how the simulator prompts for input values for the various ports, traces the operation 

of the device, and then displays the expected outputs. On each output line, the simulator 

first prints the current time value in square brackets, followed by a code indicating the sub­

systems involved in the output. The main prompt is the symbol '»>'. 

211 



0] S It~01 I S It~STR I CT rel ease 1. 2 

Simulating : F 

[ 0 ] SIMOOR»> decompose 
[ 0 ] COt~06 I 1 blocks decomposed, 0 with compare 
[ 0 ] SIMOOR»> deposit :* 
[ 0 ] COt~07P Give binary number rflax 1 bits for F: X 
[ 0 ] COtU1~ 1 
[ 0 ] COt~07P Give binary nurflber max 1 bits for F: CIN 
[ 0 ] COt~11~ 0 
[ 0 ] COt~07P Give binary number max 1 bits for F: COUT 
[ 0 ] Cor~11~ 
[ 0 ] COt~07P Give bina'r y number max 1 bits for F: S 
[ 0 ] Cor~11~ 
[ 0 ] Cor~07P Give binary number max 1 bits for F: Y 
[ 0 ] Cor~11~ 1 
[ 0 ] COM14I 3 ports selected for deposit 
[ 0 ] SIMOOR»> go 
[ 0 ] MAN02 I TRACE KDV D-- F. HT : Y 1 
[ 0 ] I~AN02 I TRACE KDV D-- F: Y 1 
[ 0 ] MAN02 I TRACE KDv D-- F. HB:Y 0 
[ 0 ] MAN02 I TRACE KDv D-- F:C IN 0 
[ 0 ] MAN02 I TRACE KDV D-- F. HT :X 1 
[ 0 ] MAN02 I TRACE KDV D-- F: X 1 
[ 10 ] MAN02 I TRACE kDV D-- F. O: IN ? 
[ 10 ] MAN02 I TRACE KDv D-- F. HB :X 0 
[ 10 ] MAN02 I TRACE KDv DgD F. HT :S 0 
[ 10 ] I~AN02 I TRACE KDV DgD F. HT : C 1 
[ 16 ] MAN03E Signal drivi ng conflict on port F: COUT 
[ 16] MAN02 I TRACE kDV DgD F:COUT ? 
[ 16 ] MAN02 I TRACE k DV DgD F.O :OUT ? 
[ 20 ] ~1AN03 E Signal drivi ng conflict on port F: S 
[ 20 ] ~1AN02 I TRACE Kdv D-- F. 0: IN 10 
[ 20 ] ~1AN02 I TRACE KDv DgD F: S 0 
[ 20 ] MAN02 I TRACE KDv DgD F. HB :S 0 
[ 20 ] ~1AN02 I TRACE KDv DgD F. HB : C 0 
[ 26 ] MAN03E Signal drivi ng conflict on port F:COUT 
[ 26 ] ~1AN02 I TRACE Kdv DgD F: COUT 1 
[ 26 ] ~1AN02 I TRACE Kdv DgD F. 0: OUT 1 
[ 26 ] MAN61I ALL events complete 
[ 26 ] SIMOOR»> show block ports 
[ 26 ] Cm128I block F 

level = 0 t~lpe = FUNCT number = 349 DEC0I01POSED 
behavioUl" = FULL 

ports 
X 
CI N 
COUT 
5 
Y 

26 ] SH100R»> 

t~.'pe --- target 
IN -T- $PAD: X 
IN - T- $PAD :CIN 
OUT -T- $PAD: COUT 
OUT -T- $PAD :S 
IN -T- $PAD :Y 

Fig. 39. Simulator screen dump 

2 12 

valLJe 
1 
o 
1 
o 
1 



A.2. Layout 

This section shows a number of layout plots, produced from GAELIC file which were gen­

erated by the STRICT system. 

Fig. 40. Full adder layout 

Figure 40 shows a plot for the full adder example of section 4.9.3. 

213 



~~ R£GLAYUUT . LHG 

Fig. 41. 6 bit register layout 

Figure 4 l shows the n- bit regi ter from section 4.9.5, where ' n' has the val ue 6. 

2 14 



SORT2 . LHG 

Fig. 42. Systolic array layout 

Finally, Figure 42 shows a systolic array, similar to example 4.9.6. The actual de ign i 

Megson's systolic sorter [70] , in which the bas ic cells contai n flip flop and half adder . 

2 15 



A.3 PLA generator 

The partial example shown below is the Mead and Conway traffic light controller first in­

troduced in section 3.9.9. It shows clearly the kind of behavioural descriptions acceptable 

to the PLA generator. 

The PLA generator generates the following STATIC code. 

CONSTANTS 

green 

yellow 

red 

INPUTS 

= 0 

= 1 

= 2 

carhere, longtimeout, shorttimeout 

OUTPUTS 

timer, road<2>,farrnroad<2> 

TABLE 

STATE roadgreen 

IF NOT carhere GOTO roadgreen 

DO road = green, farmroad = red; 

IF NOT longtimeout GOTO roadgreen 

DO road = green, farmroad = red; 

IF carhere AND longtimeout GOTO roadyellow 

DO road = green, farrnroad = red, timer = 1; 

STATE roadyellow 

IF NOT shorttimeout GOTO roadyellow 

DO road = yellow, farrnroad = red; 

IF shorttimeout GOTO farmroadgreen 

DO road = yellow ,farmroad = red, timer = 1; 

STATE farrnroadgreen 

IF carhere AND NOT longtimeout GOTO farrnroadgreen 

DO road = red, farrnroad = green; 

IF NOT carhere GOTO farrnroadyellow 

216 



DO road = red, farmroad = green, timer = 1; 

IF longtimeou GOTO farrnroadyellow 

DO road = red, farrnroad = green; 

STATE farmroadyellow 

IF NOT shorttimeout GOTO farmroadyellow 

DO road = red, farrnroad = yellow; 

IFshorttimeout GOTO roadgreen 

DO road = red, farrnroad = yellow; 

The STATIC parser translates this into a set of boolean equations. which are then mini­

mised. The result is: 

