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Abstract The current monolithic and lengthy scheme behind the standardization and
the design of new video coding standards is becoming inappropriate to satisfy the
dynamism and changing needs of the video coding community. Such a scheme and
specification formalism do not enable designers to exploit the clear commonalities
between the different codecs, neither at the level of the specification nor at the level
of the implementation. Such a problem is one of the main reasons for the typical
long time interval elapsing between the time a new idea is validated until it is imple-
mented in consumer products as part of a worldwide standard. The analysis of this
problem originated a new standard initiative within the ISO/IEC MPEG committee,
called Reconfigurable Video Coding (RVC). The main idea is to develop a video
coding standard that overcomes many shortcomings of the current standardization
and specification process by updating and progressively incrementing a modular li-
brary of components. As the name implies, flexibility and reconfigurability are new
attractive features of the RVC standard. The RVC framework is based on the us-
age of a new actor/dataflow oriented language called CAL for the specification of
the standard library and the instantiation of the RVC decoder model. CAL dataflow
models expose the intrinsic concurrency of the algorithms by employing the notions
of actor programming and dataflow. This chapter gives an overview of the concepts
and technologies building the standard RVC framework and the non standard tools
supporting the RVC model from the instantiation and simulation of the CAL model
to the software and/or hardware code synthesis.
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1 Introduction

A large number of successful MPEG (Motion Picture Expert Group) video coding
standards has been developed since the first MPEG-1 standard in 1988. The stan-
dardization efforts in the field, besides having as first objective to guarantee the
interoperability of compression systems, have also aimed at providing appropriate
forms of specifications for wide and easy deployment. While video standards are be-
coming increasingly complex, and they take ever longer to be produced, this makes
it difficult for standards bodies to produce timely specifications that address the need
to the market at any given point in time. The structure of past standards has been
one of a monolithic specification together with a fixed set of profiles that subset the
functionality and capabilities of the complete standard. Similar comments apply to
the reference code, which in more recent standards has become normative itself.
Video devices are typically supporting a single profile of a specific standard, or a
small set of profiles. They have therefore only very limited adaptivity to the video
content, or to environmental factors (bandwidth availability, quality requirements).

Within the ISO/IEC MPEG committee, Reconfigurable Video Coding (RVC) [12]
[4] standard is intended to address the two following issues: make standards faster
to produce, and permit video devices based on those standards to exhibit more flex-
ibility with respect to the coding technology used for the video content. The key
idea is to standardize a library of video coding components, instead of an entire
video decoder. The standard can then evolve flexibly by incrementally extending
that library, and video devices can configure themselves to support a variety of cod-
ing algorithms by composing encoders and decoders from that library of predefined
coding modules.

This chapter gives an overview of the concepts and technologies building the
standard RVC framework and can complement and be complemented by Chapter 14,
Chapter 2, and Chapter 5.

2 Requirements and rationale of the MPEG RVC framework

Started in 2004, the MPEG Reconfigurable Video Coding (RVC) framework [4]
is a new ISO standard currently (Fig. 1) under its final stage of standardization,
aiming at providing video codec specifications at the level of library components
instead of monolithic algorithms. RVC solves this problem by defining two stan-
dards: a language with which a video decoder can be described (ISO/IEC23001-4
or MPEG-B pt. 4 [10]) and a library of video coding tools employed in MPEG
standards (ISO/IEC23002-4 or MPEG-C pt. 4 [11]). The new concept is to be able
to specify a decoder of an existing standard or a completely new configuration that
may better satisfy application-specific constraints by selecting standard components
from a library of standard coding algorithms. The possibility of dynamic configura-
tion and reconfiguration of codecs also requires new methodologies and new tools
for describing the new bitstream syntaxes and the parsers of such new codecs.
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The essential concepts of the RVC framework (Fig. 2) are the following:

• RVC-CAL [6], a dataflow language describing the Functional Unit (FU) behavior.
This language defines the behavior of dataflow components called actors, which
is a modular component that encapsulates its own state such that an actor can
neither read nor modify the state of any other actor. The only interaction between
actors is via messages (known in CAL as tokens) which flow from an output of
one actor to an input of another. The behavior of an actor is defined in terms
of a set of atomic actions. The execution inside an actor is purely sequential: at
any point in time, only one action can be active inside an actor. An action can
consume (read) tokens, modify the internal state of the actor, produce tokens, and
interact with the underlying platform on which the actor is running.

• FNL (Functional unit Network Language), a language describing the video codec
configurations. FNL is an XML dialect that lists the FUs composing the codec,
the parameterization of these FUs and the connections between the FUs. FNL

2002 2003 2004 2005 2006 2007 2008 2009 2010

CAL inception

interpreter
(Ptolemy)

CLR 1.0

first hardware
Code generator

MPEG RVC

OpenDF
(SourceForge) Eclipse

plugin

MPEG-4 SP decoder...

Graphiti

... in hardware ... in software
MPEG-4 AVC decoder

Orcc

ISO/IEC FDIS 23001-4
ISO/IEC FDIS 23002-4

first software
Code generator

(SourceForge)

(SourceForge)

RVC-CAL
specification

Fig. 1 CAL and RVC standard timeline.

