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Chapter 1

Introduction

Due to continues developments in semiconductor technologies, more powerful computing
devices are introduced to consumers every year. The well-known Moore’s Law, published in
1965, predicted that the number of transistors, in circuits will be doubled each 24 months [1].
The period is often quoted as ”18 months” due to Intel’s executive David House, who adjusted
the range for doubling the chip performance due to combination of effects from other factors
in addition to the number of transistors.

Despite the original prediction claimed, in the original paper that it would only be
valid for one decade (i.e., until 1975), Moore’s continues to be valid today. This long-term
expansion encourages consumers to be more demanding for faster, smaller, more
functional and less energy consuming computing machines, which leads developers to be more
competitive to produce new applications by harnessing any cutting edge technology as soon
as it becomes available. Unfortunately, this gluttony towards more powerful computing
machines is expected to be challenged by physical boundaries in the near future. In other
words, alternative computational paradigms must be established soon to avoid a potential
bottleneck.

A promising alternative is based on reversible computation [2], which exclusively allows
bijective computations. In circuits based on reversible logic operations, all computations
can be reverted, i.e., conducted with no information loss. On the other hand, conventional
computation is based mostly on irreversible operations, e.g., a simple AND operation is
irreversible, since knowing the output of an AND gate is not enough to know the values of
its inputs. This suggests an entirely new computational paradigm. A circuit design flow for
reversible systems is evolving during recent years with methodologies for reversible circuit
description, synthesis [3,4,5], optimisation [6], simulation [7], verification and validation [8].
These methodologies are considered elementary as compared to the elaborated conventional
design flow, which emerged over the last three decades and is supported by a wide-range
of powerful tools on each level of abstraction. Consequently, significant contributions and
efforts are still expected before reversible computing is accepted as a practical alternative to
conventional computing. Despite this, reversible computation is already recognised as being
relevant to some interesting applications, such as:
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• Low power computation may significantly profit from reversible circuits in the
future. This is due to observations by Landauer who states that power is always
dissipated when information is lost during computations independent of the applied
technology [9,10]. Hence, all computing machines following the conventional paradigm
always lose power if irreversible operations are performed (including a simple AND
operation, for example). Although the fraction of power lost is negligible today, it will
become substantial with continued miniaturisation. Since reversible computations are
information loss-less (i.e., inputs can always be restored from the outputs and vice
versa), the power loss can significantly be reduced or avoided with this alternative
paradigm [2,11].

• Adiabatic circuits utilises signals that switch their states very slowly to avoid power
losses [12]. When the power dissipation from switching transitions is suppressed to a
minimum, the static power dissipation caused by leaking devices in advanced, extremely
miniaturised process technologies will become substantial. Regardless of the computing
paradigm, static energy is present in virtually all transistor circuits. However, reversible
circuits have the advantage that they naturally are suited for adiabatic switching
without the need for extra circuitry.

• Encoding and decoding devices realise reversible one-to-one mapping and,
consequently, allow for a reversible computing paradigm. However, so far, most of
these devices are implemented in a conventional (i.e., irreversible) manner and miss
potential benefits in their design. An obvious application for encoders and decoders
is in multimedia domains. Moreover, on-chip interconnections are increasingly making
use of encoders and decoders to modify the communication between components of a
system-on-chip device [13].

• Quantum computation offers the promise of more efficient computing for problems
that are of exponential difficulty for conventional computing [14]. Considering that
many of the established quantum algorithms include a significant Boolean component,
it is crucial to have efficient methods to synthesise quantum gate realisations of Boolean
functions. Since any quantum operation is inherently reversible, reversible circuits can
be exploited for this purpose.

• Program inversion addresses how to derive the inverse of a given program
automatically. As most existing programs follow the conventional (i.e., irreversible)
computation paradigm, program analysis techniques [15] or interpretive solutions [16]
are applied so far. However, programs based on reversible computation would allow an
inherent and obvious program inversion.
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1.1 Scalable Design Flow for Reversible Circuits

A design flow is a set of procedures guiding designers to progress from a specification for
a chip to its final chip implementation in an error-free way [17]. The design of conventional
circuits, from a structural perspective, is a hierarchical flow composed of several abstraction
levels, including an electronic system, register transfer, gate and transistor levels. Many
design tools have been developed and are accepted by designers, such as modelling languages,
system description languages, and hardware description languages [18] (see Figure 1.1(a)).
Furthermore, these design methodologies are supported by various powerful approaches for
simulation, verification, validation, and debugging to ensure the correctness of a designed
circuit or system [19].

Register transfer Level

VHDL, Verilog, System Verilog

Gate Level

Conventioal Netlist

Electronic System Level

System C, C/C++

(a) Established flow for conventional circuits.

Functional Level

Truth Table, BDD

Gate Level

Reversible Netlist

Description Level

SyReC

(b) Existing flow for reversible circuits.

Figure 1.1: Design flows for conventional and reversible circuits.

Logic synthesis fits between the register transfer and gate levels. This flow represents the
process of mapping Hardware Description Language (HDL) specifications into netlists of gate
specifications. The existing design methodologies for reversible circuit synthesis remain far
from modern industrial needs. In fact, although researchers have considered the basic tasks
of synthesis, verification, and debugging, tools for reversible circuit design are still applied
on a small scale [20] (see Figure 1.1(b)).

Hardware description languages, such as VHDL,Verilog and System Verilog, are used
for the tasks of the register transfer level of conventional design flow, such as describing,
simulating, synthesising, and verifying the desired systems [21, 22, 23]. They became a
corner-stone in the conventional design flow because they are practical, powerful, scalable,
and easy-to-use design tools.
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1.1.1 State of the Art

A dedicated reversible hardware description language, SyReC, has been introduced [24].
It allows for the specification and automatic synthesis of reversible circuits. Experiments
show that SyReC is capable of handling large designs beyond the capacity of other design
approaches (e.g., a reversible RISC CPU [25]).

Nevertheless, it is known that minimum circuits are not guaranteed using this approach.
This is a serious drawback in reversible circuits where circuit resources are limited, especially
when it comes to quantum technology. Consequently, the HDL approach will be considered
in practice only when it achieves better quality circuits.

1.1.2 Thesis Contribution

In this dissertation, we analyse the HDL design of reversible circuits along with weaknesses
and potentials of this approach. Modifications on different stages of HDL-based design flow
are proposed in this dissertation to optimize the synthesis of reversible circuits with better
quality. The ideas presented here are based on the following peer-reviewed papers along with
additional unpublished work:

1. [26] Towards Line-aware Realisations of Expressions for HDL-based
Synthesis of Reversible Circuits
Zaid Al-Wardi, Robert Wille, Rolf Drechsler
Reversible Computation 7 (2015), Springer, LNCS 9138, pp. 233–247.

2. [27] Rewriting HDL Descriptions for Line-aware Synthesis of Reversible
Circuits
Zaid Al-Wardi, Robert Wille, Rolf Drechsler
International Symposium on Multiple-Valued Logic 46 (2016), IEEE, pp. 39–53.

3. Optimized Realizations of Expressions for HDL-based Synthesis of
Reversible Logic Circuits
Zaid Al-Wardi, Robert Wille, Rolf Drechsler
International Workshop on Post-Binary ULSI Systems 25 (2016), poster presentation.

4. [28] Extensions to the Reversible Hardware Description Language SyReC
Zaid Al-Wardi, Robert Wille, Rolf Drechsler
International Symposium on Multiple-Valued Logic 47 (2017), IEEE, pp. 185–190.

5. [29] Towards VHDL-based Design of Reversible Circuits
Zaid Al-Wardi, Robert Wille, Rolf Drechsler
Reversible Computation 9 (2017), Springer, LNCS 10301, pp. 102–108.

6. [30] Synthesis of Reversible Circuits Using Conventional Hardware
Description Languages
Zaid Al-Wardi, Robert Wille, Rolf Drechsler
International Symposium on Multiple-Valued Logic 48 (2018), IEEE, (accepted).
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1.2 Thesis Outline

The dissertation is composed of the following chapters:

Chapter 2 provides the required background the review of definitions and notations for
Boolean functions and reversible logic gates. Reversible circuits are reviewed with
metrics used to evaluate quality as well as brief overview of the categories of circuit
synthesis methods. The pros and cons of each category are also reviewed in this chapter.

Chapter 3 previews the dedicated reversible language SyReC, with details. The synthesis
scheme of the SyReC Specifications and possible optimised realizations are also
discussed.

Chapter 4 proposes a set of rules to optimise SyReC programs, such that it realise desired
descriptions in circuits with fewer lines or less cost. As a result a specific programming
style is suggested.

Chapter 5 introduces line-aware realisations of HDL expressions. Less constant inputs are
exploited to realize complex expressions, which combine many operations. The chapter
proposes more than one scenario to compute the same expression.

Chapter 6 considers the conventional hardware description language, VHDL, as an
alternative to realise reversible circuits. Realisations of VHDL statements are
investigated, and the restrictions associated with reversible circuit paradigm are
considered.

Chapter 7 investigates some possible enhancements on SyReC grammar to simplify
descriptions, including simple control logic statements and data operations. Moreover,
the suggested grammar enables the language to accept some parts to be replaced by
circuits realised with other synthesis methodologies.

Chapter 8 provides a final summary and conclusions for the thesis.
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Chapter 2

Reversible Computation

This chapter introduces the basics of reversible logic and other concepts to offer a
complete background required for the dissertation. The first section overviews the basic
definitions, and notations, and different ways to describe Boolean functions. The second
section provides a summary of the principles of reversible logic, definitions of reversible gates
and circuits, and metrics defined to evaluate the quality of these gates and circuits. The third
section reviews basic methodologies for reversible circuit synthesis as well as approaches to
optimise these circuits.

2.1 Boolean Functions

Boolean computations can be defined as functions over Boolean values IB ∈ {0, 1}, or
more precisely:

Definition 1. A Boolean function f is a mapping f : IBn 7→ IBm with n inputs and
m outputs.

There are 2(m·2n) possible Boolean functions in a system with n-inputs and m-outputs.
Elementary functions, such as conjunction (∧,AND), disjunction (∨,OR), negation (¬,NOT),
and inequality (⊕,XOR) are combined in Boolean expressions to describe complex functions
fully.

The most straightforward and direct way to specify the behaviour of a Boolean function is
by enumerating the output’s response to each input bit-vector. This input/output
relationship is commonly enumerated in a tabular form, called a truth table, in which all
possible input bit-vectors are listed on the left side of the table, and the corresponding
output bit-vectors computed by the function are listed on the right side of the table. For
instance, Figure 2.1 shows truths tables for the basic logical operations. The number of
rows in a truth table equals the number of possible input bit combinations, 2n, where n
is the number of inputs. This exponential growth in the sizes of truth tables limits these
methodologies in a practical sense to functions with only a small number of inputs.
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x1 x2 y

0 0 0
0 1 0
1 0 0
1 1 1

(a) AND (x1 ∧ x2)

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 1

(b) OR (x1 ∨ x2)

x y

0 1
1 0

(c) NOT x

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 0

(d) XOR (x1 ⊕ x2)

Figure 2.1: Basic Boolean functions.

Alternative compact representations are practical for describing Boolean functions with a
higher number of inputs, such as simplified Boolean equations [31] or graphical
(e.g., Binary Decision Diagrams BDDs [32]). These alternative representations can have
short descriptions for functions, but also show exponential growth in the worst case.

Modern designs deal with a substantial number of signals rendering truth tables useless
at this scale. Here, other approaches are used, such as Hardware Description Languages
(HDLs), that are introduced to facilitate high-level descriptions that can scale well [18].

2.2 Reversible Logic

Reversible computations are restricted to bijective operations, which have inverses. In
other words, we can inversely map any output to the corresponding input. In this section,
the basics of reversible logic are introduced. First, we present the properties of reversible
functions and embedding irreversible functions. The second part defines common reversible
gates that are used throughout this work. Finally, we introduce reversible circuits and their
characteristics and metrics as well as basic synthesis approaches.

2.2.1 Reversible Functions

Definition 2. A function f : IBl 7→ IBl is called reversible if it is bijective, i.e., if each
input-bits pattern is uniquely mapped to a corresponding output-bits pattern and vice versa.
Otherwise, it is called irreversible.

f is reversible, if and only if:

1. the number of inputs equals the number of outputs = l.

2. each output-bits pattern appears only once in the truth table.
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x1 x2 x3 y1 y2 y3

0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 0 1 1
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0
(a) f1 : Irreversible function

x1 x2 x3 y1 y2 y3

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 1 0 1
1 0 0 0 0 1
1 0 1 0 1 1
1 1 0 1 1 0
1 1 1 1 1 1
(b) f2 : Reversible function

Figure 2.2: Examples of Boolean functions.

Example 1. Figure 2.1(c) shows the truth table for a NOT operation. The function is
reversible (bijective) because the number of inputs (n = m = 1) and each input-bits pattern
is uniquely mapped into an output-bits pattern. On the other hand, AND, OR, and XOR
functions (as described in Figure 2.1(a), 2.1(b), and 2.1(d)) are non-reversible because they
have inputs (n = 2) and outputs (m = 1), i.e., (n 6= m). The function f1 presented in
Figure 2.2(a) is also irreversible because the inputs are not uniquely mapped into the outputs
(e.g., both inputs 011 and 100 map to the same output 011). In contrast, the function f2

outlined in Figure 2.2(b) is reversible, since each input vector maps to a unique output vector
and the number of inputs is equal to the number of outputs (n = m = 3).

2.2.2 Embedding of Irreversible Functions

An irreversible function can be embedded into a reversible specification by adding extra
variables to achieve a bijective function. An embedding is not unique, and the choice of
embedding can have a very significant effect on the number of the variables of the resulting
function [33,34].

Definition 3. A reversible function g : IB(n+p) 7→ IB(m+k) embeds the irreversible
f : IBn 7→ IBm, if fi(X) = gi(X) for each X ∈ IBn and each i ∈ {1, 2, . . . , m}. The
function g is called an embedding and the additional k outputs of g are referred to as garbage
outputs. Furthermore, p additional input variables are added such that (n+p) = (m+k) = l

to obtain a reversible function for the embedding g. The additional p inputs are referred to
as constant inputs.

More precisely, given an m-output irreversible function f on n variables, a reversible
function g with m + k outputs is determined such that g agrees with f on the first m
components. Then, bijectivity can readily be achieved, e.g., by adding p additional inputs
such that f evaluates to its original values in case these inputs are assigned the constant
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Cin x2 x1 Cout S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

(a) 1-bit full adder f : IB3 7→ IB2

C Cin x2 x1 Cout S γ1 γ2

0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 1
0 0 1 0 0 1 1 0
0 0 1 1 1 0 1 1
0 1 0 0 0 1 0 0
0 1 0 1 1 0 0 1
0 1 1 0 1 0 1 0
0 1 1 1 1 1 1 1
1 0 0 0 1 0 0 0
1 0 0 1 1 1 0 1
1 0 1 0 1 1 1 0
1 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0
1 1 0 1 0 0 0 1
1 1 1 0 0 0 1 0
1 1 1 1 0 1 1 1

(b) 1-bit full adder embedded in g : IB4 7→ IB4

Figure 2.3: Embedding of the 1-bit full adder function.

value 0 and each output pattern that is not in the image of g is arbitrarily distributed among
the new input patterns.

Let µ(f) denote the number of occurrences of the most frequent output pattern in
the truth table of a. Then, κ(f) def= dlog2 µ(f)e is the minimum number of garbage
outputs (denoted by k) required to convert an irreversible function to a reversible function.
Thus, if the number of garbage-bits k = κ(f), then the embedding g is called optimal. The
worst case µ(f) = 2n (the total number of rows in the truth table) leads to
κ(f) = dlog2(2n)e = n, i.e., n garbage bits are sufficient, even in the worst case, to
embed any random binary function [35]. In other words, there exists a reversible function
g : IB(n+m) 7→ IB(n+m) to embed a random Boolean function f : IBn 7→ IBm. Different
algorithms that perform an embedding of irreversible functions based on their truth table
description have been proposed in the past [33,34,36].

Example 2. The 1-bit full adder function f : IB3 7→ IB2 specified in Figure 2.3(a) is obviously
an irreversible Boolean function. The most frequent output pattern in f is 01. This pattern
is repeated three times with input patterns 001, 010, and 100. Then, µ(f) = 3. As can be
seen, the number of additional garbage outputs are k = κ(f) = dlog2 µ(f)e = 2, hence the
embedding g is optimal. The function can be embedded into a reversible function,
g : IB4 7→ IB4, as illustrated in Figure 2.3(b). A constant input C and two garbage outputs
(γ1, γ2) are added to ensure the reversibility of the final embedded functional, i.e., the same
number of inputs and outputs.
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X ′ /

xnx1

/ X ′

xn ⊕ g(X ′)
x1

x1 ⊕ 1

g

(a) NOT

x1 x1

x2 x2

. .. .. .

xn−1 xn−1

xnx2 xn ⊕ (x1 ∧ · · · ∧ xn−1)
x1 x1

x2 ⊕ x1

(b) CNOT

x1 x1

x2 x2

. .. .. .

xn−1 xn−1

xn xn ⊕ (x1 ∧ · · · ∧ xn−1)

(c) MCT
Figure 2.4: Toffoli gates.

2.2.3 Reversible Gates

Reversible functions can be realised by reversible circuits in which each variable of the
function is represented by a circuit line to maintain the bijectivity property of the reversible
function. There exist different gate libraries used to build reversible circuits. However, in
the scope of this work, we restrict ourselves to those most commonly used containing the
Toffoli gate [37] and the Fredkin gate [38]. For this purpose, each gate gi in the circuit is
denoted by g(C, T ) with control lines C ⊂ X and target lines T ⊆ X \ C.

2.2.3.1 Toffoli Gates

A Toffoli gate has one target line T = {xt} and maps the input X = {x1, x2, . . . , xn}:

(x1, . . . , xn) 7→ (x1, . . . , xt−1, xt ⊕
∧
xj∈C

xj , xt+1, . . . , xn),

i.e., the value on line xt is inverted if and only if all control values are assigned 1. The
Toffoli gate is called a NOT if |C| = ∅. Here, the gate maps the single input, such that
x 7→ (x ⊕ 1), i.e., output is unconditionally inverted. On the other hand, a Toffoli gate is
called a CNOT, or Feynman gate, if it has one control line xc and one target line xt. Here,
the gate maps (xc, xt)x 7→ (xc, xt ⊕ xc), while Toffoli gates with more than one control
line are usually referred to as Multiple control Toffoli, MCT, as seen in Figure 2.4. For a
graphical representation of Toffoli gates, solid black circles (•) indicate controls and target
lines are denoted with the symbol ⊕.

2.2.3.2 Fredkin Gates

A Fredkin gate has two target lines T = {xs, xt} and maps the input

(x1, . . . , xn) 7→ (x1, . . . , xs−1, x
′
s, xs+1, . . . , xt−1, x

′
t, xt+1, . . . , xn),

with x′s = (ξ̄xs ⊕ ξxt), x′t = (ξ̄xt ⊕ ξxs), and (ξ =
∧
xj∈C

xj), i.e., the values of the target lines

are interchanged (swapped) if and only if all control values are assigned 1. A Fredkin gate
is referred to as a SWAP gate if |C| = ∅. For a graphical representation of Fredkin gates,
solid black circles (•) indicate controls and target lines are denoted with the symbol ×, as
seen in Figure 2.5(a). Any Fredkin gate can be realised by cascading three Toffoli, as in
Figure 2.5(b).
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x1 x1

xn−2 xn−2

. .. .. .

xs x′s
xt x′t

×
×

(a) Symbol

x1 x1

xn−2 xn−2

. .. .. .

xs x′s
xt x′t

(b) Toffoli implemetation

Figure 2.5: Fredkin gate.

2.2.4 Reversible Circuits

A reversible circuit is an acyclic combinational logic circuit in which all gates are reversible
and interconnected without explicit fan-outs and loops [39]. Therefore, reversible circuits
can be built as a cascade of reversible gates G = g1 . . . gd. Each gate gi realises a reversible
function fi : IBl 7→ IBl. The function realised by the circuit is the composition of the functions
realised by the gates, i.e., f = f1 ◦f2 ◦ · · · ◦fd. In this circuit paradigm, fan-out and feedback
are not directly allowed.

Example 3. Figure 2.6 shows a reversible circuit combined using Toffoli gates. Three
primary inputs X = (x1, x2, x3) are mapped to two valid outputs Y = (y1, y2). A constant
input is applied to the circuit. On the other hand, the circuit has two garbage outputs.

x1 −

x2 −

x3 y1

0 y2

Figure 2.6: An example reversible circuit.

By definition, reversible computations are bijective, i.e., for each reversible circuit,
G = g1 g2 . . . gd there exists an inverse circuit G−1, such that the cascade G G−1 = I,
where I is a unity mapping I : X 7→ X. Toffoli and Fredkin gates are self-inverse gates, i.e.,
gi = g−1

i . Consequently, by backward arranging the gates backwards, the inverse circuit is
computed G−1 = gd gd−1 . . . g1. Hence, for G = G1 G2 the inverse G−1 = G−1

2 G−1
1 .

Irreversible Boolean functions can be synthesised to a reversible circuit after embedding
them to reversible functions. Therefore, in general, a reversible circuit contains l lines with
n primary inputs and p constant inputs with (n + p) = l. At the output side, there are m
primary outputs and k garbage outputs with (k + m) = l. Figure 2.7 depicts the general
structure of a reversible circuit inspired from [39]. Note that when the function f is bijective,
there are neither constant inputs nor garbage outputs. This follows from [3] where it was
shown that any reversible function f : IBn 7→ IBn could be realised by a reversible circuit
with n lines when using MCT gates. This means that it is not necessary to apply any
constant input to realise the circuit.
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x1

...

xn

0
...
0

γ1
...
γk

y1

...

ym

Reversible
circuit

n
Primary
inputs

p
Constant

inputs

k
Garbage
outputs

m
Primary
outputs

Figure 2.7: Reversible circuit structure.

Example 4. Figure 2.8(a) shows a truth table for an embedded AND function (x1∧x2) with
a constant input c and two garbage outputs γ1 and γ2. On the other hand, Figure 2.8(b)
shows an embedded XOR function (x1 ⊕ x2) where only one garbage γ is required. Here, no
constant input is needed to compute this function (reversible computation).

c x1 x2 y γ1 γ2

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 1 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 0 1 1

(a) Embedded AND

x1 x2 y γ

0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 1

(b) Embedded XOR

Figure 2.8: Embedded functions.