OUT1=IN2.FEED1.FEEDO'+INO.IN1' .FEED1' .FEEDO+INO'.FEED1'.FEEDO+ 

IN1.FEED1' .FEEDO+IN2' .FEED1.FEEDO ; 

OUT2=INO' .FEED1' .FEEDO+IN1.FEED1' .FEEDO+INO.IN1.FEED1' .FEEDO'+ 

IN2 ' . FEED1 ; 

OUT3=IN2.FEED1.FEEDO'+INO' .FEED1' .FEEDO+INO.IN1.FEED1' .FEEDO' 

OUT4=INO.IN1' .FEED1' .FEEDO+INO' .FEED1' .FEEDO+IN1.FEED1' .FEEDO+ 

FEED1.FEEDO ; 

OUTS=FEED1.FEEDO' 

OUT6=INO.IN1.FEED1' .FEEDO'+FEED1.FEEDO'+INO' .FEED1'.FEEDO'+ 

IN1' .FEED1' .FEEDO' 

OUT7=FEED1.FEEDO ; 

PIa data after mUltiple output minimisation 

Number of inputs 5 

Number of outputs 7 

Number of product terms 10 

Extra output included to ensure even number 

217 



The minimised equations are translated into bitmaps for the AND and OR plane. as follows: 

0 0 

5 8 2 

10 

0 0 0 0 1 0 1 0 0 1 

1 0 0 1 0 0 0 1 1 0 

0 1 0 0 0 0 0 1 1 0 

0 0 1 0 0 0 0 1 1 0 

0 0 0 0 0 1 1 0 1 0 

1 0 1 0 0 0 0 1 0 1 

0 0 0 0 0 1 1 0 0 1 

0 0 0 0 1 0 1 0 1 0 

0 1 0 0 0 0 0 1 0 1 

0 0 0 1 0 0 0 1 0 1 

1 0 1 0 1 1 0 0 

1 0 0 1 0 0 0 0 

1 1 1 1 0 0 0 0 

1 1 0 1 0 0 0 0 

1 1 0 1 0 0 1 0 

0 1 1 0 0 1 0 0 

0 1 0 0 1 1 0 0 

0 0 0 1 0 0 1 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 

The bitmap is then translated into GAELIC. A plot of the result is shown in Fig. 43. 

218 



~n 

IraJ Iii ~ ~ !"l ~ LraJ :!! 
1l1li I1IIU1l 1111 Q 
J!Ij ill JIll 11111 .Q 

I~ ~: .. ~ II 
1& ~~ ;ii:=. 

l!!!---: ~ JII llliJiI 

i ~ F ~ II. I!,;! 

~ I--IliI I !.iii I Iii Iii 

.1111 .I.IIJI 

l1li l!!!I II! 

~ 
~ II!! II!I II!!! 

r- r- JJ\ III II ~ ~ 1!l1 
III ~Il!!j 13 ~ ~ 1° IraJ IIii: I Iii l!! 

~ ~F Ii Fi Iil F1 

~~ b ~ 

~ 
.jill 

1l1li111 ~ 
~ II! 11!!1 

~~ 
It1 @: §: I~ III F 

~ ~ ~ ~ 13 ~ 
~ jj 

~ ~ ~ ~ III III! I® lit! I 1° 

~ ~ -
JQ lE LE L!= ~ 

~ 
r W ~ I f r f W 

Fig. 43. PLA plot 

The GAELIC fi le should then be merged with the output of the layou t sy tern . There is cur-

rently no EDIF interface available . 



A.4. EDIF output 

The EDIF version ofthe full adder is shown below. This version was checked with a public­

ly available EDIF parser, and was accepted by CADENCE as input. Unfortunately. due to 

serious problems with the CADENCE EDIF software it was not possible to include the CA­

DENCE library cells in the description. 

(edif CADENCE_EDIF 

(edifVersion 2 0 0) 

(edifLevel 0) 

(keywordMap (keywordLevel 0» 

(cell ntg 

(cell Type GENERIC) 

(view v_ntg 

(viewType NETLIST) 

(interface 

(port a (direction INPUT» 

(port qb (direction OUTPUT» 

(cell inverter 

(cellType GENERIC) 

(view v_inverter 

(viewType NETLIST) 

(interface 

(port a (direction INPUT» 

(port out (direction OUTPUT» 

(contents 

(instance x (viewRef v_ntg (cellRef ntg» 

(property placernentStatus 

(string ·suggested-) 

(owner ·Cadence-) 

220 



(net Nl 

(joined 

(portRef a 

(portRef a (instanceRef x)) 

(net N2 

(joined 

(portRef qb (instanceRef x)) 

(portRef out ) 

(cell nag2 

(cell Type GENERIC) 

(view v_nag2 

(viewType NETLIST) 

(interface 

(port a (direction INPUT)) 

(port b (direction INPUT)) 

(port qb (direction OUTPUT)) 

(cell andgate2 

(cell Type GENERIC) 

(view v_andgate2 

(viewType NETLIST) 

(interface 

(port a (direction INPUT)) 

(port b (direction INPUT)) 

(port out (direction OUTPUT)) 

221 



(contents 

(instance x (viewRef v_nag2 (cellRef nag2)) 

(property placementStatus 

(string "suggested") 

(owner "Cadence") 

(instance y (viewRef v_ntg (cellRef ntg)) 

(property placementStatus 

(string "suggested") 

(owner "Cadence") 

(net Nl 

(joined 

(portRef a 

(portRef a (instanceRef x)) 

(net N2 

(joined 

(portRef b 

(portRef b (instanceRef x)) 

(net N3 

(joined 

(portRef qb (instanceRef x)) 

(portRef a (instanceRef y)) 

(net N4 

(joined 

(portRef qb (instanceRef y)) 

222 



(portRef out ) 

(cell nor2 

(cellType GENERIC) 

(view v_nor2 

(viewType NETLIST) 

(interface 

(port 

(port 

(port 

(cell orgate2 

a (direction INPUT» 

b (direction INPUT» 

qb (direction OUTPUT» 

(cell Type GENERIC) 

(view v_orgate2 

(viewType NETLIST) 

(interface 

(port a (direction INPUT» 

(port b (direction INPUT» 