Decoder
Description

FU Network
Description

(FNL)

Abstract Decoder Model
(FNL + RVC-CAL)

MPEG
Tool Library

(RVC-CAL FUs)

MPEG
Tool Library

Implementation

Model Instantiation:
Selection of FUs and

Parameter AssignmentBitstream Syntax
Description
(RVC-BSDL)

MPEG-B

Decoder Implementation

Decoding Solution

RVC Decoder Implementation

Decoded Video DataEncoded Video Data

MPEG-C

Fig. 2 RVC standard



46 Marco Mattavelli, Jörn W. Janneck and Mickaël Raulet

allows hierarchical constructions: an FU can be defined as a composition of other
FUs and described by another FND (FU Network Description).

• BSDL (Bitstream Syntax Description Language), a language describing the
structure of the input bitstream. BSDL is a XML dialect that lists the sequence
of the syntax elements with possible conditioning on the presence of the ele-
ments, according to the value of previously decoded elements. BSDL is further
explained in section 3.4.

• A library of video coding tools, also called Functional Units (FU) covering all
MPEG standards (the “MPEG Toolbox”). This library is specified and provided
using RVC-CAL (a subset of the original CAL language) as specification lan-
guage for each FU.

• An “Abstract Decoder Model” (ADM) constituting a codec configuration (de-
scribed using FNL) instantiating FUs of the MPEG Toolbox. Figure 2 depicts the
process of instantiating an “Abstract Decoder Model” in RVC.

• Tools simulating and validating the behavior of the ADM (Open DataFlow envi-
ronment [1]).

• Tools automatically generating software and hardware descriptions of the ADM.

2.1 Limits of previous monolithic specifications

MPEG has produced several video coding standards such as MPEG-1, MPEG-2,
MPEG-4 Video, AVC (Advanced Video Coding) and recently SVC (Scalable Video
Coding). While at the beginning MPEG-1 and MPEG-2 were only specified by tex-
tual descriptions, with the increasing complexity of algorithms, starting with the
MPEG-4 set of standards, C or C++ specifications, called also reference software,
have became the formal specification of the standards. However, the past monolithic
specification of such standards (usually in the form of C/C++ programs) lacks flexi-
bility and does not allow to use the combination of coding algorithms from different
standards enabling to achieve specific design or performance trade-offs and thus fill,
case by case, the requirements of specific applications. Indeed, not all coding tools
defined in a profile@level of a specific standard are required in all application sce-
narios. For a given application, codecs are either not exploited at their full potential
or require unnecessarily complex implementations. However, a decoder conformant
to a standard has to support all of them and may results in non-efficient implemen-
tations.

Moreover, such descriptions composed of non-optimized non-modular software
packages have started to show many limits. If we consider that they are in practice
the starting point of any implementation, system designers have to rewrite these soft-
ware packages not only to try to optimize performances, but also to transform these
descriptions into appropriate forms adapted to the current system design methodolo-
gies. Such monolithic specifications hide the inherent parallelism and the dataflow
structure of the video coding algorithms, features that are necessary to be exploited
for efficient implementations. In the meanwhile the evolution of video coding tech-
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nologies, leads to solutions that are increasingly complex to be designed and present
significant overlap between successive versions of the standards.

Why C etc. Fail? The control over low-level details, which is considered a merit
of C language, typically tends to over-specify programs. Not only the algorithms
themselves are specified, but also how inherently parallel computations are se-
quenced, how and when inputs and outputs are passed between the algorithms and,
at a higher level, how computations are mapped to threads, processors and applica-
tion specific hardware. In general, it is not possible to recover the original knowledge
about the intrinsic properties of the algorithms by means of analysis of the software
program and the opportunities for restructuring transformations on imperative se-
quential code are very limited compared to the parallelization potential available on
multi-core platforms [3]. These are the main reasons for which C has been replaced
by CAL in RVC.

2.2 Reconfigurable Video Coding specification requirements

Scalable parallelism. In parallel programming, the number of things that are hap-
pening at the same time can scale in two ways: It can increase with the size of the
problem or with the size of the program. Scaling a regular algorithm over larger
amounts of data is a relatively well-understood problem, while building programs
such that their parts execute concurrently without much interference is one of the
key problems in scaling the von Neumann model. The explicit concurrency of the
actor model provides a straightforward parallel composition mechanism that tends
to lead to more parallelism as applications grow in size, and scheduling techniques
permit scaling concurrent descriptions onto platforms with varying degrees of par-
allelism.

entities is a key element in every programming language. For instance, object-
oriented programming has made huge contributions to the construction of von Neu-
mann programs, and the strong encapsulation of actors along with their hierarchical
composability offers an analog for parallel programs.

Concurrency. In contrast to procedural programming languages, where control
flow is made explicit, the actor model emphasizes explicit specification of con-
currency. Rallying around the pivotal and unifying von Neumann abstraction has
resulted in a long and very successful collaboration between processor architects,
compiler writers, and programmers. Yet, for many highly concurrent programs,
portability has remained an elusive goal, often due to their sensitivity to timing.
The untimedness and asynchrony of stream-based programming offers a solution to
this problem. The portability of stream-based programs is underlined by the fact that
programs of considerable complexity and size can be compiled to competitive hard-
ware [14] as well as software [26], which suggests that stream-based programming
might even be a solution to the old problem of flexibly co-synthesizing different
mixes of hardware/software implementations from a single source.

Modularity and reuse. The ability to create new abstractions by building reusable
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Encapsulation. The success of a stream programming model will in part depend
on its ability to configure dynamically and to virtualize, i.e. to map to collections
of computing resources too small for the entire program at once. Moving parts of
a program on and off a resource requires encapsulation, i.e. a clear distinction be-
tween those pieces that belong to the parts to be moved and those that do not. The
transactional execution of actors generates points of quiescence, the moments be-
tween transactions, when the actor is in a defined and known state that can be safely
transferred across computing resources.

