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Abstract 

Electronics are now in wide use replacing mechanical controllers in products 

such as consumer goods and cars. Typically these electronic controllers consist 

of a microprocessor and some interfaces, such as digital-to-analogue converters, 

connected to the system being controlled. The design of the hardware and 

software is disjoint, with both being specified at a low level. Control software 

can be very complex, involving the handling of a number of concurrent tasks; 

consequently it is very difficult to write, and many revisions must be made 

before it is correct. As these controllers become single chips, mistakes in software 

become extremely expensive to rectify. This thesis presents a novel system which 

simulates and synthesises complete processor-based controllers from the software 

they are to run. 

The programming language OCCAM is used to describe both the structure 

and behaviour of the controller system at an extremely high level. The structure 

is expressed by declaring interface circuits as imported procedures, which are 

executed in parallel with the behaviour of the controller, specified as OCCAM 

code. 

The interface circuits are described in libraries. Associated with each is a 

number of OCCAM subprogram bodies. One of these is always a behavioural 

model of the circuit, for use in simulation, while the others are for different 

implementation technologies, communicating with the hardware and presenting a 

consistent interface to the control program. In this way a single design document 

can be used without change for simulation and synthesis. 

An expert system, the artificial engineer, uses the structural information 

extracted from the control program to design the required controller hardware. 

It consults the designer over issues such as performance and cost, and designs 

within these constraints. 

To demonstrate the practicality of the approach, a prototype has been built 

which can simulate designs and synthesise board-level controllers based on Z80 

processors. Several complete examples are given. An architecture based on 

customised processors is proposed for VLSI implementation. 
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Chapter 1 

Introduction 

The hardware designer, through 
microprocessor and memory architectures, 

has merely swept the complexity of the 
system under the rug of software. 

[Lucky 85] 

Electronic control systems are becoming more and more common. Every-

where switches are being replaced with touch panels, dials with digital displays. 

Everything from washing machines to aircraft are now "computer controlled". 

Microelectronics fabrication technology has moved in step with, and in part 

driven, these developments.. However, the methods for designing controllers have 

changed very little, remaining largely manual. As a result, the cost of design can 

become a dominant factor in the overall price of a system. This makes it an ideal 

area for the application of computer aided design. Before attempting to design 

or build design tools for controllers, we must examine what electronic controllers 

are, and why traditional semi-mechanical systems have been abandoned in their 

favour. 

The introduction of electronic control can combine a reduction in size and 

weight with an enormous increase in functionality. An excellent example of 

this is the modern compact camera [Gaitonde 821, providing totally automatic 

control in a smaller package than the older mechanical, manual models. The 

flexibility of digital systems allows expensive variable analogue controls to be 

replaced with cheap switches, as with digital frequency-synthesis in radio and 

television [Groh 801. For example, it is now possible for radios to have continuous 
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sweep tuning from ultra low to ultra high frequency without large range-switches 

selecting between banks of variable capacitors. 

Microprocessor based systems permit a greater degree of control than was 

previously available [Clifford 78, Azuma 801.  The ability to store relatively large 

amounts of information and to sense conditions allows much better decisions 

to be taken. In many circumstances precomputed look-up tables can be used 

to provide complex analyses of circumstances, replacing intricate mechanical or 

analogue systems. Function and appearance can be changed simply and quickly 

by modifying the control program, allowing easier upgrading and adaptation to 

international markets [Penn 77]. 

Digital interfaces between circuits allow the easy integration of remote control 

[Karstand 80, Inoue 82, Platte 85], as they remove the need for bulky multi-core 

connections and transmission of analogue signals. Digital control can also assist 

in manufacture and maintenance [Wijen 861: the provision of an external inter-

face to the controller permits production-line computers to configure and check 

appliances, and service engineers can use the connection to obtain diagnostic 

information in the event of a breakdown. 

The automotive industry is now turning to electronics: in 1984 an estimated 

$7.5 billion [Brandt 851 was spent in the area. Developments have taken place 

in all sectors [Jurgen 83, Ford 84, Weber 85]', some of which are covered below. 

The worldwide tightening of exhaust emission regulations and the requirement 

for fuel economy has forced manufacturers away from traditional mechanical 

carburattion. The only way to produce marketable performance and stay within 

the law was to employ microprocessor control [Watanabe 841, using the sensing 

and information storage capability to optimise fuel delivery and timing. Other 

areas are active suspension, skid-free braking, collision detection and replacement 

of the expensive and error-prone car wiring harness. [Preston 821, 

Medicine is another field where microcomputers have made a major impact. 

Here all the attributes of electronic control are beneficial. Many applications 

are in the area of monitoring, where the ability to read several interfaces, record 

data and interpret it, makes a significant contribution to post-operative patient 



care [Naghdy 841. Miniaturisation is also important, allowing patients to carry 

equipment that was previously not portable [Barker 861, or even have devices 

implanted in their bodies. 

Examining these control computers reveals that they are generally made up 

of a microprocessor with a ROM, a small amount of RAM and a number of 

peripheral interface chips. Most of these interfaces are off-the-shelf parts such as 

analogue-to-digital converters, display drivers, timers and parallel boolean input 

and outputs. Some applications benefit from using specially designed interfaces, 

but these still connect to the microprocessor like standard parts [Caironi 821. 

The use of bus structures and memory mapped devices controlled centrally 

by microprocessor has made hardware design relatively easy. To a large extent it 

is now simply a case of putting together building-blocks with a small number of 

"glue" chips; gone are the large boards of random logic implementing the control 

and interfacing functions. This is yet another reason for the growth in use of 

electronic controllers: they are easy to build. What is not easy to build, however, 

is the software required to animate the hardware. All the control functions are 

left to the programmer to implement, usually after the hardware design has been 

finished. There is little integration between the two tasks. 

• The main difference between hardware and software is that the former is 

fully parallel, and the programmer emulating control logic must simulate this 

concurrency. The program is likely to be written in a very low-level language 

and it is unlikely to provide constructs to assist in this task, so a large number 

of revisions of the software are needed before being fully functional. As a result 

the software is more complex than the hardware, and it must be regarded as the 

major system component; control computers can be regarded as heterogeneous 

objects, or heterosystems as Organick has called them [Organick 841. 

Standard-part integrated-circuit technology has provided the building blocks 

for control systems: originally small scale integration logic, moving on to large 

scale integrated computer components. Semi-custom integrated circuits and the 

design automation tools for them are now following the same paths for users of 

application-specific integrated circuits (ASICs). Initially these could integrate 



Uhapter 1. Introduction 	 4 

random logic functions on a single chip, for example Lattice Logic's Chipsmith 

gate array and standard-cell compiler [Lattice 84a]. 

Design-tool vendors are now offering microprocessors as sub-chip compo-

nents, allowing the integration of complete control computers on a single chip 

[Evanczuk 851. For example, Sony use a special-purpose 4-bit microcomputer as 

a controller in their products [Numata 851. VTI offer an exact replica, complete 

with original bugs, of the 6502 microprocessor as a "mega-cell" in their design 

system [Trimberger 851; General Electric provide AMD 2900 series compatible 

bit-slice processors as cells [Parisoe 851, and INTEL supply "microcontroller" 

processors [Amini 85]. 

These design tools are aimed at direct replacement of printed circuit-boards, 

allowing engineers to work as they always have done, except that the end result 

is a chip. This is partly due to commercial necessity and partly because it 

was an easy route to follow, although only through this basic work do more 

advanced uses come to light. This approach is unfortunate because these tools 

do not realise the full potential of the technology and they preserve problems. 

For example the problem of separate hardware and software development is 

aggravated: when a complete controller system is cast in silicon it simultaneously 

becomes very expensive to correct mistakes in the software and impossible to test 

the code in situ. 

It is obvious from the foregoing discussion that there is a need for a new 

design style for fully integrated control-computers. It is my hypothesis that by 

identifying a suitable programming abstraction the complete controller can be 

described at a very high level by the software. 

Systems can be described in three ways: physical, structural and behavioural. 

A physical description defines how the system is built in enough detail to actually 

make it. A structural description states what components the system has, and 

how they are connected. A behavioural description says what the system does; 

this is a rather fuzzy term, but as will be seen later there is no better definition. 

The most natural method of description for controllers is behavioural. For 
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example, a very high level definition of how a thermostat behaves might be as 

follows: 

Check the temperature and if it is less than we want turn on the 

heater; otherwise turn off the heater; then do it all again. 

Unfortunately this description is not amenable to computer processing, but it 

does show something important about behavioural descriptions: in order to de-

scribe the behaviour, some information about the structure of the controller 

must be given. In this case we learn that there must be some device for checking 

temperature and something for switching the heater on and off. In essence, a 

structural description is declarative and a behavioural is procedural. Program-

ming languages are, of course, procedural, and have declarative sections; so our 

aim of describing the controller in software can still be met. 

An important feature of controllers, as stated above, is concurrency, the 

ability to respond to several stimuli at once for example, and this is what makes 

programming them very difficult. Several recent programming languages feature 

well defined and theoretically sound concurrency models, so are ideal for our task. 

This thesis describes a system which uses software to describe controllers 

completely, the Unified Software and Hardware EngineeR, USHER. This uses the 

programming language OCCAM to define both the structure and the behaviour 

of the controller and can simulate and synthesise physical designs from it via 

technology-dependent back-ends. Each back-end comprises a code generator 

for the appropriate processor, a hardware allocator which extracts the struc-

tural information from the software and a knowledge-base on that technology's 

implementation. An expert system, the Artificial Engineer, creates a physical 

realisation from the structure derived from the software and the knowledge-base. 

The Artificial Engineer interviews the designer over issues such as performance, 

cost, power consumption and connections to the system under control. By the 

use of user-definable libraries, all parts of this system are open: that is, designers 

can extend them as required to meet new applications. 
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To demonstrate the validity of these ideas a prototype implementation of 

USHER has been developed. This includes the simulator and a back-end that 

designs board-level controllers using Z80 microprocessors. A Z80 microcomputer 

fitted with a number of common interfaces has been built as a test-bed. The 

interface circuits from this test-bed machine are used as the foundation for the 

Artificial Engineer knowledge-base. Three examples have been developed to test 

the prototype. 

A structural description of this thesis might be as follows: 

Chapter 2 examines other work in the field of compiling high-level languages to 

hardware in particular, and behavioural description and synthesis systems 

in general. 

Chapter 3 describes the concepts behind the USHER system in detail. It gives 

a rationale for choosing OCCAM, describes the minor extensions to the 

syntax of the language, outlines the overall structure of the software, and 

overviews the steps involved in the making of a design. 

Chapter 4 describes the USHER simulator and its environment. Various tech-

niques for simulating interfaces are discussed. 

Chapter 5 describes the implementation of the Z80 compiler and test-bed ma-

chine. 

Chapter 6 introduces the Artificial Engineer. A limited defence of expert sys-

tems is presented, and the operation of this one described. Details of the 

prototype interface-designers are given. 

Chapter T describes the three test programs. It shows the various stages in 

their development and demonstrates both simulation and synthesis. The 

simplest example is a stopwatch, another is a digital voltmeter and the 

largest a cash register. 

Chapter 8 charts the successes and identifies the weaknesses of the USHER 

system, concept and implementation. It then discusses alternative back-

ends for USHER, including an appropriate VLSI architecture. 



Chapter 2 

Solidifying Software 

Reading maketh a full man; conference a 
ready man; writing an exact man. 

Francis Bacon 

Proposals to use normal software programming languages (SPLs) as hard-

ware description languages (HDLs) are not new. In 1962 APL was proposed 

as a common language for hardware, systems- and applications-programming 

[Iverson 621.  Despite a recent suggestion of using APL for architectural devel-

opment [Sinderen 861 it has never caught on, but the idea of using languages for 

hardware description has been widely adopted. Despite two major international 

standardisation efforts, still more languages appear. 

Most researchers using SPLs for hardware description are forced to alter and 

extend the language, both in syntax and semantics, to suit their needs. In this 

way they are really using a different language. A number of projects, including 

the one described in this thesis, use the SPL unaltered except for minor changes 

to the syntax to make it more convenient for the application. This survey covers 

several systems using unaltered SPLs and a number of special purpose or adapted 

HDLs. These latter are either included to show how different approaches to 

behavioural description can be taken, or because they have made a major impact 

in the field. This chapter does not try to be a complete survey of HDLs as this 

would take far to long. Nash has provided an extensive bibliography [Nash 841 

and a number of survey papers have been published [Pawlak 851. 
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2.1 CONLAN 

CONLAN is a project to develop a CONsensus LANguage. It was first proposed 

in 1973, and a multi-national working party was set up in 1975, finally reporting 

in 1983 [Piloty 83]. This was the first major effort at standardisation in the 

area of HDLs and was motivated by the proliferation of languages, mainly from 

universities, and industry's low level of acceptance of them. The working party 

decided that no single HDL would be suitable for all applications, and defined 

a basis for the construction of a family of languages. An extensible syntax was 

developed allowing tool makers to derive new members of the the family for new 

applications, within the overall CONLAN framework, with a common base of 

syntax and semantics. 

A basic Primitive Set CONLAN (PS CL) was defined as a parent or reference 

language from which all others are derived. PSCL is intended to provide a mini-

mum of fundamental concepts with which the working party believe it is possible 

to describe all useful hardware. To demonstrate the extensibility facilities and 

provide a more usable language the working party also defined the first member 

of the family: Base CONLAN, (BCL). This builds all the basic facilities nor-

mally found in a language (for example, arrays) from PSCL primitives. Future 

family members are expected to use BCL as their reference language, not PSCL, 

to avoid recreation of these facilities. 

CONLAN can describe both structure and behaviour of hardware at a variety 

of levels, however, as it stands it is too general and complex to be a useful tool. 

BCL must be regarded as a powerful base of constructs, not an HDL itself. By 

selecting the appropriate facilities a language that closely models a particular 

application can be derived, for example WISLAN [Engh 83] a CONLAN member 

for describing gate arrays. 
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2.2 VHDL 

The United States Department of Defence is the world's largest purchaser of 

technology-based products, so it exerts enormous influence over industry. As 

part of its Very High Speed Integrated Circuits (VHSIC) initiative, the VHSIC 

Hardware Description Language (VHDL) project was launched in 1981. The 

language was jointly developed by Intermetrics, IBM and Texas Instruments, 

and was first published in 1984, with the current revision, 7.2, being published 

in June 1986 [Intermetrics 861. 

VHDL is to HDLs as Ada [US DoD 801 is to programming languages. This is 

for three reasons: firstly its use is likely to be a requirement for defence contrac-

tors, secondly its syntax is derived from that of Ada, and thirdly it provides a 

vast wealth of constructs. Like the CONLAN designers, the VHDL team realised 

that there are many styles of design, but they decided to incorporate as many 

as possible into a single coherent linguistic framework. 

Fortunately, the chosen design styles are well matched and form a continuum 

from pure structural to pure behavioural design. Circuits from complete multi-

board systems to low-level cells, are described by architecture bodies. For each 

body there is a block which describes it. The statements within a block are all 

labelled and are executed concurrently. Any statement can be a process block, 

in which the statements that make it up are executed sequentially. Statements 

can be behavioural, structural or a mixture of the two. Figure 2_li  shows 

(a) a behavioural description of an adder, using the conventional assignment 

operator and expressions; (b) a mixed level description using signals and abstract 

operators; and (c) a purely structural description using named components. 

'This example is drawn from the VHDL User's Manual, Volume 1 - Tutorial 
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architecture TOP of ADDER is 
block 
begin 

process (A. B. SUM) 
variable A. B : INTEGER range 0 to 3; 
variable SUM : INTEGER range 0 to 6; 

begin 
SUM := A + B; 

end process 
end block 

end TOP 

(a) Behavioural Description 

architecture MIXED of ADD is 
block 

signal Si, 52. S3 : BIT; 
begin 

Si 	<XxorY; 
SUN <= Si xor CIN; 
S2 <XandY; 
83 <= Si and CIN; 
COUT <= S2 or S3; 

end block 
end MIXED 

(b) Mixed Behavioural and Structural Description 

architecture STRUCT of HALF -ADDER is 
block 

component NAND -GATE port (A, B in BIT; 
C 	: out BIT); 

component XOR_GATE port (A, B in BIT; 
C 	out BIT); 

component INV port (A in BIT; 
B : out BIT); 

signal Ti; 
begin 

Zi: XOR_GATE port (X, Y. SUM); 
NAND-GATE port (X, Y. Ti); 
INY port (Ti, COUT); 

end block 
end STRUCT 

(c) Structural Description 

Figure 2-1: An example of an adder expressed in VHDL 



An unconditional behaviour is expressed as a series of assignment statements. 

A state-machine is used to describe conditional actions; the syntax for this is 

based on a case statement, which is available in two forms, firstly the long hand: 

case OPCODE_REGISTER of 

when ADD 

when COMPARE => 

when JUMP 

end case; 

Or as a short hand form in signal assignments: 

FLAGS <= 11001" when RESULT < 0 else 
11010" when RESULT = 0 else 
"100"; 

Structural information is represented at two levels, using signal assignment and 

abstract operators at the higher level, and component instances with port con- 

nection at the lower, purely structural level. These are both shown in Figure 2-1. 

VHDL borrows a variety of features from Ada: functions and procedures, 

the concept of the package for hiding implementation details, and an extremely 

powerful type-structure. Typing is used to check interfaces between components, 

not allowing signals of different types to be connected. The attribute mechanism 

for attaching extra information to objects (accessed by object ' attribute) can be 

used to support physical design and testing, down to packaging and mask level 

[Lowenstein 861. 

VHDL is the most powerful HDL to date, combining many functions in an 

elegant manner. The ability to describe systems in many styles and at differ-

ent levels of abstraction is extremely powerful. The verbose syntax makes the 

meaning and structure of a design quite clear, the use of a case statement for 

state machines is particularly suitable. A controversial issue with the language 

designer's is the degree with which Ada can be integrated into VHDL [Nash 861. 

Unfortunately Ada is currently not included as part of VHDL, although adding 
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it would solve some problems with the current language. Chapter 3 discusses 

the application of Ada code integrated into VHDL with respect to the current 

work; 

2.3 Zeus 

The Zeus hardware description language has been developed jointly at ETH 

Zurich, Princeton University, MIT and GTE Laboratories [German 851. It was 

the designers' intention that the language should closely model hardware and 

provide structuring facilities to support systematic design. It was also intended 

to be used not only as a design-documentation aid, but as an input language to 

a variety of design tools, including simulators and silicon compilers. Zeus syntax 

is based on that of Modula-2 [Wirth 821, which provides structuring via MODULES 

and strong typing. Modula-2 itself can be used as an extension to Zeus when 

greater descriptive power is required. 

The basic unit of hardware description is the COMPONENT, for which the de-

signer can specify both connections and parameters. Within a COMPONENT con-

stants, signals, and instances of COMPONENTs, including recursive instances can 

be declared. The Modula-2 type mechanism is fully employed in checking signals 

and their connections. For example, four possible values for a tn-state signal can 

be declared as follows: 

TYPE 
tn_state = (zero, one, tmdef, high-imp); 

From this a range type can be derived: 

logical = [zero. .undef]; 

which is the the type of most signals. Using this basic type composite signals, 

such as busses, can be .created using arrays and records. 

The main body of a COMPONENT is specified as a CONNECT block. The WHEN 

construct can be used to provide a number of conditional bodies which permits 
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recursive instancing to terminate, and special cases such as the sides of arrays 

to be defined. Within each body all statements operate concurrently. Con-

nections are specified using assignment, and provide structural information. A 

FOR construct is provided for replicated structures. Behaviour is described as a 

state machine and is specified using IF statements, which act like a case state-

ment, except that more than one branch may be active at once since they all act 

concurrently. 

One intended use of Zeus is as an input language to silicon compilers. In 

this circumstance the designer may be working within area-constraints, so she is 

allowed to give the tools a helping hand with the ORDER statement to assist with 

floorplanning. This uses a concept like that in ALT [Lipton 83] of gluing blocks 

together by their edges. it is also possible to specify the ordering of ports on 

each side of a component. 

Zeus has been well integrated into a rich language, providing a good envi-

ronment for design. The use of typing, particularly enumerated types, creates 

a readable document, and together with the use of built in functions such as 

WIDTH, allowing easy definition of generic components. The use of assignment to 

indicate connection, and allowing multiple concurrent assignments from within 

different IF sections is confusing and potentially dangerous. The use of multiple 

IF blocks to specify behaviour is more flexible than a case-statement, but it is 

an untidy notation, looking too much like the Modula-2 original: a sequence of 

actions. 

2.4 MIMOLA 

The MIMOLA (Machine Independent MicrOprogramming LAnguage) system 

has been under development at the University of Kiel, West Germany, since 

1976. It was first presented in 1979 [Zimmermann 791, and again with a revised 

syntax in 1984 [Marwedel 84]. Two levels of description are provided: hardware, 

which is at the register-transfer level, and action, which is state-machine or 
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MODULE B74381 (IN left, right : .BIT(3:0); 

	

IN select 	: .BIT(2:0); 

	

OUT result 	: .BIT(3:0)); 
BEGIN 

result : CASE select OF 
0 : 0; 
1 : right "-" left; 
2 : left "-" right; 
3 : left "+" right; 
4 : left "XOR" right; 
5 : left "OR" right; 
6 : left "AND" right; 
7 : -1 
END 

END; 

Figure 2-2: A MIMOLA module representing a 74381 4-bit ALTJ 

micro-program oriented. The initial language had a minimal syntax, relying 

on the first letter of a statement or declaration to indicate its type. The later 

version uses a syntax derived from PASCAL and is considerably more readable. 