(port out (direction OUTPUT» 

(contents 

(instance x (viewRef v_nor2 (cellRef nor2» 

(property placementStatus 

(string HsuggestedH) 

(owner HCadence") 

(instance y (viewRef v_ntg (cellRef ntg» 

(property placementStatus 

223 



(string "suggested") 

(owner "Cadence") 

(net Nl 

(joined 

(portRef a 

(portRef a (instanceRef x)) 

(net N2 

( joined 

(portRef b 

(portRef b (instanceRef x)) 

(net N3 

(joined 

(portRef qb (instanceRef x)) 

(portRef a (instanceRef y)) 

(net N4 

(joined 

(portRef qb (instanceRef y)) 

(portRef out ) 

(cell hal 

(cellType GENERIC) 

(view v_hal 

(viewType NETLIST) 

224 



{interface 

{port x (direction INPUT) ) 

{port y (direction INPUT) ) 

{port s (direction OUTPUT) ) 

{port c (direction OUTPUT) ) 

{contents 

{instance nl (viewRef v_inverter (cellRef inverter» 

(property placementStatus 

(string "suggested") 

(owner "Cadence") 

(instance n2 (viewRef v_inverter (cellRef inverter» 

(property placementStatus 

(string "suggested") 

(owner "Cadence") 

(instance al (viewRef v_andgate2 (cellRef andgate2» 

(property placementStatus 

(string "suggested") 

(owner "Cadence") 

(instance a2 (viewRef v_andgate2 (cellRef andgate2» 

(property placementStatus 

(string "suggested") 

(owner "Cadence") 

(instance a3 (viewRef v_andgate2 (cellRef andgate2» 

(property placementStatus 

(string "suggested") 

(owner "Cadence") 

225 



(instance 01 (viewRef v_orgate2 (ce11Ref orgate2» 

(property placementStatus 

(string "suggested") 

(owner "Cadence") 

(net N1 

(joined 

(portRef x 

(portRef a (instanceRef all) 

(portRef a (instanceRef a2» 

(portRef a (instanceRef n2» 

(net N2 

(joined 

(portRef y 

(portRef b 

(portRef b 

(portRef a 

(net N3 

(joined 

(instanceRef all) 

(instanceRef a3 l) 

(instanceRef n1l) 

(portRef out (instanceRef n1» 

(portRef b (instanceRef a2» 

(net N4 

(joined 

(portRef out (instanceRef n2» 

(portRef a (instanceRef a3» 

226 



(net N5 

(joined 

(portRef out (instanceRef all) 

(portRef c ) 

(net N6 

(joined 

(portRef out (instanceRef a2)) 

(portRef a (instanceRef 01)) 

(net N7 

(joined 

(portRef out (instanceRef a3)) 

(portRef b (instanceRef 01)) 

(net N8 

(joined 

(portRef out (instanceRef 01)) 

(portRef s ) 

(cell full 

(cell Type GENERIC) 

(view v_full 

(viewType NETLIST) 

(interface 

(port x (direction INPUT)) 

(port y (direction INPUT)) 

227 



(port cin (direction INPUT)) 

(port cout (direction OUTPUT)) 

(port s (direction OUTPUT)) 

(contents 

(instance ht (viewRef v_hal (cellRef hal)) 

(property placementStatus 

(string "suggested") 

(owner "Cadence") 

(instance hb (viewRef v_hal (cellRef hal)) 

(property placementStatus 

( s tr ing "sugges ted" ) 

(owner "Cadence") 

(instance 0 (viewRef v_orgate2 (cellRef orgate2)) 

(property placementStatus 

(string "suggested") 

(owner "Cadence") 

(net Nl 

(joined 

(portRef x 

(portRef x (instanceRef ht)) 

(net N2 

(joined 

(portRef y 

(portRef y (instanceRef ht)) 

228 



(net N3 

(joined 

(portRef cin 

(portRef y (instanceRef hb)) 

(net N4 

(joined 

(portRef s (instanceRef ht)) 

(portRef x (instanceRef hb)) 

(net N5 

(joined 

(portRef c (instanceRef ht)) 

(portRef a (instanceRef 0)) 

(net N6 

(joined 

(portRef s (instanceRef hb)) 

(portRef s 

(net N7 

(joined 

(portRef c (instanceRef hb)) 

(portRef b (instanceRef 0)) 

(net N8 

(joined 

(portRef out (instanceRef 0)) 

(portRef cout ) 

229 



) ) 

230 



A.S. Boyer-Moore Prover output 

This appendix shows part of the output generated by the Boyer-Moore prover when pres­

ented with the input file shown in section 10.8. Some of the output has been deleted for the 

sake of clarity. The entire output file is about llOO lines long. 

Loading hadd.bm 

Note that (NUMBERP (XORGATE-SPEC INt IN2» is a theorem. 

[ 0.0 0.0 0.0 1 

Note that (NUMBERP (ANDGATE2-SPEC INI IN2» is a theorem. 

[ 0.0 0.0 0.0 1 

From the definition we can conclude that (NUMBERP (HALFADDER-SPEC X Y» 

is a theorem. 

[ 0.0 0.0 0.0 1 

From the definition we can conclude that (NUMBERP (At X Y» is a theorem. 

[ 0.0 0.0 0.0 1 

From the definition we can conclude that (NUMBERP (Xl X Y» is a theorem. 

[ 0.0 0.0 0.0 1 

From the definition we can conclude that (BVP (HALFADDER~IRCUIT X Y» is 

a theorem. 