3 Description of the standard or normative components of the
framework

The fundamental element of the RVC framework, in the normative part, is the De-
coder Description (Fig. 2) that includes two types of data:

The Bitstream Syntax Description (BSD), which describes the structure of the
bitstream. The BSD is written in RVC-BSDL. It is used to generate the appropriate
parser to decode the corresponding input encoded data [9] [25].

The FU Network Description (FND), which describes the connections between
the coding tools (i.e. FUs). It also contains the values of the parameters used for the
instantiation of the different FUs composing the decoder [5] [14] [26]. The FND
is written in the so called FU Network Language (FNL). The syntax parser (built
from the BSD), together with the network of FUs (built from the FND), form a
CAL model called the Abstract Decoder Model (ADM), which is the normative
behavioral model of the decoder.

3.1 The toolbox library

An interesting feature of the RVC standard that distinguishes it from traditional
decoders-rigidly-specified video coding standards is that, a description of the de-
coder can be associated to the encoded data in various ways according to each ap-
plication scenario. Figure 3 illustrates this conceptual view of RVC [20]. All the
three types of decoders are within the RVC framework and constructed using the
MPEG-B standardized languages. Hence, they all conform to the MPEG-B stan-
dard. A Type-1 decoder is constructed using the FUs within the MPEG Video Tool
Library (VTL) only. Hence, this type of decoder conforms to both the MPEG-B and
MPEG-C standards. A Type-2 decoder is constructed using FUs from the MPEG
VTL as well as one or more proprietary libraries (VTL 1-n). This type of decoder
conforms to the MPEG-B standard only. Finally, a Type-3 decoder is constructed
using one or more proprietary VTL (VTL 1-n), without using the MPEG VTL. This
type of decoder also conforms to the MPEG-B standard only. An RVC decoder (i.e.
conformant to MPEG-B) is composed of coding tools described in VTLs according
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to the decoder description. The MPEG VTL is described by MPEG-C. Traditional
programming paradigms (monolithic code) are not appropriate for supporting such
types of modular framework. A new dataflow-based programming model is thus
specified and introduced by MPEG RVC as specification formalism.

Decoder type-1 
or Decoder type-2 
or Decoder type-3 

MPEG VTL 
(MPEG-C)  

Video Tools 
Libraries {1..N}  

Decoder Descrip�on 

Coded data Decoded video 

MPEG-B decoder 

Fig. 3 The conceptual view of RVC.

The MPEG VTL is normatively specified using RVC-CAL. An appropriate level
of granularity for the components of the standard library is important, to enable an
effective possibility of reconfigurations, for codecs, and an efficient reuse of compo-
nents in codecs implementations. If the library is composed of too coarse modules,
such modules will be too large/coarse to allow their usage in different and inter-
esting codec configurations, whereas, if the library component granularity level is
too fine, the number of modules in the library will result to be too large for an ef-
ficient and practical reconfiguration process at the codec implementation side, and
may obscure the desired high-level description and modeling features of the RVC
codec specifications. Most of the efforts behind the standardization of the MPEG
VTL were devoted to study the best granularity trade-off level of the VTL compo-
nents. However, it must be noticed that the choice of the best trade-off in terms of
high-level description and module re-usability, does not really affect the potential
parallelism of the algorithm that can be exploited in multi-core and FPGA imple-
mentations.

3.2 The CAL Actor Language

CAL [6] is a domain-specific language that provides useful abstractions for dataflow
programming with actors. For more information on dataflow methods, the reader
may refer to Part IV of this handbook, which contains several chapters that go into
detail on various kinds of dataflow techniques for design and implementation of
signal processing systems. CAL has been used in a wide variety of applications
and has been compiled to hardware and software implementations, and work on
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mixed HW/SW implementations is under way. The next section provides a brief
introduction to some key elements of the language.

3.2.1 Basic Constructs

The basic structure of a CAL actor is shown in the Add actor (Fig. 4), which has two
input ports A and B, and one output port Out, all of type T. T may be of type int,
or uint for respectively integers and unsigned integers, of type bool for booleans,
or of type float for floating-point integers. Moreover CAL designers may assign
a number of bits to the specific integer type depending on the variable numeric size.
The actor contains one action that consumes one token on each input ports, and
produces one token on the output port. An action may fire if the availability of tokens
on the input ports matches the port patterns, which in this example corresponds to
one token on both ports A and B.

ac tor Add ( ) T A, T B ⇒ T Out :
ac t i on [ a ] , [ b ] ⇒ [ sum ]
do

sum := a + b ;
end

end

Fig. 4 Basic structure of a CAL actor.

An actor may have any number of actions. The untyped Select actor (Fig. 5)
reads and forwards a token from either port A or B, depending on the evaluation of
guard conditions. Note that each of the actions has empty bodies.

ac tor S e l e c t ( ) S , A, B ⇒ Output :

ac t i on S : [ s e l ] , A: [ v ] ⇒ [ v ]
guard s e l end

ac t i on S : [ s e l ] , B : [ v ] ⇒ [ v ]
guard not s e l end

end

Fig. 5 Guard structure in a CAL actor.
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3.2.2 Priorities and State Machines

An action may be labeled and it is possible to constrain the legal firing sequence by
expressions over labels. In the PingPongMerge actor, reported in the Figure 6,
a finite state machine schedule is used to force the action sequence to alternate
between the two actions A and B. The schedule statement introduces two states s1
and s2.

ac tor PingPongMerge ( ) Inpu t 1 , I n p u t 2 ⇒ Output :

A: ac t i on I n p u t 1 : [ x ] ⇒ [ x ] end
B : ac t i on I n p u t 2 : [ x ] ⇒ [ x ] end

schedu l e fsm s1 :
s1 (A) −−> s2 ;
s2 (B) −−> s1 ;

end
end

Fig. 6 FSM structure in a CAL actor.