Hardware entities are described as MODULEs, which have connections that 

can be read and assigned values. It is also possible to declare variables which 

correspond to registers, and arrays which correspond to memories. Even in the 

new system, memory-element identifiers must begin with an 'S' for store. The 

body of a module contains actions, which can either take place sequentially or 

in parallel. This choice can be made by the designer by using either a comma 

as statement-separator for concurrent statements or a semi-colon for sequential 

statements. An optimiser attempts to maximise the parallelism within each 

module. A case-statement is used to implement state-machines, as shown in 

Figure 2-2 which demonstrates a definition of the TTL standard part 74381, a 

4-bit ALU. The usual language constructs of IF, FOR etc are also provided. 

Two synthesis algorithms have been used with the MTh40LA system. The 

most recent [Marwedel 861 produces hardware that is half the size of that pro-

duced by its predecessor [Marwedel 791. The first step in the new approach is 

to compile MIMOLA algorithmic descriptions to register-transfer level, which is 

another level within the language. From this level various modified versions of 
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microcode optimisations are applied to minimise the width and number of mi-

croinstructions. This process produces another, near optimal, register-transfer 

description, and this is used to drive a standard-cell system. Control is provided 

by horizontal microcode. 

The MIMOLA suite is very impressive: it can compile complete minicom-

puters from their microprograms. The language, although slightly stilted and 

lacking typing, is well suited to the task it was designed for: describing digi-

tal computers. Unfortunately the micro-code orientation of the language means 

that it is not suited to describing generalised hardware structures. 

2.5 CAP/DSDL 

The CAP/DSDL system has been developed at the University of Dortmund, 

West Germany. It comprises the language CAP/DSDL (Concurrent Algorith-

mic Programming/Digital System Description Language) [Rammig 84]2,  its com-

piler, a stimuli compiler and a simulator [Dachauer 81]. The language is de-

scribed as "broadband," providing a variety of description levels from high-level 

algorithmic, through register-transfer and gate to switch-level'. The usual con-

structs are available, and the language is typed. Blocks of operations can be 

specified as sequential, or synchronous or asynchronous concurrent. The de-

signer can specify, assertions about internal states of the design, and these are 

continuously checked during simulation, ensuring design correctness. 

The different levels of design are unified by a common basic concept, the 

timed Petri-Net. Petri-Nets are a simple extension of finite state machines, 

and can model the three classes of control described above, sequential, syn-

chronous and asynchronous. A Petri-Net interpretation exists for each language 

construct. Petri-Nets are also the basis of the system description facility of 

CAMAD [Peng 86], developed at Linköping University, Sweden. 

'Since updated and renamed DACAPO [Brueck 861 
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The CAP/DSDL team have recognised that concurrent algorithmic descrip-

tions are well suited to the design of controllers [Brück 86]. In this synthesis 

system a controller is made up of a number of concurrent low-level modules. 

Each module is implemented as a clocked, finite state-machine, but communica-

tion between modules is asynchronous, so the whole system can be regarded as 

self timed. This avoids problems of clock skew on large chips, making automated 

design easier. The CAP/DSDL language does not enforce this design style, only 

this synthesiser. The design is examined and any additional concurrency is auth 

matically detected. Each module is described in a way similar to that of VHDL, 

using case statements for conditional behaviour and assignment for connection. 

Synthesis proceeds by separating the data- and control-paths, each part then be-  
- 

ing implemented by CMOS standard-cells. In the case of the control-path, each 

Petri-Net operator has a corresponding cell, and the control-machine is built by 

placing the cells in a fixed floor plan, with interconnection in a central routing 

channel. 

An interesting feature of the CAP/DSDL system is the inclusion of a stimuli 

compiler. This accepts a language that specifies signal changes according to 

time, which are used to drive the inputs of the design. With this it is possible 

to describe an external environment, but it cannot provide feedback on the 

the design's outputs. An analyser is provided to interpret the output from the 

simulator, showing only relevant information. 

The simulation and synthesis tools provided by this system are powerful, and 

have found acceptance in other German universities. It is also one of the very 

few university-developed design automation systems to find favour in industry, in 

this case with Siemens AG in Munich [Frantz 83]. It is also different from efforts 

such as MIMOLA in that it is not intended solely for designing computers, it can 

be turned to more general tasks. The use of Petri-Nets provides a sound basis, 

but it is marred by the fact that Petri-Nets cannot be composed hierarchically. 

This requires designs to be decomposed as a group of concurrent modules rather 

than the conventional hierarchy of components. 
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NANDOO a1NAND10 + /31NANDO1 + (c1f31)-yONAND11 

NAND01 cd'yONANDll + /3ONANDOO + (alfl0)NAND10 

NAND10 = crONANDOO + fl 1 ONANDll + (cO$1)NAND01 

NAND11 = oOi1NAND01 + flOy 1NAND1O + (aO/30)i1NANDOO 

Figure 2-3: A CIRCAL description of a NAND gate 

2.6 CIRCAL 

The CIRcuit CALculus (CIRCAL) has been developed by George Mime at the 

University of Edinburgh since 1982 [Mime 83a]. The motivation for the language 

is the desire to reason about hardware at all levels, eventually leading to formal 

verification. CIRCAL is based on Milner's Calculus of Communicating Systems 

(CCS) [Milner 801, and uses a very abstract level of description. It is, for ex-

ample, possible to describe the behaviour of a directional wire, as shown in this 

picture: 

with the following CIRCAL process: 

W=a/3W 

This is a recursive state-machine description meaning: an event a occurs, then 

an event fi occurs and the whole process repeats. The event a is a signal arriving 

at the start of the wire, and its departure along the wire is event 8. 

This method of description can be used to model larger components, for 

example a NAND gate as shown in Figure 2-3. In this example a and P are 

the inputs and y  the output of the gate. There are four possible states, one 
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corresponding to the each combination of the two inputs. Every possible signal 

change must have an event associated with it. The second state (NAND01) has 

three possible events, any one of which can occur non-deterministically, indicated 

by the + operator. The first event, a1yONAND11 means that if the input a 

changes to 1, then the output -y changes to 0 and the next state is NAND11. 

The second event shows the input 3 falling to 0, which does not change the 

output, but moves to a different state. In the last event (al/30)NAND10 the 

brackets indicate that a must rise and /3 fall simultaneously, resulting in a move 

to state NAND10. 

It is easy to see from this example how descriptions at this level explode 

in size. The need to include the case of a signal change at each port individu-

ally and combinations of ports simultaneously enormously increases the size of a 

description, as well as difficulty for the designer defining each possible case. De-

scriptions can be composed, to form new descriptions with a behaviour equivalent 

to the primitives, permitting hierarchical design. 

It is possible to use CIRCAL as an intermediate code for a silicon compiler 

to assist in the verification of its functionality [Mime 83b]. CIRCAL allows 

behaviours to be specified without any structural information. As shown above, 

CIRCAL descriptions are normally written in a mathematical notation which is 

not viable for a working HDL, so a lisp-embedding has been developed to allow 

machine analysis of CIRCAL expressions [Traub 831. 

CIRCAL is a powerful tool for reasoning about hardware but is limited in 

practical application by the rapid expansion in size of designs. Unfortunately 

the abstract nature of CIRCAL, which makes it amenable to mathematical ma-

nipulation, also makes it unsuitable for use in real hardware design. CIRCAL 

is, however,not without its practical applications. It would be extremely useful 

for proving equivalence between different designs, possibly expressed in different 

HDLs. Since it is often the case that a company will market a family of products 

which offer identical behaviour with different performance, it is obviously very 

important that the members of a family actually are identical; so the ability to 

verify this automatically would be very helpful. 
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2.7 CMU-DA 

The Carnegie-Mellon University Design Automation (CMU-DA) project started 

in 1973, with the objective of making exploration of the architectural design-

space easier. The input language used is ISPS [Barbacci 811, which was orig-

inally devised for describing computer architectures for comparative purposes. 

ISPS is, however, sufficiently flexible to allow the description of other hardware. 

The initial implementation of the CMU-DA system [Parker 79] compiled ISPS 

directly into TTL or CMOS standard-cells. The demonstration example for this 

system was a PDP-8/E and the results of automatic synthesis from the ISPS 

description were claimed to compare favourably with the original manual DEC 

design. 

Subsequent tools do not operate straight from ISPS, but use a represen-

tation call the Value Trace (VT). This is a directed, acyclic data-flow graph 

similar to that used in optimising compilers. Some simple optimisations are 

performed on the VT [Walker 831 which can then be used by a variety of tools. 

Thomas presents a good overview of the whole system base on VT manipulation 

[Thomas 831. 

One tool built to use VTs is EMUCS, a data-path synthesiser [Hitchcock 831. 

This is a conventional compiler, allocating hardware as it is needed according to a 

cost table. Unfortunately it has a number of major drawbacks including requiring 

the designer to insert busses manually. An alternative approach, using expert 

systems, produced the Design Automation Assistant (DAA) [Kowalski 831. This 

has been used to design a 6502 microprocessor of "acceptable" quality. 

Other work based on VTs includes the examination of automatic extraction 

of busses by employing clique theory [Tseng 83]. This has been embodied in a 

special tool, Emerald, [Tseng 841 and is now integrated into the overall CMU-DA 

system [Tseng 86]. 
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The CMU-DA project seems to be successful, although, as the papers never 

show actual evidence to support their claims it is hard to tell. ISPS is a good 

language for describing processors, but is rather more detailed than required 

for most applications, for example requiring all registers to be sized at declara-

tion. There is no apparent method for introducing special hardware, for example 

analogue-to-digital converters, into the ISPS description or the synthesis stages, 

which limits the kind of systems that can be defined. As long as the design 

in hand can be implemented as a conventional data-path, control section and 

memory system, ISPS is an appropriate description language. 

2.8 Automatic Evaluation of Design Choices 

Doug Baldwin, a postgraduate student at Yale University, has identified making 

design choices as a. major element in the circuit synthesis process [Baldwin 841. 

By this he means choosing the best implementation for a circuit from a number 

of alternative solutions. He cites the example of using an adder for performing an 

addition at one point, whereas a more general ALU could have been used there 

and also later used to perform a subtraction. The application will determine 

which is the most suitable: a highly-parallel solution would use an adder and a 

subtractor, while a low-cost solution would choose the ALU. 

To investigate the automation of this decision-making he has developed a 

system which compiles a dialect of lisp into the control-parts of circuits built 

from TTL. He does not address the design of the data-part of the circuits as 

this field has been thoroughly explored. An example of the lisp specification, a 

car cruise control, is given in Figure 2-4. In the heading the input signals are 

declared and given a width (1 bit), followed by the output signals, with width 

and an initial output value (nil, the lisp equivalent of false). The main code 

outputs a true value (T) to reset the speed-pulse counter, then sends a true to 

enable the counter, and finally conditionally selects from the answer one of three 

options: too slow, too fast and the correct speed. 



(define-controller Cruise-Control 
(input (Too-Fast 1) 

(Too-Slow 1)) 
(output (Count 	1 nil) 

(Reset-Count 1 nil) 
(Speed-Up 	1 nil) 
(Slow-Down 1 nil)) 

(loop 
(do (state (Reset-Count T)) 

(state (Count T)) 
Cc ond 
((Too-Fast) (state (Slow-Down T))) 
((Too-Slow) (state (Speed-Up T))) 
(else 	(state (Speed-Up nil) 

(Slow-Down nil))))))) 

Figure 2-4: A Car Cruise Control described in Lisp 

The system uses state machines to describe behaviour, and can compile them 

into TTL circuits in a number of different styles, using a table-driven expert 

system. Baldwin conducted an experiment to compare manual designs with 

that of his synthesiser: the automatically produced designs were only slightly 

worse than those of humans. With this encouraging result it is a pity that only 

-control parts were designed and that a language and synthesiser for complete 

systems was not produced. 

2.9 MacPitts 

MacPitts [Siskind 82, Southard 831 is a register transfer language based on lisp, 

intended for the implementation of very high performance systems, such as sig-

nal processing. The language is aimed at a. specific architecture, a microprogram 

controlled data-path. Structural information is provided explicitly by the de-

signer through declarations, and behaviour is specified as lisp code. The code is 

normally sequential, but a construct is provided to execute sections in parallel. 

The MacPitts compiler can generate complete chips for signal processing 

applications and is one of very few systems to accomplish this high-level to 

working part transformation. It is not, however, without its problems [Fox 83]. 
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const 
BusWidth = 23; StoreHeight = 400; 

type 
Wire = (Low. High, Undefined); 
Bus = array [0. .BusWidth] of Wire; 
DMSIndex = 1. .StoreHeight; 

procedure DataReg ( 	D : Bus; 	Enable : Wire; 
Start DMSIndex; var Q Bus); 

var I : 0. .BusWidth; 
begin 

for I : 0 to BusWidth do 
begin 

RDMS (Start + I, Q [I], nil); 
WDMS (Start + I. D [I], Enable) 

end 
end; 

Figure 2-5: A Register Component 

Some of these are due to the simple architecture, for example limited memory 

capacity. Others are due to implementation expedience, such as overflow of the 

Weinberger array control structure. MacPitts is an example of identifying an 

application and tailoring a tool to be an exact match. In this way it is possible 

to build a design aid quickly and successfully. 

2.10 Pascal to Gate-Arrays 

The TJK5000 is a CMOS gate-array with 5000 gates and 400 D-type master-

slave (DMS) flip-flops [Grierson 831. The standard support software provides 

two forms of design entry, one is workstation-based schematic capture, the other 

is a primitive macro-language. To provide a user interface that is more suitable 

for student use, a compiler which uses a Pascal program to describe the circuit 

has been developed at the University of Southampton [Jesshope 851. A language 

subset is employed and built-in functions are provided to support activities that 

are not directly available in Pascal. In the example in Figure 2-5 the procedures 

RDMS and WDMS read and write to the flip-flops respectively. 
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A significant advantage of using Pascal as an input language is that the pro-

gram can be compiled and run normally to provide simulation. This is only true 

in this case because the TJK5000 circuits must be defined synchronously, if this 

simple clocking scheme is not employed a more complex, event-driven simulator 

is required. In the UK5000 values are latched into the flip-flops on clock pulses 

which are wide enough to allow the logic to stabilise. In the hardware all the 

logic operations that prepare the values are run fully parallel, but in the software 

simulation they are run fully serially. The synchronous updating of the latches 

is modelled in the program by performing all the calculations, then writing the 

results into the variables that represent the latches at one time. The paper re-

ports that the programmer must impose a discipline of always performing all 

flip-flop reads before any writes. The run-time environment generates timing-

diagrams at test-points, showing the internal state of the design. This system is 

very simple, the compiler does not support conditional code, but it does provide 

cheap access to design and simulation. 

2.11 Ada as an HDL (1) 

Mario Barbacci has proposed unmodified Ada as an HDL [Barbacci 851. To 

utilise existing software tools he suggests that rather than having a "smart" 

compiler which understands hardware, the description program and libraries 

should provide the intelligence. The argument used to support this is that design-

tools always have some design-style or technology dependence built into them. 

By allowing the designer direct access to the technology, he is freed from the tool-

maker's preconceptions. This is in total contrast to all previous design tools, the 

objective of which was to liberate designers from the repetitive lower-level tasks 

by automating them and making designs less technology dependent. 

The mainstay of the proposal is the use of Ada's advanced programming 

facilities. Each component type, for example a NAND gate, is represented by a 

package, with the public portion providing procedures for component creation, 
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construction (from its constituent parts) and simulation. Private types are used 

to store information about components that is for use only by the package. 

Great emphasis is placed on the use of long and meaningful identifiers, using 

overloading to reduce the number that the designer must remember. The main 

program can be modified to call either simulation or synthesis bodies, which 

produce a design at mask-level. 

This paper advances a reworking of an old idea: embedded languages. The 

use of modern language facilities, such as packages and abstract data-types, per-

mits an elegant implementation, but still leaves the designer with an enormous 

workload. The argument put forward to support this is counter to all previous 

design systems, maximising designer effort and the technology dependence of 

designs. 

2.12 Ada Program Units to Silicon 

The Ada to Silicon project at the University of Utah examined the interest-

ing questions of where the boundary between hardware and software must be 

drawn [Organick 841. If it were possible to compile programs to either hardware 

or machine-code with equal ease, certain high-performance sections of program 

(frequently used sections of an operating system, for example) could be imple-

mented in hardware. This is what they have called a heterosystem: a complete 

entity that is made from a variety of - types of components, but is described by a 

single document. 

A useful example of a heterosystem is a computer with a network interface. 

Assuming that the line driver is always present, the connection can be controlled 

either by software on the main processor, or by a separate network controller. 

If the special controller is present it interprets the network protocol, presenting 

the operating system running in the main processor with an idealised interface. 

When the machine-code version of the controller is in use the operating system 

still uses the idealised interface, but the packaging is done on the main proces- 
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sor, so it has to respond to interrupts and spend time servicing them, thereby 

degrading overall performance. 

The ability to interchange hard- and software implementations of modules 

makes a significant impact on system design. It becomes, at least in theory, 

possible to have a single document describing the whole system. Implementa-

tions with different performance criteria can be built by selecting implementation 

technology of critical modules. Building some interfaces in hardware introduces 

redundancy; if the hardware fails it can be replaced with its code equivalent. It 

is also possible to test modules before committing them to hardware by run-

fling them as code first. This can only be done satisfactorily if an appropriate 

timing scheme is adopted. Concurrent software tasks which communicate only 

when they are both ready, rendezvous in Ada terminology, can be compared with 

self-timed hardware: each section completing in its own time. So, a hardware 

implementation of a task should be self-timed to fit in with the software tasks 

it is to communicate with if it is not to restrict the programmer's style. This is 

in sharp contrast to the software modelling of hardware by software in Section 

2.10. 

The Utah researchers chose to implement an Internet control task in hard-

ware. This had a number of benign features: small memory requirement, no 

recursion, simple arithmetic, and communication with only one host-processor 

task. This was manually transformed into silicon as an experiment to test the 

viability of Ada hardware description. Each transformation had a theoretically 

sound basis [Subrahmanyam 831 so, barring human error, the final chip did cor-

respond to the Ada code. The control- and data-structures of the Ada code were 

separated and converted to state-machine and "path programmed logic array" 

descriptions respectively. These were then mechanically converted to silicon. 

The chip was designed to fit into an Intel 432 based system, and it was tested in 

this context using Ada programs. One bug was found, which was a fault in the 

state-machine compiler rather than the design. 

While an automated system has not yet been developed, despite nine people 

working on the project, this is still significant work. They do not describe any 
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method of introducing special or user defined hardware into the design process, 

either for modelling in Ada or inclusion at synthesis, restricting the types of 

system which can be defined. Identifying the concept of "heteroware" and the 

attendant importance of specifying good interfaces between modules is a major 

contribution to hardware synthesis. 

2.13 Ada as an HDL (2) 

A group of researchers at Carleton University, Ottawa, are developing an Ada 

to standard-cell compiler [Girczyc 85] The fist stage in the compilation is 

converting the program into a control-data flow graph (CDFG), similar to the 

value trace used at CMU. Following various operations on the CDFG, performed 

by parsing it with a graph-grammar, it is transformed into a standard-cell net-

list. The familiar microcode controlled data-path architecture is used, with the 

control graph represented as a state-machine [Girczyc 84]. The example used by 

the researchers, an oven-control thermostat, is shown in Figure 2-6. 

The researchers aim has been to use Ada unmodified, and they have achieved 

this through use of the pragma construct and procedure calls. In the example, 

the procedure DISPLAY represents a predefined hardware entity, and is identified 

as such by the pragma. The code body is for simulation, outputting the value 

to be displayed to a trace file. One of the objectives of the research is to allow 

the designer control over the timing and performance of the circuits. To this 

end constraints can be given using the procedures REFERENCE and CONSTRAINT 

from the package TIMING. These calls do not generate any hardware but provide 

information for the hardware allocator. 

Simulation is again achieved by running the program conventionally. Timing 

constraints are checked by a task TIMING, with entries corresponding to the 

REFERENCE and CONSTRAINT procedures. The granularity of time is important 

here: the clock rate of the hardware and the time used by Ada delay statements 

are not the same, so scaling is required. 
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type TEMP is INTEGER range -128..127; 
type STATUS-CODE is INTEGER range 0..127; 

HEAT-OFF-CODE : constant STATUS -CODE :=.103; 
HEAT-ON-CODE : constant STATUS -CODE := 57; 

HEAT-STATUS : STATUS -CODE := HEAT-OFF-CODE; 

task body OVEN-CONTROL is 

Ti. T2, T3, T4. T_SET, T_AVG. T_DIFF. T_ERROR : TEMP; 
OVEN_READY BOOLEAN; 

procedure DISPLAY (T in TEMP) is 
pragma HARDWARE-CELL; 
begin 

put (TRACE_FILE. T); 
end DISPLAY; 

begin 
loop 

TIMING. REFERENCE (REF -LABEL => BEGIN-LOOP); 
GET (TEMP-PORT, Ti); 
GET (TEMP-PORT. T2); 
GET (TEMP-PORT. T3); 
GET (TEMP-PORT, T4); 
GET (TEMP-DIAL, T_SET); 
T_AVG : (Ti + T2 + T3 +T4)/4; 
T_DIFF : (T2 + T3) - (Ti + T4); 
T_ERROR. : (T-SET - T_AVG); 
OVEN_READY := (T_ERROR < i) AND (T_DIFF < 2); 
TIMING.CONSTRAINT (REF_POINT => BEGIN -LOOP, 

MAX-TIME => 25E-6, 
REF-LABEL => END_CALC); 

DISPLAY (T_AVG); 
PUT (STATUS-PORT, OVEN_READY); 
if T_SET > T_AVG then 

HEAT-STATUS : = HEAT_OFF_CODE; 
else 

HEAT-STATUS : HEAT-ON-CODE; 
endif; 
TIMING.CONSTRAINT (REF_POINT => END_CALC, 

MAX-TIME => 20E-6. 
REF-LABEL => END-DISPLAY); 

TIMING.CONSTRAINT (REF-POINT => BEGIN-LOOP, 
MIN-TIME => 10E-3, 
MAX-TIME => 11E-3, 
REF-LABEL => END_CALC); 

end loop; 
end OVEN_CONTROL; 

Figure 2-6: An Oven Controller 
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The type structure of Ada is used for typing of signals and memories. In this 

system it is extended, at least in theory, to include analogue signals represented 

by real types. If two real values are added an op-amp would be generated, and 

a real variable is implemented as a sample-and-hold. Single wire digital signals 

are represented as booleans, and ranges represent busses. 