2.2.5 Metrics of Reversible Circuits

It is important to evaluate the resulting circuits to compare different synthesis approaches.
Depending on the target application, different metrics are applied to measure the quality of
a given circuit.

2.2.5.1 Number of Lines

The number of lines l refers to the total number of the input or output variables used in
a reversible circuit. If the function to be synthesised is reversible, then the number of circuit
lines can be equal to the number of the inputs. However, in the case where the Boolean
function to be synthesised is irreversible, then additional variables (i.e., constant inputs and
garbage outputs) are unavoidable [36]. For example, the circuit in Figure 2.6 has a total
number of lines l = 4, one of which has a constant input, which indicates some irreversible
function embedded within the reversible circuit.
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Good circuit realisations try to keep the number of lines as small as possible. This
is motivated by the fact that, in the domain of quantum computations, each circuit line
represents a quantum-bit (qubit), which is a very limited resource [40]. Therefore, several
optimisation approaches that target a reduction of the number of lines in reversible circuits
have been proposed [41].

2.2.5.2 Gate Count

The gate count d refers to the total number of gates in a reversible circuit, e.g., d = 4
in Figure 2.6. This metric is used to evaluate a given realisation for a reversible function.
However, it is a poor measure of actual reversible circuit complexity because different gates
can have dramatically different complexities depending on the technology used in the physical
implementation of the circuit. Consequently, minimisation based on this metric does not
guarantee a minimum complexity of the physical circuit. In fact, it is possible to reduce the
overall cost using extra gates [42].

2.2.5.3 Technology-dependent Cost Metrics

The complexity of reversible circuits is measured by different cost metrics, which are
more technology dependent, such as quantum costs and transistor costs. The cost CG of a
reversible circuit G = g1g2 . . . gd is the summation of the costs of the individual gates. i.e.,

CG =
d∑
i=1

Cgi , where Cgi is the cost of the individual gate gi (the ith in the circuit cascade).

While the transistor cost model estimates the cost of the circuit in terms of the number
of CMOS transistors [43], the quantum cost model estimates the cost of the circuit in terms
of the number of elementary quantum gates [14]. Both metrics define the cost of a single
Toffoli/Fredkin gate depending on the number of control lines.

• Transistor cost model: The transistor cost of a gate estimates the effort needed to
realise a reversible gate in CMOS according to [11] defined to be Cg = (8× n), where
n is the number of control lines in the gate [43]. Then, the transistor cost metric of a
circuit is the total sum of transistor costs of all reversible gates in the circuit.

• Quantum cost model: The quantum cost of a Toffoli gate, as introduced in [44] and
optimised in [45], is given in Table2.1, where n denotes the number of control lines for
the gate and l denotes the total number of circuit lines. The quantum cost depends
on the number n of control lines as well as the number (l − (n + 1)) of empty lines
neither used as a control line nor a target line for the gate. These free-to-use lines are
also called ancilla lines. More empty lines generally lead to cheaper gate realisation,
although, for each gate size, there is a minimal cost which is not reduced by having
further extra lines available, as outlined in Table 2.1a. On the other hand, the quantum
cost of a Fredkin gate with n control lines is computed as the cost of a Toffoli gate of
n+ 1 controls plus the cost of two CNOT gates (see Table 2.1b).



2. Reversible Computation 15

Table 2.1: Quantum costs metrics of reversible gates.

a Multiple control Toffoli gates

#Control Transistor Quantum Cost
lines(n) cost ancella = 0 ancella = 1 ancella > n− 2

0 0 1 − −
1 8 1 − −
2 16 5 − −
3 24 13 − −
4 32 29 − 26
5 40 61 52 38
6 48 125 80 50
7 56 253 100 62
8 64 509 128 74
9 72 1021 152 86

> 10 n× 8 2n+1 − 3 24× (n+ 1)− 88 12× (n+ 1)− 34

b Multiple control Fredkin gates

#Control Transistor Quantum Cost
lines(n) cost ancella = 0 ancella = 1 ancella > n− 2

0 0 3 − −
1 8 7 − −
2 16 15 − −
3 24 31 − −
4 32 63 54 40
5 40 127 82 52
6 48 255 102 64
7 56 511 130 76
8 64 1023 154 88
9 72 2047 178 100

> 10 n× 8 2n+2 − 1 24× (n+ 2)− 86 12× (n+ 2)− 32

Example 5. The reversible circuit in Figure 2.6 is a cascade of d = 4 Toffoli gates, g1 . . . g4.
Two (g1 and g3) have n = 2 control lines, i.e., each has a transistor cost of 16 and quantum
cost of 5 (no ancella). The other two (g2 and g4) have n = 1 control line, i.e., each has
a transistor cost of 8 and quantum cost of 1. In total, the circuit transistor cost metric is
(16× 2 + 8× 2 = 48), while the quantum cost metric is (5× 2 + 1× 2 = 12).
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2.3 Reversible Circuit Synthesis

Synthesis is an essential phase in the design flow of reversible circuits. The goal is to
synthesise a reversible circuit that computes the desired function efficiently, i.e., with fewer
circuit lines and with lower total gate cost. Reversible circuit synthesis is approached from
two directions, resulting in two main categories of synthesis, each with its pros and cons. The
first category ensures a circuit with a minimal number of lines, as in [3,4,36,46,47,48,49,50].
These approaches are truth table-based, so they are limited by a small number of inputs. The
second category includes hierarchical approaches that decompose a large function into smaller
sub-functions, and these approaches make use of additional circuit lines to interconnect
the sub-functions to realise the overall function [24, 51, 52]. In comparison, hierarchical
approaches offer higher capacity in handling designs with a larger number of input signals,
but they can not ensure circuits with minimal lines. Examples from both categories are
introduced in the following.

2.3.1 Truth Table-based Synthesis

Truth table-based approaches realise functions as circuits with a minimum number of
lines. Here, the function to be synthesised is embedded and described by a truth table
(see Section 2.2.2). The number of lines required to compute the desired outputs is equal
to the number of columns on one side of the truth table, i.e., either inputs or outputs
(l = (n + p) = (k + m)). Here, lines are ensured to be at a minimum because the constant
and garbage bits are also mathematically required for an optimal embedding of the desired
function.

The transformation-based synthesis [47] is an example of this category. The idea is to
traverse each row of a reversible truth table and match the output bit-vector with the input
bit-vector starting from the least significant bit in the first row, until the most significant
bit in the last row. When a mismatched bit is detected, the bit is altered for all rows that
have ′1′s in all bit positions that are ′1′s in the mismatched row. This is what an MCT gate
gi does when its target line is positioned at the mismatched bit, and it has a control input
at each line with value ′1′ in this row. If the truth table rows are arranged in ascending
order, then these gates do not alter bits in rows that were previously matched. When this
matching is concluded, the circuit outputs match the inputs, i.e., an identity function is
achieved. Hence, gates are appended starting from the output side of the circuit (gd), until
the last gate becomes the first from the input side (g1), where d is the gate count equal
to the number of steps required to match the outputs to the inputs totally. This synthesis
approach results in circuits with a total number of lines n as defined above.
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x1 x2 x1 ∧ x2 x1 ∨ x2

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1
(a) Truth table of function f

0 x1 x2 x1 ∧ x2 x1 ∨ x2 g

0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 1 0
0 1 1 1 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 0 0 1

(b) Embedded f in a reversible truth table

input output step1 step2 step3
(i) abc abc abc abc abc

0 000 000 000 000 000
1 001 011 001 001 001
2 010 010 010 010 010
3 011 111 101 111 011
4 100 100 100 100 100
5 101 101 111 101 101
6 110 110 110 110 110
7 111 001 011 011 111

(c) Transformation based appraoch

a = 0 x1 ∧ x2

b = x1 x1 ∨ x2

c = x2 g

(d) Reversible circuit realisation

Figure 2.9: Transformation based synthesis of function f in Example 6.

Example 6. Consider the IB2 7→ IB2 mapping f : (x, y) 7→ (x ∧ y , x ∨ y), which is an
irreversible function (see truth table in Figure 2.9(a)). To synthesise a reversible circuit that
computes f , first, the function should be embedded within a reversible mapping, which requires
a third bit to be introduced in the truth table with a constant input value (see Figure 2.9(b)).
Second, the transformation-based synthesis can be applied requiring three steps (i.e., MCT
gates) to match all the output vectors to the corresponding input vectors (see Figure 2.9(c)).
The resulting circuit is synthesised using three gates and within three lines (see Figure 2.9(d)).

1. The rightmost gate g3 has its target at line T3 = {b} and a control at line
|C3| = {c}. This matches output column b, raw 1 with the corresponding input bit.

2. The middle gate g2 has its target at line T2 = {b} and two controls at lines
|C2| = {a, c}. This matches step1 column b, raw 3 with the corresponding input bit.

3. The leftmost gate g1 has its target at line T1 = {a} and two controls at lines
|C1| = {b, c}. This matches step2 column b, raw 3 with the corresponding input bit.
The result is in step3, which is a full match to the input vectors.
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This approach requires the complete truth table to be available in memory, so due to an
exponential growth in memory this approach practically bounds the capacity to relatively
small number of inputs (up to 30).

2.3.2 Hierarchical Decomposition Synthesis

Hierarchical synthesis methods have been introduced as an alternative, which does not
require explicit embedding, but do not guarantee a minimum number of circuit lines. In fact,
the lines are often much more than the minimum [20].

The general idea of hierarchical methods is to decompose the desired function f into
a smaller set of functions (sub-functions). This decomposition is repeatedly applied until a
circuit is realised for the sub-function or evaluated to a constant. Then, for each
decomposition, the sub-circuit representing the respective operation can be synthesised.
Finally, by composing all sub-circuits, a circuit representing the desired function is realised.

Shannon decomposition of an arbitrary function f(x1, . . . , xi, . . . , xn), is a well-known
example of hierarchical decomposition, and is given by: f = xi· fH ⊕ xi· fL, where
fL = f(x1, . . . , 0, . . . , xn) and fH = f(x1, . . . , 1, . . . , xn), i.e., the original function with input
xi is substituted by 0 and 1 in fL and fH , respectively. Here, f : IBn 7→ IBn is decomposed
to fL : IBn−1 7→ IBn−1 and fH : IBn−1 7→ IBn−1, i.e., each has one input variable less
than the original function f . In the same way, fL and fH can be decomposed into smaller
sub-functions. This hierarchical decomposition reduces the problem size to moderate the
exponential growth of functions.

Hierarchical function decomposition motivates compelling representations of Boolean
functions, such as Binary Decision Diagrams (BDD), which are based on graph theory and
provide efficient data-structures that can represent large functions more compactly than
truth tables [32, 53]. BDD-based synthesis has been proposed for larger scale functions in
the reversible circuit paradigm (up to 200 inputs) [52,54,55].

A node (a circle in the graph) represents a function or sub-function with an input-variable
identifier written inside the node. Depending on the value of this input, it decides on either 1
referring to the continuous-line edge leads to the sub-function fH , or 0 then the dashed-line
edge leading to the sub-function fL. This completes when it reaches a terminal node with
constant value {0, 1}. BDD-based synthesis traverses this decision-diagram and substitutes
each node with a predefined cascade of reversible gates [52].

Example 7. Figure 2.10(a) shows a reduced BDD representation of the function described in
the truth table in Figure 2.9(a). The reversible circuit realised from this approach is computed
using a total of four lines, as shown in Figure 2.10(b), i.e., with one more line compared
to the transformation-based approach. Here, two constant inputs are applied to the circuit
instead of just one line.
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(a) BDD of f

0 x1 ∧ x2

0 x1 ∨ x2

x1 x1

x2 x2

(b) Reversible circuit realisation

Figure 2.10: BDD-based synthesis of function f from Example 7.

Examples 6 and 7 describe a simple function. The more complex a function, the more
constant input lines it exploits to be computed using hierarchical approaches, which is the
primary drawback of this category. Also, obtaining a minimised BDD is not trivial.

As digital systems are rapidly becoming more complex, bit-level descriptions are no
longer suitable to describe them. The hierarchical decomposition concept opens the door for
more abstract descriptions, such as Hardware Description Languages, for complex systems
in the conventional circuit paradigm. This high level description allows for modular and
scalable designs [56, 57, 58]. Similarly, a dedicated reversible hardware description language
SyReC is proposed to facilitate scalable synthesis of reversible circuits through common HDL
means [24], and SyReC will be reviewed in Chapter 3.

2.3.3 Trade-off in Circuit Lines and Gate Costs

Here, many synthesis approaches are compared and their characteristics are observed.
While minimum line methods result in circuits with fewer lines, often the respective
quantum/transistor costs are higher in comparison to hierarchical synthesis. In contrast,
hierarchical approaches need a significant number of additional constant inputs applied
to circuits, but usually with lower quantum costs [20], which shows the complementary
characteristics of these two categories. Figure 2.11 illustrates the problem with an abstract
relation between the number of lines and the quantum cost to realise function f using different
synthesis methods. Extreme results appear either with high quantum cost or with large
number of lines. This motivates investigating possible trade-offs between circuit metrics to
realise moderate circuits that are neither extreme in lines nor costs. A trade-off can be made
in either direction, i.e., by adding lines to reduce the cost of a minimal lines circuit or by
inserting circuitry to avoid (remove) a constant input.
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Figure 2.11: Gate costs vs. circuit lines.

2.3.3.1 Reducing Gate Cost by Adding Lines

An observation made in [42] is exploited for reducing gate costs. Here, it was observed
that many reversible circuits are composed of cascades of gates with several common control
lines. As reviewed in Section 2.2.5.3, the costs of single gates depend on their respective
number of control lines. Hence, buffering the results of common control conditions of a
cascade of gates enables the reduction in the number of required control lines in each gate.
As a result, the costs of each gate and the costs of the entire circuit are decreased significantly.

Improvement is only possible if the total costs of the two added gates are less than
the costs saved by buffering the common control lines. Further, a free ancillary line must
be available. This is either already the case (e.g., when a constant circuit line is required
anyway for the realization of other parts in the circuit) or can explicitly be added by the
designer to enable the reduction.

Following this concept, the cost of a circuit G can be moderated using a helper line as
follows:

1. Determine cascades of gates g1(C1,T1) . . . gk(Ck,Tk) which satisfy the following criteria:

(a) The gates in the cascade have a common set C ′ of control lines, i.e., Ci ⊇ C ′

for 1 ≤ i ≤ k.

(b) The value of the common control lines is not modified within this cascade,
i.e., C ′ ∩ gi = ∅ for 1 ≤ i ≤ k.

2. Create a new cascade g0(C′,{h}) g1((C1\C′)∪{h},T1) . . . g1((Ck\C′)∪{h},Tk) gk+1(C′,{h}) .

3. If a free circuit line h is available and the new cascade is cheaper than the original
cascade, then replace the original cascade with the new.
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(b) Revised realisation

Figure 2.12: Cost-aware synthesis.

Example 8. Figure 2.12 demonstrates how the helper line concept is applied to reduce gate
cost. Figure 2.12(a) includes a reversible circuit with five gates that has two control lines
in common C ′ = {x1, x2}. A constant helper line (h = 0) is applied, and a new Toffoli
gate is appended at the beginning of the circuit with h as the target and lines C ′ as controls,
i.e., g0({x1,x2},h). A similar gate is appended at the end of the circuit to inversely compute
the ancillary helper line h, i.e., g6({x1,x2},h). the circuit with the helper line, as shown in
Figure 2.12(b), has a quantum cost metric of (Qc = 59) (i.e., low cost) as compared to its
equivalent with no helper line (Figure 2.12(a)), which has a quantum cost of (Qc = 113).

Using helper lines is not limited to just one line as two helper lines may achieve a further
reduction in the gate cost [42].

2.3.3.2 Reducing Lines

As mentioned in Section 2.3.2, the major drawback associated with hierarchical synthesis
approaches is the high number of circuit lines. Precisely speaking, constant inputs are
massively applied to the circuit to interconnect sub-circuits (sub-functions) together in
realising the overall function.

In such cases, realising circuits with fewer lines is a more critical issue than the cost
metrics, where the gate cost increase is justified by reducing the number of circuit lines.
Consequently, hierarchical synthesis approaches with line-awareness are required to maintain
the scalability while realising a circuit with fewer lines whenever possible.

The general idea of this optimisation approach exploits special circuit structures often
occurring in circuits generated by hierarchical synthesis approaches [59]. Particularly, lines
with constant inputs that end as garbage outputs are considered candidates for this
optimisation. Since the value of a garbage output does not matter (a ”don’t care” signal),
this approach might offer a possibility to merge the line with the constant input producing
the garbage output. If it is possible to modify the circuit so that a garbage output returns
a constant value instead of an arbitrary value, then the line can be reused in the rest of the
circuit. As a result, one constant input line can be removed [60].
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Definition 4. Re-computation of a garbage line is made by applying the inverse computation
to this line to obtain its initial value (constant input).

It is possible to achieve significant reductions in the overall number of lines by
re-computing and reusing lines, which might be applied on the same line more than once
within the circuit. Variations of this arrangement are applied in different chapters in this
work for realising operations with line-awareness.

2.4 Summary

This chapter provides a brief introduction of the necessary background on reversible
circuits.

A reversible Boolean function is a bijection, i.e., a mapping where the output is uniquely
determined from input and the vice versa. To satisfy this, (1) the number of input-bits
should be equal to the number of output-bits, and (2) no output pattern is repeated in the
truth table.

Irreversible functions can be embedded within reversible functions. This embedding
requires additional bits to be added to the output pattern (garbage), such that no pattern
is repeated. This garbage implies adding constant bits to the input side to make the total
number of inputs equal to the total number of outputs. The embedding is optimal if only
the mathematically necessary number of garbage outputs are used.

The conventional elementary gates, such as AND and, OR are not reversible. In the
reversible computational paradigm, another set of gates are defined, and in this work, the
reversible Toffoli and Fredkin gates are used.

Reversible circuits are cascades of reversible gates that are combined to compute certain
functions. Neither feed-backs nor fan-outs are allowed directly in the reversible circuit
paradigm. A circuit inverse computes the inverse function and is realised simply by reversing
the order of the gates in the cascade.

The quality of a reversible circuit is measured using the number of lines as well as the total
gate cost. The cost is measured either by the gate count, the transistor cost or the quantum
cost. Circuit metrics (lines and cost) are shown to be trade-offs as there exist arrangements
to reduce the gate cost by adding lines, and other arrangements that add gates (i.e., extra
cost) to reduce some lines from the circuits.

Reversible circuit synthesis approaches are categorized into; (1) minimal line approaches,
which result in fewer lines but high costs, and (2) hierarchical (decomposition) approaches,
which have higher scalability but result in circuits with more lines. HDL-based synthesis is a
hierarchical approach that offers high scalability in conventional as well as reversible circuit
design.
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Chapter 3

SyReC Specification and Synthesis of
Reversible Circuits

SyReC is a dedicated reversible hardware description language that facilitates scalable
synthesis through common HDL means. It allows for the specification and automatic
synthesis of complex reversible circuits. SyReC was first reported in [61] to specify reversible
circuits at a higher level of abstraction, in particular for the design of complex functionality,
such as a RISC CPU [25]. For such designs, SyReC outperforms currently applied description
means, including truth tables, permutations, and decision diagrams.

Hierarchical approaches to reversible circuit synthesis, including SyReC, typically result
in circuits with a large number of lines. This sever drawback highlights the need for
line-aware synthesis, which is tackled with a revised SyReC-based synthesis configured to
realise the desired circuit with fewer lines [62]. Despite being less critical for this approach,
the cost-aware configuration has also been proposed to reduce the gate cost associated with
certain cases [24].

In this chapter, we introduce the SyReC as the state-of-the-art and cover in detail general
concepts, specification syntax and semantics, its special hardware related properties and
constraints, and the synthesis of SyReC specifications. 1

3.1 SyReC: The Language

Since all (valid) SyReC programs are inherently reversible, the reversibility of the
specification is simultaneously ensured. The general concepts to achieve this are summarised
in the first part of this section followed by an explanation of the syntax and semantics of all
SyReC description means.

1 Comprehensive reviews with additional details on SyReC are found in [24,63].
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3.1.1 General Concepts

To ensure reversibility in its description, SyReC adapts established concepts from the
previously introduced reversible programming language, Janus [64], and is additionally
modified by hardware-related language constructs since it targets the description of reversible
circuits. The

1. Reversible Assignments: Being one of the most elementary language constructs,
variable assignments, such as those used in most imperative languages, are irreversible
and cannot be part of a reversible language. The concept of reversible assignments (also
called reversible updates) is used as an alternative. Reversible assignments have the
form v ⊕ = e with ⊕ ∈ {ˆ, +, -} such that the variable v does not appear on the
right-hand side expression e. Although SyReC is limited to the set of operators in ⊕,
any operator f can be used for the reversible assignment if there exists an inverse
operator f−1 such that

v = f−1(f(v, e), e) (3.1)

for all variables v and all expressions e. Note that ‘+’ (addition) is inverse to
‘-’ (subtraction) and vice versa, and ‘ˆ’ (bit-wise exclusive OR) is inverse to itself.
When executing the program in reverse order, all reversible assignment operators are
replaced by their inverse operators.

2. Expressiveness: Due to the construction of the reversible assignment, the right-hand
side expression can also be irreversible and compute any operation. The most common
operations are directly applicable using a wide variety of syntax, including arithmetic
(+, *, /, %, *>), bit-wise (&, |, ˆ), logical (&&, ||), and relational (<, >, =, !=, <=,
>=) operations. The reversibility is ensured, since the input values to the operation are
also given to the inverse operation when reverting the assignment (see Equation (3.1)).
For example, to specify a multiplication a*b, a new free signal c must be introduced to
store the result, i.e., cˆ=(a*b) is applied.

3. Reversible Control Flow A reversible data flow is ensured due to the assignment
operation mentioned above, and the control flow is made bijectively executable in a
similar fashion. This becomes particularly manifest in conditional statements. In
contrast to non-reversible languages, SyReC requires an additional fi-condition for
each if -condition which is applied as an assertion. This fi-condition is required, since
a conditional statement may not be computed in both directions using the same
condition, i.e., it cannot be ensured that the same block (then-block or else-block)
is processed when computing an if -statement in the reverse direction. As a solution, a
corrected fi-condition asserted when computing the statement in the reverse direction is
added to ensure a consistent execution semantic. This language principle is illustrated
in detail in the next section.
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4. Hardware Description Properties: Since SyReC is used for the synthesis of
reversible circuits, it obeys some HDL related properties:

• The single data-type is a circuit signal with parameterised bit-width.