[ 0.0 0.00.0 1 

This formula can be simplified, using the abbreviations AND, IMPLIES, and 

HALFADDER-SPEC, to: 

(IMPLIES (AND (BVP X) 

(BVPY) 

(EQUAL (BV-LENGTH X) 1) 

(EQUAL (BV-LENGTH Y) 1) 

(EQUAL (BV-TO-NAT (HALFADDER~IRCUIT X Y» 

(PLUS (BV-TO-NAT X) (BV-TO-NAT Y)))), 

which simplifies, appealing to the lemmas BV-FIX-BV-AND, BV-LENGTH-BV-AND, 

BV-TO-NAT-TO-BV, BV-FIX-BV-XOR, BV-LENGTH-BV-XOR, COMMUTATIVITY-OF­

TIMES, and 

BV-TO-NAT-BV-APPEND, and unfolding At, ANDGATE2-SPEC, EQUAL, Xl, XORGATE-SPEC, 

HALFADDER~IRCUIT, and EXP, to the conjecture: 

231 



(IMPLIES (AND (BVP X) 

(BVPY) 

(EQUAL (BV-LENGTH X) 1) 

(EQUAL (BV-LENGTH Y) 1» 

(EQUAL (PLUS (BV -TO-NAT (BV -XOR X Y» 

(TIMES 2 (BV-TO-NAT (BV-AND X Y)))) 

(PLUS (BV-TO-NAT X) (BV-TO-NAT Y»». 

Give the above fonnula the name *1. 

We will appeal to induction. There are six plausible inductions. 

However, they merge into one likely candidate induction. We will induct 

according to the following scheme: 

(AND (IMPLIES (BV-NILP X) (p X Y» 

(IMPLIES (AND (NOT (BV-NILP X» 

(p (BV-VEC X) (BV-VEC Y))) 

(p X Y))). 

Linear arithmetic, the lemmas BV-VEC-LESSEQP and BV-VEC-LESSP. and the 

definition of BV -NILP can be used to prove that the measure (COUNT X) 

decreases according to the well-founded relation LESSP in each induction step 

of the scheme. Note. however. the inductive instance chosen for Y. The above 

induction scheme generates four new goals: 

Case 4. (IMPLIES (AND (BV-NILP X) 

(BVPX) 

(BVPY) 

(EQUAL (BV-LENGTH X) 1) 

(EQUAL (BV-LENGTH Y) 1» 

(EQUAL (PLUS (BV-TO-NAT (BV-XOR X Y» 

(TIMES 2 (BV-TO-NAT (BV-AND X Y)))) 

(PLUS (BV-TO-NAT X) (BV-TO-NAT Y)))). 

which simplifies. unfolding BV-NILP, BVP. BV-LENGTH. and EQUAL. to: 

T. 

Case 3. (IMPLIES (AND (NOT (BV-NILP X» 

(NOT (EQUAL (BV-LENGTH (BV-VEC X» 1» 

(BVPX) 

(BVPY) 

232 



(EQUAL (BV-LENGTH X) 1) 

(EQUAL (BV-LENGTH Y) 1» 

(EQUAL (PLUS (BV-TO-NAT (BV-XOR X Y» 

(TIMES 2 (BV-TO-NAT (BV-AND X Y»» 

(PLUS (BV-TO-NAT X) (BV-TO-NAT Y»». 

which simplifies. rewriting with the lemmas EQUAL-BV-LENGTH--O. ADOl-EQUAL. 

BV-NILP-BV-XOR. BV-TO-NAT-BV-NILP. BV-TO-NAT-BV. BV-NILP-BV-AND. 

COMMUTATIVITY-OF-PLUS. PLUS-I. and PLUS-STOPPER. and unfolding the functions 

BV-NILP. BV-LENGTH. NUMBERP. BV-XOR. B-XOR. TIMES. PLUS. BV-AND. B-AND. 

BV-TO-NAT. and ZEROP. to 12 new conjectures: 

Case 3.12. 

(IMPLmS (AND (NOT (EQUAL X (BV-NIL») 

(NOT (EQUAL (BV-LENGTH (BV-VEC X» 1» 

(BVPX) 

(BVPY) 

(EQUAL (BV-VEC X) (BV-NIL» 

(NOT (EQUAL Y (BV-NIL))) 

(EQUAL (ADD 1 (BV-LENGTH (BV-VEC V»~) 

1) 

(NOT (TRUEP (BV-BIT V))) 

(NOT (TRUEP (BV-BIT X))) 

(BV-BIT X) 

(NOT (BV-BIT V))) 

(EQUAL (PLUS (TIMES 2 0) 1) 

(PLUS (TIMES 2 (BV-TO-NAT (BV-VEC X))) 

(TIMES 2 (BV-TO-NAT (BV-VEC V»~»))). 

which again simplifies. trivially, to: 

T. 

The other subcases of case 3 are dealt with in a similar manner - this part of the output is 

deleted for the sake of clarity. 

Case 3.1. 

(lMPLmS (AND (NOT (EQUAL X (BV-NIL») 

(NOT (EQUAL (BV-LENGTH (BV-VEC X» 1» 

233 



(BVPX) 

(BVPY) 

(EQUAL (BV-VEC X) (BV-NIL» 

(NOT (EQUAL Y (BV-NIL))) 

(EQUAL (ADDI (BV-LENGTH (BV-VEC Y») 

1) 

(TRUEP (BV-BIT Y» 

(TRUEP (BV-BIT X» 

(NOT (BV-BIT X») 

(EQUAL (PLUS (TIMES 20) 1) 

(PLUS (ADDl (TIMES 2 (BV-TO-NAT (BV-VEC X)))) 

(ADDI (TIMES 2 (BV-TO-NAT (BV-VEC Y»)))))), 

which again simplifies, trivially, to: 

T. 

Case 2. (IMPLIES (AND (NOT (BV-NILP X» 

(NOT (EQUAL (BV-LENGTH (BV-VEC Y» I»~ 

(BVPX) 

(BVP Y) 

(EQUAL (BV-LENGTH X) \) 

(EQUAL (BV-LENGTH Y) 1» 

(EQUAL (PLUS (BV-TO-NAT (BV-XOR X Y» 

(TIMES 2 (BV-TO-NAT (BV-AND X Y»))) 

(PLUS (BV-TO-NAT X) (BV-TO-NAT Y)))). 

This simplifies, applying EQUAL-BV-LENGTH-O, ADDl-EQUAL, BV-NILP-BV-XOR, 

BV-TO-NAT-BV-NILP, BV-TO-NAT-BV, BV-NILP-BV-AND, COMMUTATIVITY--OF-PLUS, 

PLUS-I, and PLUS-STOPPER, and expanding the functions BV-NILP, BV-LENGTH, 

NUMBERP, BV-XOR, B-XOR, TIMES, PLUS, BV-AND, B-AND, BV-TO-NAT, and ZEROP, to 

\2 new formulas: 

Case 2.12. 