Various problem areas in the compilation process are highlighted. An obvious 

problem is that of dynamic creation of tasks: this cannot be done in hardware. 

Other problems are generally related to sharing. Ada allows sharing of global 

variables between tasks, so each shared variable must be created as a register and 

arbiter. Another, less obvious, problem is that of sharing procedures between 

tasks. In a machine-code implementation the code is sharable and it creates its 

own variables in task-local memory and so can be invoked an arbitrary number 

of times. This is not the case with a hardware implementation, where the proce-

dure's locals are registers. To meet timing requirements it may not be possible 

to suspend one task until another task has finished with the hardware procedure: 

it must be replicated. 

This is very significant work, having successfully compiled what is admitted 

a subset of Ada into hardware. Exception handling has been addressed, and 

hardware-error detection generated automatically. Using the type structure it 

is possible to specify both analogue and digital circuits in the same document. 

Areas of difficulty are identified, and where possible a solution has been found. 

The only drawback is that the primitive hardware elements are generated auto-

matically by the compiler, and must be drawn from a standard library. If the 

user requires to add his own cells these can be specified but they must comply 

with the standard interfacing. It is not explained how the layout of user defined 

cells is captured by the design system. 
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2.14 Occam to CMOS 

A team of researchers at Fujitsu have developed a compilation system that gen-

erates CMOS circuits from specifications in OCCAM [INMOS 84c], a concurrent 

programming language [Mano 84, Mano 85]: The actual input is a list based form 

of OCCAM called OCCAM-S, which can be read directly as Prolog [Clocksin 81]. 

For example, the following normal OCCAM code: 

CHAN a, b: 
VAR x: 
PAR 

a?x 
b ! 10 

would be expressed in OCCAM-S as: 

[[chan, a, b], 
[var, xi, 
[par, 
[Input, a, x], 
[output, b, 10111 . 

The program is compiled into a state-machine description expressed in DDL. 

This is part behavioural and pari structural, and the next stage in the operation 

is to separate out the structure as a data-path specification, and the behaviour 

as a control-automaton. The data-path specification is then compiled to logical-

expressions and standard-cell instances, by a partially interactive process. For 

example, the synthesiser tries to estimate the word length needed for variables, 

and then confirms with the designer if it is correct. A heuristic optimiser com-

pacts the control-automaton and generates logical-expressions for the control 

part as well. The next step in the design process converts the logical expressions 

to CMOS cells in a grid layout. These synthesis steps are all performed by part 

algorithmic, part expert-system Prolog programs [Maruyama 841. 

For simulation, conventional compilation and execution is proposed. For this 

a simulated environment would have to be added to feed the inputs and display 
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outputs. There is no mention of how accurate a model of the timing of the 

final system this is, except a comment that they do not yet perform timing 

verification. In the OCCAM model of interprocess communication an input or an 

output is also a synchronisation point. If the OCCAM rule of no variable sharing 

is enforced the hardware can operate freely in each process and synchronise when 

communication occurs. 

This system uses the SPL as a combined structural and behavioural specifica-

tion: variables map directly onto registers, addition maps onto adders etc. The 

designer can specify whether sections of code are to be implemented in parallel 

or sequentially. An optimiser examines the sequential blocks for data dependen-

cies, and tries to put as much in parallel as possible. The OCCAM IF statement 

is used to specify conditional behaviour; the multi-branch syntax for IF is more 

like a case-statement in other languages. 

There is no mention of any problems with the design method. OCCAM does 

not allow the sharing of variables, but the procedure-sharing problem described 

in Section 2.13 is relevant and not mentioned. This project has been successful 

in compiling a simple OCCAM program, a pattern matcher, into random logic. 

There is no method of introducing user-defined special hardware: if an operation 

cannot be specified by the logic and arithmetic operations it cannot be done. 

For example, it would not be possible to define the high-current drivers of a 

display-driver with this system. Despite this and its simplicity, it does not 

handle busses correctly, this is an impressive piece of work, and would be well 

suited to providing a central controller on a chip, rather than a complete chip. 

2.15 Summary 

Having examined a number of notable HDLs and attempts to use SPLs for 

hardware description, it is now possible to contrast the approaches. The funda- 

mental difference between hardware and software is that the hardware is fully 

concurrent, and this is reflected in the respective languages. Two sorts of concur- 
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rency can be identified: high level concurrency is where several large internally-

- 	sequential processes run in parallel; low level concurrency is where individual 

statements operate simultaneously. 

In the HDLs the normal idiom is for statements to operate concurrently 

and sections where data dependencies require sequentiality have to be specified 

specially. In the SPLs statements are normally specified sequentially and special 

constructs are needed to indicate concurrency. Ada and Modula-2 have the 

concept of high level tasks or processes, whereas OCCAM allows blocks to be 

parallel or sequential with equal ease. 

Timing is another area of difference between languages. This is particu-

larly important for simulation and again highlights the significance of concur-

rency. Most of the HDLs have some concept of time built into them, for example 

VHDL's micro- and macro-time, or allow the designer to specify his own timing 

scheme easily, as in CIRCAL. A simulator then has to implement these schemes 

in a realistic way, and many such systems exist. 

One of the mainstays of the SPL approach is that special simulators are 

not required: the programs need only to be compiled and run. This, however, 

must be viewed with caution. The University of Southampton system can only 

provide simulation using a sequential program by enforcing strict synchronous 

clocking and read-before--write use of memory elements. The other languages 

all provide processes, and inter-process communications can be used as synchro-

nisation points. This is similar to self-timed hardware, where each component 

calculates its outputs and then waits for them to be read, allowing parts of the 

system to operate at different speeds. 

It must be remembered that the chip produced by the compiler is not going to 

operate in a vacuum. When simulating a design it is also necessary to simulate its 

environment. When simulating with a concurrent SPL it is necessary to build a 

harness to enclose the design, supplying stimuli and recording outputs. Using the 

University of Utah system it is possible to run the package in situ, and they have 

built a test-bed in which it can be verified that the chip produced corresponds 

to the software. The Carleton University system uses input-output libraries to 
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represent file JO for simulation and external communication for synthesis. This 

allows a simulation to take place using data files for inputs, producing trace 

files as output. The CAP/DSDL system provides a language and compiler for 

defining simulation inputs, and an analyser for interpreting the outputs. The 

other systems do not make provision for these facilities. 

In hardware description designers will often want to include specially designed 

components. This can be a problem for an SPL description, where the compiler 

operates with a known set of primitives. For example, it is not possible to use 

an RS232 terminal driver with the OCCAM-to-CMOS system, as there is no way 

to describe it. The Carleton University Ada compiler allows the user to include 

his own cells by defining procedures that simulate them. 

The last comment to be made is that all these systems operate at a very 

low level. They are all concerned with near gate-level description, requiring 

the designer to work down from higher-level descriptions manually. Surely it is 

desirable to use a higher level of description, freeing the engineer from even more 

detail. 



Chapter 3 

The USHER System 

They have been at a great feast of 
languages and stolen the scraps. 

Love's Labours Lost 

We have now examined a class of hardware systems, control computers, and 

a number of different language-based design automation systems. There is a 

clear mismatch: controller design typically operates at quite a high level, using 

substantial LSI building blocks and only resorting to gate-level design to glue 

these blocks together, while design tools are still concerned with low-level design, 

rising only as high as register-transfer-level. One reason why design tools are still 

operating at these levels is that the abstractions are well understood and have a 

sound basis. To proceed to higher levels we need to identify new abstractions. 

To help with this task we will continue to use the thermostat example as it 

demonstrates the principles involved, in a small design. We will expand on the 

version introduced in Chapter 1 to provide a more concrete description: 

Check the temperature, display it, and if it is less than we want turn 

on the heater, otherwise if the heater is on, turn it off check if the 

user is typing in a new desired temperature, if yes read it and display 

it; then do it all again. 

From this we can derive the structure of the system as shown in Figure 3-1. 

Each box operates concurrently, and has a software and a hardware component. 

For the displays, for example, there might be some seven-segment LEDs and 

a display-driver, plus some software which converts integers to drive-patterns 

33 
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Figure 3-1: Structure of an electronic thermostat. 

for the display and perhaps multiplexs the digits. Conventionally that software 

would be regarded as part of the control code, but it is logically part of the 

interface as it has to change when the hardware does. 

An obvious model for the software is concurrent processes. The central pro-

cess, which may itself contain a number of processes, communicates with the 

other processes when it needs them to operate. Encapsulating the hardware-

driving code in processes builds firewalls round it, helping to remove technology 

dependency from the main code. This places considerable emphasis on the com-

munications between processes and the importance of specifying good protocols. 

Using the process model, we could describe the thermostat control program 

in some imaginary concurrent language as follows: 

parbegin 
control (Probe. Heater. Keypad, Dispi, Disp2); 
temp.probe (Probe); 
heater.relay (Heater); 
display (Dispi); 
display (Disp2); 

parend 

where the parameters are some form of communication medium. This is a struc- 

tural description of the system; it lists the objects which make it up and how 
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they are connected. The behaviour of the system iscaptured -  bythedefinition-

of each process. A circuit can be associated with each interface process, so that 

the activation of that process indicates that the circuit is required. In this way 

a concurrent program can also be a structural description of the hardware. 

Concurrency has been a feature of two notable theoretical languages: CCS 

[Milner 80] and CSP [bare 78]. These were created to facilitate reasoning about 

concurrency rather than for implementation and real programming. However, 

recent practical programming languages make provision for process definitions, 

so it is to these that we turn when wishing to write control software. 

3.1 Choosing a language 

Traditionally the languages used by design automation systems were created 

new for each application. This do-it-yourself approach can result in languages 

which are appropriate to the task at hand, but rarely conform to the principles of 

good language design [Hilfinger 82]. It is also very difficult to define a language 

completely and accurately. There is already a vast number of languages, and 

many traditional designers find the prospect of learning yet another language 

daunting. 

Having decided not to create a new language, a choice must be made from 

amongst the existing ones. In the following sections the three major languages 

providing concurrency facilities are analysed. The languages are examined on 

three points: process definition and creation, interprocess communication, and 

ease of implementation. This last criterion is included as I did not wish to expend 

a substantial amount of effort and time simply on language implementation. 

3.1.1 Ada 

Ada [US DoD 80] programs can be broken down into three types of subprogram 

unit: procedures, packages and tasks. Tasks are intended to be run concurrently, 



(ihapter 3. The USHER System 	 36 

task PROTECTED-ARRAY is 
entry READ (N : in INDEX; V out ELEM); 
entry WRITE (N : in INDEX; V : out ELEM); 

end; 

(a) The task specification 

task body PROTECTED-ARRAY is 
TABLE : array (INDEX) of ELEM : (INDEX => 0); 

begin 
loop 

select 
accept READ (N : in INDEX; V out ELEM) do 

V 	TABLE (N); 
end READ; 

or 
accept WRITE (N : IN INDEX; V in ELEM) do 

TABLE (N) := V; 
end WRITE; 

end select; 
end loop; 

end PROTECTED-ARRAY; 

(b) The task body 

Figure 3-2: An example Ada task 

either time-sliced on a single processor or on multi-processors. Tasks provide 

entries which can be called by other tasks and are then accepted. This is called 

a rendezvous, and provides synchronisation as well as communication between 

tasks. 

Like all Ada declarations there is a specification declaration, as in Figure 

3-2(a), and the body declaration Figure 3-2(b). Entries are parameterised and 

are called like procedures. By including the word type in the specification dec-

laration a task type is created and many processes can be declared to be of this 

type, including arrays. Tasks are regarded as constant values as they cannot be 

assigned, but it is possible to have pointers to tasks with access variables. These 

can be used to manipulate process identities, and with the operator new can 

create processes dynamically. For hardware description this dynamic creation of 

processes would have to be restrained, as does general recursion. Entry accep- 
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tance can be made conditional or timed with the select statement, as shown in 

Figure 3-•3. 

As described in Chapter 2, Ada is the main inspiration behind VHDL. A very 

interesting idea for combining the programming style of Ada and the hardware.. 

description facilities of VHDL is the matching of task entries with ports in ar-

chitecture bodies. By adding a handshake line, visible only to the VHDL end, 

and adopting a self-timed discipline, a software task could communicate with 

the hardware in a well-defined manner. An Ada task body is the obvious upper 

limit of a family of definitions of architecture bodies, and could provide a high 

level simulation facility if used appropriately. 

There will always be some level of hardware that cannot be described at a 

high-level. It is desirable to provide a framework in which this can be described 

at an appropriate level, but still form part of the whole design. A language pro-

viding this framework would be a true heterosystems description language, and 

would provide an ideal environment for vertical migration. This is the process 

of selectively lowering the implementation level of critical sections of a design in 

order to improve overall performance. 

Unfortunately Ada presents a major problem to a single researcher: its size. 

It is an enormous language, with many complex features. Subsets are regarded 

in a poor light, and are still difficult to build since the construction of the stan-

dard Ada environment requires the more esoteric features. For example the 

standard input and output libraries are defined using generic packages and over-

loading. Avoiding these would require programs to deviate substantially from 

the standard. 

Ada is probably the ideal language for use in describing hardware-integrated 

code, and has been used widely with hardware design systems. The type and 

value representation structures are very extensive and allow the programmer 

to match any hardware data format. The rendezvous mechanism provides an 

appropriate model of self-timed communication between devices, and the lan- 

guage already provides facilities for mapping interrupts onto entries. However 
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task body TIMED -RESOURCE is 
BUSY : BOOLEAN := FALSE; 

begin 
loop 

select 
when not BUSY => 

accept SEIZE do 
BUSY := TRUE; 

end; 
or 

accept RELEASE do 
BUSY := FALSE; 

end; 
or 

delay 100.0; 	-- time out requests 
BUSY := FALSE; 

end select; 
end loop; 

end TIMED-RESOURCE; 

Figure 3-3: A timed, conditional select statement 

the huge amount of work required to implement an Ada system prevented it 

being a practical choice for this work. 

3.1.2 Modula-2 

Modula [Wirth 82] adopts the approach of implethenting concurrency via system 

defined procedures, rather than language extension. A process is an indepen-

dently activated procedure 1  created by a call to the following: 

PROCEDURE StartProcess (P : PROC; N : CARDINAL); 

The first parameter is the procedure, and the second the size of workspace it 

requires. The presence of this parameter betrays the lack of success of this style 

of concurrency integration: storage allocation is definitely a compiler task, and 

ought not to be left to the programmer. 

Interprocess communication is via shared-variables, with synchronisation by 

variables called SIGNALs. These are semaphores and the two operations defined 

on them, SEND and WAIT, are directly equivalent to the P and V operations 
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CHAN To.Probe, From.Probe, Heater, Keypad, Dispi, Disp2: 
PAR 

control (To.Probe, From.Probe, Heater, Keypad, Dispi, Disp2) 
temp.probe (To.Probe, From.Probe) 
heater.relay (Heater) 
display (Dispi) 
display (Disp2) 

Figure 3-4: The thermostat main code in OCCAM 

on semaphores. The Modula manual describes the use of these operations to 

implement monitors to control access to global variables, and this is obviously 

the normal method for interprocess communication. 

The use of what are in effect operating-system calls to implement concur-

rency, rather than language features does not place sufficient emphasis on the 

design of protocols. It can become difficult for the compiler to identify what is 

communication code from the rest of the program. For this reason Modula-2 

was discarded. 

3.1.3 Occam 

OCCAM [INMOS 84c] is derived from two schools of language design: BCPL 

[Richards 79] and CSP [Hoare 781. It draws a minimalist approach from BCPL, 

with the only data-types available being machine words and bytes, and the only 

structuring facility the array. From CSP it takes the guarded channel for com-

munication between processes, which in turn is based on Dijkstra's guarded 

commands [Dijkstra 75]. Every language statement is called a process, divided 

into two kinds: primitives, including assignment, procedure calls and channel 

input and output; and constructors. 

Constructor processes group primitives or other constructs. Figure 3-4 shows 

the PAR construct and procedure calls used to implement the thermostat example. 

Two operations are defined on the CHAN type variables: input (?) and output 

(!). These provide communication and synchronisation between processes; as 
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CHAN seize, release: 

VAR busy, T: 
SEQ 
busy := FALSE 
WHILE TRUE 

SEQ 
TIME ? T 
ALT 
NOT busy & seize ? ANY 
busy := TRUE 

release ? ANY 
busy := FALSE 

TIME ? AFTER T + 100 
busy := FALSE 	-- time out 

Figure 3-5: An example of the ALT construct 

channels are not buffered, both the input and output operations must be ready 

for the transfer to take place. This is a very close model to the one we have de-

veloped to describe the control systems. The ALT constructor allows conditional 

and timed communications; Figure 3-5 shows an OCCAM version of the Ada task 

given in Figure 3-3. The ALT construct provides more flexibility than the Ada 

select statement, as it can be replicated and contain replicated portions. 

Recursion is not allowed in OCCAM, nor are any dynamic structures such as 

run-time sized arrays of processes, so that the storage requirements of a program 

can be established at compile time. This is very helpful for describing hardware, 

where resources cannot be claimed dynamically, and has recommended it as the 

input language for at least one design automation system. Further evidence 

that OCCAM is suitable for description is that it has been used as a concrete 

syntax for the Jackson System Development Method [Featner 851 and also for 

general systems description [King-Smith 86]. The simplicity of the language 

means that it is suitable for theoretical analysis, and a set of laws describing 

OCCAM constructs have been developed at Oxford University [Roscoe 861, which 

is the first step towards program verification. Once this is possible, the same 

method can be used to prove hardware designs specified in OCCAM correct. 
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Since OCCAM is such as small language, without complex features, it is rela-

tively easy to implement. In fact a self-compiling portable compiler is available 

from INMOS [INMOS 84b], but this proved too slow to be practical. 

For all the foregoing reasons I decided to use OCCAM as the input language 

for the USHER system. Language design is frequently more religious than sci-

entific, and the designers of OCCAM probably shaved off rather more than was 

prudent, as shown by the development of OCCAM 2 [May 861, so the language 

implemented for the USHER system is a superset of the OCCAM Programming 

System' [INMOS 85]. It provides all the vector operations, and as will be seen 

in the next sections, various extensions directly required for the USHER system. 

A complete grammar for the extended language appears in Appendix A. 

3.2 Using Occam 

Having decided that OCCAM is an apt language for describing control systems, 

it is necessary to examine in detail how it can be used for this task. Figure 

3-4 shows an idealised description of the thermostat example, in it there are 

five parallel activities: the control software, the temperature probe, the heater 

switch and two displays. The control software is all that we want to describe in 

detail for the application, as it is the behaviour of the system. This can easily be 

done by using a procedure defined within the program. The information about 

the interfaces is an adequate but terse structural description of the system. How 

can we come close to this very high-level description in practice? 

Ideally the designer should be able to browse through a data-book of inter-

faces and choose the ones most appropriate to his needs. In. order to do so he 

'This is an INMOS product, and is a common environment for the development 

of OCCAM programs on different machines. It provides a primitive text editor with 

integrated syntax checker, and a machine dependent code generator. The language it 

accepts can be regarded as the de facto standard. 
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should not need to know how the devices are implemented. This corresponds 

closely to the conventional programming model of subroutine libraries. So inter-

faces can also be modelled as imported procedures. This requires the designer to 

know and include in the applications program only the minimum information: 

the name of the interface and the source library. This allows us to approach the 

ideal description, and in practice the thermostat program main code is almost 

identical to that given above. 

Most interfaces will need some configuration information. For example, how 

many digits there are in a display, or how many switches are needed. These data 

can be passed as parameters to the interface procedures, and the compiler can 

identify them as affecting the hardware. 

One of the objectives of the USHER system is to be able to simulate and syn-

thesise designs in various technologies, without changing the source code. This 

requires that the interface procedures can adapt to different circumstances. The 

effect to be achieved is that there is a version of each interface for simulation and 

then one for each technology. Obviously each version must present an identical 

interface to the application. 

OCCAM cannot be used directly as described here since it lacks separate com-

pilation. How this and other features have been added is described in Section 

3.4. For readers unfamiliar with OCCAM the next section provides a brief in-

troduction to aid the understanding of later examples. Readers who already 

understand the language should skip directly to page 46. 