• Access to single bits (x.N), a range of bits (x.N:N), and the size (#x) of a signal
is provided.

• Since loops must be completely unrolled during synthesis, the number of iterations
has to be available before compilation. So, dynamic loops (defined by expressions)
are not allowed.

• Additional operations used in hardware design (e.g., shifts ‘<<’ and ‘>>’) are
provided.

The implementation of these general concepts for the SyReC syntax is illustrated in
detail using the EBNF in Figure 3.1.

Table 3.1: Signal access modifiers and implied circuit properties.

Modifier Constant Garbage State Initial
Input Output Value

in – yes no given by primary input
out 0 no no 0
inout – no no given by primary input
wire 0 yes no 0
state – no yes given by pseudo-primary input

3.1.2 Module and Signal Declarations

Each SyReC specification (denoted by 〈program〉 in line 1 in Figure 3.1) consists of one
or more modules (denoted by 〈module〉 in line 2). A module is introduced with the keyword
module and includes an identifier (represented by a string as defined in line 23), a list of
parameters representing global signals (denoted by 〈parameter− list〉 in line 3), local signal
declarations (denoted by 〈signal − list〉 in line 5), and a sequence of statements (denoted
by 〈statement − list〉 in line 7). The top-module of a program is defined by the special
identifier main. If no module with this name exists, the last module declared is used as the
top-module instead.

SyReC uses a signal representing a non-negative integer as its sole data type. Round
brackets can optionally define the bit-width of signals after the signal name (line 6). If no
bit-width is specified, a default value of 32-bit is assumed. For each signal, an access modifier
must be defined. For a parameter signal (used in a module declaration), this can be either
in, out, or inout (line 4).
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Program and Modules

 〈program〉 ::= 〈module〉 {〈module〉}
 〈module〉 ::= ‘module’ 〈identifier〉 ‘(’ [〈parameter-list〉] ‘)’ {〈signal-list〉}

〈statement-list〉
 〈parameter-list〉 ::= 〈parameter〉 {‘,’ 〈parameter〉}
 〈parameter〉 ::= (‘in’ | ‘out’ | ‘inout’) 〈signal-declaration〉
 〈signal-list〉 ::= (‘wire’ | ‘state’) 〈signal-declaration〉 {‘,’ 〈signal-declaration〉}
 〈signal-declaration〉 ::= 〈identifier〉 {‘[’〈int〉‘]’} [‘(’〈int〉‘)’]

Statements

 〈statement-list〉 ::= 〈statement〉 {‘;’ 〈statement〉}
 〈statement〉 ::= 〈call-statement〉 | 〈for-statement〉 | 〈if-statement〉 | 〈unary-statement〉 |

〈assign-statement〉 | 〈swap-statement〉 | 〈skip-statement〉
 〈call-statement〉 ::= (‘call’ | ‘uncall’) 〈identifier〉 ‘(’ (〈identifier〉 {‘,’ 〈identifier〉}) ‘)’

 〈for-statement〉 ::= ‘for’ [[‘$’ 〈identifier〉 ‘=’] 〈number〉 ‘to’] 〈number〉 [‘step’ [‘-’]
〈number〉] 〈statement-list〉 ‘rof’

 〈if-statement〉 ::= ‘if ’ 〈expression〉 ‘then’ 〈statement-list〉 ‘else’ 〈statement-list〉 ‘fi’
〈expression〉

 〈assign-statement〉 ::= 〈signal〉 (‘ˆ’ | ‘+’ | ‘-’) ‘=’ 〈expression〉
 〈unary-statement〉 ::= (‘˜’ | ‘++’ | ‘--’) ‘=’ 〈signal〉
 〈swap-statement〉 ::= 〈signal〉 ‘<=>’ 〈signal〉
 〈skip-statement〉 ::= ‘skip’

 〈signal〉 ::= 〈identifier〉 {‘[’ 〈expression〉 ‘]’} [‘.’ 〈number〉 [‘:’ 〈number〉]]

Expressions

 〈expression〉 ::= 〈number〉 | 〈signal〉 | 〈binary-expression〉 | 〈unary-expression〉 |
〈shift-expression〉

 〈binary-expression〉 ::= ‘(’ 〈expression〉 (‘+’ | ‘-’ | ‘ˆ’ | ‘*’ | ‘/’ | ‘%’ | ‘*>’ | ‘&&’ |
‘||’ | ‘&’ | ‘|’ | ‘<’ | ‘>’ | ‘=’ | ‘!=’ | ‘<=’ | ‘>=’) 〈expression〉 ‘)’

 〈unary-expression〉 ::= (‘!’ | ‘˜’) 〈expression〉
 〈shift-expression〉 ::= ‘(’ 〈expression〉 (‘<<’ | ‘>>’) 〈number〉 ‘)’

Identifier and Constants

 〈letter〉 ::= (‘A’ | . . . | ‘Z’ | ‘a’ | . . . | ‘z’)

 〈digit〉 ::= (‘0’ | . . . | ‘9’)

 〈identifier〉 ::= (‘ ’ | 〈letter〉) {(‘ ’ | 〈letter〉 | 〈digit〉)}
 〈int〉 ::= 〈digit〉 {〈digit〉}
 〈number〉 ::= 〈int〉 | ‘#’ 〈identifier〉 | ‘$’ 〈identifier〉 | (‘(’ 〈number〉 (‘+’ | ‘-’ | ‘*’ |

‘/’) 〈number〉 ‘)’)

Figure 3.1: Syntax of the hardware description language SyReC.
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Local signals can either work as internal signals (denoted by wire) or, in the case of
sequential circuits as state signals2 (denoted by state; line 5). The access modifier affects
properties in the synthesised circuits as summarized in Table 3.1. Signals can be grouped
into multi-dimensional arrays of constant length using square brackets after the signal name
and before the optional bit-width declaration (line 6).

Example 9. Figure 3.2 shows an exemplary module (myCircuit) declaration possible in
SyReC, including one in signal (a) with a single bit, a four-element array of inout signals
(x) each with 16 bit-width and an out signal (y) with a default bit-width (32 bit). Also, an
internal signal (wire) (auxSignal) is declared with 16 bits and as well as a state signal
(stateSignal) with a default bit-width of 32 bit.

module myCircuit(in opr (1), inout x [4] (16), out y)
wire auxSignal(16)
state stateSignal

Figure 3.2: Exemplary module and internal signal and state declarations.

3.1.3 Statements

Statements include call and uncall of other modules, loops, conditional statements, and
various data operations (i.e., reversible assignment operations, unary operations, and swap
statements as in line 8). The empty statement can explicitly be modelled using the skip
keyword (line 15). Statements are separated by semicolons (line 7). Signals within statements
are denoted by 〈signal〉 allowing access to the entire signal (e.g., x), a certain bit (e.g., x.4),
or a range of bits (e.g., x.2:4 as in line 16). The bit-width of a signal can also be accessed
(e.g., #x as in line 25).

3.1.3.1 Signal Update Statements

Reversible signal update statements include the reversible signal assignment(denoted by
〈assign− statement〉), unary statements (denoted by 〈unary − statement〉), and the swap
statement (denoted by 〈swap − statement〉) as defined in line 12 to 14. The semantics of
these statements are summarised in Table 3.2, whereby x, y denote signals and e denotes
expressions. Since these statements perform only reversible operations, they may assign new
values to signals. Therefore, the respective signal(s) to be modified must not appear in the
expression on the right-hand side.

2Note that depending on the application feedback, the corresponding state signals might not be allowed
in reversible circuits. Nevertheless, SyReC supports this concept in principle. For a detailed discussion on
reversible sequential circuits, refer to [65,66].
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Table 3.2: Assignment, unary, and swap statements in SyReC.

Assignment Semantic Inverse
x ˆ= e Bit-wise XOR assignment of e to x, x := x ˆ e x ˆ= e
x += e Increase by value of e to x, x := x+ e x -= e
x -= e Decrease by value of e to x, x := x− e x += e
˜= x Bit-wise inversion of x, x := x ˜= x
++= x Increment of x, x := x+ 1 --= x
--= x Decrement of x, x := x− 1 ++= x
x <=> y Swapping value of x with value of y, x := y and y := x x <=> y

3.1.3.2 Conditional Statements

Conditional statements (defined in line 11) need an expression to be evaluated followed
by the respective then- and else-block. Each of these blocks is a sequence of statements. In
a forward computation, the then-block is executed if and only if the if -expression evaluates
to 1; otherwise, the else-block is executed. To ensure reversibility, a conditional statement is
terminated by a fi together with an adjusted expression. In a backward (inverse) computation,
the fi-expressions decide whether the then or the else-block is reversibly executed. If neither
the then nor the else-block modifies an input value of the conditional expression, then the if
and fi expressions are identical.

if (b = 5) then

x += y

// executed if b = 5

else

x -= y

// executed if b != 5

fi (b = 5);

(a) Identical if- and fi-conditions

if (b = 5) then

b += y

// executed if b = 5 (fwd)

// or b = 5 + y (bwd)

else

x -= y

// executed otherwise

fi (b = (5 + y))

(b) Different if- and fi-conditions

Figure 3.3: Conditional statements in SyReC.

Example 10. Figure 3.3(a) shows a conditional statement in SyReC, which does not modify
any of the inputs of the forward condition (signal b in this case). Hence, the if and fi
expressions are identical. In contrast, the then-block of the conditional statement
(Figure 3.3(b)) modifies the value of signal b. So, a suitable fi-expression different from
the if-expression must be provided to ensure correct execution semantics in both directions.
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3.1.3.3 Loops

An iterative execution of a block is defined by loops (defined in line 10). The number
of iterations must be available prior to the compilation, i.e., dynamic loops are not allowed.
Therefore, to fix integer values, for example, the bit-width of a signal, or internal (local)
$-variables can be applied. Furthermore, the current value of the internal counter variables
can be accessed during the iterations. Using the optional keyword step, the iteration itself
can be also modified. A loop is terminated by rof.

for $counter = 1 to 10 step 2 do
// statements
// the loop iterates 5 times
// (i.e., $counter is set to 1, 3, 5, 7, and 9 only)

rof

Figure 3.4: Exemplary loops in SyReC.

Example 11. Figure 3.4 shows an exemplary loop description possible in SyReC.
The loop with a counter variable $counter takes the values 1 to 10 with
an increment step of 2.

3.1.3.4 Call and Uncall of Modules

Hierarchic descriptions are realised in SyReC by using modules which can be called
and uncalled. For this purpose, the keyword call (uncall) must be applied together with
the identifier of the module to be called along with its parameters (line 9). Call executes
the selected module in the forward direction, while uncall executes the selected module
backwards.

module max(inout a, inout b, out m)
if (a < b) then

m ˆ= a
else

m ˆ= b
fi (a < b)

module main(inout x, inout y, inout z, out max)
wire temp
call max(x, y, temp)
call max(temp, z, max)

Figure 3.5: Calling a module.

Example 12. Figure 3.5 presents a SyReC description of two modules: main, which is the
top-level module and max, which is a sub-module called (instantiated) twice within main.
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3.1.4 Expressions

Expressions, as defined in lines 17 to 20, are applied on the right-hand side of assignment
statements or as branching conditions in if and fi statements. Since expressions do not
modify the values of any signal, non-reversible operations can also be applied in expressions
without jeopardising the reversibility. Because of this, a wide range of different description
means is provided. Table 3.3 lists the semantics for all operations which can be used in
expressions, whereby e, f denote sub-expressions and N denotes natural numbers.

Table 3.3: Expressions in SyReC.

Operation Semantic
e + f Addition of e and f
e - f Subtraction of e and f
e * f Lower bits of multiplication of e and f
e *> f Upper bits of multiplication of e and f
e / f Division of e and f
e % f Remainder of division of e and f

e ˆ f Bit-wise XOR of e and f
e & f Bit-wise AND of e and f
e | f Bit-wise OR of e and f
˜e Bit-wise inversion of e
e && f Logical AND of e and f
e || f Logical OR of e and f
!e Logical NOT of e
e < f True, if and only if e is less than f
e > f True, if and only if e is greater than f
e = f True, if and only if e equals f
e != f True, if and only if e not equals f
e <= f True, if and only if e is less or equal to f
e >= f True, if and only if e is greater or equal to f
e << N Logical left shift of e by N
e >> N Logical right shift of e by N

c ˆ= (a * b); // c := a*b if c is a new free signal
x.0 ˆ= ((a > 3) && (b != 0));
x.1:3 ˆ= (c.0:2 | 4);
if (a = b) then c+= (a % 2) else c -= (b / 2) fi (a = b)

Figure 3.6: Application of expressions.

Example 13. Figure 3.6 shows statements for expressions that demonstrate the range of
description means available in SyReC. Although the language is restricted to ensure
reversibility (e.g., statements such as c = a * b are not allowed), common functionality
can easily be specified (e.g., with a new free signal c, such as c ˆ= (a * b) ). Despite the
usage of non-reversible operations in Figure 3.6, all statements still can be executed in both
directions.
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3.2 Synthesis of SyReC Specifications

In SyReC, it is possible to specify reversible circuits on a higher level of abstraction. For
the design of complex functionality, SyReC clearly outperforms currently applied description
means, such as truth tables, permutations, and decision diagrams. The next step is to realise
SyReC specifications as reversible circuits.

To synthesise a given SyReC specification, a hierarchical synthesis method is developed.
Existing realisations, so-called building blocks, of the individual statements and expressions,
are used and combined so that the desired circuit is realised. More precisely, SyReC synthesis
(1) traverses the entire program and (2) adds cascades of reversible gates to the circuit
realising each statement or expression.

Modules are synthesised independently of each other and afterwards cascaded according
to the respective call and uncall statements. All signals are realised by buses of common
reversible circuit lines with the specified bit-width. In the following, the individual mappings
of the statements to the respective reversible cascades are described. We distinguish between
the synthesis of assignment statements (including unary and swap statements), expressions,
and control logic including call and uncall, loops, and conditional statements.

3.2.1 Synthesis of Assignment Statements

As introduced in Section 3.1.3.1, assignment statements in SyReC must be reversible. As
a consequence, signal values are not overwritten but rather updated with a new value such
that the old value can still be recovered by applying the inverted assignment operation. The
notation, as depicted in Figure 3.7(a), denotes such operations in circuit structures. Solid
lines that cross the box represent the signals(s) on the right-hand side of the statement,
i.e., the signal(s) whose values are preserved.

The most straightforward reversible assignment operation is the bit-wise XOR (e.g., aˆ=b).
For 1-bit signals, this operation can be synthesised by a single Toffoli gate, as shown in
Figure 3.7(b). If signals with a bit-width greater than 1 are applied, for each bit a Toffoli
gate is applied analogously.

To synthesise the increase operation (a += b), a modified addition network is added.
In the past, several reversible circuit realisations for addition were investigated, and it is
well known that the minimal realisation of a 1-bit adder consists of four Toffoli gates [67].
Thus, cascading the required number of 1-bit adders is a possible realisation. However,
since every 1-bit adder also requires one constant input, this is a poor solution with respect
to circuit lines. In contrast, heuristic realisations exist that require a fewer number of
additional lines [68]. Since the increase operation, unlike addition, is reversible, it can even
be synthesised without additional lines. Such a realisation is used in our approach. A
corresponding cascade for a 3-bit increase is depicted in Figure 3.7(d).

The mapping for the decrease operation (a -= b) is the inverse of the increase operation.
So, the same realisation depicted in Figure 3.7(d) is used in reverse.
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a a⊕b⊕=
b b

(a) General: a⊕=b

a aˆb
b b

(b) aˆ=b

a0 a′0
a1 a′1
a2 a′2

(c) ++=a

a0 a′0
a1 a′1
a2 a′2

b0 b0

b1 b1

b2 b2

(d) a+=b (for 3-bit variables)

Figure 3.7: Synthesis of assignment statements.
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(c) cˆ= a & b
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G(a+b) Gc∧=

(d) c ˆ= a + b

Figure 3.8: Synthesis of expressions.

Finally, the realisations for the unary and swap statements are straightforward. The
bit-wise inversion (˜=a) is realised by adding a NOT gate to each circuit line representing a
bit of a. Similarly, a swap (a<=>b) is realised by adding a SWAP gate to the corresponding
circuit lines of a and b. To synthesise an increment (++=a), a cascade, as depicted in
Figure 3.7(c), is applied. A decrement (- -=a) is realised by using the same cascade in
reverse.
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3.2.2 Synthesis of Expressions

Expressions include operations that are not necessarily reversible so that their inputs
must be preserved to allow a (reversible) computation in both directions. To denote such
operations, the notation depicted in Figure 3.8(a) is used. Again, solid lines represent the
signals(s) whose values are preserved (i.e., the input signals).

Synthesis of irreversible functions in reversible logic is not new, so for most of the
respective operations, reversible circuit realizations already exist. Additional lines with
constant inputs are applied to make an irreversible function reversible [35,36]. As an example,
Figure 3.8(b) shows a reversible gate that realises an AND operation. As can be seen, this
requires one additional circuit line with a constant input ′0′. Similar mappings exist for all
other operations.

Since expressions can be applied together with assignment statements (e.g., cˆ=a&b),
sometimes a more compact realisation is possible. More precisely, additional constant circuit
lines can be saved (for some statements), if the result of an expression is applied to an
assignment statement. As an example, Figure 3.8(c) shows the realisation for cˆ=a&b where
no constant input is needed, but the circuit line representing c is used instead. However, such
a simple “combination” is not possible for all statements. As an example, Figure 3.8(d) shows
3-bit addition whose result is applied to a bit-wise XOR, i.e., cˆ=a+b. Here, removing the
constant lines and directly applying the XOR operation on the lines representing c would lead
to an incorrect result because intermediate results are stored at the lines representing the sum.
Since these values are reused later, performing the XOR operation “in parallel” would destroy
the result. Thus, to have a combined realisation of a bit-wise XOR and an addition, a precise
embedding for this case must be generated. Since determining the respective embedding and
circuits for arbitrary combinations of statements and expressions is a cumbersome task,
constant lines are applied to realise the respective functionality. However, in Section 3.3, an
extended synthesis scheme is presented that removes many of these additional lines.

Using the building blocks for reversible signal statements and expressions as introduced
above, it is possible to synthesise reversible circuits specified in SyReC automatically. More
precisely, the following two steps are performed for each statement:

1. Compose a sub-circuit G� realising all the expressions in a statement using the
respective building blocks. The result of an expression is buffered using an additional
line.

2. Compose a sub-circuit G⊕ realising the overall statement using the existing building
blocks of the statement together with the buffered results of the expressions.

Hence, the resulting circuits have a structure as shown in Figure 3.9, i.e., cascades of
building blocks for the respective assignment statements and their expressions results.

Obviously, this leads to a significant number of additional circuit lines with constant
inputs used to buffer intermediate results of the expressions. The precise number of additional
circuit lines increases with respect to the complexity of the expression. Usually, a large
number of circuit lines is seen as a disadvantage.
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a a⊕(b�c)⊕=

0 −Gb�c

b b

c c

d d⊕(e�f)⊕=

0 −Ge�f

e e

f f

Figure 3.9: Resulting circuit structure.

if e

then

a ⊕= b

else

c ⊕= d

fi e

(a) Code

a a′⊕=
b b

e −

c c′⊕=
d d

(b) Circuit realization

Figure 3.10: Synthesis of conditional statements.

3.2.3 Synthesis of the Control Logic

Finally, the synthesis of control logic is considered. Module calls, uncalls, and loops
are realised straightforwardly. Loops are realized by simply cascading (i.e., unrolling) the
respective statements within a loop block for each iteration. Since the number of iterations
must be fixed (see Section 3.1.3.3), this results in a finite number of statements subsequently
processed. Call and uncall of modules are handled similarly where the respective statements
in the modules are cascaded.

To realise conditional statements, such as if -statements as introduced in Section 3.1.3.2,
the statements in the then- and else-block are mapped to reversible cascades with an
additional control line added to all gates (see Figure 3.10(b)). Thus, the respective operations
of the statements in the then or (else-block are computed if and only if the result of the
expression (stored in signal e) is 1 or 0, respectively. A NOT gate is applied to flip the value
of e so that the gates of the else-block can also be “controlled”.
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3.3 Circuit Optimization

Hierarchical synthesis approaches do not guarantee optimal circuits, which keeps a space
opened for refinement. Both circuit trade-off metrics may be considered as optimisation
objectives.

3.3.1 Line-aware Synthesis of SyReC Specifications

To realise SyReC specifications with a smaller number of additional circuit lines, an
extended synthesis scheme is presented in this section (based on [62]). The idea is to use
the same building blocks as introduced in the previous section but to undo intermediate
results of the expressions as soon as they are no longer needed. A similar idea (for reversible
software programs) was previously proposed in [69], which enables that reuse of circuit lines
which previously occupied by expressions.

In the following, the concept of this scheme is illustrated before the extended synthesis
is described in detail for all possible SyReC statements. Next, the necessary amount of
additional circuit lines is discussed.

3.3.1.1 General Concept

The extended synthesis approach follows the scheme as introduced in Section 3.2.2, but
is extended by an additional third step:

3. Add the inverse circuit from Step 1,G−1
� , to the circuit to reset the circuit lines buffering

the result of the expressions to the constant ′0′.

Example 14. Consider the two following generic HDL statements:

a ⊕= (b � c);

d ⊕= (e � f);

Figure 3.11 sketches the resulting circuit after applying the extended synthesis scheme. The
first two sub-circuits Gb�c and Ga⊕=b�c, ensure that the first statement is realised. This is
equivalent to the scheme proposed in Section 3.2 and leads to additional lines with constant
inputs (highlighted thick). Afterwards, a further sub-circuit, G−1

b�c, is applied. Since G−1
b�c

is the inverse of Gb�c, this sets the circuit lines buffering the result of b � c back to the
constant ′0′. As a result, these circuit lines can be reused to realise the following statements
as illustrated for d⊕=e� f in Figure 3.11.

3.3.1.2 Resulting Synthesis Scheme

Following the proposed concept, each statement can be realised with zero garbage outputs.
In the following, the precise realisation of this scheme is detailed for each possibly affected
statement. The unary statements, the swap-statement (<=>), and the skip statement are not
considered here as they are realised without additional circuit lines.
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a a⊕(b�c)⊕=
0 Gb�c G−1

b�c

b b

c c

d d⊕(e�f)⊕=
0 0Ge�f G−1

e�f

e e

f f

Figure 3.11: Line reduction.