(IMPLIES (AND (NOT (EQUAL X (BV-NIL») 

(NOT (EQUAL (BV-LENGTH (BV-VEC Y» 1» 

(BVPX) 

(BVP Y) 

(EQUAL (BV-VEC X) (BV-NIL» 

234 



(NOT (EQUAL Y (BV-NIL))) 

(EQUAL (ADD 1 (BV-LENGTH (BV-VEe Y)) 

I) 

(NOT (TRUEP (BV-BIT V»~) 

(NOT (TRUEP (BV-BIT X))) 

(BV-BITX) 

(NOT (BV-BIT V»~) 

(EQUAL (PLUS (TIMES 2 0) I) 

(PLUS (TIMES 2 (BV-TO-NAT (BV-VEe X») 

(TIMES 2 (BV-TO-NAT (BV-VEe Y»)))), 

which again simplifies, clearly, to: 

T. 

The other subcases of case 2 are dealt with in a similar manner - this part of the output is 

deleted for the sake of clarity. 

ease 2.1. 

(IMPLIES (AND (NOT (EQUAL X (BV-NIL») 

(NOT (EQUAL (BV-LENGTH (BV-VEe V»~ I» 

(BVP X) 

(BVP Y) 

(EQUAL (BV-VEe X) (BV-NIL» 

(NOT (EQUAL Y (BV-NIL))) 

(EQUAL (ADD 1 (BV-LENGTH (BV-VEe V»~) 

I) 

(TRUEP (BV-BIT V»~ 

(TRUEP (BV-BIT X» 

(NOT (BV-BIT X))) 

(EQUAL (PLUS (TIMES 20) I) 

(PLUS (ADDI (TIMES 2 (BV-TO-NAT (BV-VEe X»))) 

(ADDI (TIMES 2 (BV-TO-NAT (BV-VEe Y»)))))), 

which again simplifies, obviously, to: 

T. 

ease I. (IMPLIES 

(AND (NOT (BV-NILP X» 

235 



(EQUAL (pLUS (BV-TO-NAT (BV-XOR (BV-VEe X) (BV-VEe Y») 

(TIMES 2 

(BV-TO-NAT (BV-AND (BV-VEC X) (BV-VEe Y»))) 

(PLUS (BV-TO-NAT (BV-VEC X» 

(BV-TO-NAT (BV-VEC Y»» 

(BVPX) 

(BVPY) 

(EQUAL (BV-LENGTH X) 1) 

(EQUAL (BV-LENGTH Y) 1» 

(EQUAL (PLUS (BV-TO-NAT (BV-XOR X Y» 

(TIMES 2 (BV-TO-NAT (BV-AND X Y»))) 

(PLUS (BV-TO-NAT X) (BV-TO-NAT Y»))). 

This simplifies, rewriting with the lemmas H-TIM, TIMES-I, EQUAL-BV-LENGTH--O, 

ADDl-EQUAL, BV-NILP-BV-XOR, BV-TO-NAT-BV-NILP, BV-TO-NAT-BV, BV-NILP-BV-

AND, 

COMMUTATIVITY-OF-PLUS, PLUS-I, and PLUS-STOPPER, and unfolding the 

definitions of BV-NILP, SUB1, NUMBERP, EQUAL, TIMES, BV-LENGTH, BV-XOR, 

B-XOR, PLUS, BV-AND, B-AND, BV-TO-NAT, and ZEROP, to the following 12 new 

conjectures: 

Case 1.12. 

(IMPLIES 

(AND 

(NOT (EQUAL X (BV-NIL») 

(EQUAL (PLUS (BV-TO-NAT (BV-XOR (BV-VEC X) (BV-VEC Y))) 

(TIMES 2 

(BV-TO-NAT (BV-AND (BV-VEC X) (BV-VEC Y»)))) 

(PLUS (BV-TO-NAT (BV-VEC X» 

(BV-TO-NAT (BV-VEC Y»))) 

(BVPX) 

(BVPY) 

(EQUAL (BV-VEC X) (BV-NIL» 

(NOT (EQUAL Y (BV-NIL))) 

(EQUAL (ADDl (BV-LENGTH (BV-VEC Y») 

1) 

(NOT (TRUEP (BV-BIT Y))) 

236 



(NOT (TRUEP (BV-BIT X») 

(BV-BITX) 

(NOT (BV-BIT V))) 

(EQUAL (PLUS (TIMES 2 0) 1) 

(PLUS (TIMES 2 (BV-TO-NAT (BV-VEe X))) 

(TIMES 2 (BV-TO-NAT (BV-VEe V»~»))). 

This again simplifies, trivially, to: 

T. 

The other subcases of case 1 are dealt with in a similar manner - this part of the output is 

again deleted for the sake of clarity. 

easel.l. 

(IMPLIES 

(AND 

(NOT (EQUAL X (BV-NIL))) 

(EQUAL (PLUS (BV-TO-NAT (BV-XOR (BV-VEe X) (BV-VEe V))) 

(TIMES 2 

(BV-TO-NAT (BV-AND (BV-VEe X) (BV-VEe V))))) 

(PLUS (BV-TO-NAT (BV-VEe X» 

(BV-TO-NAT (BV-VEe V»~»~ 

(BVPX) 

(BVPY) 

(EQUAL (BV-VEe X) (BV-NIL» 

(NOT (EQUAL Y (BV-NIL))) 

(EQUAL (ADD I (BV-LENGTH (BV-VEe V))) 

1) 

(TRUEP (BV-BIT V»~ 

(TRUEP (BV-BIT X» 

(NOT (BV-BIT X») 

(EQUAL (PLUS (TIMES 20) I) 

(PLUS (ADDI (TIMES 2 (BV-TO-NAT (BV-VEe X»))) 

(ADDI (TIMES 2 (BV-TO-NAT (BV-VEe V))))))). 

This again simplifies. clearly. to: 

237 



T. 

That finishes the proof of * 1. Q.E.D. 