3.3 Instant Occam 

The best introductory text book on OCCAM is "Programming in 'OCCAM': a 

tourist guide to parallel programming" [Jones 851. To avoid the need for finding 

a copy of this book, however, this section outlines the features of the language 

in sufficient detail to understand the examples used in the rest of this thesis. 
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One of the novel features of OCCAM is that it is indentation sensitive. This 

means that a new scope is entered by indenting code by an additional two spaces 

after a constructor: 

VAR a, b: 
SEQ 

- - This is nesting level 1 
VAR C: 

SEQ 
-- This is nesting level 2 
a := c 

b := a 
-- Thus is level 1 again, c is out of scope 

Statements are terminated at the end of the line, although a line break after 

a comma is ignored, and only one statement per line is possible. Comments 

are introduced by a double-hyphen "- -", and terminate at the end of the line. 

The case of letters is significant, keywords must appear in UPPER CASE and 

identifiers must always be used exactly as they were declared. 

This example also introduces the SEQ construct, in which all the statements 

are executed sequentially, like a normal begin. . . end block. It can be converted 

into a for-loop by adding a replicator: 

SEQ i = [0 FOR 101 

The loop counter i is created, it need not be declared and any other variable of 

the same name is out of scope. The loop executes ten times, ten is not the last 

value of the counter; in fact i will go through the range zero to nine. The only 

other cyclic constructor is WHILE. Sequential conditions, both of the if and case 

variety, are implemented by the IF construct: 

IF 
bool 
Screen ! V 

n > (3*q) 
Count := Count + 1 

TRUE 
SKIP 
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Else clauses are introduced by a TRUE condition. At least one condition must 

be valid, or the construct is equivalent to the STOP statement, which suspends 

the current process indefinitely'. For this reason most IF statements end with 

TRUE. . .SKIP. 

Declarations precede blocks and are followed by a colon: 

VAR s, a [10], line [BYTE 801: 
DEF ESC = 27, Limit = 25: 
DEF Prompt = "(Y or N) ? ": 
CHAN Transfer, Lights[Limit]: 

The first declaration introduces a host-word-size variable, an array of ten words 

in which the index range is zero to nine, and an array of eighty bytes, index zero 

to seventy-nine. The next two declarations define two constants and a constant 

array. Strings are arrays of bytes, with the first byte the length of the string. 

The last declaration is of a single channel and an array of channels. 

Arrays can be indexed as either words or bytes, determined by the presence 

of the keyword BYTE before the index, but are only one dimensional. Sections of 

arrays, or slices can be operated on at once, for example: 

VAR v [10], a [20]: 
SEQ 

[BYTE 0 FOR n] := a [BYTE 26 FOR n] 

a [1 FOR 51 := TABLE [13, 27, 19, 126, 991 

Slices can be used in assignment as shown here, or in channel operations or 

passed as array type parameters to procedures. 

Procedure declarations look like this: 

PROC id (VALUE p1, VAR p2, CHAN c []) = 
SEq 

C [0] ! p1 
c [1] ? p2: 

2 This feature was introduced with the OCCAM Programming System and does not 

appear in the original manual 
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Note that the last statement of the procedure ends with a colon, which makes 

the declaration conform to the 

Declaration - Type Identifier "=" Value 

syntax of the other declarations. VALUE parameters appear like constants within 

the procedure; they cannot be assigned new values. Array parameters do not 

have bounds, and indexing is unchecked. 

This brief description covers everything except the concurrent facilities of 

the language. The PAR construct is used to execute its component processes in 

parallel. There is no concept of a process-block: any statement can be executed 

as a concurrent process. Figure 3-4 on page 39 demonstrates this construct. 

Arrays of processes can be created with a replicated PAR, but the number must 

be a compile-time constant. 

Processes communicate via channels, which are single-direction and can link 

only two processes. Communication only occurs when both parties are ready. 

Any value can be sent via channels, they are not typed or checked, so the pro-

grammer must ensure that processes use the same protocol. The special value 

ANY can be used for both input and output when only the synchronisation effect 

is important. 

The ALT construct provides a choice between inputs, whichever happens first 

activates its associated process; Figure 3-5 on page 40 shows an ALT. Each pro-

cess guard can either be an input, the always-ready SKIP, or a boolean expression 

plus either an input or a SKIP. If the condition is false, that guard is not open. It 

is one of the deficiencies of the language that output guards are not permitted. 

The special channel TIME can be used as a guard to specify a time-out on a 

communication. It can also be used outside of ALT guards to enquire the current 

time, and to specify a delay with the AFTER operator. 

Channels are used to implement file input and output on conventional com-

puters. The OCCAM Programming System provides channels Screen, Keyboard, 

and mt lien and Outfilen. Files are opened and closed by outputting special 
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values to these channels. These are the only facilities provided by INMOS, even 

a procedure for outputting numbers must be written by the user. The USHER 

OCCAM system corrects this, providing a number of output and utility proce-

dures, and these are used in some of the examples. Also included with USHER 

is the special channel Terminal which is a terminal-independent screen driving 

package. This provides facilities for moving the cursor and clearing sections of 

the display, which is useful for simulating display devices. 

3.4 Extending Occam 

Modifying programming languages is not sensible unless it is absolutely vital. It 

has the effect of decreasing portability or requires the programmer to work with 

a subset, so what starts as an extension actually reduces the available facilities. 

The first rule of expanding a language is "don't". The second rule is, if you must 

do it, try and match the original language as closely as possible. 

3.4.1 Defining procedure libraries 

Bearing in mind these maxims, we approach OCCAM requiring to define libraries 

of procedures and refer to them from other programs. At present the language 

makes no provision for this facility. The OCCAM Programming System supports 

what is called separate-compilation, but this is really partial pre-compilation. 

Within the Programming System procedures can be held in folds and it is possi-

ble to compile individual folds, which are then bound into one object when the 

outermost fold is compiled. This presents a number of source-code-control prob-

lems, such as what happens if prior declarations change, and does not provide 

any way of sharing procedures between programs. 

The Ada package is a very elegant method of defining a library of subroutines. 

It allows the programmer to hide or make available as much or as little as is 

wished. Unfortunately it is at odds with the OCCAM syntax and philosophy. 
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Modula-2 uses export and import lists to display or aquire routines from its 

modules. This is still a clean method and less syntactically demanding. Most 

Pascal compilers now allow the inclusion of externally defined procedures by 

replacing the code body of a procedure declaration with the keyword EXTERN. 

This greatly reduces the violence done to the syntax but is not very readable, 

and has already been used with OCCAM [Stallard 85]. 

An infusion of these schemes, kept within OCCAM's declarative syntax has 

resulted in the following organisation. The keyword PROC is replaced with IMPORT 

or EXPORT as required. For an import, the code body is replaced with a FROM 

statement identifying the source library. An example of an imported routine is 

IMPORT Write (CHAN To, VALUE Number, Places) = 
FROM STANDARD: 

which shows one of the output routines provided in my OCCAM system in the 

library STANDARD. Library files are headed by a LIBRARY- deelaration, so-the-

export definition of the previous example would be 

LIBRARY STANDARD: 

EXPORT Write (CHAN On. VALUE Number, places) = 
VAR s [BYTE Bu:ffer.Size]: 
SEQ 

IToS (Number, Places, s) 
PrintString (On, a): 

Library files may declare global variables to compensate for the lack of own 

data. Since declarations cannot include initialisation, libraries can contain main-

code bodies. These are defined to be executed before the main-code of the final 

program, but if more than one library is in use the order of execution is not. It 

is dangerous for one library initialisation code to call procedures from another 

library as it may not have been initialised. Exported procedures can call other 

exports or procedures imported from other libraries. 

One possible reason why original OCCAM does not include external linkage 

is to allow the compiler to enforce the no-recursion rule. It is not practical to 
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check for mutually cross-calling procedures in different libraries at compile time. 

The programmer is required to keep a strict discipline and check that this does 

not occur; however this is hardly an arduous task and is far outweighed by the 

benefits of having libraries. 

3.4.2 Defining interface libraries 

We can now define libraries of procedures, but what is really required is the 

definition of libraries of interfaces. Section 3.2 identified three requirements for 

interfaces: external definition, configuration parameters and technology adapta-

tion. It would be possible to provide all these functions using the basic facilities 

described above. The identifiers of EXPORT procedures that are interfaces could 

all start with "IF.", marking them as such, and the configuration parameters 

could all start "CONFIG.", and there could be a different library for each technol-

ogy. These are all inelegant solutions, and since what they are adapting is not 

part of the standard language it is preferable to extend the extension instead. 

For both the export and import cases the keyword PROC is replaced with 

INTERFACE. This does not allow interfaces to invoke other interfaces, but as will 

be seen later this is not possible anyway. Configuration parameters are defined 

with the keyword CONFIG, and appear as value parameters, except that the value 

passed must be a compile time constant. An import of an interface appears like: 

INTERFACE seven.segment (CONFIG digits, initial.value, 
CHAN data) 

FROM display. drivers: 

The syntax for interface library definitions is the same as ordinary libraries, 

in fact they can contain ordinary export procedures. The difference arises in 

the definition of the code body. Each interface must have a simulation body, 

and a body for each synthesis technology. The closing colon of the procedure 

comes at the end of the last body; the end of the other bodies is detected by the 

indentation level. A definition of the above interface would be of the following 

form: 
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LIBRARY display. drivers: 

INTERFACE seven. segment (CONFIG digits, initial, value, 
CHAN data) = 

SIMUL 

SYNTH Z80, six.seven 

SYNTH CMOS.1, big.drive.SS 

The keyword SIMUL introduces the simulation body, then each synthesis body 

is headed with SYNTH. After this keyword are the technology-identifier and the 

hardware-identifier. The technology-identifier is used during linking the appli-

cations program to select the appropriate code body. The hardware-identifier 

associates a circuit with the procedure and is used by the hardware allocator. 

Several interface procedures can use the same hardware, presenting different ap-

pearances to the control program. For example a seven-segment display driver 

could be used to display time, decimal numbers without leading zeroes, or hex-

adecimal numbers. The hardware- and technology-identifiers exist in separate 

name spaces, and do not clash with program identifiers. 

3.4.3 Within a SIMUL body 

A simulation body runs in the normal OCCAM environment, so is free to use 

the special input-output channels. These can be used for reading drive-files of 

precomputed data or writing trace-files to allow later analysis. The channel 

Screen has the special property that it can be used by more that one process 

at once. The simulator must manage this, providing the applications program 

and each interface with a screen "window". The Keyboard channel cannot be 

similarly shared. 
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3.4.4 Within a SYNTH body 

It is intended that in a highly integrated synthesis system the hardware would 

communicate directly with the control program via the channel parameters. For 

example the IMS T424 transputer [INMOS 84a] has two interrupt signals which 

map onto OCCAM channels. In such a technology the synthesis body can sim-

ply be the OCCAM no-operation statement SKIP. In a conventional technology, 

however, the synthesis body must drive the hardware of the interface. Since 

the hardware is allocated automatically, the interface can make no assumptions 

about device addresses, so this must be packaged by the compiler. Two special 

channels are provided to support this: HARD and EVENT. 

HARD is a dynamically sized array of channels that can be used for both input 

and output. It is used for reading and writing to device registers. Figure 3-6 

shows the actual code for driving a Z80 parallel input-output circuit (PlO) as a 

bargraph driver. The indexing of HARD varies according to the implementation. 

Technologies based on 8-bit microprocessors, for example, use byte indexing 

irrespective of the presence or absence of the BYTE keyword. In these systems 

the unit of data transfer will also be a byte. 

The special channel EVENT is used for trapping interrupts. The term "event" 

is derived from the transputer implementation of OCCAM. It can only be used 

for input, and some circuits will present the data that caused them to interrupt 

at that input. Others will only perform the equivalent of an ANY-output to the 

channel. An example of the former kind appears in Figure 3-7; this is the real 

code for an analogue-to-digital -converter; Channel- communication- is- 'normally 

synchronised, but conventional peripheral devices do not operate in this manner, 

and if a response is not forthcoming data can be lost. To avoid this happening 

the EVENT channel is always buffered by at least one item. If an interrupt occurs 

and the relevant process is not waiting on EVENT, the interrupt is answered and 

the data stored until the next input on EVENT which does not involve any delay. 

Normally the buffer is only one unit long, so interfaces should also have a process 
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DEF A.Data 	= 0, 	-- device register addresses 
A.Control = 1, 
B.Data 	= 2, 
B.Control = 3: 

DEF Control.Mode = #CF. -- control codes for the PlO 
Interrupts.Off = #07: 

INTERFACE Bar.Graph (CONFIG Bits, CHAN Show) = 
SYNTH Z80, Bar.Graph 
-- set up PlO as desired 
HARD EA.Control] ! Interrupts.Off 
HARD [A.Control] I Control.Mode 
HARD [A.Control] ! 0 	 -- All outputs 
HARD [B.Control] ! Interrupts.Off 
HARD [B.Control] ! Control.Mode 
HARD [B.Control] ! 0 	 -- All outputs 
-- now send it some initial data 
HARD [A.Data] ! 0 
HARD [B.Data] I 0 
WHILE TRUE 
VAR Data: 
SEQ 

Show ? Data 
HARD [A.Data] ! Data/\#OOFF 
HARD [B.Data] ! Data>>8: 

Figure 3-6: The channel HARD in use 

INTERFACE Int.ADC (CHAN Request, Data) = 
SYNTH Z80, ADC 
WHILE TRUE 

VAR. D: 
SEQ 
Request ? ANY 	- - wait to be asked to do something 
HARD [0] ! ANY 	-- set up conversion 
EVENT ? D 	 - - read result on interrupt 
Data I D: 

Figure 3-7: The channel EVENT in use 
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waiting for an event. It is possible for interface procedures to contain nested PAR 

constructs, with one component always waiting for data from the interface. 

Neither HARD nor EVENT can be passed as parameters. As synthesis bodies 

will be running on minimum-configuration machines, none of the normal input-

output channels are available. This is also true of applications programs when 

used for synthesis, but for development purposes with the simulator, diagnostic 

information can be generated through these channels. 

3.4.5 Instantiating Interfaces 

The action of creating an interface in an application program is called instantia-

tion, and is distinct from the declaration of the interface-procedure. Two things 

happen at instantiation, firstly the procedure is activated as a process, and sec-

ondly the relevant hardware, as defined by the hardware-identifier, is marked for 

inclusion during synthesis. Syntactically interface instantiation is identical to a 

procedure call, but it can only occur as an element of a PAR or replicated PAR 

construct with a unique path to the top level. 

As each interface is instantiated it is allocated an address, which is stored as 

part of the information in the enclosing PAR construct. Obviously there must be 

a one-to-one mapping between addresses and interfaces, so instantiation must 

be in a PAR that is activated only once. This is an aspect of the code-sharing 

problem, introduced in Chapter 2. An interface, which is a unique, unshareable 

object, cannot exist in a control sequence that is common to several processes. 

For example, the following code for a chart-recorder is illegal: 

CHAN data [channels]: 
PAR I = [0 For channels] 

PAR 
•data.probe (data Ci]) 
pen.driver (data Ci]) 

This is not valid because the simple PAR is used to store the addresses of the 

interfaces, and is required here to hold them for all the devices of the replication. 

By inverting the nesting, however, the above example can be described: 
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CHAN data [channels]: 
PAR 

PAR I = [0 For channels] 
data.probe (data [i]) 

PAR I = [0 For channels] 
pen.driver (data [I]) 

Interfaces can only be instantiated within a procedure if that procedure is 

only called once. This is because the address information is stored in the PAR 

within the procedure, not at the higher level. The same reasons prevent interfaces 

invoking other interfaces. The compiler checks that these rules are not violated. 

3.5 Software Structure 

Having established the aims of the system and defined the input language, an 

implementation stragtegy must be devised. The end product will be a simulator 

and a framework for building synthesisers, with a prototype to demonstrate the 

validity of the approach. 

Implementation is constrained by available computing resources. The possi-

bilities were a heavily overloaded VAX 11/780 running VMS or the Departmental 

Advanced Personal Machine (APM) with very little software but providing ad-

equate performance. In light of the response times the APM was chosen as the 

most suitable computing engine, and this influences other decisions. All the con-

ventional programs are written in Imp 77 [Robertson 80], which is available on 

all the principle available computing services,'so does not restrict the system to 

the APM. 

The simulator and each synthesiser will both accept the same applications 

program and interface libraries, so could use a common parser. Each tool will 

require a different code body from the libraries, but a single parameterised linker-

selector could be used by all of them. This suggests the development of a common 

front-end and intermediate-code [Robertson 81]. 
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To assist customers in developing OCCAM systems INMOS distribute a port-

able compilation system called the "portakit". This compiles full OCCAM into 

a byte-stream code called the Portakit Instruction Set (PIS sic). This compiler 

is itself written in OCCAM and is distributed in source and PIS form, with in-

terpreters in several languages. This was evaluated as a possible basis for the 

front-end and intermediate-code for USHER; The first step was to mount a PIS 

interpreter on the APW and this demonstrated that the compiler was much too 

slow to be practical. For example a three line test program to write the print-

able ASCII characters to the terminal took 4 minutes 25 seconds to compile. 

In addition the compiler source was 15,000 lines long and was not amenable to 

modification, and no run-time checking or diagnostic information was generated. 

This left the field open for developing a completely new system, the overall 

structure of which is shown in Figure 3-8. An OCCAM compiler, OC, gener-

ates an OCCAM Intermediate-Code (OIC) module, which can then be linked. 

with other OIC modules and then either executed directly or used as input 

by the synthesis tools. Each synthesiser consists of three parts, an allocator, 

a code-generator, and an -Artificial Engineer. The allocator identifies interface 

instantiations and allocates them addresses and interrupt vectors, outputting 

a hardware-requirements list. The code-generator produces native code to run 

on the appropriate processor, and possibly an architecture specification for cus-

tomised processors. The Artificial Engineer assembles the required hardware 

from the hardware-requirements list. 

This is better explained by outlining the steps involved in the creation of 

a design. From the specification of the product, the engineer identifies which 

interfaces are required, and matches them with ones available from the USHER 

libraries. Assuming that they are all available, the engineer writes the control 

program, and runs it on the simulator until it works as desired. He then compiles 

it with the appropriate back-end, which produces a code file and a hardware- 

'Thanks are due to Dr David May of INMOS Ltd. for supplying the portakit, and 

to lain Baird for mounting it as part of his final year project. 
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requirements list. The Artificial Engineer is then applied to the hardware-

requirements list and produces the fabrication details. The human engineer 

is then responsible for the manufacture of the hardware. 

If the design under development requires interfaces which are not already 

available, then these must be created ad installed in the USHER library. The 

interface designer first defines the specification of the interface, and its occA.v1 

procedure-header. He must then design, construct and test the hardware, SYNTH 

and SIMUL code-bodies for the interface. The OCCAM definitions of the interface 

are installed in the USHER library using standard tools from the OCCAM sys-

tem. The hardware-design knowledge must then be captured for the Artificial 

Engineer. 

OC is documented separately [Marshall 86], but is described briefly in the 

next section. Chapter 4 describes the simulator, Chapter 5 covers the proto-

type Z80 allocator and code-generator, while Chapter 6 documents the Artificial 

Engineer. Table 3-1 shows the size in lines of each of the parts of the USHER 

system. 

3.6 An Occam front-end 

The most common form of intermediate code is the byte-stream. This is like 

the order code of a real computer, but is defined on an imaginary architecture 

suited to the execution of the language. The best know example of this is P -

Code, used in the UCSD Pascal System, which has been successfully mounted 

on many machines. The portakit instruction set is another example. 

These codes present two problems, the first is that the compiler has to package 

up information which is then unpacked by the interpreter or code generator. 

In this process a considerable amount of information can be lost, leading to 

the second problem: diagnostics. For the USHER system the OCCAM is .to be 

executed for simulation and diagnostic purposes, so code and variable tracing is 

very important. When an error occurs within a PIS program, for example, the 
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Figure 3-8: The structure of the USHER system 



i_napler .s. me unxit aystem 	 01 

Program Language Modules_[ Size]  

Grammar APG 2 530 

Front End Irnp77 21 7272 

Simulator 1mp77 13 4527 

Run-TimeLibrary OCCAM 1 250 

Z80 Code Generation 1mp77 7 4828 

Z80 Allocator Irnp77 3 488 

Z80 Run-TimeSupport Z80 Assembler 1 719 

Z80 Executive Z80 Assembler 1 780 

AE Shell Prolog 4 99 

AE Designers Prolog 5 740 

Z80 Processor Base ESDL 1 74 

Total 20307 

Table 3-1: The size of USHER 

only information presented to the programmer is the PIS code address and the 

address of the workspace of the failing process, or even worse simply the message 

"deadlock". This is totally unhelpful, and is typical of the form of report that 

byte-stream based systems can produce. 

When presented with the same problem, the definition of an intermediate 

code, for the VLSI design-language SCALE [Marshall 83] I developed an alter-

native type of code, a high-level homogeneous data-structure, and this was used 

as the basis for OIC. Essentially OIC is an executable, abstract syntax-tree, 

which combines the understandability of the source language with the run-time 

efficiency of the byte-stream code. To understand this, consider the representa-

tion of a variable in each form. 

The programmer associates an identifier with the variable, and uses that to 

refer to it in the source program. It is in these terms that diagnostic information 

should be presented. Within the byte-stream code variables are identified by 

an address, probably an offset within a stack-frame. To present the variables in 
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diagnostics a separate table of source code tie-ins is needed and then the stack 

must be unwound. In the data-structure based scheme a record is associated with 

each program object, and this contains both the identifier and the stack offset. 

Instructions refer to the variable by using a pointer to the record, providing the 

efficiency of byte-stream, and allowing diagnostic information to be generated 

on-the-fly and for stack dumps. 