The Route actor, in the Figure 7, forwards the token on the input port A to one
of the three output ports. Upon instantiation it takes two parameters, the functions P
and Q, which are used as predicates in the guard conditions. The selection of which
action to fire is in this example not only determined by the availability of tokens and
the guards conditions, by also depends on the priority statement.

ac tor Route ( P , Q) A ⇒ X, Y, Z :

toX : ac t i on [ v ] ⇒ X: [ v ]
guard P ( v ) end

toY : ac t i on [ v ] ⇒ Y: [ v ]
guard Q( v ) end

toZ : ac t i on [ v ] ⇒ Z : [ v ] end

p r i o r i t y
toX > toY > toZ ;

end
end

Fig. 7 Priority structure in a CAL actor.
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3.2.3 CAL subset language for RVC

For an in-depth description of the language, the reader is referred to the language
report [6], for the specific subset specified and standardized by ISO in the Annex
C of [10]. This subset only deals with fully typed actors and some restrictions on
the CAL language constructs from [6] to have efficient hardware and software code
generations without changing the expressivity of the algorithm. For instance, Fig-
ures 5, 6 and 7 are not RVC-CAL compliant and must be changed as the Figures 8,
9 and 10 where T1, T2, T are the types and only typed paramters can be passed to
the actors not functions as P, Q.

ac tor S e l e c t ( ) T1 S , T2 A, T3 B ⇒ T3 Output :

ac t i on S : [ s e l ] , A: [ v ] ⇒ [ v ]
guard s e l end

ac t i on S : [ s e l ] , B : [ v ] ⇒ [ v ]
guard not s e l end

end

Fig. 8 Guard structure in a RVC-CAL actor.

ac tor PingPongMerge ( ) T Inpu t 1 , T I n p u t 2 ⇒ T Output :

A: ac t i on I n p u t 1 : [ x ] ⇒ [ x ] end
B : ac t i on I n p u t 2 : [ x ] ⇒ [ x ] end

schedu l e fsm s1 :
s1 (A) −−> s2 ;
s2 (B) −−> s1 ;

end
end

Fig. 9 FSM structure in a RVC-CAL actor.

A large selection of example actors is available at the OpenDF repository [15],
among them can also be found the MPEG-4 decoder discussed below. Many other
actors written in RVC-CAL will be soon available at the standard MPEG RVC tool
repository once the conformance testing process will be completed.
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ac tor Route ( ) T A ⇒ T X, T Y, T Z :
f u n t i o n P (T v_ i n)−−> T :
\ \ body of t h e f unc t i on P

P ( v_ i n )
end
f u n t i o n Q(T v_ i n)−−> T :
\ \ body of t h e f unc t i on P

Q( v_ i n )
end

toX : ac t i on [ v ] ⇒ X: [ v ]
guard P ( v ) end

toY : ac t i on [ v ] ⇒ Y: [ v ]
guard Q( v ) end

toZ : ac t i on [ v ] ⇒ Z : [ v ] end

p r i o r i t y
toX > toY > toZ ;

end
end

Fig. 10 Priority structure in a RVC-CAL actor.

3.3 FU Network language for the codec configurations

A set of CAL actors are instantiated and connected to form a CAL application, i.e.
a CAL network. Figure 11 shows a simple CAL network Sum, which consists of the
previously defined RVC-CAL Add actor and the delay actor shown in Figure 12.

Fig. 11 A simple CAL network.

The source/language that defined the network Sum is found in Figure 13. Please,
note that the network itself has input and output ports and that the instantiated enti-
ties may be either actors or other networks, which allow for a hierarchical design.

Formerly, networks have been traditionally described in a textual language,
which can be automatically converted to FNL and vice versa — the XML dialect
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ac tor Z ( v ) T In ⇒ T Out :

A: ac t i on ⇒ [ v ] end
B : ac t i on [ x ] ⇒ [ x ] end

schedu l e fsm s0 :
s0 (A) −−> s1 ;
s1 (B) −−> s1 ;

end
end

Fig. 12 RVC-CAL Delay actor.

network Sum ( ) In ⇒ Out :

e n t i t i e s
add = Add ( ) ;
z = Z ( v = 0 ) ;

s t ruc tur e
In −−> add .A;
z . Out −−> add . B ;
add . Out −−> z . In ;
add . Out −− > Out ;

end

Fig. 13 Textual representation of the Sum network.

standardized by ISO in Annex B of [10]. XML (Extensible Markup Language) is a
flexible way to create common information formats. XML is a formal recommen-
dation from the World Wide Web Consortium (W3C). XML is not a programming
language, it is rather a set of rules that allow you to represent data in a structured
manner. Since the rules are standard, the XML documents can be automatically
generated and processed. Its use can be gauged from its name itself:

• Markup: Is a collection of Tags
• XML Tags: Identify the content of data
• Extensible: User-defined tags

The XML representation of the Sum network is found in Figure 14. A graphical
editing framework called Graphiti editor [8] is available to create, edit, save and
display a network. The XML and textual format for the network description are
supported by such an editor.