[0.066.33.7 ] 

Finished loading hadd.bm 

238 



A.6. Transformer output 

The final STRICT code generated by the Transformer (Chapter 11) is as follows. 

BLOCK eorreetable(n: integer) 

HAVING (a:posint[n] i:posint[n] din,elk,res: WIRE): 

(out:bit dout:WIRE) 

SIZE 1 BY area 

INTENDED BEHAVIOUR 

WHENEVER 

change (elk) : 

WITHIN (time) 

SET 

output=nil 

USE STRUCTURE 

{ 

INSTANCE 

USING 

and21,and22:and2(n) 

emp1,emp2,emp3:emp(n) 

evalO,eval1,eval2,eval3:eval(n) 

alfapow1,alfapow2,alfapow3:alfapow(n) 

mul1,mul2,mul3:mul(n) 

d1:reg(n) 

eval1(a,O,din) 

mull (1, i) 

alfapow1(mul1.out,evalO.out,eval2.dout) 

evalO(a,l,din) 

eval4(a,O,din) 

mul2(2,i) 

alfapow2(mul2.out,evalO.out,evalO.dout) 

eval2(a,2,din) 

mul3 (3, i) 

239 



MAKE 

} 

END 

alfapow3(mul3.out,evalO.out,evalO.dout) 

cmp3(eval3.out,alfapow3.out) 

cmp2(eval2.out,alfapow2.out) 

and22 (cmp2.out,cmp3.out) 

cmpl(evall.out,alfapowl.out) 

dl(alfapow2.dout,clk,res) 

and21(cmpl.out,and22.out) 

correctable::= and21.out 

dout ::= dl.dout 

BLOCK eval(n: integer) 

HAVING (a:posint[n] j:posint[n] din,clk,res: WIRE): 

(out:posint[n] dout:WIRE) 

SIZE 1 BY area 

INTENDED BEHAVIOUR 

WHENEVER 

change (elk) : 

WITHIN (time) 

SET 

USE STRUCTURE 

{ 

output=nil 

INSTANCE 

newsuml:newsum(n) 

dl:reg(n) 

USING 

MAKE 

dl(din,clk,res) 

newsuml(31,0,a,j,dl.out) 

eval::= newsuml.out 

240 



dout newsuml.dout 

END 

BLOCK newsum(n: integer) 

HAVING (i:posint[n] g:posint[n] a:posint[n] 

j:posint[n] din,elk,res: WIRE): 

(out:posint[n] dout:WIRE) 

SIZE 1 BY area 

INTENDED BEHAVIOUR 

WHENEVER 

change (elk) : 

WITHIN (time) 

SET 

output=nil 

USE STRUCTURE 

INSTANCE 

USING 

empl:emp(n) 

subl:sub(n) 

regl,reg2:reg(n) 

muxl,mux2:mux(n) 

exnl:exn(n) 

alfapowl:alfapow(n) 

regel:reg(n) 

muxel:mux(n) 

dl:reg(n) 

muxl(empl.out,i,subl.out) 

regl(muxl.out,muxel.out,res) 

mux2(empl.out,g,exnl.out) 

reg2(mux2.out,muxel.out,res) 

alfapowl(j,reg2.out) 

241 



MAKE 

} 

END 

exnl(a,alfapowl.out) 

subl(regl.out) 

cmpl(regl.out,O) 

dl(regc2.out,clk,res) 

muxcl(cmpl.out,dl.out,din) 

regcl(muxcl.out,clk,res) 

newsum::= reg2.out 

dout ::= cmpl.out 

BLOCK alfapow(n: integer) 

HAVING (n:posint[n] g:posint[n] din,clk,res: WIRE): 

(out:posint[n] dout:WIRE) 

SIZE 1 BY area 

INTENDED BEHAVIOUR 

WHENEVER 

change (clk) : 

WITHIN (time) 

SET 

output=nil 

USE STRUCTURE 

INSTANCE 

cmpl:cmp(n) 

subl:sub(n) 

regl,reg2:reg(n) 

muxl,mux2:mux(n) 

alfaxvl:alfaxv(n) 

regcl:reg(n) 

muxcl:mux(n) 

dl:reg(n) 

242 



USING 

MAKE 

} 

END 

muxl(cmpl.out,n,subl.out) 

regl(muxl.out,muxcl.out,res) 

mux2(cmpl.out,g,alfaxvl.out) 

reg2(mux2.out,muxcl.out,res) 

alfaxvl(reg2.out) 

subl(regl.out) 

cmpl(regl.out,O) 

dl(regcl.out,clk,res) 

muxcl(cmpl.out,dl.out,din) 

regcl(muxcl.out,clk,res) 

alfapow::= reg2.out 

dout ::= cmpl.out 

243 



B. STRICT SYNTAX 



complete _ descrip 

-f 3trict descript t-
strict _ descript 1 :::~ ins! H gi""n symb H blocldist r 
mainblock _inst 

...j start symb ~ 

start_6ymb 

~ 
b10cldist 

~t~ 
given_symb 

-<i!!!D-
block 

~ 

blocksymb 

...j async symb ~ 

generic ..Pflrams 

.[ ,.----:-

generic"'p 

-f ident list ro-t type instance t-
b1ock"'porams 

~ havingsymb H out param I I · 
I hovin8symb H in param H out poram I 



IJ 
.j... 
~ 

havingsymb 

~ 

inyQram 

~ parameter list ~ 

outyaram 

~ parameter list ~ 

parameter Jist 
r I 

parameter 

.....J async symb H [arm Went list ©1tyPe instaM" f-... 

form _went_list 

~ 
'1~ 

form _ident _element -r. pin name :er 
. 'in name I 

pin_name 
..-:===::... 

edge_w 

if 
func call 

orm [dent element 

-+{~I;;:D;;:E:-;N-;:;T;:;IF;:;I;;:E;;:R"}1 param list f-... 

act J)orm Jist 

1§ 



'-J .... 
--J 

poram_list 

~ ad parm list ~ 

block_dec! 