There are, of course, disadvantages to the data-structure code. The most 

obvious is that the size of the structure is very large, at times larger than the 

original source file. This is only a severe drawback if the compiler is to be 

shoe-horned into a small computer. Another is that it is slightly slower than 

byte-stream as an additional dereference is required to access the stack offset. 

There is also the well known problem of saving a heap-based data-structure in a 

file and then having to restore it at a different address. This, however, is simply 

an implementation problem and has been solved for OC. 

So far only the advantages for interpretation have been identified. OIC is 

also well suited to code generation. Typically intermediate codes have some 

fixed architecture in mind: P-Code and PIS are stack based, Z-Code for Algo168 

assumes the presence of eight registers. In OIC, expressions are stored in tree 

structures, and can easily be mapped onto either style of architecture. OIC is 

also word length independent, and can work with both 32-bit and 16-bit words, 

although modules of different word length cannot be mixed. 

Two kinds of parsing technology are currently in vogue: programmed recur-

sive-descent and grammar generated. In the recursive-descent style the grammar 

is built into the compiler and modifying the accepted language can be a sub-

stantial task. Parsers that are built automatically from the grammar they are 

to accept allow changes to syntax to be made very quickly. Since this project 

involves language development the grammar-generated scheme was adopted. 

The local utility APG [McCaskill 851 was used to generate the parser in 

1mp77. This tool reads a lexical definition file, containing definitions of the 

keywords and tokens of the language, and a grammar. Actions can be associated 

with each production, so that when a phrase is recognised a procedure is called. 
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The OIC file is generated by this mechanism. As well as the obvious checks for 

syntactic errors, extensive semantic checking is performed. 

OIC structures can be stored in files, by converting the internal pointers to 

block number and offset tuples. This is always the case when library files are 

compiled, but programs are normally parsed and executed or compiled to code 

immediately from the in-store OIC. OC includes a linker and dictionary mecha-

nism. When a library is compiled an entry is made in a dictionary, which is then 

used to check that import declarations are correct. The dictionary also contains 

the name of the OIC file for the library, so programs are linked automatically. 

Utilities are provided for accessing other user's dictionaries. After linkage a pa-

rameterised routine selects the code bodies from the libraries according to the 

appropriate technology-identifier. 

A version of OC and the USHER simulator without the interface extensions 

has been successfully used to teach OCCAM in an undergraduate class. It can 

also run the test programs distributed with the portakit, providing evidence that 

OC is a sound base on which to build. 



Chapter 4 

The Simulator 

Simulate: 
1. to give a false appearance of; feign 

2. to look or act like 

Webster's New World Dictionary 

In the traditional hardware-first design style for control-computers, the soft-

ware is developed using an in-circuit emulator. This is a device which plugs into 

the board where the microprocessor would normally be mounted, performing 

exactly as the microprocessor would as far as the hardware is concerned. It runs 

the software and the hardware is exercised: data is captured, displays display. 

However, via the emulator, the programmer can see what is happening inside 

the system. He can set traps, examine the contents of registers and memory, 

and even specify assertions which are continuously checked. 

If the controller is implemented in silicon this technique is physically not 

possible, and if the software is being developed first it is contrary to the design 

method. In both cases it is not the control processor that must be emulated, 

but the surrounding interface circuitry and its environment. The programmer, 

however, must still be able to examine the internal state of the software. This 

chapter describes the design, implementation and use of such a tool. 

Chapter 3 defines an extension of OCCAM that allows the interface designer 

to specify a simulation body with each interface. This code emulates both the 

interface and its environment. In this way the control program can be linked 

with the simulation bodies of the interfaces and executed conventionally, with 

normal program debugging tools used for internal examination. 
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With a programming language two kinds of execution are possible: compiled 

and interpreted. Compilation is undoubtedly faster for execution, but has a 

longer set up time as the intermediate code must be translated and then the new 

machine-code loaded, linked and run. Debugging tools must work at a very low 

level, and the implementation of watch-points can slow execution considerably. 

Interpretation's main advantage is that it is machine independent, and all the 

source-code information is available for generating diagnostics. During program 

development the slower execution is offset against the compilation time. 

An interpreter was chosen for this research for several reasons. The first was 

that it does not tie the simulator to the APM. The next was that the APM did 

not provide any existing code-generation or machine-level debugging tools that 

could have been adapted. OIC is equally suited to compilation or execution, but 

diagnostic information can be accessed immediately from an interpreter, whereas 

it would have had to be packaged for use with a native-code module. 

The first sections of this chapter describe how the interpreter part of the 

system was implemented: Section 4.1 outlines the store allocation strategy, Sec-

tion 4.2 describes how the concurrency operations are implemented. Section 4.3 

shows how the basic OCCAM interpreter was extended to support simulation, 

and examines some example SIMUL bodies, while Section 4.4 looks at the diag-

nostic tools which are provided. Finally, Section 4.5 analyses the simulator to 

see how reliable it is: whether it corresponds to definition 1 or 2 at the start of 

the chapter. 

4.1 Storage Allocation 

OCcAM has been defined such that it is possible to work out the store require-  
- 

ments of a program at compile time. Since this calculation is back-end specific, 

OC provides a generic procedure for performing it. This executes a depth-first 

traversal of the OIC tree, filling in two fields of each OIC instruction record. 

One field is the store requirement for any variables - local to that instruction, 
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and the other is the total store needed for the locals and any nested code. For 

PAR constructs the total requirement is the sum of all the requirements of its 

components, but for the other constructs it is the maximum requirement that is 

used. Procedure calls have a requirement equal to that of the code of the called 

procedure. 

Any process, including primitives, can have local variables, so that the fol-

lowing code is valid, although pointless: 

VAR temp: 
temp := 5*q 

with the variable temp existing only for the duration of the assignment. This 

form of declaration does have a use for declaring variables to be passed as dummy 

parameters to a procedure. To avoid having to allocate store for primitives OC 

moves these declarations out to the enclosing construct, into an area at the end 

of the normal variables. This is shared by any other temporary declarations and 

is the size of the largest object. 

An OCCAM program is a tree of processes, with the outermost level also a 

process, and sub-processes created with the PAR construct. The store required 

by a sub-process is part of the store area of the enclosing process. The store area 

used by a process is called its workspace. Since the interpreter does not rely on 

the host architecture to execute the program it is free to implement workspaces 

in a manner appropriate to the language; in fact this interpreter uses multiple 

stacks. 

All program data exists in a single data-stack, which is the workspace of 

the global process. This stack does not contain any control-flow information, 

which is kept in a stack per process. Each process is represented by a process 

control block (PCB). These are created off the heap and are linked in a tree from 

the global process. A workspace stack is attached to each PCB, implemented 

as a linked list. When a new sequential construct is started, or a procedure is 

called a new workspace record is pushed onto this list. Each record contains 

the addresses of the ends of the newly extended workspace and a pointer to the 

return instruction. 
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The workspace records also contain a pointer to a display. Displays are 

devices to allow code to access variables at an outer level of static nesting. 

Since variables are addressed by an offset within the workspace, the address 

of the workspace which contains the variable must be known. Each level of 

nesting is allocated a number, its static level, and this is used to index into an 

array of workspace pointers, providing very fast access to the variable. With a 

conventional sequential language this is easy to implement, using a global array, 

with portions of it cached in registers to accelerate access. Unfortunately this 

does not work for a highly concurrent language like OCCAM, where each process 

will have different procedures active at different static levels. To overcome this, 

each process has its own display derived from the parent process. 

Displays are only one way of accessing non-local variables. The use of static 

links is now rather more common, and they are used for both the portakit and 

transputer instruction sets [Whitby-Strevens 851. In this scheme each stack 

frame includes a back pointer to the static level above the current one. This 

is not always the one immediately enclosing the current workspace since it is 

possible to call procedures declared at further out levels. There is a considerable 

penalty in accessing variables that are several frames higher, so most architec-

tures include a pointer to the outermost block. In this way both local and global 

variables can be accessed quickly, but intermediate accesses are still slow. This 

is justified by analyses of the usage patterns of typical programs, where most 

variable references are either local or global. With displays all accesses are of 

uniform high speed, but more space is required to implement them. I chose 

to use displays for the interpreter as it is already slow, and implementing the 

look-back loops in a high-level language would be inefficient. 
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4.2 Implementing Concurrency 

The implementation of the sequential constructs of OCCAM is unremarkable, so 

is not described here. The simulated concurrency, however, is more unusual so 

the following sections describe how the PAR, ALT, and communication constructs 

are implemented. In this section the words "process", "task' and "job" are used 

interchangeably to improve readability. 

4.2.1 PAR 

The PAR construct launches its component statements as parallel processes and 

suspends the parent until all the subprocesses terminate. Two things must be 

done before starting a process: a workspace and a process control block (PCB) 

must be created for it. The subworkspaces are created within the parent's 

workspace, as shown in Figure 4-1. Note that this is like a procedure call, 

except that several subspaces are created simultaneously. The PCB is created 

off the heap, and must be added to a run-queue. The PAR construct can be 

preceded by the modifier PRI, converting it to a prioritised construct, where the 

priority of each created process is determined by the order they appear: first is 

highest and the same as the parent, last is the lowest. The INMOS products, 

including the transputer, only have two levels, but since many is as easy to pro-

vide as two, this interpreter provides six but can be constrained to use as few 

as one for simulating different architectures. In addition to the run-queues, all 

PCBs are kept on a global list to allow the debugger to access all the processes. 

In order to simulate multiprocessing, all processes which are ready to run 

must be given some processor time. Several schemes are possible, the simplest 

being self-scheduling, which relies on processes performing some function, such 

as channel communication, which cause them to suspend. This is used by the 

portakit, but does not prevent a high priority process that is looping from locking 

out other processes. So some control is needed in addition to the self-scheduling. 
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Figure 4-1: Nested process workspaces 

One possible method is to execute one statement from each process that is ready 

in a round-robin fashion [Ainscough 851, but this results in a considerable over-

head in context changing. The best option is time-slicing. The transputer mi-

crocode implements this, dropping the current process in favour of the next one 

in the high priority queue after 4096 processor cycles (a time of 819• 2S). If a 

high priority job becomes ready while a low priority one is executing, the low job 

is suspended. This interpreter has adopted a similar approach, since it does not 

have a clock interrupt it deschedules a process after executing 100 instructions. 

When a process is time-sliced or deschedules itself two operations are per-

formed. First the timer queue is checked; tasks can wait until after a specified 

time with the following statement': 

TIME ? AFTER last.time + alarm.period 

'This is another substantial change introduced with the Programming System. 
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Whether a process is ready to execute is determined by the value of the "wake-

after" time in the PCB. This is compared with the current time using arithmetic 

modulo the word length so that time is monotonically increasing, even when the 

representation wraps round. If any of the wake-after times are before the current 

time, those processes are added to the appropriate run-queue according to their 

priorities. Note that this definitely implements the AFTER operation and is not 

equivalent to being woken at an exact time. Details of the clock are given in the 

next section. 

The second task performed at rescheduling is checking for keyboard input. 

The special channel Keyboard suspends the inputting process until a character 

is typed, unless some have been typed ahead. The waiting task is placed in 

the keyboard queue, which must only ever contain one process to enforce the 

one process per channel rule. When a character is detected the waiting process 

is placed on the run-queue appropriate to its priority. This implements asyn-

chronous terminal input, but unlike other channels it is buffered. Once these two 

checks have been performed, the next process is chosen from the highest priority 

run-queue that is not empty. A low priority process is activated only when all 

higher priority tasks are suspended. 

Processes can die in two ways: they can terminate or stop. Termination is 

the normal way, happening when all the components of a process have been 

executed. When a job terminates it must reactivate its parent if it is the last 

subprocess running. To implement this the PCB contains a "child count" field 

which is the number of subprocesses still running and is filled in at the start 

of the PAR construct. When a subprocess terminates it decrements the child 

count of its parent and when that reaches zero the process deletion procedure 

reschedules the parent. If the global process terminates then execution ends. 

The stopped state is described as being for "error containment". The ef-

fect is that the process remains in existence but is permanently descheduled. 

Any other process which is dependent on that one for communication will hang 

and eventually the whole system deadlocks. While this does have the effect of 

"gracefully" stopping the program when an error occurs it is somewhat hard to 
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trace what started the collapse. My interpreter extends the stopping facility: 

normally when a process stops the whole program halts and the debugger is 

entered, clearly showing which task stopped. Alternatively a warning message 

can be generated and execution proceeds, or it can operate compatibly with the 

INMOS products. 

4.2.2 Channels 

Channels provide communication between processes and between the program 

and its environment. These two uses are described separately. 

Interprocess Channels 

A channel is implemented as a simulation-host size word, which is either the 

- special value Not.Process, or a pointer to a PCB. If it is Not.Process, then 

the channel is not in use and a process that wishes to make a communication 

fills in the channel transfer record in its PCB, places a pointer to the PCB in 

the channel and deschedules itself. When the other process is ready to complete 

the transfer it takes the pointer to the first process's PCB, performs the transfer 

as described in the record, resets the channel to Not .Process, puts the other 

process back on the appropriate run-queue and then performs a reschedule. 

This pattern is followed whichever process starts the communication, al-

though it is the inputting task that always performs the copy. The form of 

the transfer record varies depending upon which kind of communication it is: 

word, ANY, or slice. Neither the OCCAM Programming Manual or System give 

any guidance on what happens when the type of the input is different from that 

of the output. For example, can an ANY-input be used to ignore the argument 

of a word output? Is a word length slice transfer the same as a word commu-

nication? This interpreter implements all these cases, but faults slice transfers 

which are of different lengths. It also checks for processes sharing channels. 
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Special Channels 

The only channel that is built into OCCAM is TIME. This is used for reading the 

current time and is equivalent to assigning the clock value to the variable and 

does not actually communicate or cause a reschedule. It does, however, suggest 

that the clock is in some way a separate device. The TIME channel can also be 

used to suspend a process, as described on page 65. 

The resolution of the clock is an important issue, and can vary between 

implementations. For example in the VAX version of the Programming System 

the clock is in lOOnS units, updated every lOmS and transputer time is measured 

in 1S units. This is due to implementation expedience, for example the odd 

VAX format is due to the hardware. In this interpreter the basic clock unit is 

imS as this is the time provided by the APM. The word length of the machine 

also affects practical clock units, for example, a 1jS clock on a 16 bit machine 

would make the longest possible delay 0065 seconds, which is much too short 

to be useful. Even on the transputer the maximum delay time is approximately 

72 minutes, which again may not be long enough, requiring the programmer to 

build longer delays herself. 

To allow simulation of different architectures an integer clock factor can be 

set to adjust the basic clock rate. If this is a positive number it is divided into 

the time, or if negative the absolute value is used to multiply the time. It is 

possible to change value as the program runs as an aid to debugging: events 

that happen very fast can be slowed down, or very slow processes speeded up. 

The other special channels are declared with the special syntax: 

CHAN Screen AT 1: 

which was introduced to allow hardware links on the transputer to be declared, 

but has now been used for integrating OCCAM into programming environments. 

It is, in effect, a form of operating system call, where the compiler or interpreter 

maps the "address" onto a procedure [Hazari 86]. The complete set of special 

channels is shown in Figure 4-2 and with the exception of Keyboard they all 
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CHAN Parameters AT 0: 
CHAN Screen AT  
CHAN Keyboard AT  
CHAN FileInO AT  
CHAM FileIni AT  
CHAN FileIn2 AT  
CHAN FileOutO AT  
CHAN Fi].eOutl AT  
CHAN FileOut2 AT  
CHAN ErrorMessage AT  
CHAN Date AT  
CHAN Time AT  
CHAN Terminal AT  

- - Command line parameter 
- - Output on the terminal 
- - Input from the terminal 

Communication with the 
-- file system, channels 
- - used in in/out pairs 

- - Reports from the file system 
- - The current date 
-- The time of day 
-- Cursor moves etc. 

Figure 4-2: The special channel declarations 

operate immediately. It would be possible to implement the file communication 

channels asynchronously, suspending the process until data arrives from the disk, 

but in the interests of portability and simplicity they are mapped onto 1mp77 

input-output routines. 

One of the limitations of using channels for implementing what are in effect 

procedure calls is that parameter passing is difficult. To cure this, each channel 

that requires more than one parameter per operation is implemented as a state-

machine. For example the channel Terminal can be used to move the cursor on 

the screen to point (3, 10) with the following statement: 

Terminal ! Term.Cursor; 3; 10 

When the channel receives the value Term. Cursor it moves to a state requiring an 

X-coordinate, then a Y-coordinate, then performs the cursor jump and returns 

to the waiting state. Another approach would be to use reverse-polish, where 

parameters are pushed onto a stack to be popped off by the operators, but this 

is a less elegant solution. It is obvious that the one process per channel rule 

must be adhered to with these channels with state. 
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This complicates matters as a channel transfer record must be created for each 

element of the loops and the replication values must be set up before making 

the transfer. The facilities that make ALTs difficult'to implement also make, it 

powerful, but it is essentially an inefficient construct with very high overheads. 

4.3 Assisting Simulation 

Once more we have reached a point where a conventional OCCAM system has been 

described, and it can either be extended to support interfaces or the onus can 

be placed on the programmer. Assuming that the one process per channel rule 

can be bent slightly to allow multiple processes to use the channels Screen and 

Terminal, each SIMUL body could always use a particular pair of File channels 

and a fixed area of the screen. A simulation program for the thermostat was 

built to test this method, and uncovered a number of problems. 

The first difficulty emphasised the need for strict enforcement of the channel 

rules. One process would output a cursor jump only to be descheduled and 

another one put out its message at the wrong point on the screen. A solution 

that the designer can employ is to use a screen mixer process which drives the 

screen from an array of channels, with each outputting process claiming the 

driver until it has finished. This approach works for a static program, but is not 

suitable for a dynamically constructed simulation. 

The second complication is that of replicated interfaces. If a simulation body 

has screen coordinates built-in to it, then only one interface can be instantiated. 

The solution to these two problems is for the interpreter to provide a window 

manager, giving each interface a portion of screen of its own. A modified version 

of the hardware allocator code is used for this, allocating one line at the top of 

the screen for each interface. This was developed to use a character terminal 

rather than a graphics device for portability and simplicity. The allocator draws 

a frame around the lines or, micro-windows,, used for the interfaces, and prints 

the name of each interface at the left. The bottom of the screen can be used 
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Plate 4-1: Simulating an eight-channel chart-recorder 

for diagnostic messages from the control program, or the debugger. Within 

each micro-window text is scrolled horizontally, newlines appear as "I " and the 

channel Terminal can be used to clear areas and move the cursor, although the 

Y-coordinate is ignored. An example demonstrating these facilities appears at 

the end of the section. 

Multiply instantiated interfaces currently cannot read from different data 

files. One of the major limitations of the APM is that it only allows three files 

to be open in each direction, which would limit the usefulness of this facility. 

At present each interface choses one of the file-channel pairs, and opens a file of 

a fixed name. The way this could be implemented, given an arbitrary number 

of input-output streams, is to provide each interface with channels DRIVE and 

TRACE, which would be connected to files during the allocation phase. 

The use of different word lengths, priority ranges and change the clock rate 

all contribute to simulation. By default the simulator is set up to mimic the 

Z80 system described in the next chapter, with the word length set to 16 bits, 

only one level of priority and the clock period set to 20mS, giving a maximum 
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INTERFACE data.capture (CHAN data) = 
FROM chart. recorder: 

INTERFACE pen.driver (CHAN with) = 
FROM chart.recorder: 

INTERFACE motor.control (CONFIG start, CHAN speed) = 
FROM chart.recorder: 

INTERFACE switches (CONFIG number, CHAN return[]) = 
FROM switches: 

DEF channels = 8: 	-- number of data channels 
CHAN transfer [channels]: 

DEF buttons = 5: 	-- number of speeds + stop 
CHAN speed [buttons], motor: 

PAR -- Chart Recorder 
PAR i = [0 FOR channels] 

data.capture (transfer Li]) 
PAR i = [0 FOR channels] 
pen.driver (transfer Li]) 

motor.control (0, motor) 
switches (buttons, speed) 
WHILE TRUE 	-- listen for the buttons 

ALT I = [0 FOR buttons] 
speed [i] ? ANY 

motor ! i 	-- set the motor speed 

Figure 4-3: Chart-Recorder program 

INTERFACE data.capt -ure (CHAN data) = 
SIMtJL 

VAR seed: 
SEQ 
Random.Seed (seed) 
WHILE TRUE 

SEQ 
Random (seed) 	- - get new random number 
IF 	 -- get its absolute value 

seed < 0 
seed : -seed 

TRUE 
SKIP 

Write (Screen, seed, 0) 
Screen ! 
data ! seed: 

Figure 4-4: The Data-Capture Simulator 
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of about 22 minutes delay. Any PRI PAR constructs are implemented as normal 

PARS with a warning. 

A simulation example 

To demonstrate the use of the simulator a simple example is presented. This is an 

eight-channel chart-recorder with five speed motor. The very short source code 

is shown in Figure 4-3. Assuming that all the interfaces were already designed, 

this is all that the applications engineer would need to specify. By changing the 

value of channels the number of data-capture/pen-driver pairs can be adjusted 

allowing controllers for a family of chart-recorders to be created instantly. A 

simulation of the eight-channel device is shown in Plate 4-1. 

Figure 4-4 shows the SIMUL body for the data-capture interface. Since the 

device can potentially be connected to anything, the random number package 

provided with the interpreter environment (written in OCCAM) is used to gen-

erate the incoming data. To check that the data at the pen is the same as the 

probe, the value is written to the interface's micro-window. The pen-driver sim-

ulation is shown in Figure 4-5. This code writes the actual value at the left 

of the micro-window, and then uses the cursor to simulate pen movement. To 

minimise screen updates, which are costly in time and look jerky, it does not 

redraw the window when the value has not changed. 