MPEG Reconfigurable Video Coding 55

<?xml ve r s i on=" 1 . 0 " encod ing ="UTF−8" ?>
<XDF name="Sum">

< P o r t k ind =" I n p u t " name=" In " / >
< P o r t k ind =" Outpu t " name=" Out " / >
< I n s t a n c e i d =" add " / >
< I n s t a n c e i d =" z ">

< C l a s s name="Z" / >
< P a r a m e t e r name=" v " >

<Expr k ind =" L i t e r a l "
l i t e r a l −k ind =" I n t e g e r " v a l u e =" 0 " / >

< / P a r a m e t e r >
< / I n s t a n c e >
< Connec t ion d s t =" add " ds t−p o r t ="A"

s r c =" " s rc−p o r t =" In " / >
< Connec t ion d s t =" add " ds t−p o r t ="B"

s r c =" z " s rc−p o r t =" Out " / >
< Connec t ion d s t =" z " ds t−p o r t =" In "

s r c =" add " s rc−p o r t =" Out " / >
< Connec t ion d s t =" " ds t−p o r t =" Out "

s r c =" add " s rc−p o r t =" Out " / >
< /XDF>

Fig. 14 XML representation of the Sum network.

3.4 Bitstream syntax specification language BSDL

MPEG-B Part 5 is an ISO/IEC international standard that specifies BSDL [9] (Bit-
stream Syntax Description Language), an XML dialect describing generic bitstream
syntaxes. In the field of video coding, the bitstream description in BSDL of MPEG-
4 AVC [30] bitstreams represents all the possible structures of the bitstream which
conforms to MPEG-4 AVC. A Binary Syntax Description (BSD) is one unique in-
stance of the BSDL description. It represents a single MPEG-4 AVC encoded bit-
stream: it is no longer a BSDL schema but a XML file showing the data of the
bitstream. Figure 15 shows a BSD associated to its corresponding BSDL schema.

An encoded video bitstream is described as a sequence of binary elements of
syntax of different lengths: some elements contain a single bit, while others contain
many bits. The Bitstream Schema (in BSDL) indicates the length of these binary ele-
ments in a human- and machine-readable format (hexadecimal, integers, strings. . . ).
For example, hexadecimal values are used for start codes as shown in Figure 15. The
XML formalism allows organizing the description of the bitstream in a hierarchical
structure. The Bitstream Schema (in BSDL) can be specified at different levels of
granularity. It can be fully customized to the application requirements [29]. BSDL
was originally conceived and designed to enable adaptation of scalable multime-
dia contents in a format-independent manner [15]. In the RVC framework, BSDL
is used to fully describe video bitstreams. Thus, BSDL schemas must specify all
the elements of syntax, i.e. at a low level of granularity. Before the use of BSDL in
RVC, the existing BSDL descriptions described scalable contents at a high level of
granularity. Figure 15 is an example BSDL description for video in MPEG-4 AVC
format.

In the RVC framework, BSDL has been chosen because:
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<NALUnit >

< s t a r t C o d e >00000001 </ s t a r t C o d e >

< f o r b i d d e n 0 b i t >0 </ f o r b i d d e n 0 b i t >

< n a l R e f e r e n c e >3 </ n a l R e f e r e n c e >

< na lUni tT ype >20 </ na lUni tT ype >

<pay load >5 100 </ pay load >

</ NALUnit >

<NALUnit >

< s t a r t C o d e >00000001 </ s t a r t C o d e >

<!−− and so on . . . −−>

</ NALUnit >

< e l e m e n t name="NALUnit"

bs2:ifNext="00000001">

<xsd : s equence >

<xsd : e l e m e n t name="startCode"

type="avc:hex4" fixed="00000001" / >

<xsd : e l e m e n t name="nalUnit"

type="avc:NALUnitType" / >

<xsd : e l e m e n t ref="payload" / >

</ xsd : s equence >

<!−− Type of NALUnitType −−>

<xsd : complexType name="NALUnitType">

<xsd : s equence >

<xsd : e l e m e n t name="forbidden_zero_bit"

type="bs1:b1" fixed="0" / >

<xsd : e l e m e n t name="nal_ref_idc" type="bs1:b2" / >

<xsd : e l e m e n t name="nal_unit_type" type="bs1:b5" / >

</ xsd : s equence >

</ xsd : complexType >

<xsd : e l e m e n t name="payload" type="bs1:byteRange" / >

Fig. 15 A Bitstream Syntax Description (BSD) fragment of an MPEG-4 AVC bitstream and its
corresponding BS schema fragment codec in RVC-BSDL
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• it is stable and already defined by an international standard;
• the XML-based syntax interacts well with the XML-based representation of the

configuration of RVC decoders;
• the parser may be easily generated from the BSDL schema by using standard

tools (e.g. XSLT);
• the XML-based syntax integrates well with the XML infrastructure of the exist-

ing tools.

3.5 Instantiation of the ADM

In the RVC framework, the decoding platform acquires the Decoder Description
that fully specifies the architecture of the decoder and the structure of the incoming
bitstream. So as to instantiate the corresponding decoder implementation, the plat-
form uses a library of building blocks specified by MPEG-C. Conceptually, such
a library is a user defined proprietary implementation of the MPEG RVC standard
library, providing the same I/O behavior. Such a library can be expressly developed
to explicitly expose an additional level of concurrency and parallelism appropriate
for implementing a new decoder configuration on user specific multi-core target
platforms. The dataflow form of the standard RVC specification, with the associ-
ated Model of Computation, guarantee that any reconfiguration of the user defined
proprietary library, developed at whatever lower level of granularity, provides an
implementation that is consistent with the (abstract) RVC decoder model that is
originally specified using the standard library. Figure 2 and 3 show how a decoding
solution is built from, not only the standard specification of the codecs in RVC-CAL

by using the normative VTL, and this already provides an explicit, concurrent and
parallel model, but also from any non-normative “multi-core-friendly” proprietary
Video Tool Libraries, that increases if necessary the level of explicit concurrency
and parallelism for specific target platforms. Thus, the standard RVC specification,
which is already an explicit model for concurrent systems, can be further improved
or specialized by proprietary libraries that can be used in the instantiation phase of
an RVC codec implementation.