-..j bdefinitions H type definition> H assertions ~ 

bde[mitions 

-..j definitions /-+ 

size 

~ sizesymh H expression H hv 'ivmh H expression T 
sizesymb 

~ 

type_definitions 

~ 
types 

-+-jr"':"ty-p-e-sy-m-b"H type /ill ~ 

typesymb 

~ 

Iypc _ dement 

~ [Vee earams r-Q1 [Vpt: dt/n ....... 



type JNITIU'IS 

~ generic params ~ 

isjymb 

-+@-+ 

by_symb 

-+-®-
~ mapping_symb 
oc -< maPPing)... 

represent jymb 

-< represent)... 

wire_spec 

-< IDENTIFIER >-O-i wire descriptor I-

wirtjymb 

-+@!>-

wire _ descriptor 

11 ::: ::: r dimenswn apres T 



~ 

---"-type 
-I field list I-

field_list 

-1j Z: :cUtZ ~criptor 6L 
field _descriptor 

-I ident list 1-0-1 type instonce I-

simple_type 

7. primitive tyee T 
I. instance I 

type_id 

-<"!=O=ENT=IF=IE=R'"")-+ 

Ibrace 

-+-(D-+ 

rbrace 

-(j)-+ 

assertions 

ti .. -as-~-e-rt-sy-mb--:-.,H simple apres T 
a.rsertJymb 

~ 
express_list 

~ 
spec 
-tr-no'"'j""se-wo-r-d:-:l'H spec symbol H spec list I-

noise _ word3 

~ 



t;: 
o 

noise _ word2 

-@!)-+ 

rontrol_ symb 

~ 
noise wordl 

~---:--..... ,-<lntendadJr 
spec _symbol 

-< behaviour >-
specJisl 

stale 

ji"-s-ta-Ie-sym-""~ 

stalesym 

~ 
stalelisl 

.r; 
slalelist slale tlec/ 

slale decl 

stale_dec1 

-+-I ide"t list ~ simple type 1-+ 
initial 

jir-:-ilu""tia"" ":"IS)l-m-'H initiallist tr+ 
inilia/sym 

~ 
initial/ist 

init_elem 

-+-I variable K:!)-i upression 1-+ 
invariant 

tjr."i",,-ar--S)l-m-'H simple up"", tr+ 



,-' 
'';' 

inYQr_~")Im 

--< Invariant }-+ 

l+nere 

"jir-w""'h-e-re-sy-m---'H 'Nherdijf T 
where_,ym 

~ 
wherelist 

r 

whcre_e!cm 

-i [unction de[n ~ 

action 

-+-lr-w~h-ensy-m---'H actioniist ~ 

whensym 

-< whenever }-+ 

actionlist 

uncond _ eff._e_'"t _"....., 

-01 cflectlist ~ 

conditional_ efferc_t _."-_,,....., 

g_ eflect _list 

r r-



N 
VI 
N 

fl'll'nIed_effect 
....-:--:--q ~a~ effect I' WliiC...h ~ uncond effect ~ 

effectlist 

~ total effect ~ 
~ct 

total_effect 

~ect~ 
effect 

terminator 

....0-
effect 

+-jr-:am=b~i'=gu::-;ily':""1H effect clause H duration H terminator f-+ 

ambiguity 

~ simple ex:pres ~ 

effect_clause 

-i se.t c, 

~ 
_r:::-: 

setsymb 

~ 
setlist 

setelem 

~r":'v=a::rlll;:· "Lbl;:e:il-Q-i expression T 
~t-. -----------

trace 
+-jr"::"=a-ce---sy-mb-.:-1H trace list f-+ 

trace_list 

~ 



~ 
\jJ 

lTa=_symb 

-<i!!!!D-
dUTluion 

forJymb 

-@-+ 

unless _ symb 

~ 

until_symb 

~ 
block_body 

......f implementation I-

implementation 
..---:--

implement _symb 

-< structure}-+ 

i body 
-~ 

~ 
,_body 

unless S):mb 

,Ie exores 

~ simple body ~ 

e_body 

......fl""c-a-se"""7"bo-d;"'"y'l-

leurl 

-+(D-+ 

rcurl 

-+-Ci:)-

simple expres 



IJ 
'J> 
.j.... 

case_body 

~ 
case bod' case eiemenJ 

case element 

CIlSe _element 

~nmple~ 
otherwLSe syrnh factor 

nmple_body 

...j definitions H declarations ~ 

definitions 

declarations 

inheri(.~ 

...jrc-inh-;-en-:-'t-:ry-mb--:--1H inherit list ~ 

inheritsymb 

~ 

inherit_list 

rr.-
mherit list 

inherit simi 

inherit sImi 

!romJymb 

~ 
library 

-<'"'S==T=R""'N""O"'>-

defines 

inherit stml 

-+-jr-d';'"e""fi:-n-es-y-m"':b-'H define list ~ 



t~ 
'J> 
'J> 

deftnesymb 

~ 

define _element 

-,: ~tio71 defn rr 
I ;piiva/ence i 

equivalence 

-<IDENTIFIER~ 

~tion_defn 

-< IDENTIFIER >-CD-1 formal params ~ simple !vpe ~ apression f-+ 

formal...Pllral1lS 

~ rmal ral1<S-~ formol p Y. 
ormal I 

formal.l' 
-i ident list f-O-itype illstance f-+ 

places 

Lir -p"7la=-c=-.e-::,y-::m=-bz-lH place apr T 
placesymh 

~ 

place_apr 

(r--; 

plact'_term 

(r--; 

fllact:' _ eft'menl 

{IDEN" 
~ 



,-> 
'J1 
0' 

instances 

-,j"""-inst-a-nc-e-.l)-mh--;---'H instance list T 
instancesymb 

-{ instance >-
instance_list 

r .--:-

instance_element 

~ block instance ~ 

block_instance 
r;:---

uses -r usingsymb ~ 

usingsymb 

~ 

use _ element 

-i June call ~ 

makes -r makesymb H make lisl r 
makesymb 

~ 

muke_/isl 

lr 



,~ 

'J> 
--.J 

make_element 

--i variable f-0-l expression r---
expression 

c:::r=; 
l~ 

if_clause 

~ simple expres H then Hml! r-
if_symb 

--GD-
then_symb 

~ 

else_symb 

~ 

rel_op 

.\·imple _ expres 
,-----

\/Rn 

w 



tJ 
'J> 
% 

arilh_op 

/paren 

-<D-
rparen 

-..(i)-+ 

jaclor 
r---------------~------------~ 

type_coercion 

--+1 join symh ~ type instance ~ express list ~ 

join_,ymb 

~ 
variah/t' 