The switches simulator is shown in Figure 4-6. This uses the terminal key-

board to act as the buttons, allocating a letter per button. Each press is returned 

via an array of channels, allowing more than one key press at once. The motor 

driving procedure, shown in Figure 4-7, simply prints out the speed number. 

Note that these interfaces do not use messages like "Press button 'b' for 2 cm/s" 

as they are intended to be general, for example the switches interface is used in 

the stopwatch example in Chapter 7. 



Uhapter 4. ifle bimulator 

INTERFACE pen.driver (CHAN with) 
S IMUL 

PROC display (VALUE clear, what) = 
DEF screen.compress = 32767/60: 
SEQ 

Screen ! '*c' 	 -- carriage return 
Write (Screen, what, 5) 
Terminal ! Term.Cursor; (clear/screen.compress) + 6; 0 
Screen ! ' ' 	 -- clear last 'pen' 
Terminal ! Term.Cursor; (what/screen.compress) + 6; 0 
Screen ! '+': 	 -- draw new 'pen' 

VAR last, data: 
SEQ 
last : 0 
display (0, 0) 
WHILE TRUE 

SEQ 
with ? data 	 - - get the data 
IF 
data <> last 

SEQ 
display (last, data) 
last := data 

TRUE 	 -- ignore if the same 
SKIP: 

Figure 4-5: The Pen-Driver Simulator 

INTERFACE switches (CONFIG number, CHAN return[]) = 
-- provides number push button switches 
S IMUL 
VAR ch: 
SEQ 
PrintString (Screen, "Press buttons 'a' to ") 
Screen ! number + ('a' - 1) 
PrintString (Screen, "' to simulate key presses") 
WHILE TRUE 

SEQ 
Keyboard ? ch 
IF 

(ch > 'a') AND (ch < ((number + 'a') 
return [Ch - , 'a'] ! ANY 

TRUE 	 -- ignore out of range 
SKIP: 

Figure 4-6: The Switches Simulator 
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INTERFACE motor.control (CONFIG start, CHAN speed) = 
SIMUL 

VAR S: 
SEQ 
S := start 	 -- initial speed 
WHILE TRUE 

SEQ 
Terminal ! Term.Clear.Line 
IF 
5=0 

PrintString (Screen, "Stopped") 
TRUE 

SEQ 
PrintString (Screen, "Speed ") 
Write (Screen, S 1  0) 

	

speed ? S: 	- 

Figure 4-7: The Motor-Control Simulator 

•I 4.4 Diagnostic Facilities 

Great emphasis has been placed on the provision of diagnostics by this inter-

preter. These are provided by way of an interactive debugger, which permits 

examination of the interior of process workspaces in terms of source identifiers 

and line numbers. There are three routes into the debugger: program failure, 

user interrupt and watch-points. 

The program is continuously checked for potentially hazardous behaviour. If 

any of the following conditions arise, the program fails. When this happens the 

current line number and a pertinent message is printed, followed by a trace-back, 

as shown in Plate 4-2. 

Array accesses are checked for being within bounds. If this is not the case then 

the requested index and the actual bound for the array are given. Array 

parameters are currently not checked. 

Channels are checked for being shared. Other possible errors are related to 
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Plate 4-2: A program failure 

inappropriate use of the special channels. Note that file errors, such as file 

not found, are not included as they are reported to the program. 

Constructs with replication counts are checked that the replication limit is a 

natural number. 

Deadlock arises when no processes are available for execution and none are 

delaying or waiting for external events. No process is obviously at fault, so 

rather than the trace-back being printed, the table of processes is given. 

Expressions are checked for the usual errors like division by zero, and negative 

shift counts. When operating in 16-bit mode, results are checked to be 

within that range. 

Slice lengths are checked for match during assignment and communication. In-

dices are also checked for being within bounds. 
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-I.- 

II 

I 
I 
p 

Plate 4-3: A process table 

Variables are checked for being unassigned if running in 32-bit mode. The 

range of 16-bit numbers is too small to be restricted still further by the 

use of an unassigned pattern. 

Typing control-C during program execution enters the debugger. One of 

the available commands sets watch-points on variables. By giving an identifier, 

possibly with an index, all accesses to objects of that name are logged, and 

optionally the debugger entered. Similar watch-points can be placed on line 

numbers. Both these watch-points are checked lexically, so it is not possible to 

restrict matching to a particular scope. If a line number is executable in several 

modules, each occurrence will set off the trap. 

Once in the debugger it is possible to obtain a table of active processes as 

shown in Plate 4-3. The first column is a reference number for use inside the 

debugger, the second is the workspace address and is useful in debugging the 

interpreter only. The next column is the process state. If this is Parenthood it 

means that the process is executing a PAR. The meanings of the other states are 

all obvious: Runnable, Stopped, ! Wait, ? Wait, ALT Wait, and Delaying. A 
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star before the state indicates that it is being executed, and a (K) after a wait 

indicates that it is on the keyboard queue. The fourth column is the process 

priority, with 0 as the highest and 5 the lowest. The last two columns are line 

numbers, the line that starts the process and the line currently being executed. 

If this is followed by a star it means that it is an interface process. 

Using the process number it is possible to obtain a stack trace back for any 

process, similar to that shown in Plate 4-2. The values of all the variables are 

displayed, including arrays which are printed as text strings if they are of the 

correct form. There is currently no way to investigate the state of channels, 

which would be a useful addition. 

Commands are provided for putting these tracing tables in files. It is also 

possible to change the clock rate interactively, although this has undesirable side 

effects. If a process enters a delay state while the clock rate is set high, it can 

take a very long time to reach the desired time when the clock rate is reduced. 

Execution can be resumed if entry was from an interrupt or a watch-point, or it 

can be stopped. 

4.5 Timing: Accurate or not? 

One of the problems with using simulators is knowing whether to trust the 

results or not. All simulators, including this one, can be made to produce false 

or misleading results. First of all we shall identify some problem areas. The 

most obvious is speed of execution: as the program is being executed by an 

interpreter written in a high-level language it is very slow, especially since all 

operations are rigorously checked. Execution on an 8MHz M68000 with physical 

store is about the same as native code on a 4MHz Z80. This is slow, but is not 

actually a significant disadvantage when using the prototype back-end. 

Execution speed is primarily an implementation problem, and can be cured 

by the insertion of machine code in critical paths or moving to a more powerful 

machine. One factor that does slow simulation unavoidably is terminal and file 
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communication: it is much slower to write six characters to a terminal than 

write them to registers for display by hardware; an analogue-to-digital converter 

presents its data much faster than a file-server. 

Different implementations will use varying scheduling algorithms, resulting 

in processes being executed in a different order. SYNTH code bodies are, by 

definition, different from their respective SIMUL bodies. These two points are 

inevitable, and are a common problem in writing portable programs. The so-  
- 

lution is defensive programming. An example of this appears in the stopwatch 

program in Chapter 7. Here the watch suspends itself until 0.1S later, but it 

does not assume that this is actually the time when it is woken. By doing this 

ten stopwatches can be run simultaneously, and each one shows the correct time 

when it is updated, although it is not updated every 0. iS. 

To a large extent the accuracy of an USHER simulation is dependent on 

how well the SIMUL bodies emulate the actual interfaces. This code is created 

by interface designer, and when employing defensive programming techniques, 

which most programmers do anyway, this simulator provides the facilities to 

allow the effective simulation of any design. All the examples in this thesis have 

been simulated, and those that can run on the Z80 test kit have done so without 

modification. 

Mime has pointed out that a major problem with conventional simulators is 

understanding their output [Milne 86].  By using the very high-level simulation 

model of USHER this problem is greatly reduced as the volume of data is lower. 

The clear visual presentation of high-level output makes mistakes more obvious, 

and the debugger provides access to as much low-level data as is required to fix 

the problem. 



Chapter 5 

The z80 Back-End 

The Z80 Family handles most 
microprocessor applications with little 

additional logic. z80 designs are efficient 
and cost effective microcomputer systems. 

Zilog Publicity Material 

A prototype back-end for USHER was required to demonstrate that the ideas 

presented in this thesis work in practice. The ideal technology to have devel-

oped would have been single-chip, custom-silicon controllers, and some possible 

approaches are outlined in Chapter 8. Unfortunately no appropriate building 

blocks were available, and much of the circuitry would have had to have been 

built from scratch. This would have required a considerable amount of work with 

little new content. Together with the infrequent fabrication runs, this  made a 

VLSI-based solution impractical. The alternative was to develop a board-level 

back-end using a standard-part microprocessor. 

The obvious processor to use for this system would be the INMOS transputer 

since it was designed specifically for running OCCAM programs. This device was 

just becoming available on evaluation boards at the time when it would have 

been needed, but at a very high price and no funds were available to purchase 

one. It is also likely to be several years before electronic controllers will use 

32-bit processors. This led to the decision to use an 8-bit microprocessor since 

they were available and controllers are currently built with them. 

A simple hardware prototyping system had been developed some years ago 

for undergraduate teaching in Edinburgh University's Computer Science Depart-

ment, and was no longer in use. These provide a four-rail power supply, an area of 

81 
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solderless bread-board, and slots for the insertion of "personality-cards". Cards 

were available with M6809 and z80 processors on them, with a small quantity 

of RAM and a zero-insertion-force socket for an EPROM. These were ideal for 

USHER experimentation, as the bread-board could be used for testing various 

interfaces. 

This left the choice between M6809 and Z80 microprocessors. While the 

M6809 has a very orthogonal instruction set, the Z80 offered a number of advan-

tages: simple interfacing without handshake, a separate input-output address 

space reducing the amount of decoding needed, a larger number of registers, 

16-bit arithmetic and a shadow register-set for interrupt handlers. With these 

advantages the Z80 was the best option. 

This chapter describes the Z80 environment that was developed, and then 

concentrates on code generation. Section 5.1 provides a short introduction to 

the internal architecture of the Z80. Section 5.2 describes the development of 

a test microcomputer. Next Section 5.3 describes the code generator, show -

ing examples from both the sequential and concurrent language facilities. The 

last section describes how the hardware and software parts of the interfaces are 

integrated. 

5.1 The z80 Architecture 

The Z80 offers a rich variety of instructions and features, most of them useless. It 

is plagued by instructions which only operate on particular registers, and special 

optimisations which are designed for the assembly-language programmer, but 

not the compiler writer. Despite this it is quite possible to generate acceptable 

Z80 code from a high-level language. 

There are three register sets: main, alternate, and special purpose. The 

alternate set are identical to the main set, and can be used by interrupt handlers 

to avoid having to save and restore contexts, the EX and EXX instructions switch 

between sets. Each set provides an 8-bit accumulator A, a flags register F, and 
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six other 8-bit registers, B, C, D, E, H, and L. H and L are used together as the 

16-bit accumulator, and the others can be used as the 16-bit registers BC and 

DE under certain circumstances, particularly for holding addresses. The useful 

special registers include the 8-bit interrupt register I, which is described later, 

and three 16-bit registers which are used for addressing. These are the index 

registers IX and IY, and the stack pointer SP. 

The most powerful instruction is LD (LoaD), which moves 8-bit and 16-bit 

data around. The destination is the first operand, the source the second, and 

indirection is indicated by brackets. The most glaring omission is a direct 16-

bit register-to-register move, and these must be done either with two byte-sized 

moves or with the PUSH and POP instructions, which automatically decrement and 

increment SP. For the compiler writer, however, the most restrictive omission is 

the absence of a 16-bit load from an address held in a register. This must be 

done with two byte-sized loads, and is usually done via the index registers, as 

explained in Section 5.3. The local assembler allows these two-byte moves to be 

abbreviated to single pseudo-instructions. 

Three styles of interrupt response are available, but only mode two is useful. 

In this scheme the interrupting device places the low byte of an address on the 

data-bus. This is concatenated with the contents of register I to form an address 

which contains the address, or vector, of the interrupt handler. These vectors 

are normally grouped in a table. Interrupt handlers are terminated with the 

RETI instruction, which is recognised by some peripheral chips. Interrupts can 

be enabled or disabled with the El and DI instructions respectively. 

5.2 A Simple Microcomputer 

Facilities were required in which to test both the code generated by the compiler 

and to develop the interface hardware. The solution to both of these was to build 

a microcomputer, which could be connected between the APM and the terminal. 

This machine is called the exercise machine because it is used to exercise the 
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USHER system and its output. Normally the machine is in "transparent" mode 

and is invisible to the user, but on receipt of a particular control character it 

down-loads a program and then executes it, with the special channels Screen 

and Terminal connected to the terminal. Such a system was constructed and 

the next two subsections describe the hardware and software provided by it. 

5.2.1 Exercise Machine Hardware 

The Z80 personality-card provides the basic services of a clock, 128 bytes of 

RAM, a socket for a 1k byte EPROM, run/halt logic, and address and data bus 

buffering. In addition to this, the exercise machine required two RS232 lines, 

one for the APM and one for the terminal, a clock, an address decoder for the 

interfaces and a large amount of memory. The first version used eight 64k-bit 

dynamic RAMs, however the bread-board was too electrically noisy for these 

sensitive devices to operate satisfactorily. The final solution was to use four 8k 

byte static RAMs, which proved to be enough memory. A schematic for the 

memory system is shown in Figure B—i in Appendix B on page 158. 

The two RS232 connections are provided by the Signetics SCN2681 Dual 

Asynchronous Receiver/ Transmitter (DUART). This contains two independent, 

fully software-configurable RS232 input-output devices in one package. Since 

this is not a member of the Z80 family it does not provide the various interrupt 

modes used by the Z80. In particular it cannot support mode two, where the 

interrupting device must place the low byte of the vector address on the data-bus 

in response to the MT and IORQ signals being asserted. This function is provided 

by a 74LS244 octal buffer connecting an eight-way DIL switch to the data-bus, 

allowing the interrupt vector to be moved during software development. This 

circuit is shown in Figure B-2 on page 159. 

A clock chip is required to assist with time-slicing processes and to provide a 

basis for the OCCAM channel TIME. The chosen device is the Z80 family Counter 

Timer Controller (CTC). This device connects to the Z80 with no additional logic 

as it has interrupt mode two hardware on chip. It does need a chip-select signal, 
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and this is drawn from a four-to-sixteen decoder (74LS 154) which is used to select 

all the interfaces. This is connected to address lines A 4  to A7 , which leaves the 

four lowest addresses lines for selecting the internal registers of interface chips. 

The CTC and decoder are shown in Figure B-3. 

This completes the description of the basic hardware facilities provided on the 

exercise machine. Plate 5-1 shows the different parts of the machine, including 

other interfaces which are described in the next chapter. 

5.2.2 ZERO 

The z80 Executive Running OCCAM (ZERO) provides two classes of services: 

communication with the APM and a multiprocess kernel to support OCCAM 

execution. Three control-characters interrupt the tight polling-loop that is used 

to implement transparent mode. One starts a load of up to 256 bytes from 

the APM into any part of memory, another prints a screen sized hexadecimal 

memory-dump on the terminal starting at a given address, and the last one starts 

a process running from a given address. Normally the program is loaded at the 

low end of the 32k bytes of RAM, and the workspace extends downwards from 

the top. Most of the 1k byte of ZERO is devoted to the support of multitasking, 

because of the limited size of the operating system only one level of process 

priority exists, but otherwise it is a full implementation of parallel processes. 

Some of the features are described below. 

ZERO contains procedures for the creation, scheduling and destruction of 

processes. Like the simulator, process control blocks are used when manipulating 

processes, but unlike the simulator these are held at the start of the process 

workspace, not in a separate area. The format of the PCB is shown in Figure 5-

1. Note that the stack pointer for the process is saved in the PCB when it is not 

active, however the other registers are saved at the end of the workspace, and 

the stack pointer contains the address of the end of this save area. Processes 

are referred to by a process identifier (PID), which is the address of the next-in-

queue field in the PCB. The uses of the different fields will become clear through 
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A The Z80 personality card. 

B The DUART and interrupt circuit. 

C Thc interface address decoder. 

D The memory control logic. 

E The static RAM chips. 

F The Counter Timer Controller. 

C The seven-segment displays and driver. 

H The switch interface. 

The bar-graph display interface. 

J 	The analogue-to-digital converter. 

Plate 5-1: Exercise Machine Anatomy 
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Figure 5-1: ZERO Process Control Block Structure 

the rest of this chapter. Suspended parent processes are reactivated by use of 

the child-count and parent-pointer fields by the process destruction procedure. 

ZERO provides a single run-queue and a timer-queue. The CTC chip is 

programmed to generate an interrupt every 20mS, and on this the current process 

is descheduled in favour of the next in the run-queue. At the same time the timer-

queue is examined, using the wake-after field to determine if any of the processes 

are ready. The time is kept in the personality-card RAM, and is incremented at 

each interrupt. The scheduler performs deadlock detection, printing out an error 

code and returning to transparent mode if it happens. This is the strategy taken 

for all errors, it is assumed that the simulator is used to debug the program 

before attempting to run it on the exercise machine. Error trapping is the only 

occasion where the RST instruction is used, all other system calls are invoked 

with the normal CALL instruction. 

•1 
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An interrupt handler for the DUART is provided to support asynchronous 

input for the channel Keyboard. Up to sixteen characters can be typed ahead, 

after that a beep is generated and the characters discarded. The keyboard 

"queue" is checked so that it can only contain one process, verifying that the 

channel is not being shared. If a process is waiting on the keyboard-queue when a 

DUART interrupt occurs, it is added to the run-queue. Various output routines 

are provided to help in diagnosing code-generation faults. 

5.3 Code Generation 

OCCAM was first released in the form of an evaluation kit, which compiled to 

UCSD P-Code. Since then at least one portakit interpreter has been mounted on 

a Z80, but I am aware of no attempts to build a native code generator for an 8-

bit microprocessor. This caused some trepidation, but the compiler proved quite 

easy to write, and with the 4MHz clock rate chip, execution speed is impressive. 

To test relative performance, the Newton-Raphson square-root approximation 

program from the OCCAM Programming Manual was used to calculate six roots 

with a pipeline of ten processes. The average time over several runs using the 

INMOS native-code compiler on a VAX 11/780 was 160mS, and the time on 

the exercise-machine was 450mS. This section describes how standard OCCAM is 

compiled, first the sequential parts then the concurrent constructs. 

5.3.1 Sequential Occam 

The storage allocation scheme is different to that of the simulator, as it is influ-

enced by the Z80 instruction set and the requirement to keep the size of the code 

as small as possible. Since nested variables cannot be allocated fixed addresses 

they must be indexed from a base for each context, and this is done by always 

having the address of the current stack-frame in the index register IX. To save 

space, the static-link method of non-local access is used rather than displays. 

Since the global process is only created once, all global variables can be allo- 
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cated fixed addresses, which means that both local and global variables can be 

loaded or stored with a single instruction. Variables declared at the level above 

the current one are accessed by linking back through the static link with register 

IY. Further out levels are accessed by a primitive procedure. These are routines 

written in Z80 assembler which the compii,er knows about and uses to extend the 

instruction set. There are 32 such-primitives used by this compiler. Figure 5-2 

shows examples of each level of variable access. 

The indexed load instructions restrict the range of displacements to ±127 

bytes, and this further constrains the form of the stack-frame. To use this range 

to its full, yet keeping IX pointing to the static link, parameters appear above the 

link, with local variables below. This is in keeping with procedure calls where the 

parameters are pushed and the procedure is called, pushing the return address 

onto the stack. Figure 5-3 shows the layout of the stack-frame. The dynamic-link 

contains the frame pointer of the calling context, and the static-link points to the 

frame that is lexically above the current one. If the procedure has parameters, 

to save popping them off individually, the value of the SP from before pushing 

them is saved. The code generated for a procedure call is shown in Figure 5-

4, demonstrating the large amount of code which can be needed. If arrays are 

included in the local space they are always placed at the end of the frame. This 

means that if the array size exceeds the 127 byte limit, simpls variables do not 

suffer from more complex indexing. An example of indexing into a local array 

with a value parameter is shown in Figure 5-5. If the array bounds are within 

the 127 byte range, the indexed load instruction is used. 

The Z80 provides sufficient registers that most expressions do not need to 

use temporary variables, but too few to make remembering register contents 

between statements important. This allows considerable freedom in the compi-

lation of expressions. Most common optimisations are implemented, for example 

using Inc to add one, and some reordering of expressions is performed to avoid 

temporaries. As OCCAM does not have functions there is no problem with side-

effects. Since variables are indexed off IX, rather than SP, the stack is used for 

any temporaries that are needed. The more complex operations (multiplication, 
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VAR global: 

PROC outer = 
VAR Li.: 

PROC wrap = 
VAR L2: 

PROC inner = 
VAR local: 
SEQ 

global : = 3 
LD HL, 3 value to be assigned 
LD (UserRAM+O) ,HL at a fixed address 

Li 	: 	2 
LD HL, 2 value to be assigned 
LD BC,HL save it 
LD E,2 the number of levels 
Call P8 call primitive 
LD HL,BC recover value 
LD '(IY+-4) ,HL assign it 

L2:1 
LD HL, 1 value to be assigned 
LD BC, (IX+O) get static link 
Push BC copy it to IY 
Pop IY 
LD (IY+-4) ,HL assign 

local 	:= 0: 
LD HL,0 value to assign 
LD (IX+-4) ,HL in local frame 

inner: 
wrap: 

outer 

Figure 5-2: Different levels of variable access 
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Ix 

+10 

+0 

+8 	Parameters 

+7  

+6 

+5 	 present only 
+4 	Saved SP 	with parameters 

+3  

2 	Dynamic Link 

+1 

0 	Static Link 

Return Address 

-3 

-4 

Local variables 

-7 

• Offset 

Figure 5-3: Stack-Frame Layout 

division, and variable sized shifts) are implemented using primitive routines. 