Assignment Statements To realise statements of the form a⊕=e with e being an arbitrary
expression, the respective building blocks are orchestrated as illustrated in Figure 3.11. First,
a sub-circuit realising the expression e, i.e., the right-hand side of the statement, is created.
This requires additional lines to store the result of e. Next, a sub-circuit realising the
assignment operation is created as well as a sub-circuit reversing the result of e into a
constant value. The latter is done by reversing the order of gates of the first sub-circuit.
Finally, all three sub-circuits are composed leading to the desired realisation of the statement.

Example 15. Figure 3.12 shows the circuit obtained by synthesising cˆ=(a + b) using the
extended synthesis scheme. Dashed rectangles highlight the respective sub-circuits Ga+b,
Gcˆ=a+b, and G−1

a+b. Since all gates considered in this work are self-inverse, G−1
a+b is obtained

by reversing the order of the gates of Ga+b. The target signal is updated exactly as in
Figure 3.8(d), but here the three garbage lines are re-computed to the constant ′0′.

a0 a0

a1 a1

a2 a2

b0 b0
b1 b1
b2 b2
c0 c0
c1 c1
c2 c2

0 0
0 0
0 0

G(a+b) Gc∧= G−1
(a+b)

Figure 3.12: Synthesizing c ˆ= (a+b) with no garbage.

Applying this procedure, any arbitrary combination of assignment statements and
expressions can be realised in a line-aware manner. That is, required additional circuit
lines are ancilla lines and can be reused for other statements and operations.
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Conditional Statements

As described in Section 3.2.3, conditional statements are realised by combining two
sub-circuits, Gthen and Gelse (see Figure 3.10). Figure 3.13(b) illustrates the adjusted
procedure for the synthesis of a conditional statement in the line-aware configuration of
circuits. The gates needed to realise the then-block (else-block) are highlighted in dark grey
(light grey). Also, a sub-circuit Gif evaluating the respective if -expression is created. The
intermediate results of that expression are handled analogously to assignment statements
as described above. An additional circuit line is applied to store the Boolean result of
the if -expression and control the execution of the then- and else-block as described in
Section 3.2.3. The flip on the additional line, which controls the gates of the else-block,
is then restored by another NOT gate. Afterwards, the original constant value of that line
is restored by applying a sub-circuit Gfi which evaluates the fi-expression of the statement.
As defined in Section 3.1.3.2, SyReC requires the definition of a fi-expression that evaluates
to the same Boolean value as the if -expression did in Gif .

if (a = b)
then

a ⊕= c

else

b ⊕= c

fi (a = (b⊕ c))

(a) Code

0 0Gif Gfi

a a′⊕=

b b′⊕=

c c

(b) Without additional lines

Figure 3.13: Realisation of a conditional statement in line-aware SyReC synthesis.

Loops and Calls

The realisation of loops and module calls is treated in a straight forward manner exploiting
the procedures proposed above. Calls are substituted by the corresponding statements inside
the body of the call. Loops are realised by explicitly cascading (i.e., unrolling) the respective
statements within a loop block according to the fixed and finite number of iterations.

3.3.1.3 Discussion

Applying the extended synthesis scheme, every statement is synthesised with zero garbage
outputs and only additional ancilla lines. Consequently, the total number of additional lines
required to realize a SyReC specification with the proposed solution can be determined by
the statement that requires the largest number of additional lines to buffer intermediate
results.
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Example 16. Consider a sequence of three assignment statements to be synthesised.
Additionally, assume that 1, 3, and 2 circuit lines are needed to buffer the intermediate
results of the respective expressions. Then, in total max{1, 3, 2} = 3 additional circuit lines
are needed to realise the statements. Figure 3.14 illustrates how these circuit lines are applied.
For comparison, the synthesis scheme from Section 3.2 needs 1 + 3 + 2 = 6 additional circuit
lines.

0 0

⊕= ⊕= ⊕=

� � � � � �

3 2

1 1 3 3 2 2

1 3

Figure 3.14: Effect of expression size.

Overall, a price for the smaller number of circuit lines is an expected increase in the
number of gates and, thus, in the gate costs. However, the increase in the gate costs is
bounded. For example, in comparison to the synthesis scheme from Section 3.2 where the
building blocks G� and G⊕ are applied for each assignment statement, the extended scheme
uses just one more building block G−1

� . Since G−1
� is the inverse of G�, the circuit can, at

most, double its gate cost. Overall, the resulting circuits still include additional circuit lines
with constant inputs. Considering that, until today, the synthesis of complex functions as a
reversible circuit with the minimal number of lines is a cumbersome task [35], the proposed
solution enables keeping this number relatively small.

3.3.2 Cost-aware Synthesis of SyReC Specifications

SyReC synthesis can be refined to reduce the costs of the resulting circuits. Here, it is
observed that some SyReC operations are realised as cascades of gates with several common
control lines, and it is cost-worthy to apply cost reduction optimisation, as described in
Section 2.3.3.1. While this arrangement was originally proposed for minimal line synthesis
approaches with extremely high costs, it can still improve the hierarchical SyReC synthesis.

Example 17. Consider an 8-bit realisation of the increment statement (++=a) as shown in
Figure 3.15(a). The gates in this cascade have several common control lines, e.g.,
C ′ = {a0, a1, a2}. By adding two Toffoli gates g(C′,{h}), the result of the common control
conditions C ′ can be buffered in an ancilla line h as shown in Figure 3.15(b) (the new gates
are emphasized with a grey box and the line h is on the top). This enables all gates with control
lines C ⊇ C ′ to be simplified, i.e., instead of C, a smaller set of control lines (C \C ′) ∪ {h}
is sufficient (in Figure 3.15(b), the saved control lines are indicated with dashed circles). As
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a result, the costs of the gates and, hence, the costs of the overall circuit are significantly
reduced. In fact, quantum costs can be improved from 431 to 116 (73%), and transistor costs
can be improved from 224 to 192 (14%).

a0 a′0
a1 a′1
a2 a′2
a3 a′3
a4 a′4
a5 a′5
a6 a′6
a7 a′7

(a) Original realisation

0 0
a0 a′0
a1 a′1
a2 a′2
a3 a′3
a4 a′4
a5 a′5
a6 a′6
a7 a′7

(b) Revised realisation

Figure 3.15: 8-bit realisation of the increment statement (++=a).

Similar observations can be made for other building blocks, including nested conditional
statements that frequently lead to large cascades of gates with common control lines. This
is because the circuit lines representing the conditional expressions control entire cascades
realising the respective then- and else-blocks.

This procedure applies to both synthesis approaches, i.e., to the scheme proposed in
Section 3.2 as well as to the extended scheme proposed in Section 2.3.3.1. Determining
the best possible cascades for replacement is a complex task as the order in which common
control lines are exploited typically has an effect. Hence, we apply this procedure only
for single statements leading to local optima. As confirmed by the experiments, significant
improvements are reported [24].

3.4 Summary

This chapter introduces the SyReC language, SyReC synthesis, and circuit optimisation
in SyReC.

• The SyReC language as introduced in Section 3.1 is a language designed to describe
reversible hardware with a modular style. A SyReC program is made of modules
what call each other in a hierarchical structure. A module is declared similarly to a
declaration of a function. The input and output signals of a SyReC module appear
in the declaration line similar to function arguments where the types and bit-widths
of each signal are specified along with its name. A module body includes the internal
wire and state declarations, and the statements which specify the functionality of the
module. SyReC statements include reversible signal assignments, conditionals, loops,
and calls of other modules.
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• SyReC Synthesis uses the building blocks for statements and expressions as
introduced in Section 3.2 to automatically synthesise reversible circuits specified in
SyReC. More precisely, the following two steps are performed for each statement:

1. Compose a sub-circuit G� realising all the expressions in a statement using
the respective building blocks. The result of the expressions is buffered using
additional circuit lines.

2. Compose a sub-circuit G⊕ realising the overall statement using the existing
building blocks of the statement together with the buffered results of the
expressions.

• Optimizing circuit synthesis is proposed to improve the outcomes of SyReC synthesis
to obtain circuits with fewer lines or lower gate costs whenever possible. Line-aware
synthesis, as introduced in Section 3.3.1, is proposed to tackle the major drawback
associated with SyReC synthesis, i.e., the high numbers of constant lines applied to
the circuits. The general idea is to extend the two steps above with a third step that
inversely computes the expression. So, the lines used in computing the expression
are constant-valued, and hence reusable for further computations in the circuit. On
the other hand, Cost-aware synthesis is proposed to compromise some costly gate
patterns with lower-cost equivalents by using a helper-line (a trade-off technique). This
one extra line is negligible and accepted to have a tangible reduction in the overall
circuit cost as a trade-off.
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Chapter 4

Line-aware SyReC Programming Style

Line-aware synthesis, achieves significant improvement in tackling the major drawback
associated with SyReC, i.e., constant inputs [24]. This configuration reduces the constant
inputs that are required to realise non-reversible operations by a cost-for-line trade-off since
it duplicates the cost to make constant inputs reusable (see Section 3.3.1). However, these
constant inputs are often still more than the known theoretical bounds (see Section 2.2.2).

In this chapter, we approach the problem from a different angle by which we identify a
description style that can be synthesised into reversible circuits with less constant inputs.
Therefore, we investigate the statements that cause these constant lines, and then we replace
them, when possible, with equivalent statements that cause no or fewer lines. Based on
our observations, we propose guideline rules for a line-aware programming style in SyReC,
allowing for more efficient SyReC synthesis with respect to circuit lines. The influence of the
proposed programming style on cost has been also considered because the expected trade-off
between the reduction of lines and cost increases. This consideration highlights possible
potentials to avoid or minimize cost increments.

Circuit lines with constant input is a well-known drawback associated with all hierarchical
reversible synthesis methodologies. Line-awareness (in this context) means, applying less
constant inputs to the circuit to compute the desired function. In SyReC, constant inputs
are categorised, depending on the type of signals assigned to them, into the following:

1. out signals: A type of the in/out signal declaration of the module. Such signals can
not be manipulated, because they define the external behaviour (functionality) of the
system.

2. wire signals: Internally used signals, which facilitate computations within the module,
and, hence, line-efficient programmers are supposed to declare wires when necessary
with awareness to the constant inputs.

3. Implicit lines: Inevitable lines realizing irreversible computations, e.g., with binary
expressions. With each binary operator, we should expect a constant-line applied to
the circuit. Implicit lines are transparent to the programmer, but accumulate within
the circuit and represent the main source of constant inputs among the three categories.
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SyReC with line-aware synthesis configuration succeeded to moderate the accumulation
of constant inputs by re-computing expressions (see section 3.3.1), which is considered for this
chapter. Here, the number of lines in a circuit is bounded by the statement that requires the
largest number constant lines. In general, larger expressions lead to more intermediate results
to be buffered. Thus, if additional smaller statements can represent the same functionality,
a further reduction in the number of lines is possible.

Example 18. Consider the following statement: a += ((b & c) + ((d * e) - f)).
To execute the outer expression (i.e., the addition operation), the intermediate results of the
inner expressions (b & c), (d * e), and ((d * e) - f) are buffered at the same time. This
requires four circuit lines with constant inputs to buffer the results of these operations. In
contrast, the same functionality can also be specified by the following statements.

a += (b & c);

a += (d * e);

a -= f;

Here, the respective binary operations are applied separately with an assignment operation.
So, no more than one ancilla line is needed to buffer the intermediate results providing
reduction by 75%.

4.1 Guidelines for Line-aware Statements

4.1.1 Operator Equivalence

Realising a reversible operation does not require a constant input, by definition, while a
constant input is inevitable to realise non-reversible operations. Reversible signal-assignments
(ˆ=, +=, -=), for instance, are mathematically equivalent to the non-reversible binary
operators (ˆ, +, -), respectively, e.g., s ˆ= E and (s ˆ E) both perform the same
computation. However, the circuit realisations of these equivalent computations incorporate
two differences:

1. A reversible assignment does not require a constant line, while its non-reversible binary
equivalent requires one to compute the expression, i.e., the assignment is more line
efficient.

2. Circuits realising reversible-assignment operations have a lower cost compared to its
binary operator equivalent (see Table 4.1).

An assignment statement is equivalent to two statements with shorter right-hand side
(RHS) expressions if the assignment operator is equivalent to the top-level operator in the
RHS expression, e.g., s += (a + b) is equivalent to s += a followed by s += b. This
equivalence is valid because the operations (+, -, ˆ) are associative, which means the
target signal s will be updated as desired in both cases. In splitting the expression, we
replace the non-reversible operation ˆ with the reversible ˆ= avoiding the constant input
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Table 4.1: Cost-metrics for SyReC circuits of defined operators.

Bit width 1 2 4 8 16 32 64
Operation Gate Count

ˆ= 1 2 4 8 16 32 64
ˆ 2 4 8 16 32 64 128

+ = − = 1 6 20 48 104 216 440
+ − 2 8 24 56 120 248 506

Operation Quantum Cost
ˆ= 1 2 4 8 16 32 64
ˆ 2 4 8 16 32 64 128

+ = − = 1 14 44 104 224 464 944
+ − 2 16 48 112 240 496 1008

Operation Transistor Cost
ˆ= 8 16 32 64 128 256 512
ˆ 16 32 64 128 256 512 1024

+ = − = 8 64 208 496 1072 2224 4528
+ − 16 80 240 560 1200 2580 5040

Table 4.2: Rules of equivalence in signal-assignment statements.

Rule Original Statement Shorter Equivalent
1. s ˆ= (E_l ˆ E_r) s ˆ= E_l

s ˆ= E_r
2. s += (E_l + E_r) s += E_l

s += E_r
3. s += (E_l - E_r) s += E_l

s -= E_r
4. s -= (E_l + E_r) s -= E_l

s += E_r
5. s -= (E_l - E_r) s -= E_l

s += E_r

only when (s = 0)
6. s += E s ˆ= E
7. s ˆ= (E_l + E_r) s ˆ= E_l

s += E_r
8. s ˆ= (E_l - E_r) s ˆ= E_l

s -= E_r

and reducing the cost. Such assignments are enumerated, in Table 4.2, where s is a signal
declared in the module (see rules (1–5)), E_l and E_r are the left and right operands
of the RHS expression E, respectively. Moreover, when s is known to be constant ′0′

(e.g., a non-initialized out or wire signal), then (0 + E) = (0 ˆ E) = E. For the same
reason += and ˆ= are equivalents when (s = 0) , i.e., rule 6 holds meaning rules 7 and 8
hold as well.
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The two operands E_l and E_r are grammatically defined to be expressions in the general
case. Here, the major advantage of splitting an expression into two shorter expressions results
in less constant lines if this expression is the largest in the module.

Example 19. The SyReC module in Figure 4.1(a) contains three statements. The largest
expression appears in line 4, and computed using 6 operators. Consequently, 6 constant
inputs (each using an 8-bit bundle, i.e., 8-circuit lines) are implicitly added to the circuit
to realise it. The binary expression has a left operand ((a * b) - (a / b)) (3 operators),
a right operand ((a + b) / t) (2 operators), and a top-level operator (+). The statement
can be replaced with:

x += ((a * b) - (a / b))

x += ((a + b) / t))

or, even shorter, with:

x += (a * b)

x -= (a / b)

x += ((a + b) / t))

to result in the code in Figure 4.1(b).

1 module example(in a(8), in b(8), inout x(8), out f(8))

2 wire t(8)

3 t ˆ= (a & b)

4 x += (((a * b) - (a / b)) + ((a + b) / t))

5 f ˆ= (((t ˆ b) + x) * (a - b))

(a) Simple SyReC module

1 module example(in a(8), in b(8), inout x(8), out f(8))

2 wire t(8)

3 t ˆ= (a & b)

4 x += (a * b)

5 x -= (a / b)

6 x += ((a + b) / t)

7 f ˆ= (((t ˆ b) + x) * (a - b))

(b) Equivalent module using shorter statements

Figure 4.1: Two equivalent SyReC modules.

Despite the equivalence of codes in Figure 4.1(a) and Figure 4.1(b), line-aware SyReC
synthesis exploits fewer lines to realise the latter (see Table 4.3). This table shows that the
second code realises the circuit using fewer lines with a lower cost.
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4.1.2 Internal Wires

Internal wires are usually declared to avoid repeating a computation. For example, the
expression (a & b) is assigned to wire t (Figure 4.1(b) line 3), instead of repeating this
computation twice in Lines 6 and 7. Here, we avoid duplicating circuitry to avoid additional
gate cost. We reduce the size of these expressions by substituting the duplicated computation
by a signal identifier, which means less constant lines to realise the expression. This motivates
wire declaration with the intention to reduce the size of the largest expression in the module.

Example 20. The largest expression in Figure 4.1(b) appears in the RHS of line 7 and is
computed using 4 operators. The top-level operation is (∗), which has no reversible equivalent,
so expression split, as explained in Section 4.1.1, is not applicable. However, this problem
can be circumvented if a wire w is declared (Figure 4.2, line 2), which applies a constant
signal to the circuit and allows for the copy of the operand ((t + b) ˆ x), as shown in
Figure 4.2 line 7. Then, w substitutes the operand in the expression (Figure 4.2, line 8).
This code is described using expressions computed with 2, or less, operators each.

1 module example(in a(8), in b(8), inout x(8), out f(8))
2 wire t(8),w(8)
3 t ˆ= (a & b)
4 x += (a * b)
5 x -= (a / b)
6 x += ((a + b) / t)
7 w ˆ= ((t ˆ b) + x)
8 f ˆ= ( w * (a - b))

Figure 4.2: Simple SyReC program with extra wire.

Although a wire also requires its “own” constant input, this code is realised with less
circuit lines (see Table 4.3). Unlike the expression split proposed in Section 4.1.1, which is
advantageous with respect to all circuit parameters, applying a wire can be advantageous
only when used properly. A slight increment in the circuit cost is expected due to the
additional ˆ= operator to assign the expression to the wire along with the extra constant
input due to the new wire. So, we have the intended advantage of declaring a wire when:

1. it is applied to the largest expression only.

2. it is assigned by the larger among the two operands. In this case the top-level operation
will be computed with the shorter expression as we observe better results when the
two operands are of almost similar sizes.

3. the assigned operand contains at least two operators.
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The possibility of another split sometimes appears after the new wire assignment
statement, e.g., line 7 in Figure 4.2, can be replaced, as shown in Figure 4.3. Here, the split
does not reduce the number of circuit lines because the largest expression in the module
remains with the same number of operations, and it shows a slight improvement in cost
metrics (see Table 4.3).

1 module example(in a(8), in b(8), inout x(8), out f(8))
2 wire t(8),w(8)
3 t ˆ= (a & b)
4 x += (a * b)
5 x -= (a / b)
6 x += ((a + b) / t)
7 w ˆ= t
8 w ˆ= b
9 w += x

10 f ˆ= ( w * (a - b))

Figure 4.3: Simple SyReC program with extra wire.

Removing a wire means reducing a constant input. Therefore we should seek for redundant
wires that can be removed without loosing the advantage of using them. One such case can be
identified in Figure 4.3, line 7. We assign (copy) the value of the wire t to the constant ′0′

wire w. Then, t is considered as a garbage output. We recognise that w is redundant,
because it can be simply removed and substituted by t (see Figure 4.4).

1 module example(in a(8), in b(8), inout x(8), out f(8))
2 wire t(8)
3 t ˆ= (a & b)
4 x += (a * b)
5 x -= (a / b)
6 x += ((a + b) / t)
7 t ˆ= b
8 t += x
9 f ˆ= ( t * (a - b))

Figure 4.4: Simple SyReC program with wire removed.

4.1.3 Temporary Signal Update

The tendency to describe the desired function with shorter expressions may reach a
limit where further reduction is no more possible. In Figure 4.4 two expressions appear
with two operations each (lines 6 and 9), but neither can be reduced as discussed in
Sections 4.1.1 and 4.1.2. In both expressions, we could identify an operator that has a
reversible-assignment equivalence (+,-,ˆ), but not as a top-level operation, e.g., in line 9
with f ˆ= (t * (a - b)). Here, we can update the signal a before this statement and
use the updated value to compute the expression, a -= b; f ˆ= (t * a). We must be
aware that this is only possible because signal a (1) is not used again in this expression and
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(2) garbage after this statement (an in or wire signal that is not used after the statement
within the module).

If the updated signal is not garbage, then the update should be only temporary and later
inversely-updated directly. This inverse update of an increase operation, +=, is decrease, -,
and vice versa, while the XOR-update, ˆ=, is self-inverse.

1 module example(in a(8), in b(8), inout x(8), out f(8))
2 wire t(8)
3 t ˆ= (a & b)
4 x += (a * b)
5 x -= (a / b)
6 a+= b
7 x += (a / t)
8 a-= b
9 t ˆ= b

10 t += x
11 a -= b
12 f ˆ= (t * a)

Figure 4.5: Simple SyReC program with a temporary signal update.

Example 21. In Figure 4.5, signal a is temporarily updated in line 6 and before being used
in line 7 to compute signal x. In line 8, a is inversely updated to its original value because
it is not yet garbage. Another temporary update for a is made in line 11, and then used
to compute f in line 12. Here, no inverse update is necessary, because a is subsequently
garbage. This temporary signal update allows the description of the desired function using
very short expressions with only 1 or even no operator at all.

Table 4.3: Circuit metrics for equivalent SyReC modules.

Metric Fig.4.1(a) Fig.4.1(b) Fig.4.2 Fig.4.3 Fig.4.4 Fig.4.5
Circuit Lines 88 72 64 64 56 48

Circuit Lines (8-bit) 11 9 8 8 7 6
explicit wires (8-bit) 1 1 2 2 1 1
Implicit lines (8-bit) 6 4 2 2 2 1

Gate Count 3756 3628 3636 3548 3540 3460
Quantum Cost 69064 68824 68832 68688 68680 68544
Transistor Cost 92944 91696 91760 90944 90880 90128

The inverse computation statements inserted in the code are, practically, extra re-compute
circuits (cost) described explicitly in the code. In other words, they are cost-for-lines
trade-offs. In this example, the cost increment is compensated with the cost reduction due
to the replacement of the binary operators (+, -) by the assignment operators (+=, -=),
respectively (see Table 4.3).