~ 
\C) 

~ __ end 

-D-f~va=riab/,:;'=e''''' 

varjist 

~varia~Y. 
~ 

l/IISigned_nuIn 

~ 
endsymb 

~ 
pin_list 

~pmekmemY. 
pm eleme1ll 

pin _ element 

-+( IDENTIFIER >-
waitJymb 

-G!lD-
signal"'pins 

+i signal symb ~ 

signal_ symb 

~ 
control 

t-tr-C-01I-tr-O""'I'""sym--=b""1H control list T 

c01llrol list cOnJrol element 

c01llrol eleme1ll 

control_element 

+i wait symb ~ signal section t-

signal_section 

+! signal clause H set clause t-



N 

~ 

signtzl_ clause 

-p signal symb ~ 

set_dause 

~ 
caseJist 

lr 

case _ eleme~t 

~7t~ otherWISe mb actor 

otherwUie Jlause 

-C otherwise symb ~ 

of_symb 

-..@)--+ 

otherwise Jymb 

-+( otherwise )-

endcase ~'0'mh 

-+( endcase )-

module 

-<r:S""T;;;R:::IN"'"'G<"')-

async_symb 

~ 


	320130_0001
	320130_0002
	320130_0003
	320130_0004
	320130_0005
	320130_0006
	320130_0007
	320130_0008
	320130_0009
	320130_0010
	320130_0011
	320130_0012
	320130_0013
	320130_0014
	320130_0015
	320130_0016
	320130_0017
	320130_0018
	320130_0019
	320130_0020
	320130_0021
	320130_0022
	320130_0023
	320130_0024
	320130_0025
	320130_0026
	320130_0027
	320130_0028
	320130_0029
	320130_0030
	320130_0031
	320130_0032
	320130_0033
	320130_0034
	320130_0035
	320130_0036
	320130_0037
	320130_0038
	320130_0039
	320130_0040
	320130_0041
	320130_0042
	320130_0043
	320130_0044
	320130_0045
	320130_0046
	320130_0047
	320130_0048
	320130_0049
	320130_0050
	320130_0051
	320130_0052
	320130_0053
	320130_0054
	320130_0055
	320130_0056
	320130_0057
	320130_0058
	320130_0059
	320130_0060
	320130_0061
	320130_0062
	320130_0063
	320130_0064
	320130_0065
	320130_0066
	320130_0067
	320130_0068
	320130_0069
	320130_0070
	320130_0071
	320130_0072
	320130_0073
	320130_0074
	320130_0075
	320130_0076
	320130_0077
	320130_0078
	320130_0079
	320130_0080
	320130_0081
	320130_0082
	320130_0083
	320130_0084
	320130_0085
	320130_0086
	320130_0087
	320130_0088
	320130_0089
	320130_0090
	320130_0091
	320130_0092
	320130_0093
	320130_0094
	320130_0095
	320130_0096
	320130_0097
	320130_0098
	320130_0099
	320130_0100
	320130_0101
	320130_0102
	320130_0103
	320130_0104
	320130_0105
	320130_0106
	320130_0107
	320130_0108
	320130_0109
	320130_0110
	320130_0111
	320130_0112
	320130_0113
	320130_0114
	320130_0115
	320130_0116
	320130_0117
	320130_0118
	320130_0119
	320130_0120
	320130_0121
	320130_0122
	320130_0123
	320130_0124
	320130_0125
	320130_0126
	320130_0127
	320130_0128
	320130_0129
	320130_0130
	320130_0131
	320130_0132
	320130_0133
	320130_0134
	320130_0135
	320130_0136
	320130_0137
	320130_0138
	320130_0139
	320130_0140
	320130_0141
	320130_0142
	320130_0143
	320130_0144
	320130_0145
	320130_0146
	320130_0147
	320130_0148
	320130_0149
	320130_0150
	320130_0151
	320130_0152
	320130_0153
	320130_0154
	320130_0155
	320130_0156
	320130_0157
	320130_0158
	320130_0159
	320130_0160
	320130_0161
	320130_0162
	320130_0163
	320130_0164
	320130_0165
	320130_0166
	320130_0167
	320130_0168
	320130_0169
	320130_0170
	320130_0171
	320130_0172
	320130_0173
	320130_0174
	320130_0175
	320130_0176
	320130_0177
	320130_0178
	320130_0179
	320130_0180
	320130_0181
	320130_0182
	320130_0183
	320130_0184
	320130_0185
	320130_0186
	320130_0187
	320130_0188
	320130_0189
	320130_0190
	320130_0191
	320130_0192
	320130_0193
	320130_0194
	320130_0195
	320130_0196
	320130_0197
	320130_0198
	320130_0199
	320130_0200
	320130_0201
	320130_0202
	320130_0203
	320130_0204
	320130_0205
	320130_0206
	320130_0207
	320130_0208
	320130_0209
	320130_0210
	320130_0211
	320130_0212
	320130_0213
	320130_0214
	320130_0215
	320130_0216
	320130_0217
	320130_0218
	320130_0219
	320130_0220
	320130_0221
	320130_0222
	320130_0223
	320130_0224
	320130_0225
	320130_0226
	320130_0227
	320130_0228
	320130_0229
	320130_0230
	320130_0231
	320130_0232
	320130_0233
	320130_0234
	320130_0235
	320130_0236
	320130_0237
	320130_0238
	320130_0239
	320130_0240
	320130_0241
	320130_0242
	320130_0243
	320130_0244
	320130_0245
	320130_0246
	320130_0247
	320130_0248
	320130_0249
	320130_0250
	320130_0251
	320130_0252
	320130_0253
	320130_0254
	320130_0255
	320130_0256
	320130_0257
	320130_0258
	320130_0259
	320130_0260
	320130_0261
	320130_0262
	320130_0263
	320130_0264
	320130_0265