3.6 Case study of new and existing codec configurations

3.6.1 Commonalities

All existing MPEG codecs are based on the same structure, the hybrid decoding
structure including a parser that extracts values for texture reconstruction and mo-
tion compensation. Therefore, MPEG-4 SP and MPEG-4 AVC are hybrid decoders.
Figure 16 shows the main functional blocks composing an hybrid decoder structure.
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Fig. 16 Hybrid decoder structure

As said earlier, an RVC decoder is described as a block diagram with FNL [10],
an XML dialect that describes the structural network of interconnected actors from
the Standard MPEG Toolbox. The only 2 case studies performed so far by MPEG
RVC experts [26] [14] are the RVC-CAL specifications of MPEG-4 Simple Profile
decoder and MPEG-4 AVC decoder [7].

3.6.2 MPEG-4 Simple Profile (SP) Decoder

Figure 17 shows the network representation of the macroblock-based MPEG-4 Sim-
ple Profile decoder description. The parser is a hierarchical network of actors (each
of them is described in a separate FNL file). All other blocks are atomic actors
programmed in RVC-CAL. Figure 17 presents the structure of the MPEG-4 Sim-
ple Profile ADM as described within RVC. Essentially it is composed of four mains
parts: the parser, a luminance component (Y) processing path, and two chrominance
component (U, V) processing paths. Each of the path is composed by its texture
decoding engine as well as its motion compensation engine (both are hierarchical
RVC-CAL Functional Units).
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BITSTREAM DECODED DATA

MOTION COMPENSATION (Y)

TEXTURE DECODING (U)

TEXTURE DECODING (V)

MOTION COMPENSATION (U)

MOTION COMPENSATION (V)

Fig. 17 MPEG-4 Simple Profile decoder description
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The MPEG-4 Simple Profile abstract decoder model that essentially results to be
a dataflow program (Figure 17, Table 3), is composed of 27 atomic FUs (or actors
in dataflow programming) and 9 sub-networks (actor/network composition); atomic
actors can be instantiated several times, for instance there are 42 actor instantiations
in this dataflow program. Figure 22 shows a top-level view of the decoder. The
main functional blocks include the bitstream parser, the reconstruction block, the
2D inverse cosine transform, the frame buffer and the motion compensation module.
These functional units are themselves hierarchical compositions of actor networks.

3.6.3 MPEG-4 AVC Decoder

MPEG-4 Advanced Video Coding (AVC), or also know as H.264 [30], is a state-
of-the-art video compression standard. Compared to previous coding standards, it
is able to deliver higher video quality for a given compression ratio, and 30% bet-
ter compression ratio compared to MPEG-4 SP for the same video quality. Because
of its complexity, many applications including Blu-ray, iPod video, HDTV broad-
casts, and various computer applications use variations of MPEG-4 AVC codec (also
called profiles). A popular uses of MPEG-4 AVC is the encoding of high definition
video contents. Due to high resolutions processing required, HD video is the appli-
cation that requires the highest performance for decoding. Common formats used
for HD include 720p (1280x720) and 1080p (1920x1080) resolutions, with frame
rates between 24 and 60 frames per second.

The decoder introduced in this section corresponds to the Constrained Baseline
Profile (CBP). This profile is primarily fitted to lowest-cost applications and corre-
sponds to a subset of features that are in common between the Baseline, Main, and
High Profiles.

The description of this decoder expresses the maximum of parallelism and mim-
ics the MPEG4 SP. This description is composed of different hierarchical level.
Fig. 18 shows a view of the highest hierarchy of the MPEG-4 AVC decoder — note
that for readability, one input represents a group of input for similar information on
each actor. The main functional block includes a parser, one luma and two chroma
decoders.

The parser analyses the syntax of the bitstream with a given formal grammar.
This grammar, written by hand, will later be given to the parser by a BSDL[25]
description. As the execution of a parser strongly depends on the context of the
bitstream, the parser incorporates a Finite State Machine so that it can sequentially
extract the information from bitstream. This information passes through an entropy
decoder and is then encapsulated in several kinds of tokens (residual coefficients,
motion vectors. . . ). These tokens are finally sent to the selected input port of the
luma/chroma decoding actor.

Because decoding a luma/chroma component does not need to share infor-
mation with the other luma/chroma component, we choose to encapsulate each
luma/chroma decoding in a single actor. This means that each decoding actor can
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run independently and at the same time in a separate thread. The entire decoding
component actor has the same structure.

ParserBITS
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Fig. 18 Top view of MPEG-4 Advanced Video Coding decoder description.

Luma/chroma decoding actors (Fig. 19) decode a picture and store the decoded
picture for later use in inter-prediction process. Each component owns the memory
needed to store pictures, encapsulates into the Decoded Picture Buffer (DPB) actor.
DPB actor also contains the Deblocking Filter and is a buffering solution to regu-
late and reorganize the resulting video flow according to the Memory Management
Control Operations (MMCO) input.