In the same way, internal wire signals can be inversely computed to their original
constant ′0′ value, and with this, the wires become reusable for further computation instead
of declaring different wires.
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4.2 Experimental Evaluation

Despite their equivalence, SyReC codes shown in Figures 4.1 through 4.5 have different
circuit realisations of the desired function. Table 4.3 shows the impact of applying the
ideas discussed in Sections 4.1.1, 4.1.2, and 4.1.3 on the resulting circuits’ parameters, i.e.,
the number of lines and cost measures. When we compare the spontaneously written code
(Figure 4.1) with the code written according to the proposed programming style (Figures 4.5),
we can see a dramatic reduction in the number of constant inputs. Moreover, this reduction
is not a trade-off as circuit cost measures show a slight reduction. The other important
observation related to these two codes is that the proposed style describes the module with
a large number of shorter statements, as compared to the spontaneous code, and is less
readable.

The function described in these codes has no practical meaning. It has been designed to
demonstrate the ideas with a simple example. A valid experimental evaluation, on the other
hand, was carried out on a true set of benchmarks describing meaningful functions. Each
benchmark is realised with three different configurations:

(1) The original SyReC synthesis without any optimisation as described in Section 3.2.

(2) SyReC with line-aware synthesis as described in Section 3.3.1.

(3) The proposed programming style is applied to rewrite the benchmark and then realised
using SyReC with line-aware synthesis.

These configurations result in three different circuits for each benchmark. Four parameters
are measured to characterise each reversible circuit: number of lines (Lt), gate count (D),
quantum cost (Q), and transistor cost (T ) metrics. In addition to these measures, the number
of lines declared for in and out signals is computed as Lio (see Table 4.4).

4.2.1 Normalised Circuit Metrics

The benchmarks used in evaluating the proposed programming style are significantly
different in many features including the sizes. Hence, we need to normalise circuit metrics
to have a better general assessment of the proposed style that is independent of the problem
size. Here, we have two key metrics:

1. The impact on the circuit lines is supposed to consider the number of constant lines
added to realise the function, which is the primary drawback of this approach. In
theory, a pure reversible computation is performed within the lines declared for the
input and output signals. Therefore, our normalisation excludes these lines and uses
them as a reference to define the problem size, with respect to the factor of circuit lines
as follows:

Lnx% = Ltx − Lio
Lio

× 100% (4.1)
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2. The impact on circuit cost (complexity) is normalised with respect to the original
realisation scenario as follows:

Cnx% = Cx − C1
C1

× 100% (4.2)

where, C can take any cost metric, i.e., D, Q or T , while the subscript x = 2 or 3 refers
to the realisation configuration in the table.

The normalisation results for the considered configurations ((2) and (3)) are shown in
Figures 4.6, 4.7, 4.8, and 4.9, for normalized lines, gates, and quantum and transistor
cost metrics, respectively. In each graph, we recognize pairs of bars. Darker bars refer to the
spontaneously programmed benchmarks and lighter bars refer to the rewritten benchmarks
all realised using SyReC with line-aware synthesis.

4.2.2 Discussion of Results

The normalisation as discussed in Section 4.2.1 simplifies the assessment of the proposed
programming style on the realisation of the twelve benchmarks. It shows different impacts
on various benchmarks where we compute the improvement by the difference between the
two normalised measures of each benchmark in each of these four figures, i.e.,

DLn% = Ln2 − Ln3 = Lt2 − Lt3
Lio

× 100% (4.3)

DCn% = Cn2 − Cn3 = C2 − C3
C1

× 100% (4.4)

Accordingly, we may categorise the improvements achieved by rewriting the benchmarks
as proposed to be:

1. significant, when the improvement is more than 20%.

2. tangible (noticeable), when the improvement is between 5%–20%.

3. insignificant, when the improvement is less than 5%.

4. negative, when the result is worst in the proposed style. This can occur because of a
cost-for-line trade-off.

Then the results show:

1. 2/12 benchmarks offer significant improvement in all circuit parameters.

2. 4/12 benchmarks offer significant improvement in at least one circuit parameter.

3. 5/12 benchmarks offer tangible improvement in at least one circuit parameter.

4. 1/12 benchmark offers an insignificant improvement in all circuit parameters.
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Figure 4.6: Normalised increase in constant ′0′ circuit lines.

Figure 4.7: Normalised increase in gate count.
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Figure 4.8: Normalised increase in quantum cost.

Figure 4.9: Normalised increase in transistor cost.
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4.3 Summary

In this chapter, we proposed a SyReC programming style oriented towards optimised
circuit synthesis. The primary optimisation objective is to reduce the number of constant
inputs for which SyReC with line-aware synthesis is considered. The secondary objective is
to avoid, or at least to reduce, the cost-for-line trade-off associated with line-reduction. The
style is based on describing the desired function with as short expressions as possible guided
by the following:

1. Splitting assignment statements by replacing some non-reversible binary operators by
their equivalent reversible assignment operators (Section 4.1.1).

2. Substituting the operands of large expressions by an internal wire identifier (Section 4.1.2).

3. Temporary signal update, with inverse-update when necessary (Section 4.1.3).

An experimental evaluation carried out to compare the spontaneous and the proposed
SyReC programming styles with results showing a significant improvement, in one or both
optimisation objectives, in the clear majority of these SyReC benchmarks (Section 4.2).

The proposed style shows code that is less readable, as compared to the spontaneously
written code. The modules are described with sorter expressions and with a large number
of statements. The most interesting observation in this experiment is that the reduction
in the number of lines is not accompanied with extra cost. In fact, the partial increase is
compensated within the circuit, in all benchmarks.

Overall, the evaluation shows that re-writing the SyReC description for reversible circuit
synthesis is a promising direction to obtain compact results compared to the current
state-of-the-art.

An interesting observation is that despite the theoretical possibility, none of these
benchmarks shows a negative impact on any circuit parameter as a cost for line trade-off.
These trade-offs where partial and are compensated within the circuit in all benchmarks.
This observation shows that re-writing SyReC descriptions for reversible circuit synthesis is
a promising direction to obtain more efficient tool for HDL-based synthesis.
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Chapter 5

Optimised Synthesis of SyReC
Expressions

The line-aware SyReC programming style proposed in Chapter 4 tackles the problem
of constant inputs within the source code before working with the synthesis phase. This
arrangement results in better circuits, but it compromises spontaneous HDL programming
and the code readability. Even with a fully automated code conversion, human intervention
will be expected for further tasks, such as debugging, which will be more complicated with
less readable code. This contradicts a basic HDL characteristic, which is the simplicity
of description, especially when handling complex problems. In this chapter, we analyse
the problem at another level of abstraction, which is transparent to the programmer, to
achieve line-awareness even with a spontaneous programming style. As we have already
identified, SyReC expressions are the main source of constant inputs in the circuit. Hence,
if line-awareness, as an objective, is considered when realising expressions, it may solve the
problem, at least to some extent, without the need to change the style of programming in
SyReC.

It is important not to be confused with the line-aware statement synthesis configuration
introduced in Section 3.3, where expressions are computed in the same way and then
re-computed to free the garbage lines. Here, we propose a procedure to compute SyReC
expressions with line-awareness (i.e., with fewer lines).

In the first section of this chapter, computation of SyReC expressions are reviewed with
more details as compared to the brief review in Section 3.2.2. The modified line-aware
synthesis algorithm is proposed in Section 5.2. Circuit cost is considered in Section 5.3
along with other related issues discussed before the experimental evaluation is introduced in
Section 5.5.
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5.1 SyReC Expressions

An expression, as defined in SyReC grammar, can be a numeral, a signal identifier or
an operation on some operand(s). The latter is a combined structure of an operator along
with its operand(s) has to be computed (see Table 3.3). Operands, in the general case, are
also defined to be an expression. This recursive definition allows one expression to describe
complex computations. SyReC defines a reversible circuit to compute each operation, so
operations are considered basic building blocks (the lowest level in the synthesis hierarchy).
These circuits were introduced in detail in [63]. In this chapter, a single operation is
considered a unit of computation, i.e., the complexity of an expression is measured as
the number of operations performed to compute it. Table 3.3 shows two types of SyReC
operators:

1. Binary operators � with two operands EL and ER. A binary expression is defined with
mandatory parentheses, i.e., (EL � ER).

2. Unary operators 	 with only one operand EU directly to the right of the operator, i.e.,
	EU . There are only two such operators in SyReC (˜ and !).

An expression can be computed only when its operand(s) are already computed. This
gives a tree structure to the expression where a node represents an operation, and an edge is
a reference to an operand. The symbol of an operation is written inside the node. Figure 5.1
provides symbolic representations of these nodes where

(a) a node of a binary operation has two edges, one black edge and another grey edge,
referring to its left and right operands, respectively.

(b) a node of a unary operation has only one black edge referring to its operand.

EL ER

�
(EL � ER)

(a) Binary

EU

	
	EU

(b) Unary

Figure 5.1: Tree representation of SyReC operations.

Example 22. The SyReC expression (((a * b) / ˜(c + a)) - ˜(b * c)) is
computed using seven operations, and Figure 5.2 shows the tree representation of this
expression. The top-level operation in the expression (subtraction (-)) is the root node
of the tree. Subtraction is a binary operation with two operands, and both are expressions.
The left operand is ((a * b) / ˜(c + a)) and the right operand is ˜(b * c), each of
which is a sub-tree in the structure. The expression should be parsed and recursively computed
using the same steps for each sub-tree until reaching the primary signals at the tree bottom.
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− −

−7

∼6

b c

∗5
− −

÷4

∼3

c a

+2a b

∗1

(((a ∗ b)/ ˜(c+ a))−˜(b ∗ c))

Figure 5.2: Expression tree for Example 22.

As shown in Figure 5.2, the precedence of an operation (the order of computation) is
tagged to the left of the node as an integer, i.e., the node tagged 1 is computed first, so the
top-level node is tagged with the highest number, i.e., 7 in this expression. The tree-bottom
shows primary values, such as signal identifiers or numbers, which require no computation.
In other words, each operator has lower precedence as compared to those operators used in
computing its operand expression(s).

5.1.1 Circuit Realisation of SyReC Operations

SyReC is not restricted to reversible operations, as shown in Table 3.3. The majority of
operations defined by SyReC are irreversible. Consequently, a constant input is applied to
the circuit to compute the operation.

0 (EL � ER)

EL EL

ER ER

�

(a) Binary Operation

0 	EU

EU EU

	

(b) Unary Operation

Figure 5.3: Schematic representation of SyReC operations.

Figure 5.3 shows the symbolic representation of a SyReC operation in a schematic
diagram, such that:

(a) A circuit of a binary operation G� is computed to a target line with constant ′0′

input. The two operands are connected from two inputs serving as control lines in
the reversible circuit. The left operand EL is identified by a black dot, while a grey
dot identify the right operand ER. At the output side of the circuit the expression,
(EL�ER) is computed to the target line while the two operands’ lines are unchanged.
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(b) A circuit of a unary operation G	 is also computed to a line with constant ′0′ input.
Here, only one input is serving as a control line in the reversible circuit. A black dot
identifies the operand EU . At the output side of the circuit, the expression 	EU is
computed to the target line while the operand line is unchanged.

This schematic representation keeps the discussion at a high-level of abstraction by
hiding the gate-level details, such as the bit-widths influence on the circuit details. The
level of discussion is comparable to register-transfer level in the design flow of conventional
circuits, e.g., Figure 5.4 shows a 2-bit addition expression (a + b). The circuit on the
gate level in Figure 5.4(a) shows more details as compared to the schematic representation
in Figure 5.4(b). In this chapter, circuit realisation and synthesis is maintained at this level
without being involved in the circuit details, especially those related with the bit-width.
Consequently, each operation is considered a unit building block in the expression circuit,
and its bit-width is considered a single line for the remainder of this chapter.

a.0 a.0
a.1 a.1
b.0 b.0
b.1 b.1

0 o/p.0
0 o/p.1

(a) Gate-level

0 (a+ b)

b b

a a

+

(b) Schematic

Figure 5.4: SyReC defined 2-bit addition G(a+b).

5.1.2 SyReC Synthesis of Combined Expressions

The discussion in Section 5.1.1 assumes the operands are already available, and ignores
the fact that these operands require computation if they are expressions. SyReC does
not provide a ready circuit definition for combined expressions (those with more than one
operation), but synthesise such expression as a sequence of cascading operation blocks.

For a combined binary expression (EL�ER), the circuit G(EL�ER) is realised by cascading
three parts as described in Equation 5.1:

G(EL�ER) = GEL GER G� (5.1)

where GEL and GER are the circuits to compute the left and right operands EL and ER,
respectively, and G� is the defined circuit to compute the top-level binary operation �.
On the other hand, only two parts are required to synthesise the circuit G	EU of a unary
expression, 	EU . First, the operand EU is computed using the circuit GEU , then it is
cascaded by the operation circuit G	, as described in Equation 5.2:

G	EU = GEU G	 (5.2)
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∼

÷
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∼
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Figure 5.5: Block diagram for SyReC synthesis of the expression in Example 22.

This recursive synthesis of operand computation continues until reaching a signal identifier
or a number, which does not need any computation. In other words no circuit is needed to
compute this operand. This is the base case for the recursion.

In practice, SyReC parses the expressions into tree structures and traverses these trees to
identify the precedence of operations to determine the order by which circuits are cascaded.

Example 23. The expression (((a * b) / ˜(c + a)) - ˜(b * c)) in Example 22
is computed as shown in Figure5.5. The circuit cascade follows the operation precedence as
specified in Figure 5.2, which begins by computing the operation tagged with number 1, i.e.,
(a * b), and so on until the top top-level subtraction operation - is computed at the final
stage of the cascade.

5.1.3 Constant Inputs

A constant ′0′ line is applied to the input of the circuit for each operation used to compute
the expression in Figure 5.5. This yields a circuit GE that computes an expression E realized
with k constant ′0′ lines applied to its input when E is computed using k operations, as will
be explained in next. Figure 5.6 shows the schematic symbol for a generic expression circuit,
GE .

In more detail, Figure 5.7 shows the generic schematic diagram to realise (a) a binary
expression, G(EL�ER), and (b) a unary expression, G	EU , which both show how constant ′0′

lines are accumulated to be (λE = k) as follows:
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GE

i/p

0

0

0

E

−

−

unchanged

λE

Figure 5.6: Generic schematic representation of a combined expression circuit GE .

1. for a binary-expression G(EL�ER):

λE = λEL + λER + 1 = k (5.3)

2. for a unary-expression G	EU :

λE = λEU + 1 = k (5.4)

�
GER

GEL

i/p signals

0

0

0

0

0

0

0

E

−

EL

ER

−

−

−

i
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(b) Unary-Expression G	EU

Figure 5.7: Generic schematic diagram to synthesise SyReC expressions GE .

where k is the number of operators in the expression E, and λx is the number of
constant ′0′ lines applied to realise Gx. The recursive nature of these two equations requires
that to calculate λE , we need to apply the same equations to calculate λEL , λER , or λEU ,
until reaching a base case of recursion (a primary input).
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Example 24. To calculate the number of lines λEfor the binary expression in Example 23,
(((a * b) / ˜(c + a)) - ˜(b * c)), we apply Equation 5.3. Here, EL is
((a * b) / ˜(c + a)) and ER is ˜(b * c), which must be subjected the same
calculations. EL is also a binary expression with a left operand (a * b) and a right
operand ˜(c + a). Here, λ(a∗b)=1 because it has two signal identifiers a and b (base case
expressions). On the other hand, calculating the lines in the operand ˜(c + a) follows the
formula in Equation 5.4 because this is a unary expression, i.e., λ:(c+a) = 1 + 1 = 2. Now,
we may calculate λEL = 1+2+1 = 4. In the same way, Equation 5.4 is applied on the unary
expression ER to compute λER = 1 + 1 = 2. Finally, the lines for the top-level expression
are calculated, i.e., λE = 4 + 2 + 1 = 7.

5.2 Line-aware Synthesis

The accumulation of constant inputs when computing SyReC expressions, as discussed
in Section 5.1.2, causes the critical drawback associated with this synthesis approach.

Fig 5.5 shows the desired output is only one line, while the other (k − 1) lines are used
to compute intermediate operations, which are considered as garbage outputs. To this end,
each line is processed only once to compute an operation. Then, the line, except the final
output, is used only once as an operand to compute another expression. Next, the line is
considered as garbage, except the output line. One possibility to realise expressions with less
lines is by reusing, instead of appending, lines. To achieve this, we need to:

1. define a garbage-free circuit that computes expression E with one output line and k−1
lines inversely computed (re-computed) to constant ′0′.

2. reuse the re-computed lines of one operand to realise the other in an expression.

5.2.1 Garbage-free Expressions

Realising an expression with no garbage is possible if the garbage lines are inversely
computed to constant ′0′, i.e., by the identity cascade (G G

−1). This means that circuit
lines are carrying the same values at both ends, which is equivalent to a circuit with no
gates. Now, if the expression circuit GE is defined such that GE = GxG◦, where G◦ is the
final operation to compute the top-level operation, then Gx is the circuit to compute the
operand(s).

Gx =

GELGER , if ◦ = � (binary-expression).

GEU , if ◦ = 	 (unary-expression).
(5.5)

We see G◦ computes the desired output, while all the lines of Gx are garbage. As long as
Gx garbage outputs are not affected by computing G◦, we can append G

−1
x , i.e., GxG◦G

−1
x

to re-compute these garbage lines.
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Figure 5.8: Two equivalent realisations for G(a∗(b+c) in Example 25.

Example 25. (a*(b+c)) is an expression (E) composed using two operations. Figure 5.8a
shows the circuit diagram of GE with a garbage line at the output end. The circuit is
synthesised by cascading two operations and required two constant ′0′ lines. In this expression,
Gx = G+ is the first operation, and the second is G∗, which calculates the final output.
GE = G+ G∗ has to be cascaded by G−1

x = G
−1
+ to re-compute the garbage line, as shown in

Figure 5.8b, which is the garbage-free circuit, G′E = G+ G∗ G
−1
+ .

G
′
E,i

i/p

0

0

0

i
E

0

0

unchanged

λE

Figure 5.9: Generic representation of a garbage-free Circuit G′E .

To generalize; we define G
′
E to be the garbage-free equivalent of GE , where all

intermediate lines are re-computed to constant ′0′ (Figure 5.9) as:

G
′
E = Gx G◦ G

−1
x = GE G

−1
x (5.6)

This circuit cascade is schematically represented in Figure 5.10.

By substituting Gx as defined in Equations 5.5 and 5.6, we obtain the following two
equations:

G
′

(EL�ER) = GEL GER G� G
−1
ER

G
−1
EL

(5.7)

G
′
	EU = GEU G	 G

−1
EU

(5.8)
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Figure 5.10: A schematic diagram for the garbage-free realisation G
′
E .

With this approach, we defined garbage-free circuits that realise SyReC expressions with
a higher cost, due to the extra circuitry of inverse computation Gx, but with no impact on
the number of lines used. Here, we have no advantage unless this arrangement is invested in
reusing lines.

5.2.2 Reusing Constant Inputs

After re-computing, lines are eligible to be used in another computation. For example, in
a binary expression, (EL � ER), when the left-operand EL is computed with a garbage-free
circuit G′EL , then the re-computed lines can be used in computing the right operand, GER .
This modifies the circuit definition in Equation 5.1 to be

G(EL�ER) = G
′
EL

GER G�. (5.9)

We can see the number of constant lines applied depends on the largest operand (see
Figure 5.11(a)), i.e., λE = max〈(λEL + 1), (λER + 2)〉 instead of the summation, i.e.,

λ(EL�ER) =

λEL + 1, if λEL > λER

λER + 2, if λEL 6 λER

(5.10)

Consequently, the definition of the garbage-free equivalent of this circuit G′E , as defined
by Equation 5.7, should also be modified to incorporate this scheme (see Equation 5.11).
The number of lines applied to realise G

′
E is the same number of lines computed from

Equation 5.10 (see Figure 5.11(b)).

G
′

(EL�ER) = G
′
EL

GER G� G
−1
ER

G
′−1
EL

(5.11)

Line-ware synthesis of SyReC expressions follows the circuit cascades as described in
Equations 5.9 and 5.11, as well as 5.2 and 5.8, which are mutually recursive.
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Figure 5.11: Schematic diagram for garbage-free line-aware binary expression synthesis.

Example 26. Applying Equations 5.9 and 5.11 instead of Equations 5.1 and 5.7 to realise
the expression in Example 22 results in a circuit with 5 constant ′0′ lines (Figure 5.12), as
compared to 7 in Figure 5.5. Here, G′EL is computed instead of GEL, with lines’ numbers
3, 4, and 5 being re-computed (shaded area). Then, lines 3 and 4 are reused in computing
GER instead of lines 6 and 7 in Figure 5.5. The total number of lines λE for this expression
is calculated from Equation 5.10, such that λE = (4 + 1) = 5.

5.2.3 Operands Order in Synthesis

Both original SyReC and line-aware synthesis of binary expressions as proposed in
Sections 5.1.2 and 5.2.2, respectively, start with computing the left operand circuit GEL
first before computing the right operand GER . This default case is not mandatory because
the operands are independent of each other. The only consideration is to guarantee that
both operands are computed before the top-level operation. There is no reason to change
the usual conventional computing of left to right as long as the order is irrelevant. To this
end, this assumption applied to the original SyReC synthesis, which calculates the lines λE
from Equation 5.3 as a total sum of lines. On the other hand, the number of lines may differ
if λEL and λER are swapped within Equation5.10.
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Figure 5.12: Schematic diagram for line-aware synthesis (Example 26).

Example 27. In Example 26, the circuits are computed with λEL = 4 and λER = 2 for
left and right operands respectively. The total lines applied to realise the expression are
λE = (4 + 1) = 5. However, if the operand circuits are swapped, then the total number of
lines becomes λE = (4 + 2) = 6, according to Equation 5.15.

It can be shown that the total constant inputs applied to realise the expression with
this algorithm are lower when the operand with more lines is realised first. In this case,
the second operand is computed completely with reused lines, i.e., with no extra lines
(see Figure 5.13).
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Figure 5.13: Schematic-diagram for GE with the larger operand computed first.