Some example expressions are shown in Figure 5-6. Many other optimisations 

are possible, some of which are noticeable in the examples in this chapter, but 

could only be implemented at the cost of compiler modularity. 

When a construct is entered, stack space must be created for any local vari-

ables, and any channels that are created must be initialised to the Not. Process 

value, which for this version is zero. For this reason, and to clear down any 

previous values in memory, the value zero is pushed onto the stack enough times 

to provide space for all the locals. How this is done depends on the amount of 

space to be claimed, either with several pushes, a loop, or a primitive procedure 
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PROC p (VALUE e, VAR s, y[]) 

p 	(10, simple. array) 
LD (StackTmp) ,SP save current value of SP 
Push IX copy frame pointer 
Pop HL to HL 
LD BC-24 add frame offset 
Add HLBC for array 
Push HL push it as parameter 
Push IX copy frame pointer 
Pop HL to HL 
LD BC,-4 add frame offset 
Add HL,BC for simple 
Push HL push it as parameter 
LD HL10 push 10 
Push HL as parameter 

LD , (StackTmp) load old stack value 
Push HL and push it 
Push IX push dynamic-link 
Push IX push static-link 
LD (StackTmp) ,SP set up new frame pointer 
LD IX,(StackTmp) 
Call R16 call procedure 
Pop HL discard static-link 
Pop IX restore frame pointer 
Pop HL restore old SP 
LD SPHL to skip parameters 
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Figure 5-4: An example procedure call 
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array Es] 	:= 56 
LD HL,56 the value 
LB BC,(IX+6) get index 
SLA C convert to words 
RL B 
Push IX get frame pointer 
Pop IY into IY 
Add IY I BC add index 
LD BC.-402 add frame offset 
Add IY,BC of array base 
LD (IY+0) .HL assign it 

Figure 5-5: A local array access 

a 	: 	a + 1 
LB HL,(IX+-14) load a 
Inc HL add one 
LB (IX+-14) ,HL assign new value 

a : 	b + 2 
LD HL(IX+-12) load  
Inc HI. increment twice is shorter 
Inc HL than load 2 and add 
LB (IX+-14) .HL assign it 

a 	:= b - c 
LB BC. (IX+-i0) load c 
LB HL(IX+-12) load b 
And A clear carry bit 
SBC HL, BC subtract with carry 
LB (IX+-14) .HL assign it 

a 	:= 89 + ((b*c)>>6) 
LB HL,(IX+-12) load b 
LB BE, (IX+-i0) load c 
Call P0 call multiply primitive 
LB B.0 number of shifts 

Li: top of shift loop 
SRL H do the 16-bit shift 
RR L 
DJNZ Li loop until B = 0 
LB BC,89 for adding 
Add HL.BC do the add 
LB (IX+-14) ,HL assign it 
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Figure 5-6: Example Expressions and their code 
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call. Space is recovered at the end of the context by either the required number 

of pops, or by direct arithmetic on the stack pointer, which ever needs less code. 

This implementation fully supports the slice operations. These are imple-

mented using the Z80 block move instructions packaged in primitive routines, 

which also check that the slices are of equal length. 

5.3.2 Concurrent Occam 

The concurrent statements operate in a similar way to that of the interpreter. 

Primitive routines are used to implement most of the operations, which results 

in compact code. Again the ALT construct is the hardest to implement. Rather 

than have a list of channel-transfer records, one for each guard, there is a single 

record in the PCB which is shared by all. Two loops are used, one to setup 

and one to clear-down. Deciding which guard has fired is -  dane-- by examining-

each channel, with the active one having another process's PID in it. Since 

the channel-transfer record shares PCB space with the wake-after field, timer 

guards are tested by examining the clock directly. The ZERO scheduling routines 

automatically remove a process from the timer-queue if it is put on the run-queue, 

avoiding double scheduling. 

The special channels Keyboard, Screen, and Terminal are supported. These 

are very simple to implement for direct use, for example Terminal outputstate-

ments are compiled to primitive procedure calls, but when they are passed as 

parameters it is more complex. The only restriction is that Terminal cannot 

be passed. The others are passed as their AT value. As these addresses are 

in the space occupied by ZERO they cannot be confused with ordinary chan-

nels, so each primitive routine supporting channel communication tests for these 

addresses. 

A number of test programs are supplied with the portakit to verify that 

interpreters are fully functional. One of these programs uses an array of processes 

to simulate thermal conduction in a metal plate. Heat is applied at one point, 

and the temperature rise across the plate is displayed on the terminal via a 
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screen-mixer process. This was used to test the concurrency features of the 

compiler and ZERO: a ten-by-ten array was successfully run in the available 

store, using a total of 142 processes. 

5.4 Interfaces 

Programs can be compiled either for execution on the exercise-machine, or for 

inclusion in a specially built stand-alone system. In the first case the program 

must be adapted to fit into an existing environment, and in the second case, an 

environment must be created for the program. The first task to be performed in 

either case is matching software specified interfaces with the required hardware, 

the allocation phase. 

The information required for each interface is its address, any configuration 

data, and if it uses interrupts, an interrupt vector, a queue for EVENT inputs, and 

a buffer for the incoming data. On the exercise machine these are all fixed, but 

for the stand-alone compilation these values must be calculated and added to 

a hardware-requirements list. For stand-alone machines, interface addresses are 

allocated sequentially from one (zero is always the CT C). Interrupt handlers are 

created semi-automatically, with the interface designer supplying a piece of code 

which clears the interrupt for the device. This is not done in the OCCAM SYNTH 

body as it requires interrupts to be disabled, and that would require further 

OCCAM extensions. At entry to this code, register C contains the address of the 

device, and the data that raised the interrupt must be loaded into register A. 

The rest of the handler is then compiler generated. For the analogue-to-digital 

converter the designer-coded handler consists of one IN instruction. For the 

DUART it adds three to register C to select the appropriate internal register 

and then executes an IN; a total of four instructions. If a device needs to be 

initialised with the interrupt vector, for example a Z80 PlO or CTC, another 

portion of interface-designer written code can be included. 
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HARD [A.Control] ! Control.Mode 
LI) BC,1 
LI) IY,(CurrPRC) 
LI) L(IY-3) 
LI) H,0 
Add HL,BC 
LI) C,L 
LI) A,207 
Out (C),A 

HARD [Receive.Reg] ? 	Data 
LI) BC,5 
LI) IY.(CurrPRC) 
LI) L,(IY-3) 
LI) H.O 
Add HL,BC 
LI) C,L 
In A(C) 
LD H,0 
LI) L.A 
LI) (IX+-24),HL 

value of A. Control 
get pointer to PCB 
load interface address 
clear top byte 
add index 
copy it to reg for Out 
the value of Control.Mode 
output the value 

value of Receive.Reg 
get pointer to PCB 
load interface address 
clear top byte 
add index 
copy to reg for Out 
read the interface 
clear top word 
to make data 16-bit 
assign it to Data 

Figure 5-7: HARD communications and generated code 

% Build file RMM_U:DVM.BLD created on 24/07/86 at 10.30 % 
?- technology(z80). 
?- cake (adc, 1 • 8, C]). 
?- make(six_seven, 2, 0, [31). 
?- make(bar...graph, 3, 0, 1161). 
?- ram(474). 
?- rom(2340). 

Figure 5-8: An example hardware-requirements list 
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The interface address and the address of the event queue (called the action 

pointer) are stored in the interface-process PCB. These are installed in the PCB 

by the PAR construct as the process-creation routine does not support this. Any 

PARs within the SYNTH body also copy the details into the subprocess PCBs. 

These values are needed to implement the HARD and EVENT channels. Figure 5-7 

shows the code generated for HARD inputs and outputs. 

EVENT inputs are more complex as they can involve descheduling the process. 

The action-pointer in the PCB holds the address of a three byte block, the 

first two bytes of which is a process pointer and can be either Not Process, 

1, or a P. The third byte is any data waiting to be read. On executing the 

input, if the process pointer is Not. Process, the process puts its PID there and 

deschedules itself, to be woken by the interrupt handler. If it is set to 1, then 

an interrupt has already occurred and data is waiting. If there is already a 

PID there, then the channel is being shared, which constitutes an error. These 

actions are implemented by a primitive procedure, so an EVENT input compiles 

to a procedure call and a load instruction to save the incoming data. 

The hardware-requirements list is in the form of a Prolog program which 

is used to drive the Artificial Engineer. It represents the abstract structural 

information extracted from the OCCAM program, plus the allocated addresses. 

An example appears in Figure 5-8, the ?- at the start of each line indicates 

that these are queries, in effect procedure calls, rather than definitions. The 

first statement identifies the synthesis technology. The make statements create 

interfaces; the first parameter is the hardware-identifier, converted to lower case 

and dots translated to underlines to meet prolog lexical requirements. The next 

parameter is the address, followed by the interrupt vector. The last parameter 

is a list of the configuration values, passed as CONFIG parameters. The last two 

statements specify how much memory is needed. 

The size of ROM required includes a cut-down version of the operating sys-

tem. This does not include transparent mode, nor does it provide any input-

output routines or a keyboard interrupt-handler. If a design requires terminal 

input-output, a DIJART must be included as a normal interface. The primitive 
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Address 
FFFP 

Process Workspaces 

RAM 
Global Variables 

Operating System Variables 
Interface Action Table 
Interrupt Vector Table 

Operating System Stack 

Primitive Procedures 

ROM 	 User Code 

0000 ___________ Operating System 

Figure 5-9: The memory map of stand-alone systems 

routines are also simplified, as there is no longer any need to provide code to 

recognise Screen and Keyboard. 

Stand-alone systems use the same store arrangement as the exercise machine: 

ROM at the bottom end and RAM at the top of the address range. The ROM 

has to start at address 0000 as that is the power-on reset address. The RAM 

could start immediately after the ROM, but placing it at the top means that in 

a minimum system the top address line, A 15 , is sufficient to select between them. 

A memory map of a stand-alone system is shown in Figure 5-9. 

Any error condition, such as channel sharing, causes the program to perform 

a complete restart. Control programs should be robust against this, and should 

not make assumptions about device states when initialising. 



Chapter 6 

The Artificial Engineer 

An expert is someone who has made all 
the mistakes, which can be made, in a 

- 	very narrow field. 

Niels Bohr 

The second part of a back-end is an Artificial Engineer. This takes the 

hardware-requirements list and fleshes it out to a description which can be 

used to drive fabrication tools. This is a process of hardware-assembly, and 

has two aspects. The first is technology independent, analysing the hardware-

requirements list and communicating with the user in a consistent fashion. The 

second part deals with the implementation technology, making a processor-block 

and its memory, and then creating the required interfaces. The prototype back-

end provides a simple technology-independent part, or shell, and a Z80-based 

part which generates Elementary Structural Design Language (ESDL) [Smith 801 

files, which can be used to drive a solder-wrap machine that wires prototype 

boards automatically. 

The fleshing-out process can be viewed as a straight-forward database look-up 

task, with a one-to-one mapping between interface specifications and implemen-

tations. This would result in a proliferation of interfaces, as each minor variation 

in implementation would be distinct. For example, an interface which reads a 

set of switches could include the switches on the circuit-board, or provide a 

connector to allow the switches to be mounted remotely. With the database 

approach each of these would require a different hardware-identifier, forcing the 

interface-designer to replicate the interface definitions for each variation in imple-

mentation. The system-level designer would have to change the source-program 
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to influence these implementation-level details, which are not relevant at that 

level of description. 

An alternative is what is now called an expert system. These are programs 

which attempt to emulate the actions of human experts by capturing their 

"knowledge" and drawing "inferences" from it. Traditionally the structural infor-

mation provided in the hardware-requirements list would be handed to a skilled 

design-engineer, who would then ask questions about constraints on the design, 

for example cost, power consumption or performance. From this information he 

would produce the detailed design. This is the essence of engineering: applying 

knowledge and experience to convert a high-level specification into a working 

device. We want to emulate this process and create an Artificial Engineer. 

Most expert systems are written in special production system languages, such 

as OPS5 [Forgy 81]. The logic language Prolog [Clocksin 811 is also in wide 

use for knowledge-based systems [Yazdani 841, but they can also be built using 

conventional languages [Forsyth 84]. Prolog and 1mp77 are available on the 

APM, so the choice was between them. I decided to use Prolog because it 

is extensible, allowing the shell to consult only the required parts of the rule 

base. Prolog does have a number of serious drawbacks (lack of modularity, rule-

interpretation is order-sensitive, back-tracking is hard to control and costly to 

implement), but these are outweighed by the advantages of extensibility and 

interactive development. 

The next section examines some existing hardware-design expert systems. 

Following that, Section 6.2 outlines the overall structure of the Artificial Engineer 

and describes the shell. Section 6.3 describes the base-module of the Z80 designer, 

while Section 6.4 covers the prototype interfaces. Finally some issues involved 

in maintenance of the knowledge-base are discussed in Section 6.5. 
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6.1 In Defence of Expert Systems 

Expert systems have gained a bad reputation in some circles because of the 

unrealistic claims made for them. Too often they have been presented as a revo-

lutionary concept that can solve all known problems. In reality, the knowledge-

based approach is just another form of programming, and is well matched to 

some problems, but not to others. Computer-aided design is an area where the 

knowledge-based approach seems to be successful, and the literature reveals a 

number of interesting projects [Birmingham 861. 

Expert systems for hardware synthesis is the only area which includes work 

at the very high level of specification used in the USHER system. MICON 

[Birmingham 841 starts with a hardware-requirements list and produces single-

board computers. The systems MICON is intended to produce are identical to 

those with USHER, featuring a microprocessor, some ROM and RAM, and a few 

interface devices. It supports the Z80, TI-9900 and iAPX-186 processor families. 

MICON reinforces the hardware-first style of design by choosing the processor 

that it "thinks" most appropriately meets the designers specifications, although 

the designer must then specify how much memory is needed. Synthesis is per-

formed using templates, which are predefined groups of components. Statistics 

are provided claiming that designs produced by MICON are three-quarters of 

the size of commercial boards, once the errors in its output have been manually 

corrected. No concrete evidence, such as circuit diagrams or photographs, is pro-  
- 

vided, but assuming that it has all been implemented, MICON is an impressive 

tool. 

MAPLE [Bowen 831 is another tool to assist microcomputer design at. a very 

high level. Its most significant feature is an interviewer, which consults the 

designer about what is to be produced until it has gathered sufficient information 

to create a system from existing, commercially-available boards. The choice of 

processor is determined by the designer selecting between assembly and high-

level programming languages. Development cost and time can be supplied as 



constraining factors, as can production cost. Alter completing the Interview, 

a microcomputer configuration Is proposed, along with any constraints that it 

breaks. If this is accepted, a block-diagram of each board Is produced, along 

with details of board-Interconnection. 

Descart Is described as an expert silicon-compiler ICajski 861. It accepts 

TI-HDL behaviour sections, which are compiled to a control/data-flow graph, 

which is further compiled to a register-transfer structural description and sym-

bolic microcode to animate It. This is translated Into a standard-cell network, 

from which silicon is created by . a commercial package. Each of these stages 

of translation is performed by part algorithmic, part expert system programs. 

Each level of description is scrutinised by other expert systems. One is the 

constraints allocator, which accepts design constraints in a "planning" language 

and ensures that they are met. Each intermediate level of design representation 

is optimised by what is called a "critic". For example, at the register-transfer 

architectural level, registers which are not used simultaneously are concatenated 

to form register files. No examples are given, and it is not clear what stage of 

implementation this system is at. 

The CMU-DA project, described in Chapter 2, includes an expert system, 

the Design Automation Assistant (DAA) [Kowalski 861, which translates Value 

Trace representations of ISPS descriptions into a register-transfer level struc-

tural description. This has iuccessfully been used to redesign two well-known 

computers, the PDP/8 and the IBM 370. The DAA has been modelled on the 

methods used by human designers, and each design subtask they perform is rep-

resented by a module In the system. The first task is to develop an approximate 

global structure and floor plan. this is refined by hardware allocators working 

at Increasingly detailed levels. The current system uses 314 production rules, as 

well as a number of algorithmic portions written in C rather than OPS5, which 

has been used for the rest of the system. 

Two systems compile register-transfer descriptions specified in DDL to stand-

ard-cell networks. One is the back-end of the OCCAM-to-CMOS project dscribed 

in Chapter 2 (Maruyama 841. The other system is the Design Expert (DE) devel- 
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oped at Nippon Telegraph and Telephone (Takagi 841, which creates datapaths, 

and then verifies that they match the specification given for them. The verifier 

provides two functions: the first is that it can check the output of the synthesis 

system; and the second is useful for upgrading designs. If a design has been 

built, and subsequently needs modification in line with a new specification, the 

verifier proposes "patches" that can be made to bring them into line. 

Talib [K .iin 861  is a very low'-level system which takes a transistor, gate and 

interconnection list and produces NMOS layout using Mead and Conway design 

rules. This process is constrained by cell size, and port placement. Once more a 

combination of conventional algorithmic and and knowledge-based programming 

is used. 

These systems demonstrate that the use of knowledge-based expert systems, 

while still at an early stage of development, is practical in computer-aided design. 

Recent papers all admit that some parts of their systems are more efficiently im-

plemented algorithmically, and have used incompatible languages communicat-

ing via data files. The solution to this would be to develop either a production-

rule language with algorithmic features, or provide knowledge representation 

facilities in a conventional language. 

6.2 Structure of the Artificial Engineer 

The prototype Artificial Engineer has been built to provide full generality; it 

can readily be extended to include other technologies. The shell provides three 

Functions: technology selection, interface-designer invocation, and user interac-

tion. Referring to the example build file on page 96, the first statement is a 

query to the technology data-base. This is a file of Prolog facts which is con-

suited (Lite Prolog term for reading a file of facts) when the Artificial Engineer 

starts. In this file there is a definition for all Lite technologies known to the 

Artificial Engineer. Each technology entry creates any base hardware that is 

always present, sets a default directory for finding interface designers, and reads 
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technology(z80) :- 
consult ( 'rmm_ae : z80_utils'), 
consult ( 'rmm_ae : z80_base'), 
consult ( 'rmm_ae : ram'), 
consult ( 'rmm_ae : rorn'), 
make_default( 'rmm_ul:'). 

Figure 6-1: The z80 technology definition 

any technology dependent utility procedures. Figure 6-1 shows the technology 

definition for the Z80 designer. The first statement consults some Z80 specific 

utilities, which are mainly concerned with generating the ESDL output. The 

next three consultations read in the Z80 base designer, which is described in the 

next section. 

The last statement in Figure 6-1 sets the default directory for use with the 

make query. This shell function takes the name of the interface and reads a 

file of that name from the default directory to find a procedure to create the 

hardware for the interface, and then invokes that procedure. For example, the 

hardware-requirements list statement: 

?- make(adc, 1, 8, C]). 

will consult the file rmm_ul : adc . ae, which should contain the definition of a 

procedure called adc_make which takes the interface address, interrupt vector, 

and configuration data as parameters. 

It is in these _make definitions that the design knowledge is captured, Each 

_make is an expert in creating its own type of interface. A second aspect of 

expert-systems construction is knowledge capture. The prototype uses entirely 

manual capture, that is the designer must code-up his knowledge as Prolog 

rules. It is not clear how this process could be automated. The knowledge 

needed to create the interface is limited to adapting the circuitry to differing 

circumstances, but to build a board-level interface in the first place requires a 

very wide knowledge of available chips. 
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The base and interface-designer procedures can require additional informa-

tion from the human engineer. These are constraints on the design, such as 

performance, power consumption or cost. An important factor in a control com-

puter is how the interface chips are connected to the devices they control. To 

collect this information in a user-friendly style, each designer procedure asks 

the human engineer questions about the implementation issues. The details of 

the circuit are stored in an ESDL file, but a brief description of the circuit 

and-connection information are printed on the terminal. The questions and the 

construction information form a dialogue between the human and artificial en-

gineers. As an example, the dialogue that resulted in the board design for the 

cash register is shown in Appendix D on page 176. 

6.3 The z80 Base Designer 

A prebuilt "personality card" was used to provide the basic components of the 

exercise machine. This is obviously not possible for a stand-alone system, which 

must include the processor, clock and reset circuitry. This is shown in Figure B-

4 on page 161. The base also includes the CTC and interface decoder, which 

are the same as those used in the exercise machine, and shown in Figure B-

3. The complete controllers are built on single double-height eurocards, with 

96-way edge connectors providing power and ground lines, as well as external 

connections. 