Prediction
RD
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PRED
select

MBpredMV
PRED

select

Inverse
Transform COEF RESCOEF

MMCO

Decoded
Picture
Buffer

MBpred

RES

MMCO

RD

Out Out
VID

Fig. 19 Structure of decoding actors.

The Decoded Picture Buffer creates each frame by adding prediction data, pro-
vided by the actor prediction, and residual data, provided by the actor Inverse Trans-
form. The Prediction actor (Fig. 20) encompassesinter/intra prediction modes and
a multiplexer that sends prediction results to the output port. The PREDselect input
port has the role to stoke the right actors contingent on a prediction mode. The target
of this structure is to offer a quasi-static work of the global actor and, by adding or
removing prediction modes, to easily switch between configurations of the decoder.
For instance, adding B inter-prediction mode into this structure switches the decoder
into the main profile configuration.
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Fig. 20 Structure of prediction actor.

4 The procedures and tools supporting decoder implementations

4.1 OpenDF supporting framework

CAL is supported by a portable interpreter infrastructure that can simulate a hierar-
chical network of actors. This interpreter was first used in the Moses [21] project.
Moses features a graphical network editor, and allows the user to monitor actors
execution (actor state and token values). The project being no longer maintained,
it has been superseded by an Eclipse environment composed of 2 tools/plugins—
the Open Dataflow environment for CAL editing (OpenDF [15] for short) and the
Graphiti editor for graphically editing the network.

One interesting and very attracting implementation methodology of MPEG RVC
decoder descriptions is the direct synthesis of the standard specification. OpenDF is
also a compilation framework. It provides a source of relevant application of real-
istic sizes and complexity and also enables meaningful experiments and advances
in dataflow programming. More details on the software and hardware code genera-
tors can be found in [13] [31]. Today there exists a backend for generation of HDL
(VHDL/Verilog) [14] [13]. A second backend targeting ARM11 and embedded C is
under development [22] as part of the EU project ACTORS [2]. It is also possible
to simulate CAL models in the Ptolemy II [4] environment.

Works made on action synthesis and actor synthesis [26] [31] led to the creation
of a new compiler framework called Open RVC CAL Compiler [27]. This frame-
work is designed to support multiple language front-ends, each of which translates
actors written in RVC-CAL and FNL network into an Intermediate Representation
(IR), and to support multiple language back-ends, each of which translates the Inter-
mediate Representation into the supported languages. IR provides a dataflow repre-
sentation that can be easily transformed in low level languages. Currently the only
available backend is a C language backend.
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4.2 CAL2HDL synthesis

Some of the authors have performed an implementation study [13], in which the
RVC MPEG-4 Simple Profile decoder specified in CAL according to the MPEG
RVC formalism has been implemented on an FPGA using a CAL-to-RTL code gen-
erator called Cal2HDL. The objective of the design was to support 30 frames of
1080p in the YUV420 format per second, which amounts to a production of 93.3
Mbyte of video output per second. The given target clock rate of 120 MHz implies
1.29 cycles of processing per output sample on average.

The results of the implementation study were encouraging in that the code gen-
erated from the MPEG RVC CAL specification did not only outperform the hand-
written reference in VHDL, both in terms of throughput and silicon area, but also
allowed for a significantly reduced development effort. Table 1 shows the compari-
son between CAL specification and the VHDL reference implemented over a Xilinx
Virtex 2 pro FPGA running at 100MHz.

It should be emphasized that this counter-intuitive result cannot be attributed to
the sophistication of the synthesis tool. On the contrary the tool does not perform
a number of potential optimizations, such as for instance optimizations involving
more than one actor. Instead, the good results appear to be yield by the implementa-
tion and development process itself. The implementation approach was based gener-
ating a proprietary implementation of the standard MPEG RVC toolbox composed
of FUs of lower level of granularity. Thus the implementation methodology was to
substitute the FU of the standard abstract decoder model of the MPEG-4 SP with an
equivalent implementation, in terms of behavior. Essentially standard toolbox FUs
were substituted with networks of FU described as actors of lower granularity.

The initial design cycle of the proprietary RVC library resulted in an implemen-
tation that was not only inferior to the VHDL reference, but one that also failed
to meet the throughput and area constraints. Subsequent iterations explored sev-
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Fig. 22 Top-level dataflow graph of the proprietary implementation of the RVC MPEG-4 decoder.

eral other points in the design space until arriving at a solution that satisfied the
constraints. At least for the considered implementation study, the benefit of short
design cycles seem to outweigh the inefficiencies that resulted from high-level syn-
thesis and the reduced control over implementation details.

Size Speed Code size Dev. time
slices, BRAM kMB/s kSLOC MM

CAL 3872, 22 290 4 3
VHDL 4637, 26 180 15 12
Improv. 1.2 1.6 3.75 4
factor

kMB/s=kilo macroblocks per second
kSLOC=kilo source lines of code

Table 1 Hardware synthesis results for a proprietary implementation of a MPEG-4 Simple Profile
decoder. The numbers are compared with a reference hand written design in VHDL.

In particular, the asynchrony of the programming model and its realization in
hardware allowed for convenient experiments with design ideas. Local changes, in-
volving only one or a few actors, do not break the rest of the system in spite of a
significantly modified temporal behavior. In contrast, any design methodology that
relies on precise specification of timing —such as RTL, where designers specify
behavior cycle-by-cycle— would have resulted in changes that propagate through
the design.