Interpreting this observation for circuit realisations, with even less constant inputs, we
conditionally swap the circuits GEL and GER in a synthesis cascade, if and only if λER > λEL .
Here, Equations 5.9, 5.11, and 5.2 are modified to 1

1This modification is limited to binary-expressions, while unary-expressions are still being realised
according to Equations 5.2 and 5.8.
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( G1 , G2 , λ1 , λ2) =

( GEL , GER , λEL , λER) if λEL > λER

( GER , GEL , λER , λEL) if λEL < λER

(5.12)

G(EL�ER) = G
′
1 G2 G� (5.13)

G
′

(EL�ER) = G
′
1 G2 G� G−1

2 G
′−1
1 (5.14)

λ(EL�ER) =

λ1 + 1, if λ1 6= λ2

λ1 + 2, if λ1 = λ2
(5.15)

Example 28. Applying Equations 5.13, 5.14, 5.2, and 5.8 to realise the expression in
Example 26 realises the circuit with only 4 constant lines applied to its inputs,
i.e., with one line less because of operands’ reorder (see Figure 5.14). Here, the left operand
EL =((a * b) / ˜(c + a)) is an expression with a left operand ELL =(a * b) and
ELR =˜(c + a) with (λELL = 1) 6= (λELR = 2). Now, applying Equation 5.15 to determine
the number of lines gives λE = 2 + 1 = 3 lines applied to compute G

′
EL

(lines 2, 3, and
4) as shown in Figure 5.14. The right operand of the top-level operation ER requires two
constant lines to be realised λER , i.e., completely computed using re-computed lines and no
new line is required. The total number of applied constant inputs to compute the expression
is λE = λ1 + 1 = (3 + 1) = 4 as shown in Figure 5.14.
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Figure 5.14: Line-aware synthesis with operands’ reorder (Example 28).

It might be considered an insignificant reduction of only one line, but it provides a
20% improvement in this example (1/5 lines). The recursive nature of this procedure gives
operand reorder the possibility to reduce a line for each stage in the recursion. This may
result in many lines reduced from the overall realisation of the circuit depending on the shape
of the expression tree.
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5.2.4 Reversible Operators

SyReC realises expression operations with the assumption that they are irreversible
(see Section3.2.2), which allows the synthesis of any operation by applying a constant ′0′

line (see Figure 5.3). This assumption ignores some operations that are reversible, such as
(+,-,ˆ,˜,!), which are not many, but intensively used. This exceptional reversibility
allows updating the operand instead of applying a constant input to compute the operation
(see Figure 5.15).

On the gate level, this reversible realisation is similar, to replacing irreversible binary
operators with their equivalent reversible assignments in the source code, e.g., replacing +

with +=. Hence, we will use ⊕ = and 	 = in the remainder of this chapter for binary and
unary operations, respectively, whenever they are reversibly realised.

EU 	EU	 =

(a) G	EU

ER (EL ⊕ ER)

EL EL

⊕ =

(b) G(EL⊕ER)

EL (EL ⊕ ER)

ER ER

⊕ =

(c) G(EL⊕ER)

Figure 5.15: Schematic representation of reversible operators.

The updated operands in Figure 5.15 are underlined. Figures 5.15(b) and 5.15(c)
are computing the same expression with the only difference being the updated operand.
The updated operands should never be a signal identifier because this would violate the
assumption of unchanging inputs while computing the expression. In other words, this cannot
be applied if both operands are signal identifiers, e.g., (a + b), where both a and b are
signal identifiers. This reversible computation changes the entire realisation, consequently,
as all equations describing the circuit are changed. This modification can realise expressions
with fewer lines as well as with less cost.

5.2.4.1 Unary Expressions

All unary expressions are reversible because the operations ˜ and ! are reversible. A
reversible computation updates the line to which the operand is computed, as follows:

G	EU = GEU G(	=) (5.16)

G
′
	EU = G

′
EU

G(	=) (5.17)

Equations 5.16 and 5.17 differ in that realising the operand with a garbage-free circuit, G′EU ,
results in a garbage-free realisation G′	EU , and vice versa (see Figure 5.16). This means that
the number of lines applied to compute the expression is used for the operand, i.e., one line
less in Equation 5.18 than in Equation 5.4.

λ	EU = λEU (5.18)
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Figure 5.16: Schematic diagram for unary expressions using G(	=).

5.2.4.2 Binary Expressions

Reversible computation of ⊕, i.e., G⊕= updates the same line by which G1 is computed,
and, hence, this operand should not be re-computed at the end of the cascade of garbage-free
circuits, (see Figure 5.17). Such circuits compute G′(EL⊕ER) with one line less and with even
less cost, as compared to Section 5.2.3. These circuits are described by Equations 5.19, 5.20,
and 5.21 instead of Equations 5.13, 5.14, and 5.15 in Section 5.2.3.
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Figure 5.17: Schematic diagram for binary expressions using G(⊕=).

G(EL⊕ER) = G
′
1 G2 G(⊕=) (5.19)

G
′

(EL⊕ER) = G
′
1 G2 G(⊕=) G−1

2 (5.20)

λ(EL⊕ER) =

λ1, if λ1 6= λ2

λ1 + 1, if λ1 = λ2
(5.21)
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Example 29. Figure 5.18 shows the same expression as in Example 28, where only three
constant input lines are applied to the circuit. The circuit is computed with ten operations
as compared to twelve in Example 28.
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Figure 5.18: Computing the expression in Example 29.

Examples 25, 26, and 28 compute the same expression using three different, yet equivalent,
realisations, which demonstrate the cost-for-lines trade-off as the circuit with fewer lines
is realised with higher cost (more operations) as presented by the curve in Figure 5.20.
This figure shows that Example 29 is an exception as it falls below the trade-off curve
meaning that, in a reversible paradigm, reversible computations are easier than non-reversible
computations.

5.3 Cost-aware Synthesis

In the reversible paradigm, circuit synthesis approaches have the two optimisation trade-off
objectives of the desired function with as few circuit lines and with as low gate cost as
possible. Section 5.2 introduced circuit lines as the main objective for optimization, and
promotes line-aware realisations. These realisations are trading reduced lines with extra
cost, except in Section 5.2.4, where a reduction in lines is not traded in with extra cost.

Cost is the other important circuit metric. First, we discuss the impact of line-aware
realisations on circuit cost followed by an investigation of possible modifications to avoid
or reduce cost trade-offs without compromising the reduced number of lines obtained in
Section 5.2.
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5.3.1 Cost-line Trade-offs

Figures 5.5, 5.12, and 5.14 show three different realisations to compute the same
expression E in Example 22. The lines and cost parameters of each realisation is shown in
Figure 5.20 in which we can see a trade-off curve for these realisations. The cost metric used
in this graph is the overall number of operations β used to compute the expression 2, including
inverse-computations (re-computation). Since all realisations are similar in the number of
operations (for the same expression), the difference in the total number of computations
arises from the inverse-operations. Here, we know for certain that in a garbage-free circuit,
β
G
′
E
> βGE . In this case realising the operand with the lower cost first results in less overall

circuit cost. Consequently, Equation 5.12 is modified such that the operands are rearranged
to compute the one with lower cost first when both are realised with the same number of
constant inputs:

(G1, G2, λ1, λ2) =


(GEL , GER , λEL , λER) if λEL > λER

(GER , GEL , λER , λEL) if λEL < λER

(GER , GEL , λER , λEL) if (λEL = λER)AND(βL > βR)

(5.22)

5.3.2 Partial (incomplete) Re-compute

Line-aware realisation of expressions, as proposed in Section 5.2, re-computes garbage
lines applied to compute an operand for reusing these lines in computing the other operand
in a binary expression. So all garbage lines are re-computed. The algorithm rearranges
the order of computing the operands such that the operand G1 is realised before G2 when
λ1 > λ2 (see Section 5.2.3). If (λ1 − λ2) 6 1, then all re-computed lines are reused to
realise G2, but when (λ1−λ2) > 1, there exist re-computed line(s) that are not reused, e.g.,
in Figure 5.18 where line 3 is re-computed but not reused. In this case, inverse operations
add cost for no reason. This superfluous cost can be identified and reduced, by removing
these inverse-operations from the circuit, as follows:

1. If the expression is binary (EL�ER), and (λ1−λ2) < 1 6 l, then the circuit incorporates
(l − 1) lines that do not have to be re-computed.

2. To identify an operation that is unnecessarily re-computing a line:

(a) The operation is a part of a re-compute circuit G−1
x of the first operand G

′
1 (the

space with grey background).

(b) The line to which this operation is computed is not used after this operation,
neither as a control nor as a target line.

2Operation count is used as a cost indicator assuming each operation has the same unity cost metric. This
assumption is very far from being accurate as there are considerable differences in the complexity of operators’
circuits. This assumption provides a reasonable operator-independent assessment to algorithms efficiency in
this context.
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3. To remove these inverse operations, start from the last operation within G
−1
x :

(a) Check if it is removable,

(b) if yes, remove and go to the operation before, and

(c) repeat until the first operation in the re-compute circuit is checked.

Example 30. In Figure 5.18, the left operand G′EL is realised by applying λL = 3 constant,
and the right-operand GER is realised by applying λR = 1, (λL − λR) = 2, i.e., there exists
(2 − 1 = 1) unnecessarily re-computed line (line 3). The shaded area in this figure shows
the inverse computation of garbage lines of the left operand, i.e., operations (5, 6, and 7).
Figure 5.19 is identical to Figure 5.18. Starting from 7 back to 5, the operation is checked.
Here, operations 6 and 5 are both re-computing line 3, which is not used in the rest of the
circuit, so both operations are removed.

This incomplete operand re-compute modifies the proposed realisation to improve circuit
cost without compromising the minimum line achieved by line-aware realisation, as proposed
in Section 5.2 (see Figure 5.20).
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Figure 5.19: Block diagram of the expression in Example 22 with garbage partially
re-computed.

5.4 Manipulating Expressions

Sections 5.2 and 5.3 propose different ways to compute a SyReC expression and show
the impact of each algorithm on the number of lines and costs of the resulting circuits. One
observation is that the order of computing the operations does matter (see Section 5.2.3).
This motivates investigating the impact of the expression-tree shape on the resulting circuits.

In this section, we discuss further improvements on circuits by manipulating the order
of operations in computing expressions by considering properties of operations, such as the
associative and commutative properties.
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Figure 5.20: Lines vs. cost metrics of circuits in Figures5.5, 5.12, 5.14, 5.18, and 5.19.

Example 31. Figure 5.21 shows trees of three different expressions, which compute the
product of eight signals. The expressions are mathematically equivalent to each other because
multiplication (*) is associative:

1. Figure 5.21(a) shows E1 = (((((((a*b)*c)*d)*e)*f)*g)*h) in which each
operation has one operand as a primary signal.

2. Figure 5.21(b) shows E2 = (((a*b)*(c*d))*((e*f)*(g*h))) in which each
operation has two operands with the same size(balanced tree).

3. Figure 5.21(c) shows E3 = ((((a*b)*c)*(d*e))*((f*g)*h)) in which each
operation has the right operand realised using exactly one line less than the left operand.

Despite being equivalent, these expressions are realised with different circuits (see Figure 5.22):

1. Figure 5.22(a) shows E1 computed using 7 lines and 7 operations. The realisation
is considered as the worst case in terms of constant inputs, where no operation is
re-computed.

2. Figure 5.22(b) shows E2 computed using 5 lines and 9 operations. This balanced
structure shows a moderate reduction in lines and trade-off with some increase in cost.

3. Figure 5.22(b) showsE3 computed using 4 lines and 12 operations, which is considered
as the best case with respect to the number of lines and with extra cost.

Replacing multiplication (*) with addition (+) results in other expressions (E′1, E′2, and E′3),
which compute the summation of the signals rather than the product. These expressions
have similar tree structures to their counterparts (i.e., E1, E2, and E3 respectively), yet the
computations are obviously different. The fact that (+) can be replaced by the reversible (+=)
changes the realisations, as shown in Figure 5.23.
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(c) E3 = ((((a ∗ b) ∗ c) ∗ (d ∗ e)) ∗ ((f ∗ g) ∗ h))

Figure 5.21: Three different equivalent expressions.

1. Figure 5.23(a) shows E′1 = (((((((a+b)+c)+d)+e)+f)+g)+h) computed in the
best possible way with reversible operations, and only one constant input is exploited
in this realisation with the summation using 1 constant line and 7 operations. On the
other hand, the expression E1, which has the same tree structure is considered the worst
case in terms of lines.

2. Figure 5.23(b) shows E′2 = (((a+b)+(c+d))+((e+f)+(g+h))) with
a perfectly-balanced tree structure with the worst realisation, in terms of lines. The
summation exploits 3 lines and 8 operations.

3. Figure 5.23(c) shows E′3 = ((((a+b)+c)+(d+e))+((f+g)+h)) computed using 2
lines and 8 operations, while the same tree structure resulted in the best case to compute
the product (i.e., in E3).
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(b) Perfectly-balanced expression E2
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(c) Best case expression E3

Figure 5.22: Computing the expressions of Figure 5.21.
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(b) E′2 = (((a+ b) + (c+ d)) + ((e+ f) + (g + h)))
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(c) E′3 = ((((a+ b) + c) + (d+ e)) + ((f + g) + h))

Figure 5.23: Computing trees with reversible operations.

To generalise, manipulating expressions, whenever possible, can result in better circuits,
for which we can observe the following:

1. Figure 5.21(a) shows an expression arranged such that, for each operator, at least one
operand is a primary signal. This case is identical to the original SyReC algorithm
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as no re-compute occurs. Here, (λ = k = n = b), where k is the number of operators
in an expression, λ is the number of constant ′0′ circuit lines, b is the number of
operations and n is the height of the binary tree. This is the worst case with respect
to the number of lines, as the results show. However, when such a tree structure is to
compute reversible operations, such as (+=), the entire expression may be computed
using only 1 line, which is the best possible case.

2. Figure 5.21(b) shows a perfect binary tree, which exploits lines to be synthesized. Here,

λ = 2(dlog2(k + 1)e)− 1 = 2 · n− 1 (5.23)

where λ is logarithmically instead of linearly dependent on k. Practically, a perfect
binary tree is a special case that can occur only when the expression is composed using
(k = 2n − 1) binary operators. Again, n is the height of the tree. The cost is expected
to increase exponentially as a trade-off where, in this case, the number of operations b
is given by

b = 3(dlog2(k+1)e−1) = 3n−1 (5.24)

The same tree structure results in circuits that provide no advantage when the
operations are reversible (e.g., with +).

3. Figure 5.21(c) shows a best-case tree where the highest efficiency is obtained from
line-aware synthesis in terms of the number of lines. For all operations, the right-hand
operand requires exactly one circuit line less than the left operand. Hence, right
operands completely reuse lines and do not need to allocate another line. This case
shows the maximum usage of re-computed lines. Here, λ = n and the number of
operators, k, in this case is recursively calculated using the sequence 3

k = κ(n) = κ(n− 1) + κ(n− 2) + 1 (5.25)

where κ(1) = 1 and κ(2) = 2. For example, if there are λ = 6 lines, then κ(6) = 20, i.e.,
an expression arranged in the best case with up to k = 20 operations can be calculated
by using these lines. The total number of operations to compute the expressions is
determined from the sequence

b = β(n) = 2 · β(n− 1) + β(n− 2) (5.26)

Manipulation is not always possible, but when it is, it would be better to have the maximum
benefit from the line-aware expression synthesis algorithms.

3This sequence is strongly related to the Fibonacci sequence f(n) = f(n − 1) + f(n − 1) where
κ(n) = f(n+ 2)− 1
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5.5 Experimental Evaluation

Expression realisations, as proposed in this chapter, are experimentally evaluated and
discussed in this section. The aim is to assess the impact of the different ways to compute
an expression, in practice, on the resulting circuits.

The discussion in this chapter is carried out on a higher-level of abstraction, which
is comparable to the register-transfer level in conventional design flow, instead of at the
gate-level. We deal with variable length unsigned integers as the data unit for which the
operations are defined. The usual gate-level metrics, as discussed in Section 2.2.5, become
confusing and not useful in evaluating the quality of the computations because they are
related to gate-level details, such as operation bit-widths and the gate complexity of different
operations’ circuits. Therefore, we suggest two metrics, which are coherent with the level
abstraction in this chapter:

1. Constant inputs (λ): The number of constant ′0′ lines applied to the circuit to compute
the expression, Signal input lines are excluded from the count because they are not
subject to optimisation. Then, the number of lines are divided by the operator bit-width
in order to have a bit-width-independent line metric.

2. Operation blocks (β): The number of operations and inverse operations performed to
compute the expression. Each operation is identified as a unit circuit (a basic block)
regardless of the actual gate cost of this specific operator circuit by which we can have
an operation independent measure for the cost expansion.

The experiment carried out using a set of benchmark expressions with different sizes and
structures. Each expression is realised five times using the following configurations:

(R1) Direct synthesis as originally performed by SyReC synthesiser, as explained in
Section 5.1.2.

(R2) A line-aware synthesis as proposed in Section 5.2.2.

(R3) A line-aware synthesis with rearranged operands, such that the first is computed first,
as proposed in Section 5.2.3.

(R4) Scenario (R3) modified to incorporate reversible updates when computing special
operations, i.e., ⊕ = and 	 =, as proposed in Section 5.2.4.

(R5) Scenario (R4) with incomplete re-compute of garbage lines, as proposed in Section 5.3.2.

Table 5.1 shows λ and β measured for each realisation as well as the number of operators
used to compute the benchmark k. From this table, we observe:

1. all configurations have the same results for small expressions (three or fewer operations).
On the other hand, large expressions show significant differences between circuits in
both λ and β configurations. It is true that complex expressions are not the trend in
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HDL programming, but such expressions may appear, e.g., as complex conditionals.
Having just one such expression in the entire module is enough to set a lower bound
to the constant inputs applied to the circuit.

2. (R5) is always better than (R3) and (R4) in both measures. Consequently, the only
three alternatives proposed are (R2), (R5), and the original (R1). Therefore, the
comparison graphs in Figure 5.24 and Figure 5.25 include only the realisations R1, R2,
and R5.

3. (R1) always has the lowest β. Consequently, there is no need to use another alternative
except for the largest expression in a module, i.e., the most line demanding expression,
which sets a bound for the number of constant inputs in the entire circuit. Here, it is
better to compute the expression with fewer lines.

4. (R5) always has the lowest λ. Therefore, it is the one to be used for the largest
expression in a module. On the other hand, configuration (R2) may have some
advantage over (R5) in cases when it computes with less β if λ is good enough.

5. The reduction of constant lines in configurations (R2) and (R3) depends on the number
of lines in the two operands’ sub-circuits. Maximum reduction is obtained when the
right operand is realised using one line less than the left operand (λEL = λER + 1).

6. Scenario (R4) shows a reduction in both parameters without any trade-off only when
the expression contains some reversible operators ( ! , ˜ , ˆ , - , +); otherwise,
it has no impact on the circuit.

7. Scenario (R5) shows a tangible reduction in cost as compared to scenario (R3) when
there is a large difference in the number of lines between the two operands’ sub-circuits
(λEL � λER) or (λEL � λER).

8. From observations 5 and 7 above, we can better understand the influence of the shape
of an expression tree on the circuits, which was discussed in Section 5.4. Taking this
into consideration, programmers may improve writing their expressions such that:

(a) binary expressions with the form ((E1 ⊕ E2)⊕ S) instead of (E1 ⊕ (E2 ⊕ S)),
where E1, E2 are two expressions and S is a primary signal. This suggestion
maps to better circuit costs and fewer lines in some cases.

(b) expressions arranged in the worst case are avoided. It is much better to have an
expression written as (E1 � (E2 � S)) instead of ((E1 � E2)� S), where E1 is a
large expression, E2 is smaller and S is a primary signal. It is better, whenever
possible, to split the expression such that one operand is slightly smaller than the
other. More precisely, it is better to have a smaller operand sub-expression with
only one line less than the larger operand sub-expression.
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Figure 5.24: Constant lines exploited to compute expressions in different realisations.

Figure 5.25: Costs of computing expressions in different realisations.
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5.6 Summary

In this chapter, various procedures are proposed to realise SyReC expressions. The main
objective is to compute expressions with as few constant inputs as possible, without the need
to change the programming style or compromise simplicity of HDL descriptions.

The secondary optimisation objective is to avoid the expected cost-for-line trade-off, if
possible. This line-awareness is based on reusing lines to avoid applying new ones. The
experimental results show that in many cases the proposed algorithms succeeded in reducing
the number of lines with relatively small increases in circuit cost.

Different realisations are discussed, with three proposed as candidates for use as
alternatives to compute expressions. The basic realisation as originally defined in SyReC
(i.e., without operation re-compute) is discussed in Section 5.1.2, and this realisation shows
the minimal cost. Hence, this approach is recommended when the circuit already provides a
sufficient number of constant inputs.

The realisation proposed in Section 5.3.2 is the one to compute expressions with fewer
lines in most cases. Consequently, it is recommended when circuit lines are limited (e.g., when
computing the largest expression in the module). In a few cases, the realization proposed
in Section 5.2.2 shows better results as compared to Section 5.3.2. Therefore, this approach
may also be considered as an alternative.

Realising reversible circuits that compute HDL-expressions as proposed in this chapter
is not exclusively applicable for SyReC. In fact, SyReC considers irreversible operations
in its expressions. Hence, the same approaches may be used to compute conventional
HDL-expressions if we can define reversible circuits for the operations of that HDL.
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Chapter 6

Synthesis of Reversible Circuits Using
Conventional HDL

An elaborated flow emerged over the last few decades for the design of circuits and systems
based on the conventional computation paradigm. This flow is composed of several levels
of abstraction (e.g., specification level, electronic system level, register transfer level, gate
level, and transistor level). A wide range of design tools has been developed and accepted
as standards in the industry, such as modelling languages, system description languages,
and hardware description languages [18]. Furthermore, these design methodologies are
additionally supported by various powerful approaches for simulation, verification, validation,
and debugging to ensure the correctness of a designed circuit or system. On the other hand,
considering the reversible computation paradigm, none such powerful approach is available
so far. Although researchers have considered the basic tasks of synthesis, verification, and
debugging, reversible computation design flow is still elementary.

Many efforts have been made to investigate the suitability of conventional computation
methodologies for circuit design in the reversible computational paradigm at the gate level
description, such as Boolean expressions, truth tables, and binary decision diagrams [3,4,52].
However, limited efforts are tackling the problem of reversible circuit design at a higher
abstraction level. In comparison to matured conventional HDLs, SyReC is a preliminary
language with one data type and a basic set of operations. In other words, the existing design
methods for reversible circuits and systems are far from modern standards and industrial
needs. Consequently, investigating conventional HDL approaches for the design of reversible
circuits may be advantageous over dedicated reversible HDL. However, very little exists in
the literature referring to conventional HDLs as a basis for reversible circuit design [63].
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There are challenges discouraging researchers from considering conventional HDLs for
reversible circuit synthesis, including differences between the two computational paradigms
and special characteristics and restrictions applied to reversible circuits, such as:

• fanout and feedback are not directly allowed in reversible circuits [70]. Special
arrangements should be made to detect and handle through feedback when these occur
in the code.

• the elementary gate library used in a conventional circuit is entirely different from those
used in the reversible paradigm, such that all elementary defined conventional circuits
should be redefined using reversible gates.

• most of the practically relevant operations are irreversible and need some arrangement
to be computed in the reversible paradigm. This is usually solved by applying constant
inputs, like SyReC or other hierarchical reversible synthesis approaches.

• the concurrent nature of signal processing in conventional hardware versus the
sequential nature of signal updates following cascaded gate structure in the reversible
paradigm.

Register transfer Level

VHDL, Verilog, System Verilog

Gate Level

Conventioal Netlist

Electronic System Level

System C, C/C++

Functional Level

Truth Table, BDD

Gate Level

Reversible Netlist

Description Level

SyReC

Figure 6.1: A hybrid flow that incorporates conventional tools for reversible circuits.

In this chapter, we address conventional HDL-based reversible circuit synthesis. The
widely-used hardware description language, VHDL, and its suitability to synthesise reversible
circuits are investigated. The findings provide the basis towards a design flow that requires
no or little knowledge of the reversible computation paradigm (see Figure 6.1). At the same
time, it pinpoints to the weaknesses and open issues to be addressed to make VHDL-based
design an accessible alternative to the existing design solutions for reversible circuits.
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6.1 Introducing VHDL

VHDL is a hardware description language designed to allow for the description of the
structure of a circuit, i.e., its decomposition into subsystems as well as the interconnections,
by utilising an established programming style and different levels of abstractions. Using
VHDL, circuits can be simulated, synthesised, and verified before being manufactured [18].
More precisely, a circuit is first defined by an entity declaration, which introduces a name
for the entity and lists the ports (input and output signals). An entity declaration describes
the external view of the design.

The internal implementation of an entity is provided in an architecture body of that
entity. Architectures might be provided in different fashions. A behavioural architecture
body describes the function in an abstract way, e.g., in terms of process statements. A process
statement defines a sequence of operations to be executed when the circuit is simulated. A
wide variety of actions might be included within a process statement, which, in some cases,
restricts the synthesis of the architecture.

Synthesis-oriented programmers prefer an alternative model to describe the
implementation of an entity, which is called structural description. This model describes
the circuit in terms of a net-list of sub-circuits. More precisely, sub-circuits are declared
as components. Multiple component instances (i.e., copies) may appear in the architecture
body to represent these subsystems. A component instance includes a port map to specify
the interconnections of these component instances within the enclosed architecture body.

1 entity main is
2 port( q,r,s: in bit; y: out bit);
3 end entity main;
4

5 architecture structural of main is
6 component sub is
7 port(a,b: in bit; f: out bit);
8 end component sub;
9 signal t: bit;

10 begin
11 L1: test port map (a => q, b => r, f => t)
12 L2: test port map (a => t, b => s, f => y);
13 end architecture structural;

Figure 6.2: Structural VHDL architecture.

Another possible description used signal assignment statements, which define the flow of
data to compute signals. An architecture body described completely using signal assignment
statements is typically referred to as a data-flow description style. Often it is useful to
describe the required system using a mixture of processes, interconnected components, and
signal assignment statements.
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In the remainder of this chapter, we focus on the main descriptions provided by VHDL
to utilise reversible circuit synthesis. Simulation related descriptions, including process
statement actions, are not covered. Because feedback connections are not allowed in the
reversible circuit paradigm, circuits that contain feedback are also not supported.

1 entity sub is
2 port (a,b: in bit; f: out bit);
3 end entity test;
4

5 architecture data_flow of test is
6 signal x: bit;
7 begin
8 S1: x <= not b;
9 S2: f <= a and x;

10 end architecture data_flow;

Figure 6.3: Data-flow in VHDL architecture.

Example 32. Figure 6.3 provides an example of a data-flow VHDL circuit. The entity
named sub has three single-bit ports, namely two input ports (a,b) and one output port (f).
A single-bit wire signal (x) is declared within the architecture body. The implementation of
this system contains two signal assignment statements. The first statement (S1) computes the
wire signal x, while the second statement (S2) computes the output signal f. Figure 6.2, on
the other hand, shows a structural description of a VHDL architecture (main), in which the
entity sub defined in Figure 6.3 is declared and instantiated twice (statements L1 and L2).
The port map associated with each instance defines the inter-connectivity of this specific
component-instance within the main circuit.

6.2 VHDL Signals in Reversible Circuits

A VHDL signal is meant as a mathematical representation of a circuit node in conventional
hardware where the changing value of the signal (waveform) can be measured at any time.
Circuit components should be properly interconnected to compute the desired signals to
drive these nodes. This representation is no longer valid.

6.2.1 Circuit-lines of VHDL Signals

VHDL signal types can be mapped directly to signals (lines) of the reversible circuits.
In Figure 6.3 we can see examples of different types of signals in a VHDL code, which are
mapped to lines with different specifications as follows:

1. Input ports a,b: These lines carry input values to the circuit and remain unchanged
within a circuit because such signals are only carrying information to the circuit from
an external source of information.
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2. Output port f : With a constant ′0′ input, an expression is assigned to this signal
(line) by a statement within the architecture body.

3. Internal signal x : This line represents an internal wire. It is similar to output ports
in that it is initially constant ′0′ and assigned in the same way. The difference between
outputs and wires is that wires facilitate computing other signal(s), and then thet are
considered garbage outputs.

4. Implicit lines: These lines are similar to internal signals in that they have constant ′0′

inputs and constitute garbage outputs, but are not explicitly declared within the code.
Such lines are mandatory to compute non-reversible operations, e.g., to compute the
expression (a and x) in Figure 6.3, Statement S2.

6.2.2 VHDL Signals versus SyReC Signals

Despite many similarities, signal types in VHDL differ from SyReC because each language
is oriented to describe a different circuit paradigm, including:

1. VHDL defines inout ports when a certain signal functions sometimes as an in and
otherwise as an out, e.g., bidirectional data-bus signals. This has no relevance to the
concept of inout signals in SyReC where inout means simply a signal that is valid
at both ends of a circuit line. VHDL inout is not discussed in this context because
it is related to state-dependent (sequential) digital systems, which contain feedback
behaviour that is not allowed, by definition, in the reversible paradigm.

2. Multiple assignments to a signal cause a conflict in a conventional paradigm because
it merely means connecting the outputs of different gates. Consequently, any signal is
assigned, at the most, just once within the architecture body.

3. Since in signals, in VHDL, are not updated within the architecture body, and remain
unchanged at the output end, which is unlike in-type signals in SyReC, which are
considered garbage because they can be updated, or changed, within the module.

4. Signal assignments applied only to signals form non-in types, which are known to be
constant ′0′. In other words, assignment of an expression to a signal does not cause
any information loss.

Up to this point, the reversible circuit is composed of empty lines only without any
gates. In other words, for a circuit with an identity function, realising a VHDL code does
nothing. Gates are added to process signals on circuit lines to compute the desired outputs
as described by the statements in the architecture body.
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6.3 Flow of Data with Signal-Assignment

An assignment statement, in its simplest form (S <= E;), is composed of three parts, a
target signal S, an assignment operator <= and a right-hand side expression E. To realise a
statement, two steps are to be followed:

1. Compose a sub-circuit GE realising the expression E (see Section 6.3.1).

2. Use Toffoli gates to assign E to the target-signal to realise the overall statement
(see Section 6.3.2).

6.3.1 Expressions

VHDL provides a set of operations, such as Boolean, arithmetic, and comparison. The
operations are applied on operand signals to compose VHDL expressions. As much as it
is considered in SyReC, most operations are irreversible. Hence, an additional line with
constant inputs is applied to make an irreversible function reversible [36] leading to the
implicit lines (discussed in Section 6.2). This is exactly how the reversible HDL SyReC tackles
the problem [24]. In fact, most VHDL-defined operators can use circuit definitions provided
for equivalent operations in SyReC. Despite differences in the grammar, defined operations,
and their precedence between the two languages, which imply some modifications, the ideas
proposed to realise SyReC expressions are applicable, as well, to realise VHDL expressions
(see Chapter 5). Again, realising an expression E which is combined with N operators will
implicitly add N constant lines to the circuit.
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b b
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not
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Figure 6.4: Circuit realising expression E from Example 33.

Example 33. Figure 6.4 shows a reversible circuit to compute the VHDL expression E, which
is given by (not(a and b) and c xor not(a or c)). The expression is computed based on
six Boolean operations. So, six constant input lines are applied to the circuit.
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6.3.2 Assignment Operation

In contrast to SyReC, which has more than one operator to update signals reversibly,
VHDL has only the signal-assignment operator, <=, that copies the line on the RHS to the
LHS. A Toffoli gate can be used to copy the value of a line E into line S, if and only if, S is
a constant ′0′, as shown in Figure 6.5(a), because ((E xor 0)=E). The operation is a simple
assignment (S <= E) by which the expression E as computed in Section 6.3.1, is assigned to
the target (non-input) signal S, which is known to be a constant ′0′ (see Section 6.2).

0 S

E E

(a) Simple

0 S

Ef Ef

Et Et

C C

(b) Conditional
S = 0 S

Cn Cn

C2 C2

C1 C1

Ed Ed

En En

E2 E2

E1 E1

(c) Multiple

Figure 6.5: Realisation of signal assignment.

Conditional signal assignments are also provided in VHDL, with the form
(S <= Et when C else Ef), by which Et is assigned to the target signal S only when the
condition C is evaluated to ’true’ or ′1′, while Ef is assigned otherwise, as shown in
Figure 6.5(b). A conditional assignment may be extended to multiple-conditionals
(see Figure 6.15). A generalised arrangement of gate allows the realisation of such multiple
conditional assignments, as shown in Figure 6.5(c).

6.4 Interconnecting Statements

An overall circuit realisation for a given VHDL code is computed by interconnecting
sub-circuits together within one main circuit. This includes components’ instances in addition
to the signal assignment statements.

6.4.1 Statement Cascade

A key difference between conventional and reversible circuit paradigms is addressed here.
In conventional circuits, it does not matter which statement is realised first, as the result will
be the same hardware because of statement concurrency. A reversible computation paradigm,
on the other hand, successively processes signals by cascaded gates. Consequently, signals are
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successively (not concurrently) computed. In this regard, the order in which the statements
are considered has an effect.

Signals should be prioritised according to their dependence. In other words, a signal
is computed only when its operand signals are available (either input or computed wires).
Signal prioritisation may not be resolved if there exist two or more signals that depend on
each other. This cyclic dependence indicates feedback, which violates a basic principle in
the reversible paradigm.

0 −

0 −

x = 0 −

f = 0 f

b b

a a

GES1
GES2

Figure 6.6: Reversible circuits realised using the VHDL code from Figure 6.3.

Example 34. The VHDL code in Figure 6.3 contains two assignment statements, where
each statement has an expression with one operator on its RHS. Consequently, two implicit
lines are expected. The resulting circuit is shown in Figure 6.6.a.

6.4.2 Components

As mentioned in Section 6.1, the structural style describes systems as a set of
interconnected components. Components are entities instantiated within the architecture
of another entity. Each instance places a sub-circuit definition within the main circuit.
The reversible circuit of a component should be determined before interconnecting the main
circuit in which it is instantiated. The order of the signal lines in the component circuit may
differ from the signals mapped to them in the main circuit. Hence, a port map is associated
with each instance to serve as a look-up table for line mapping.

Example 35. Figure 6.2 shows a VHDL description of the entity main with a structural
architecture body, which declares a component, then instantiates it twice. The component
refers to the entity sub, as described in Figure 6.3, with the circuit Gsub, as shown in
Figure 6.6. The structural interconnection of the main circuit Gmain in Figure 6.7(a)
follows the port map of each component instance to map the lines. This can be observed
from Figure 6.7(b), where each instance sub-circuit is identical to the component circuit in
Figure 6.6, but with lines rearranged according to the mapping of each instance. The circuit
Gmain is realised using 11 lines, 4 of which are ports (q, r, s, y), 1 internal signal t, and 6
implicit lines.
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(b) Circuit realisation on the gate level

Figure 6.7: The interconnecting structural VHDL architecture code from Figure 6.2.

6.5 Improving the Circuit Realisation

Expressions and other non-reversible actions implicitly add constant lines to the circuit.
These lines are accumulated throughout statements and result in circuits with a large number
of constant inputs, e.g., more than half of the lines in the circuit Gmain computed in
Example 35 are implicit. In this section, we propose line-aware arrangements to reduce
the number of lines and gate costs.

0 0

x = 0 −

f = 0 f

b b

a a

GES1 G−1
ES1

GES2 G−1
ES2

Figure 6.8: Reversible circuit realised using the VHDL code from Figure 6.3.

6.5.1 Line-aware Synthesis

According to the interconnection suggested in Section 6.2.1, implicit lines are assigned and
used only once within the architecture body the outputs are garbage, i.e., not usable again
in the circuit. Realising a statement with no garbage is possible when the RHS expression is
computed in the reverse direction (re-computed). This technique was proposed for line-aware
SyReC synthesis (see Section 3.3.1). More precisely, in addition to the two steps from
Section 6.3, a third step is added:
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3. Add the inverse circuit, G−1
E , to re-compute the garbage.

The next statement reuses the same lines to realise a circuit with fewer lines.

Example 36. Figure 6.8 shows the reversible circuit realisation for the VHDL code from
Figure 6.3 following this scheme. The circuit requires only 1 implicit line instead of 2 lines
as in the circuit from Figure 6.6.

0 −

0 E

c c

b b

a a

l1

l2

0

Figure 6.9: Line-aware realising of expression E from Example 33.

The ideas to realise optimised expressions in SyReC as proposed in Chapter 5 are
applicable on VHDL by which expressions are computed with less constant inputs. Applying
this optimised realisation on the expression from Example 33 results in the circuit shown in
Figure 6.9, which is computed using 2 constant lines versus 6 in the direct realisation shown
in Figure 6.4.

6.5.2 Gate-level Complexity Reduction

A constant input is not a signal fed into the circuit but it is like a literal numeric
value in the code. In the conventional realisation of VHDL codes, numbers (i.e., literals)
do not require circuits to compute their values as they are already specified in the code.
Furthermore, an operation on a number operand can dramatically reduce the complexity of
the circuit.

In the reversible circuit paradigm, a number is represented as a constant input. Using
a constant input for each number in the code worsens the circuit parameters. On the
other hand, considering constant signals, gate complexity may be reduced to lead towards
optimised circuits1. This motivates exploiting the following two simple properties:

1. A control with a constant ′1′ may be removed from the gate.

2. A Toffoli gate with one control known to be constant ′0′ may be removed from the
circuit.

1If the operation is applied to all number operands, then the circuit will be reduced to a set of constant
inputs, i.e., no circuit at all.
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0 (op = v)

v.1 v.1

v.0 v.0

op.1 op.1

op.0 op.0

(a) (op = v) signal operand

0 (op = 3)

op.1 op.1

op.0 op.0

(b) (op = 3) number operand

0 (op = 1)

op.1 op.1

op.0 op.0

(c) (op = 1) number operand

0 (op = 0)

op.1 op.1

op.0 op.0

(d) (op = 0) number operand

Figure 6.10: Gate-level optimisation of constant input.

Example 37. Figure 6.10(a) shows the circuit of a 2-bit equality operation (op = v) where
op and v are both variables. In the VHDL code of Figure 6.15, we can see a special case
of this operation used as conditions, e.g., (op = 0). In this case, one of the operands is
a constant number instead of a variable signal. Applying the complexity reduction rules, as
suggested above, results in Figure 6.10(d), which uses fewer lines and has a lower gate cost.
Applying the same optimisation on conditions with different numbers, such as (op = 3)

and (op = 1), results in a different circuits, e.g., Figures 6.10(b) and 6.10(c).

6.6 Discussion

This section discusses the resulting VHDL-based synthesis approach for reversible circuits
and compares it to the reversible-specific solution SyReC introduced in [24]. Between both
solutions, one fundamental difference is the signal assignment, which is non-reversible in
VHDL (<=, i.e., the previous signal value will be lost) and reversible in SyReC (ˆ=, i.e., by
additionally employing an XOR assignment, for example, which might require the addition
of out and wire signals to realise the intended functionality). Also, the way to compute
expressions, conditionals, and components are very similar between VHDL and SyReC when
applied to constant inputs.

In the following, we consider two cases to study how these differences (and also the
similarities) may affect the respectively obtained synthesis result.
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6.6.1 Case Study: Gray-code to Binary-Code Conversion

Figure 6.11 shows a VHDL description2. of a 4-bit gray-code to binary code converter.
The code defines two 4-bit vectors: (g) to the input gray-code and (b) for the output binary
code. The architecture description in this code incorporates some repeated computations,
e.g., (g(3) xor g(2)) is computed three times. Hence, an equivalent description is
proposed in Figure 6.12 to reduce the resulting computation complexity and the circuit cost.
This code declares a 3-bit wire w to facilitate the computations. Despite being described
using more statements, this code can be realised with reduced circuit costs, as shown in
Table 6.1, which summarises the resulting circuit costs:

entity gray2binary is
port (g : in STD_LOGIC_VECTOR (3 downto 0);

b : out STD_LOGIC_VECTOR (3 downto 0));
end entity gray2binary;

architecture Behavioral of gray2binary is
begin

b(3) <= g(3);
b(2) <= g(3) xor g(2);
b(1) <= g(3) xor g(2) xor g(1);
b(0) <= g(3) xor g(2) xor g(1) xor g(0);

end behavioral;

Figure 6.11: 4-bit gray-code to binary converter using VHDL.

1. for basic realisation, as described in Sections 6.3 and 6.4, with no optimisation. This
realisation results in lower gate count and cost, but with a larger number of lines.

2. for improved realisation as described in Section 6.5. This realisation shows higher gate
count and cost, but with fewer lines.

architecture Behavioral of gray2binary is
signal w (2 downto 0);

begin
w(2) <= g(3) xor g(2);
w(1) <= w(2) xor g(1);
w(0) <= w(1) xor g(0);
b(3) <= g(3);
b(2) <= w(2);
b(1) <= w(1);
b(0) <= w(0);

end architecture behavioral;

Figure 6.12: Optimized architecture description of Figure 6.11 to reduce complexity.

2This code is taken from http://www.rfwireless-world.com
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We additionally consider a reversible HDL description, provided in SyReC syntax, as shown
in Figure 6.13. This code conversion is reversible by definition, because of the one-to-one
correspondence between the two codes. Hence, the gray-code to binary code converter is an
ideal example to demonstrate the merits of SyReC-based synthesis (in its current state of
development) compared to VHDL-based synthesis introduced above. The SyReC approach
performs significantly better because reversibility can fully be exploited.

module gray2binary(inout x(4))
x.2 ˆ= x.3
x.1 ˆ= x.2
x.0 ˆ= x.1

Figure 6.13: Gray-code to binary code converter using SyReC.

Table 6.1: Experimental results of the 4-bit gray-code to binary code converter.

Parameter VHDL SyReC
Figure 6.11 Figure 6.12 Figure 6.13
1 2 1 2

Gates 16 28 10 16 3
Total lines 14 11 11 9 4

Quantum cost 16 28 10 16 3
Transistor cost 128 224 80 128 24

6.6.2 Case Study: Logic Unit

As another example, we consider a case where non-reversible functionality should be
realised. Figures 6.14 and 6.15 show two equivalent codes describing a 32-bit logic-unit
described in SyReC3 and VHDL, respectively. A conditional assignment computes the
output signal x0. In the SyReC code, x0 is initialized using the XOR-operator (ˆ=), e.g., in
x0 ˆ= (x1 & x2). Here, the operation is identical to (<=) in VHDL since x0 is an out

signal.
For the SyReC code, the circuit is realised in four different configurations as summarised

in Table 5.1, namely:

1. The basic SyReC synthesis: incorporates no optimisation and results in a low gate
count [24].

2. The line-aware synthesis: implements statement re-compute and reuses circuit lines
and exploits fewer lines [62].

3. The cost-aware synthesis: exploits an extra (helper) line to reduce gates cost, and this
configuration shows lower cost measures [42].

3A SyReC benchmark (lu 238.src) in RevLib [67].
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1 module lu(in op(2), out x0, inout x1, inout x2)
2 if (op = 0) then
3 x0 ˆ= (x1 & x2)
4 else
5 if (op = 1) then
6 x0 ˆ= (x1 | x2)
7 else
8 if (op = 2) then
9 x0 ˆ= (x1 ˆ x2)

10 else
11 x0 ˆ= x1
12 ˜= x0
13 fi (op = 2)
14 fi (op = 1)
15 fi (op = 0)

Figure 6.14: A SyReC description of a basic 32-bit arithmetic unit lu 238.src.

4. Optimum trade-off: enables the re-compute option, as in configuration (2), as well as a
helper line option, as in configuration (3), and resulted in a compromised circuit with
the best trade-off between lines and cost metrics.

On the other hand, the VHDL-code is synthesised using:

1. the basic realisations as described in Sections 6.3 and 6.4, which results in the lowest
costs compared to all other experiments, but with a large number of lines.

2. the improved realisation as described in Section 6.5, which requires a number of lines
equals to the best SyReC experiment while, at the same time, it shows a low-cost
measure, as compared to all SyReC experiments.

1 entity alu is
2 port (op : in unsigned (1 downto 0);
3 x1,x2: in bit_vector (31 downto 0);
4 x0 : out bit_vector (31 downto 0));
5 end entity test;
6

7 architecture data_flow of lu is
8 begin
9 x0 <= (x1 and x2) when (op = 0) else

10 (x1 or x2) when (op = 1) else
11 (x1 xor x2) when (op = 2) else
12 (not x1);
13 end architecture data_flow;

Figure 6.15: A VHDL description of a basic 32-bit arithmetic unit.

The results in Table 6.2 show that VHDL could compete or even overtake SyReC when
it comes to non-reversible functions. So, the two cases show that HDL efficiency is highly
problem-dependent. As VHDL is not able to compete with SyReC in realising reversible
functions, e.g., shown by the code-conversion case, it can still realise arbitrary (non-reversible)
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functions with comparable or even better circuits, e.g., as shown by the logic-unit case.
In either case, VHDL is more convenient for designers with no or little knowledge of the
reversible computation paradigm.

Table 6.2: Experimental results of a 32-bit logic unit.