Table 1 shows the quality of result produced by the RTL synthesis engine of the
MPEG-4 Simple Profile video decoder. Note that the code generated from the high-
level dataflow RVC description and proprietary implementation of the MPEG tool-
box actually outperforms the hand-written VHDL design in terms of both through-
put and silicon area for a FPGA implementation.
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4.3 CAL2C synthesis

Another synthesis tool called Cal2C [26] [31] currently available at [27] validates
another implementation methodology of the MPEG-4 Simple Profile dataflow pro-
gram provided by the RVC standard (Figure 17). The SW code generator presented
in details in [26] uses process network model of computation [16] to implement the
CAL dataflow model. The compiler creates a multi-thread program from the given
dataflow model, where each actor is translated into a thread and the connectivity be-
tween actors is implemented via software FIFOs. Although the generation provides
correct SW implementations, inherent context switches occur during execution, due
to the concurrent execution of threads, which may lead to inefficient SW execution
if the granularity of actor is too fine.

Major problems with multi-threaded programs are discussed in [18]. A more ap-
propriate solution that avoids thread management are presented in [19] [23]. Instead
of suspending and resuming threads based on the blocking read semantic of process
network [17], actors are, instead, managed by a user-level scheduler that select the
sequence of actor firing. The scheduler checks, before executing an actor, if it can
fire, depending on the availability of tokens on inputs and the availability of rooms
on outputs. If the actor can fire, it is executed (these two steps refers to the enabling
function and the invoking function of [23]). If the actor cannot fire, the scheduler
simply tests the next actor to fire (sorted following an appropriate given strategy)
and so on. This code generator based on this concept [31] is available at [27]. Such
a compiler presents a scheduler that has the two following characteristics: (1) actor
firings are checked at run-time (the dataflow model is not scheduled statically), (2)
the scheduler executes actors following a round-robin strategy (actors are sorted a
priori).

In the case of the standard RVC MPEG-4 SP dataflow model such a generated
mono-thread implementation is about 4 times faster than the one obtainable by [26].
Table 2 shows that synthesized C-software is faster than the simulated CAL dataflow
program (80 frames/s instead of 0.15 frames/s), and twice the real-time decoding
for a QCIF format (25 frames/s). However it remains slower than the automatically
synthesized hardware description by Cal2HDL [13].

MPEG4 SP Speed Clock speed Code size
decoder kMB/s GHz kSLOC

CAL simulator 0.015 2.5 3.4
Cal2C 8 2.5 10.4

Cal2HDL 290 0.12 4

Table 2 MPEG-4 Simple Profile decoder speed and SLOC.

As described above, the MPEG-4 Simple Profile dataflow program is composed
of 61 actor instantiations in the flattened dataflow program. The flattened network
becomes a C file that currently contains a round robin scheduler for the actor
scheduling and FIFOs connections between actors. Each actor becomes a C file con-
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taining all its action/processing with its overall action scheduling/control. Its number
of SLOC is shown in Table 3. All of the generated files are successfully compiled by
gcc. For instance, the “ParserHeader” actor inside the “Parser” network is the most
complex actor with multiple actions. The translated C-file (with actions and state
variables) includes 2062 SLOC for both actions and action scheduling. The original
CAL file contains 962 lines of codes as a comparison.

MPEG-4 SP decoder CAL C actors C scheduler
Number of files 27 61 1

Code Size (kSLOC) 2.9 19 2

Table 3 Code size and number of files automatically generated for MPEG-4 Simple Profile de-
coder.

A comparison of the CAL description (Tab. 4) shows that the MPEG-4 AVC CAL

decoder is twice more complex in RVC-CAL than the MPEG-4 Simple Profile CAL

description. Some parts of the model have already been redesign in order to improve
pipelining and parallelism between actors. A simulation of the MPEG-4 AVC CAL

model on a Intel Core 2 Duo @ 2.5Ghz is more than 2.5 slower than the RVC
MPEG-4 Simple Profile description.

Comparing to the MPEG-4 Simple Profile CAL model, the MPEG-4 AVC de-
coder has been modeled to use more CAL possibility (for instance processing of
several tokens in one firing) while staying fully RVC conformant. Thanks to this
increasing complexity, MPEG-4 AVC CAL model is the most reliable way to test
the accordance and the efficiency of the current RVC tools. The current SW code
generation of MPEG-4 AVC is promising since we can achieve up to 53 fps.

MPEG-4 AVC decoder CAL C actors C scheduler
Number of files 43 83 1

Code Size (kSLOC) 5.8 44 0.9

Table 4 Code size and number of files automatically generated for MPEG-4 AVC decoder.

5 Conclusion

This chapter describes the essential components of the ISO/IEC MPEG Reconfig-
urable Video Coding framework based on the dataflow concept. The RVC MPEG
tool library, that covers in modular form all video algorithms from the different
MPEG video coding standards, shows that dataflow programming is an appropriate
way to build complex heterogeneous systems from high level system specifications.
The MPEG RVC framework is also supported by a simulator, software and hardware
code synthesis. CAL dataflow models used by the MPEG RVC standard result also
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particularly efficient for specifying signal processing systems in a very synthetic
form compared to classical imperative languages. Moreover, CAL model libraries
can be developed in the form of libraries of proprietary implementations of standard
RVC components to describe architectural features of the desired implementation
platform, thus enabling the RVC implementer/designer to work at level of abstrac-
tion comparable to the one of the RVC video coding algorithms. Hardware and
software code generators then provide the low level implementation of the actors
and associated network of actors for the different target implementation platforms
(multi-core processors or FPGA).
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