Parameter SyReC VHDL
1 2 3 4 1 2

Gates 384 612 392 622 414 671
Total lines 197 133 198 134 235 133

Quantum cost 6557 10462 2312 3894 682 1207
Transistor cost 9856 15616 6360 10288 3472 5752

6.7 Summary

In this chapter, we considered a conventional hardware description language (VHDL) to
realise reversible circuits. The structural description model is analysed and direct realisations
for signals, expressions, assignments, conditionals, and components are proposed.

Optimised realisations are also proposed for higher quality circuits, including a line-aware
synthesis and a complexity reduction arrangement. The differences and similarities were
discussed as compared to the dedicated reversible HDL (SyReC). The discussion shows that
each approach has some advantages and declaring a winner depends on the problem to be
described.

The chapter provides an elementary basis towards a conventional HDL-based reversible
circuit design, with only a little knowledge for the programmer in this computational
paradigm.
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Chapter 7

Improving the Grammar of SyReC

To be accepted as a first-choice tool for reversible circuit design, SyReC programming
should be convenient for a wide range of programmers along with its scalability, modularity,
and the quality of its circuits. The previous efforts invested in improving the SyReC design
approach were focused on synthesis-related issues aimed a realising higher-quality circuits.
So, language’s grammar has not been revised since its first release in 2010 [61]. With our
experience in SyReC programming, we highlight possible enhancements and extensions to
the grammar of this HDL to make the language more powerful and more convenient as well.
In this chapter, we propose grammatical extensions to SyReC by appending some syntactical
rules, modifying others, and defining more data operations.

7.1 Control Logic

To guarantee reversibility of the descriptions of SyReC, a reversible control flow is
implemented [24]. Consequently, conditional statements do require not only an if-condition
(to decide which of the then- or the else-block is to be executed next) but also a fi-condition
(for the same reason, if the computation is conducted in reverse direction). This was first
introduced in the reversible software language Janus [64], where the fi-condition is called an
assertion. So, SyReC, which is based on Janus, inherited this assertion. Moreover, HDL
descriptions do occur from which it is not possible to realise a reversible control flow. Hence,
designers of reversible circuits and systems are faced with the problem of properly describing
a reversible control flow and the uncertainty whether such a control flow is even possible.
With this violation, it is not apparent whether the entire SyReC description is fully reversible.

Example 38. The if-condition of the Figure 7.1(a) is (a = 5) and the signal a is not
updated within the statement. Therefore the same expression is valid as a fi-condition and
the statement is fully reversible. On the other hand, the if-condition in Figure 7.1(b) is
(x = y). Here, the signals used to compute the expression are updated within the statement,
and so the same expression is no longer a valid fi-condition. To incorporate signal updates,
a correspondingly adjusted fi-condition is required, ((x - 1) = y) in this case. This
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if (a = 5)

then

x += 1

else

y += 2

fi (a = 5)

(a) Fully reversible if-statement

if (x = y)

then

x += 1

else

y += 2

fi ((x - 1) = y)

(b) Partially reversible if-statement

Figure 7.1: Reversibility in SyReC conditional statements.

modified expression works for most of the possible assignments of x and y in both directions.
However, a problem occurs if, e.g., x = 4 and y = 1 are considered. In the forward direction,
this would not satisfy the if-condition and would trigger the execution of the else-block (leading
to x = 4 and y = 3). This assignment, however, would satisfy the fi-condition, i.e., if executed
in reverse direction, the then-block would reversibly be executed (leading to x = 3 and y =
3). In other words, the two input states (x, y) = (4, 1) and (x, y) = (3, 3) both map to the
output state (4, 3), which is a clear violation of the reversible computing paradigm. Such
statements are referred to as being partially-reversible.

An if-statement is partially reversible, if there exist two different input states with an
execution of statements that yields the same output state. Generating a fi-condition or
checking for full reversibility is not always an intuitive task. This issue is addressed in
[71] in which automated generation of fi-expressions use predicate transformer semantics,
that are based on Hoare logic [72]. Checking whether a given reversible SyReC description
indeed is fully reversible is another challenge for which the designers must to be aware.
This partially-reversible description can be checked as well [71]. When a fi-condition is
generated and successfully passes the full-reversibility check, an explicit fi-condition is no
longer necessary, as it can be automatically generated.

7.1.1 Implicit fi-conditions

Realising a fully reversible if-statement follows the usual scheme as in Figure 3.13(b).
However, when a code is identified as being partially-reversible, the question remains how to
fix the problem, i.e., how to transfer this description into a reversible one. In fact, it is not
always possible or desirable to generate a fully-reversible condition.

As an alternative, a simple programming hack can solve this problem. Here, we accept
this partial reversibility and, instead, apply additional circuit lines. More precisely, an
additional 1-bit wire signal is applied with an initial default value of 0 and is set to 1 if and
only if the if-condition is satisfied. Then, this signal is used to trigger either the respective
realisation of the then-block or the else-block as shown in Figure 7.2. This solution guarantees
a correct computation with a penalty of only a single bit.

However, to make this solution consistent with the definition of SyReC (where partially
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wire w(1)

if (x = y)

then

x += 1

˜=w

else

y += 2

fi w

(a) fi-condition using a wire

0 0Gif

x x′

y y′

⊕=

Gthen ⊕=

Gelse

w = 0 −

(b) Realisaion of a partially-reversible fi-condition

Figure 7.2: Fully-reversible fi-condition using an internal wire.

reversible descriptions are not allowed), we must modify the grammar. In fact, we simply
make the fi-condition optional as shown in Figure 7.8 (line 12). Whenever the fi-condition is
provided, a synthesiser simply realises the corresponding expression. Whenever the condition
is omitted, a synthesiser uses the algorithms proposed in [71] to generate a suitable fi-condition.
If this is possible (i.e., the conditional statement is fully-reversible), then the resulting
fi-condition is realised. Otherwise, a single bit wire is automatically declared and applied as
described above.

7.1.2 Reversible Case-statement

Considering the same approach in dealing with fi-conditions, other control statements can
be proposed, and a reversible case-statement is now possible to be realized. Case-statements
represent a special form to represent nested if-statement structures where all if-conditions
have the same form (choice_expression = <number>). Instead of repeating the
choice expression with each if-condition, it is provided once at the beginning of the case
statement. This will tangibly enhance the readability of the code and simplify the structure.
It is an intuitive task to map these case-statements into equivalent nested-if structures and
does not constitute a serious obstacle for the synthesis process. Overall, this motivates
extensions to the SyReC grammar as shown in Figure 7.8 (lines 28 and 30).

Example 39. Figures 7.3(a) and 7.3(b) show two equivalent SyReC specifications where
the former is written using the original SyReC grammar (i.e., as a cascade of conditional
statements) and the latter is written using the proposed case statement.

7.2 Data Operations

Reversible HDLs are supposed to facilitate the description of reversible circuits. This
includes a complete set of defined data-operations. The current version of SyReC already
provides many data operations, but misses essential operations such as bit-wise rotation
operations, which is a defined operation in other HDLs, such as VHDL. The operation is
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1 module simple_alu(in op(2), in a, in b, out c)

2 if (op = 0)

3 then

4 c ˆ= (a + b)

5 else

6 if (op = 1)

7 then

8 c ˆ= (a - b)

9 else

10 if (op = 2)

11 then

12 c ˆ= (a * b)

13 else

14 c ˆ= (a / b)

15 fi (op = 2)

16 fi (op = 1)

17 fi (op = 0)

(a) Nested if-fi code

1 module simple_alu(in op(2), in a, in b, out c)

2 with op select

3 case 0: c ˆ= (a + b)

4 case 1: c ˆ= (a - b)

5 case 2: c ˆ= (a * b)

6 case default: c ˆ= (a / b)

7 endcase

(b) Reversible case statement

Figure 7.3: SyReC description of a simple arithmetic unit.

obviously reversible, and it receives special significance in cyclic-coding applications and
cryptography [73].

In the original grammar of SyReC, programmers needed to write a sophisticated code to
perform a rotation operation bit-by-bit. To accomplish this, they could use the related shift
operators << and >> or XOR assignment statements ˆ=, which are not reversible and require
additional circuit lines. This is not only counter-intuitive and against the aim of facilitating
the design process, but also yields significantly larger circuits.

Example 40. Figure 7.4 shows a SyReC code to update the 8-bit signal y using the ˆ=

operator. The value of signal x is rotated 3-bits to the left of the bit-wise and XOR-ed with
y. This code shows that the operation is defined bit-by-bit. The resulting code is not intuitive.
Moreover, the circuit is large due to the need to embed this shift operation with an additional
signal x (see Figure 7.4(b)).

SyReC grammar is extended such that bit-wise rotation is incorporated. The operations
<| and |> are defined for rotate-left and rotate-right, respectively. Accordingly, the rotation
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module test(inout x(8), inout y(8))

y.7:3 ˆ= x.4:0

y.2:0 ˆ= x.7:5

(a) Bit-wise rotation

x.0 x.0
x.1 x.1
x.2 x.2
x.3 x.3
x.4 x.4
x.5 x.5
x.6 x.6
x.7 x.7
y.0 y.0
y.1 y.1
y.2 y.2
y.3 y.3
y.4 y.4
y.5 y.5
y.6 y.6
y.7 y.7

(b) Circuit realisation of program

Figure 7.4: Original SyReC description realising a rotation.

in Figure 7.4.a can be replaced by the statement y ˆ= (x <| 3)

Since a rotation operation only swaps bits by a respectively given number, both newly
added operations can be synthesised by a set of swap statements, without any constant input.
This implementation allows for a reversible signal update to be defined.

Example 41. Figure 7.5(a) is a code to rotate signal y by 3-bits to the left. The code is
realised using SWAP gates, as shown in Figure 7.5(b), where the rotation update the signal
without any other line being involved. This compact operation is described using the reversible
update statement y <|= 3, according to the revised grammar.

For the above operations to be incorporated in SyReC, we modified the grammar, as shown
in Figure 7.8 (lines 9, 16, 23).

7.3 Import of Alternative Circuit Descriptions

SyReC is a modular language, where the program is defined as a group of modules, and
the main of which is the top-level module composed of statements and sometimes other
modules. When SyReC parses the code, it generates a tree-structure for the main module,
which contains sub-modules as sub-trees.

The next phase is to convert this tree-structure into a reversible circuit. A terminals
(leaf) is the smallest entity in the tree, which has a reversible circuit defined. Larger entities
interconnect these circuits together step-by-step until the main circuit is computed. When
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module test(inout x(8), inout y(8))

y.7:3 <=> y.4:0

y.2:1 <=> y.1:0

(a) Bit-wise rotation

y.0 y.0
y.1 y.1
y.2 y.2
y.3 y.3
y.4 y.4
y.5 y.5
y.6 y.6
y.7 y.7×

×

×

×

×

×

×

×

×

×

×
××
×

(b) Circuit realisation

Figure 7.5: SyReC description realizing of a signal rotation.

module sub_circuit(inout a(1), inout b(1), out f(1))

wire w(1)

f ˆ= (a & b)

w ˆ= (a | b)

w <=> b

module main(inout x(1), inout y(1))

wire g(1)

call sub_circuit(x,y,g)

x <=> g

(a) Multiple module code

x (x & y)

y (x | y)

0
g f −

0
w −

0 −

0 −

×

×
×

×

(b) Reversible circuit realisation

Figure 7.6: SyReC description with sub-modules.

a module is called by another module (main), its circuit must be computed first; then it is
used to compute the main circuit.

Example 42. Consider Figure 7.6(a), which shows a SyReC program composed of two
modules main and sub_circuit. The first is the top-level module that calls the later
in line 9 using a call statement. Applying the synthesis method, this yields the circuit as
shown the bottom of Figure 7.6(b).

This modularity has only been used to call circuit descriptions provided in the SyReC
language itself. However, we may have better circuits than those generated by SyReC
synthesised using different methodologies, but the current version of SyReC cannot use such
circuits. This frequently prevents the realisation of more compact circuits because often
cheaper building blocks can not be described in SyReC, but only in terms of gate level
descriptions.

To avoid this problem, we propose an extension to support the import of alternative
circuit descriptions (as an example, circuits described in the (.real) file format as introduced
in [67] are considered). So, we extend the grammar from Figure 3.1 by allowing an
<import-list> as defined in Figure 7.8 (lines 1, 2, and 29). This arrangement does
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not require additional complexity to the circuit synthesis as it simplifies the computation
since some parts of the circuit are already determined, and all we need is into substitute
(interconnect) them in the main circuit.

import sub_circuit from circuit_file.real

module main(inout x(1), inout y(1))

wire g(1)

call sub_circuit(x,y,g)

x <=> g

(a) SyReC program with circuit import

x (x & y)

y (x | y)

0 −
g f ×

×

(b) Reversible circuit realisation

# ----- circuit_file.real ------

# This file has been generated using

# RevKit 1.3-snapshot (www.revkit.org)

.version 2.0

.numvars 3

.variables x0 x1 x2

.inputs a b const_0

.outputs a b f

.constants --0

.garbage --1

.begin

t3 x0 x1 x2

t3 x0 x2 x1

t2 x0 x1

.end

(c) Circuit netlist(.real file format)

Figure 7.7: SyReC description and realisation with imported circuit.

Example 43. Figure 7.7(a) shows a circuit description which is functionally equivalent
to the description considered before in Figure 7.6(a). However, instead of describing the
SyReC module sub_circuit, the corresponding reversible circuit is provided as shown in
Figure 7.7(b)1 and imported using the newly-added statement (line 1). Overall, this yields a
significantly smaller circuit as shown in Figure 7.7(c).

According to the concept of modularity, which is based on information hiding, the details
of each module are irrelevant to the other modules. Consequently, importing circuits is not
supposed to change the call statement, so it does not have any effect on the code of the main
module. However, because the functions of imported circuits are not explicitly described in
the code, it is necessary to verify the signal definition before importing a circuit. Specifically,
it is important to verify that input and output specifications of the imported circuit match the
corresponding signals in the SyReC module, e.g., constant inputs and bit-widths of signals ,

1RevLib uses the (.real) file format to save netlists of reversible circuits [67].
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for which it would be more convenient to import entities described using another HDL, such
as VHDL, that utilises port maps to explicitly specify signal types and bit-widths. With this
modification it becomes possible to achieve a hybrid HDL specification described using both
SyReC and VHDL, where SyReC modules call VHDL entities.

7.4 Summary

In this chapter, SyReC grammar is revised for the first time. The original grammar
causes several shortcomings making it harder to describe the desired behaviour and often
yields more expensive circuits. These shortcomings are introduced with extensions to the
language and a proposed revised grammar (shown in Figure 7.8) that includes:

1. solving possible violations of full reversibility caused by fi-conditions in some
if-then-else-fi statements (known as partial reversibility). Moreover, the proposed
realisation of partially-reversible statements allows for a reversible case statement.
Both modifications simplify the grammar for more convenient SyReC programming.

2. defining new operations on data, such as a bit-wise rotation, which is a reversible
operation. Hence, the modified grammar defines these operations within expressions
and as a reversible signal update statement.

3. enabling hybrid design by reusing circuit definitions, synthesised possibly using
methodologies other than SyReC. The required circuits are imported and then
connected to the main circuit using a normal call statement. This opens a door for
the integration of different methodologies within one design flow, which can result in
circuits with higher qualities.
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Program and Modules

 〈program〉 ::= [〈import-list〉] 〈module〉 {〈module〉}
 〈import-list〉 ::= ‘import’ 〈identifier〉 ‘from’ 〈file〉 {‘,’ 〈identifier〉 ‘from’ 〈file〉 }
 〈module〉 ::= ‘module’ 〈identifier〉 ‘(’ [〈parameter-list〉] ‘)’ {〈signal-list〉} 〈statement-list〉
 〈parameter-list〉 ::= 〈parameter〉 {‘,’ 〈parameter〉}
 〈parameter〉 ::= (‘in’ | ‘out’ | ‘inout’) 〈signal-declaration〉
 〈signal-list〉 ::= (‘wire’ | ‘state’) 〈signal-declaration〉 {‘,’ 〈signal-declaration〉}
 〈signal-declaration〉 ::= 〈identifier〉 {‘[’〈int〉‘]’} [‘(’〈int〉‘)’]

Statements

 〈statement-list〉 ::= 〈statement〉 {‘;’ 〈statement〉}
 〈statement〉 ::= 〈call-statement〉 | 〈for-statement〉 | 〈if-statement〉 | 〈unary-statement〉 |

〈assign-statement〉 | 〈swap-statement〉 | 〈skip-statement〉 | 〈case-statement〉|
〈rotate-statement〉

 〈call-statement〉 ::= (‘call’ | ‘uncall’) 〈identifier〉 ‘(’ (〈identifier〉 {‘,’ 〈identifier〉}) ‘)’

 〈for-statement〉 ::= ‘for’ [[‘$’ 〈identifier〉 ‘=’] 〈number〉 ‘to’] 〈number〉 [‘step’ [‘-’] 〈number〉]
〈statement-list〉 ‘rof’

 〈if-statement〉 ::= ‘if ’ 〈expression〉 ‘then’ 〈statement-list〉 ‘else’ 〈statement-list〉 ‘fi’
[〈expression〉]

 〈case-statement〉 ::= ‘with’ 〈identifier〉 ‘select’ { ‘case’ 〈number〉 ‘:’ 〈statement-list〉} [‘case’
‘default’ ‘:’ 〈statement-list〉] ‘endcase’

 〈assign-statement〉 ::= 〈signal〉 (‘ˆ’ | ‘+’ | ‘-’) ‘=’ 〈expression〉
 〈unary-statement〉 ::= (‘˜’ | ‘++’ | ‘--’) ‘=’ 〈signal〉
 〈rotate-statement〉 ::= 〈signal〉 (‘<|’ | ‘|>’) ‘=’ 〈number〉
 〈swap-statement〉 ::= 〈signal〉 ‘<=>’ 〈signal〉
 〈skip-statement〉 ::= ‘skip’

 〈signal〉 ::= 〈identifier〉 {‘[’ 〈expression〉 ‘]’} [‘.’ 〈number〉 [‘:’ 〈number〉]]

Expressions

 〈expression〉 ::= 〈number〉 | 〈signal〉 | 〈binary-expression〉 | 〈unary-expression〉 |
〈shift-expression〉

 〈binary-expression〉 ::= ‘(’ 〈expression〉 (‘+’ | ‘-’ | ‘ˆ’ | ‘*’ | ‘/’ | ‘%’ | ‘*>’ | ‘&&’ | ‘||’ | ‘&’ |
‘|’ | ‘<’ | ‘>’ | ‘=’ | ‘!=’ | ‘<=’ | ‘>=’) 〈expression〉 ‘)’

 〈unary-expression〉 ::= (‘!’ | ‘˜’) 〈expression〉
 〈shift-expression〉 ::= ‘(’ 〈expression〉 (‘<<’ | ‘>>’| ‘<|’ | ‘|>’) 〈number〉 ‘)’

Identifier and Constants

 〈letter〉 ::= (‘A’ | . . . | ‘Z’ | ‘a’ | . . . | ‘z’)

 〈digit〉 ::= (‘0’ | . . . | ‘9’)

 〈identifier〉 ::= (‘ ’ | 〈letter〉) {(‘ ’ | 〈letter〉 | 〈digit〉)}
 〈int〉 ::= 〈digit〉 {〈digit〉}
 〈number〉 ::= 〈int〉 | ‘#’ 〈identifier〉 | ‘$’ 〈identifier〉 | (‘(’ 〈number〉 (‘+’ | ‘-’ | ‘*’ | ‘/’)

〈number〉 ‘)’)

 〈file〉 ::= 〈identifier〉 [‘.real’]

Figure 7.8: The modified syntax of the hardware description language SyReC.
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Chapter 8

Conclusions

The traditional technology of computing machines developed over the last decades is
about to reach its limits. Consequently, an alternative paradigm needs to evolve sooner to
replace the conventional paradigm. Reversible computation may provide such an alternative
replacement or, at least, an enhancement of computing machines. Reversible logic is
highly-relevant to some interesting applications, such as quantum computing, low-power
design, adiabatic circuits, and encoding and decoding devices.

Different methodologies were proposed to realise functions as reversible circuits. Most
do not scale well, i.e., they are not capable of handling large design problems. One approach
to achieve scalability through hardware description languages, which are corner stones of
the design flow of conventional circuits. Similarly, the HDL approach is also considered for
reversible circuit design. A dedicated HDL, SyReC, is introduced for describing reversible
circuits, and it shows the capacity to describe, with simple codes, relatively large design
problems, which are beyond the capacity of any other approach. The major drawback of
SyReC is that it realises reversible circuits with a large number of lines.

In this dissertation, an HDL-based design approach is optimised to generate reversible
circuits with fewer lines. This includes improvements at different design levels, which are
made without compromising the advantages of the design approach, i.e., scalability and
simplicity.

The first improvement described in Chapter 4, is made on the programming style of
SyReC. Programmers, which are typically influenced by the conventional description style,
deal with different paradigm considerations. The synthesis flow was investigated, and rules
for SyReC programming with more efficiency are proposed resulting in circuits that are
synthesized with tangibly better metrics. However, SyReC codes written according to the
proposed style are still less readable as compared to the spontaneous style.

In Chapter 5 we introduce line-aware realisations of SyReC expressions with which we
avoid rewriting codes according to a certain programming style. Expressions in SyReC do not
assume operations are reversible, so the realisations of these expressions follow conventional
computations. We exploit properties of reversible computations in realising circuits with
better metrics for SyReC expressions. The fact that expressions in SyReC are not assuming
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reversibility at all in its operations makes the concept introduced in this chapter applicable
for SyReC expressions as well as in conventional HDLs.

In Chapter 6 we investigate the conventional hardware description language, VHDL.
We propose realisations of structural descriptions for architectures of entities in VHDL to
introduce a basis for a design flow that reuses elaborated conventional circuit design flow and
its efficient tools and requires less knowledge in reversible paradigm. This may encourage
stakeholders to accept reversible circuits as a practical alternative.

In Chapter 7 we propose some syntactical modifications on SyReC grammar including
new control statements and definitions of new operations. Another modification allows
SyReC to import circuits that are designed using different methods and integrate them
within the modules. This enables a hybrid design that profits from the advantages of each
approach.

Finally, HDL-based design of reversible circuits cannot achieve synthesis with minimal
lines, but it can at least approach this goal within the scope of this dissertation. Also,
reaching a thorough design flow for a reversible circuit, which can be considered as a practical
alternative, needs additional time to be well-established. Upcoming challenges are expected,
and more effort is required. This dissertation contributes as an important step towards an
elaborated design flow of reversible circuits.
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