The Z80 base designer includes the memory-subsystem designers. For sim-

plicity, the maximum size of either RAM or ROM is restricted to 32k bytes, 

allowing the top address bit, A 15 , to select between them. EPROM design is 

very simple as chips are available in all sizes up to 32K bytes, so only one device 

is ever needed. Device select for the EPROM is generated by the logical OR of 

A 15  and MREQ. The EPROM generator provides the option of using low-power 

CMOS or conventional devices; Table 6-1 shows the chips that are used. 
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Size 

(k bytes) 

EPROM RAM 

NMOS CMOS 

1 4118 

2 2516 27C16 6116 

4 2732A 27C32 

8 2764 27C64 6264 

16 27128 

32 27256 27C256 

Table 6-1: Memory chips used by the Z80 designer 

It was decided to use static RAM as small amounts of memory are needed, 

and these devices are available in 8.bit widths, reducing chip count. Dynamic 

RAMs require a clean electrical environment, and this cannot be guaranteed in 

a control computer, and they are mostly one bit wide. The largest static RAM 

currently available is an 8k byte by 8-bit device, so up to four of these could be 

needed. In the simple case of only one device, a select signal can be generated 

by the logical OR of MREQ and the inverse of A 15 . If more than one chip is 

needed, a 74LS138 three-to-eight decoder is used with address lines A 15  to A 13 . 

6.4 The z80 Interface Designers 

Chapter 1 examined some existing control computers, and from these identified 

some typical interfaces. Five of these have been built for the exercise machine, 

and are used as examples of Artificial Engineer designers. These are a seven-

segment LED display driver, a general LED driver, a switch reading interface, an 

analogue-to-digital converter (ADC), and the DUART. Each is described below, 

with schematics appearing in Appendix B. 



tJnapter t. 1 tie Artificial rngineer 	 LSY1 

6.4.1 A Seven-Segment LED Display 

Seven-segment displays are one of the most common interfaces in current use. 

They are extremely flexible, and can display any form of numerical data. The 

displays are constructed as eight light-emitting diodes (LED) (including the dec-

imal point), with their cathodes or anodes connected, which implies that for n 

displays, 8n drive signals are needed, requiring a considerable number of driver 

devices. To avoid this, display digits are multiplexed, with the common cathode 

being used to select which digit is active, requiring only 8 + n drive lines. As 

long as the digits are refreshed regularly, the combined persistence of the LED 

and the eye are sufficient to give the appearance of constant illumination. 

This device driving is normally performed by clock-interrupt driven software. 

This would, of course, be possible in a SYNTH body, but would impose a load 

on any computation-intensive tasks. To avoid this effect in the general case, 

the exercise machine uses a special-purpose display driving chip, the 74C917, 

which drives up to six digits of display and includes an internal oscillator for 

multiplexing. The device appears in the Z80 input-output address space as six 

registers which can be set using the Out instruction, or output to channel HARD 

in a SYNTH body. The only other hardware needed to support this device is an 

inverting buffer to sink the current on the display commons, which is performed 

with a 741104. Figure B-5 on page 162 shows the circuit. 

The 74C917 has two drawbacks, the first is that it can only display the "hex" 

digits 0 to F, with or without decimal point, and cannot blank off digits pro-

grammably. The second is that it is currently quite expensive. In an application 

where a software multiplexer would not result in an unacceptable degradation of 

performance, the Z80 parallel input-output (PlO) chip would be an ideal solu-

tion. This device provides two 8-bit ports, one of which could drive the segments, 

and the other could select digits, possibly via a decoder. 

The Prolog code for this interface synthesiser is too long to appear in the 

body of the thesis, so it appears in Appendix C on page 164. It mainly consists 

of output statements generating the ESDL file, and uses very little of Prolog's 
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Figure 6-2: A board with six seven-segment displays 

inference and back-tracking facilities. The configuration parameter list is used 

to determine how many digits of display are provided. The designer is presented 

with three options for the placement of the displays: on the board, connected to 

pins on the edge-connector, or via a 14-pin DII connector. Other possible options 

include different heights of displays, and different current-limiting resisters to 

control brightness. Figure 6-2 shows the board layout produced for a system 

with the full six digits of display. 

6.4.2 General LED Driver 

This is a multi-purpose interface, and demonstrates how the same hardware can 

be made to appear as different interfaces by using several INTERFACE definitions 

with the same hardware-identifier. The implementation consists of a Z80 PlO, 

with its sixteen outputs directly connected to LEDs. The configuration parame-

ter determines how many bits are actually used. The designer is offered a choice 

of using "bargraph" LED blocks on the circuit board, or placing the displays off-

board via the edge connector or a 20-pin DII connector. When using external 
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LEDs, the designer can select whether to use on-board current limiting resistors 

or not. 

With the generality of this interface, it can be used for several purposes. Two 

possibilities are as a set of indicators or as a bargraph. In the examples given 

in the next chapter, the stopwatch has an indicator to show when it is in "lap 

mode", and the cash-register illuminates different LEDs to show what the value 

displayed on the seven-segment display is. The digital volt-meter, however, uses 

the LEDs as a bargraph, to provide an analogue scale. The code for the indicator 

INTERFACE is shown in Figure 6-3, and that for the bargraph in Figure 6-4. An 

example board, using bargraph mouldings, appears in Figure 6-5. Two displays 

are present, one of sixteen, and the other of eight elements. 

6.4.3 Switch Reader Interface 

This is another very simple interface, consisting of a PlO, with each of its inputs 

connected to a pull-up resistor and a switch. This allows the switches to be read 

independently of each other. The Artificial Engineer provides four synthesis 

options. The switches can be off-board, wired up either by way of the edge 

connector or a DIL connector. Alternatively, there can be either push-buttons 

or DIL switches on the board. Figure 6-6 shows a board with six push switches, 

while Figure 6-7 uses a 20-pin DIL connector. 

6.4.4 The DUART 

The stand-alone DUART circuit is the same as the one used in the exercise-

machine, except that the interrupt-vector address is selected by direct connec-

tions to power and ground rather than a DIL switch. The circuit appears in 

Figure B-2. The discrete components used with the DUART are included in the 

ESDL description by means of a raft, which is a DIL component-carrier. This 

interface allows the serial signals to go off-board either via the edge connector, 

as shown in Figure 6-8, or spare pins on the raft. 
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INTERFACE Indicator (CONFIC Number, CHAN Switch[]) = 
SYNTH Z80, Bar.Graph 
-- set up PlO as desired 
HARD EA.Control] ! Interrupts.Off 
HARD [A.Control] ! Control.Mode 
HARD [A.Control] ! 0 	 -- All outputs 
HARD EB.Control] ! Interrupts.Off 
HARD (B.Control] ! Control.Mode 
HARD [B.Control] ! 0 
-- now send it some initial data 
HARD [A.Data] ! 0 
HARD [B.Data] ! 0 
VAR State: 
SEQ 

State := 0 
WHILE TRUE 

ALT i = [0 FOR Number] 
Switch [i] ? ANY 
VAR Mask: 
SEQ 
Mask := 1<<i 
IF 

State/\Mask 
State : State/\(NOT Mask) 

TRUE 
State : State\/Mask 

HARD [A.Data] ! State/\#OOFF 
HARD [B.Data] ! State>>8: 

Figure 6-3: The indicator driving interface 
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INTERFACE Bar.Graph (CONFIG Bits, CHAN Show) = 
SYNTH Z80, Bar.Graph 

-- set up PlO as desired 
HARD [A.Control] ! Interrupts.Off 
HARD [A.Control) ! Control.Mode 
HARD [A.Control] ' 0 	 -- All outputs 
HARD [B.Control) ! Interrupts.Off 
HARD [B.Control] ! Control.Mode 
HARD [B.Control] ! 0 
-- now send it some initial data 
HARD [A.Data] ! 0 
HARD [B.Data] ! 0 
WHILE TRUE 

VAR Data: 
SEQ 

Show ? Data 
HARD [A.Data) ! Data/\#OOFF 
HARD [B.Data] ! Data>>8: 

Figure 6-4: The bargraph driving INTERFACE 
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Figure 6-5: A board with two LED displays 
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Figure 6-6: A board with push-buttons 

Figure 6-7: A board with switches connected via a 20-pin DIL connector 
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Figure 6-8: A board with a DUART 

6.4.5 Analogue to Digital Converter 

The analogue-to-digital converter is the most complex interface in the prototype 

Artificial Engineer. There are several families of ADCs, with differing properties 

and electrical interfaces. The device chosen was the ADCO8O4LCN, which is both 

compatible with the z80 and inexpensive. A conversion is started by performing 

a write to the device, and it generates an interrupt when the data is ready. 

As this is not a z80 -family device, it does not support mode two interrupts. 

This is done by the random logic shown in Figure B-6. The TNT line of the 

ADC is connected to the Z80 TNT via an open-collector buffer, allowing the 

device interrupt to trigger the vector circuit when the Mf and IORQ signals are 

asserted. A board using an ADC appears in Figure 6-9. External connection is 

always via the discrete-components raft, and the Artificial Engineer reminds the 

designer to use screened cable to attach the transducer. 
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Figure 6-9: A board with an ADC 

6.5 Maintenance 

Any synthesis system will require updating as new devices and applications ap-

pear. In the USHER system two kinds of update can be identified: interface 

modifications and new interfaces. The latter kind requires the creation of a new 

INTERFACE definition, possibly in a new library, and a new Artificial Engineer 

interface designer. For devices which use interrupts it may also be necessary to 

create interrupt initialisation and handler code for the Z80 compiler. 

Interface adaptation, for example allowing the use of multi-digit, daughter-

board mounted displays with the seven-segment display interface, is performed 

by modifying the Prolog interface designer. The prototype designers use back-

tracking to form a chain of possible definitions, selected by the user. In the 

example in Appendix C, the clause make,ss, which defines the seven-segment 

displays or the appropriate connector, is defined three times: once each for on- 
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board, via the edge connector, or via a DIL connector. By making the last clause 

conditional with the get-yes clause, another option can be added at the end. 

If major changes in implementation are required, for example moving to 

liquid-crystal displays (LCD), where the controller is different, the relevant SYNTH 

body must be changed. This identifies a weakness in the prototype implementa-

tion of USHER. For example, LCD and LED displays are functionally identical, 

and could be driven via the same INTERFACE definition, but the choice must be 

made in the control program as each implementation requires a different SYNTH 

body. This is not a problem intrinsic to the USHER approach, as allowing mul-

tiple SYNTH bodies per technology: 

INTERFACE Seven.Segment (CONFIG Digits, 
VALUE Initial, 
CHAN Drive) 

SIMUL 

SYNTH Z80, LED 

SYNTH Z80, LCD 

and then offering the designer the choice during linkage, would avoid the problem. 



Chapter 7 

Examples 

Example is always more efficacious than 
precept. 

Dr Johnson 

Several test programs were developed to exercise specific parts of the USHER 

system, and a number of these have appeared in earlier chapters. To demon-

strate the efficacy of the system with "real world" problems, however, three 

more complex examples were developed. The first two are a stopwatch and a 

digital volt-meter, two devices which are now commonly integrated onto single 

chips. Each uses three interfaces, has significant performance requirements, and 

has source code of under a page. The third example is a cash register, which 

is a device requiring considerable complexity of control. Each example is shown 

in source form, under simulation, and as a circuit board. They have all been 

thoroughly tested on the exercise machine, and perform as predicted by the 

simulator. 

7.1 A Stopwatch 

The stopwatch program provides facilities similar to those found on digital 

watches, or devices like the LCM7045 Precision Timer/Stopwatch chip. It dis-

plays time in minutes, seconds, and tenths of seconds on five seven-segment 

LEDs. It uses two switches, one to start and stop timing, and another which 

combines the reset and "lap" functions. A single LED indicator shows whether 

116 
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1 
Plate 'T—l: Simulating a stopwatch 

lap mode is active. Figure 7-1 shows the source code for a single stopwatch, 

while Plate 7-1 shows it being simulated. Figure 7-2 contains the hardware-

requirements list, and Figure 7-3 the board created by the Artificial Engineer 

from it. In this case all the interfaces are on the circuit board. 

OCCAM's replicated PAR construct allows the definition of arrays of processes, 

and this is extended to the instantiation of arrays of interfaces. In certain cir-

cumstances, such as motor racing, it is often required to time several activities 

at once. By modifying the main code of our stopwatch to use replicated PARS, 

as shown in Figure 7-4, it is possible to define an arbitrary number of timers 

by adjusting the value of Watches. Plate 7-2 shows eight stopwatches being 

simulated. Unfortunately the Artificial Engineer is unable to create a board for 

this as there is insufficient room on a single card. 

The OCCAM channel TIME is used to control the time displayed. The value 

of the current time is stored in the 20ms units used by the internal clock, so 

this value is divided by five to produce a count in tenths of seconds. The 

Time . Display interface procedure converts this value to minutes and seconds 
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INTERFACE Time.Display (CONFIG Digits, VALUE Initial, CHAN Data) = 
FROM Seven. Segment: 

INTERFACE Switches (CONFIG Number, CHAN Return C]) 
FROM Switches: 

INTERFACE Indicator (CONFIG Number, CHAN Switch C]) = 
FROM Bar.Graph: 

PROC Watch (CHAN Start.Stop. Lap.Button, Display. Lap.Sign) = 
VAR Counting, Time, Last, Displaying, T: 
SEQ 

Time :z 0 
Counting := FALSE 
Displaying : TRUE 
WHILE TRUE 

SEQ 
WHILE NOT Counting 

ALT 
Start.Stop ? ANY 
Counting : TRUE 

Lap.Button ? ANY 
IF 
Displaying 

SEQ -- set the time back to zero and redisplay 
Time := 0 
Display ! Time 

TRUE 
SEQ -- first stroke - linlap the display 
Displaying : NOT Displaying 
Display ! Time/6 
Lap.Sign ! ANY 

TIME ? Last 
WHILE Counting 

SEQ 
T : Last PLUS 5 
ALT 

Start.Stop ? ANY 
Counting := FALSE 

Lap.Button ? ANY 
SEQ 
Displaying := NOT Displaying 
Lap.Sign ANY 

TIME ? AFTER T 
SEQ 

TIME ? T 
Time : Time PLUS (T MINUS Last) 
Last : T 
IF 
Displaying 

Display ! Time/6 
TRUE 

SKIP: 

CH.AN Buttons [2]. Lap.Sign [1], Display: 
PAR 
Watch (Buttons [0). Buttons[1], Display, Lap.Sign[01) 
Time.Display (5, 0, Display) 
Indicator (1. Lap.Sign) 
Switches (2, Buttons) 

Figure 'T—l: Source code for the stopwatch 
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% Build :file RMM_U:SW.BLD created on 24/07/86 at 10.28 % 
?- teclmology(z80). 
?- nake(six..aeven, 1. 0. [51). 
?- make(bar_graph, 2, 0, [1]). 
?- make(buttons, 3, 0, [21). 
?- ram(554). 
?- rom(3305). 

Figure 7-2: The stopwatch hardware-requirements list 

Plate 7-2: Eight stopwatchs being simulated 

for display. The control procedure consists of two loops, the first is the idle 

state, waiting in an ALT for either the reset or start buttons to be pressed. 

When the start switch is pushed, control enters the other loop, which contains 

another ALT, with one branch for the stop button, one for the lap button, and 

one branch waiting 0•1s. If the timer branch is activated, this updates the time,-

and if not in lap mode, displays the new value. Note that it does not assume 

that it has been kept suspended for exactly 0. is, but rather reads the time after 

reactivation and calculates the delay from that. This defensive practice ensures 

that the time is kept correctly when several stopwatches are running. 
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Figure 7-3: The stopwatch circuit board 
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DEF Watches - 8: 
CHAN Buttons [2*Watches]. Lap.Slgn [Watches]. Display [Watches]: 

PAR 
PAR 1 	[0 FOR Watches] 
Watch (Buttons [2*1]. Buttons [(2*1) + 1]. 

Display [i], Lap.Sign [i]) 
PAR i = [0 FOR Watches] 

Time.Display (5. 0. Display [1]) 
Indicator (Watches. Lap.Sign) 
Switches (2*Watches, Buttons) 

Figure 7-4: The main code for replicated stopwatches 

7.2 A Digital Volt-Meter 

This design uses the analogue-to-digital converter to read a voltage between 0 

and 5 volts, then displays it on three seven-segment displays, and provides an 

"analogue" scale on a sixteen-element bar graph. Figure 7-5 shows the OCCAM 

code for the volt meter, and Plate 7-3 shows it running on the simulator. The 

simulation body for the ADC reads data from a file; the code for this appears 

in Figure 7-6 (the corresponding SYNTH body appears on page 51). OCCAM's 

asynchronous input can be used to build a program for generating such drive 

files interactively. Such a program is shown in Figure 7-7, and this was run on 

the simulator to generate the file used in Plate 7-3. Figure 5-8 on page 96 shows 

the hardware-requirements list for the digital volt-meter, and Figure 7-8 shows 

the board produced from it. 

ADCs are notoriously unstable and sensitive devices, and the cheaper ones 

can give wildly varying readings. The volt-meter program must be proof against 

this, and provide a smooth but fast responding display. This is achieved by 

storing the last 32 samples in a circular buffer, and displaying the average value. 

To reduce "jitter" in the display, very small changes are ignored. The ADC data 

is a byte, so that the 0 to 5 volts are mapped onto 0 to 255. For simplicity 

the conversion is performed by multiplying by 2 and inserting the decimal point 
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Plate 7-3: The digital volt-meter being simulated 

appropriately. This results in a slightly high reading, and in a product would be 

corrected by altering the ADC reference voltage slightly. The bargraph pattern 

is created by bit manipulation. 
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INTERFACE Int.ADC (CHAN Request. Data) = 
FROM ADC: 

INTERFACE Number (CONFIG Digits, VALUE DP, Initial, CHAN Data) = 
FROM Seven. Segment: 

INTERFACE Bar.Graph (CONFIG Bits, CHAN Show) = 
FROM Bar.Graph: 

PROC Controfler (CRAN ADC -.Reqiieat. - ADC.Reply, D1 splay, - BG) = - 
VAR Data, Samples, queue [BYTE 321, QP, LD ,D: 
SEQ 

SEQ i = [0 FOR 321 
Queue [BYTE 1] :z 0 

Data : 0 
Samples : 0 
QP : 0 
LD : 0 
WHILE TRUE 

SEQ 
ADC.Request ! ANY 
ADC.Reply ? D 
Data :z  (Data - Queue [BYTE Qp]) + D 
Queue [BYTE QP] : D 
QP : (QP + 1)/\31 
IF 
Samples < 32 
Samples : Samples + 1 

TRUE 
SKIP 

D := Data/Samples 
IF 
((LD-D) <5) AND ((D-LD) <5) 
SKIP 

TRUE 
SEQ 

Display ! D*2 	-- scale it to 0 to SV 
BG ! NOT ((-1) << (D/16)) 
LD : 

CHAN Go. Getter, Out, BG: 
PAR 

Int.ADC (Go, Getter) 
Number (3. 2. 0, Out) 
Bar.Graph (16, BG) 
Controller (Go. Getter, Out, BG) 

Figure 7-5: The digital volt-meter source code 
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INTERFACE Int.ADC (CHAN Request, Data) 
SIMJL 

VAR Res: 
DEF FileName 	"ADC.DATA": 
SEQ 
OpenRead (FileOutO, FileName) 
FileInO ? Res 
IF 
Res - OpenedOK 

SKIP 
.TRUE 

SEQ 
PrintString (Screen, "ADC Data File open failed 
ReportError (Screen) 
STOP 

VAR D: 
WHILE TRUE 

SEQ 
Request ? ANY 
Read (FileInO, D. TRUE) 	-- echo it in micro-window 
Data ! D: 

Figure 7-6: The analogue-to-digital converter simulation body 
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-- Program to generate a data file for the ADC to read 

DEF FileName 	"ADC.DATA": 
VAR. Res: 
SEQ 

OpenWrite (FileOutO, FileName) 
FileInO ? Res 
IF 
Res = OpenedOK 

SKIP 
TRUE 

SEQ 
PrintString (Screen. "ADC Data File open failed 
ReportError (Screen) 
STOP 

VAR V. Going: 
SEQ 
V : 0 
Going : TRUE 
PrintString (Screen. "Type '+' to raise voltage. ") 
PrintString (Screen. "'-i  to lower it, '.' to stop") 
Screen ! '*c';'*n' 
WHILE Going 

VAR. Ch, T: 
SEQ 
TIME ?T 
ALT 

Keyboard ? Ch 
IF 
Ch= 
Going : FALSE 

(V < 255) AND (Ch = 
V : V + 1 

(V > 0) AND (Ch = 
V : V - 1 

TRUE 
SKIP 

TIME ? AFTER T + 25 
SEQ 

Write (FileOutO, V. 0) 
FileOutO ! 
Write (Screen, V. 0) 
Screen ! '*n'; '.1CC' 

Figure 7-7: An OCCAM program for generating a drive file 
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Figure 7-8: The circuit board for the digital volt-meter 
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% Build file RMM_U:TILL.BLD created on 07/09/86 at 13.53 % 
?- technology(z80). 
?- make(bar_graph. 1, 0, [61). 
?- inake(aix_seven, 2. 0, [51). 
?- make(duart, 3, 8, []). 
?- make(buttons, 4, 0, [161). 
?- ram(994). 
?- roin(12143). 

Figure 7-9: The cash register hardware-requirements list 

7.3 A Electronic Cash Register 

The last and largest example is a typical electronic cash-register. It uses four 

interfaces: 5 seven-segment displays, 6 indicator LEDs, a 16-button keypad, and 

a printer driver. In a real system an extra interface would be needed: a solenoid 

actuator to release the lock on the cash drawer. The source code is too long 

to include in the body of the thesis, so it appears in Appendix D on page 168. 

Plate 7-4 shows the till being simulated, and Plate 7-5 shows it running on the 

exercise machine. The hardware-requirements list is shown in Figure 7-9, and 

the circuit board created from it in Figure 7-11. 

The numeric part of the keypad is used for entering data, and the top six 

keys ('A' to 'F') select functions. One keys adds the current price to the bill, 

another allows the item to be repeated, another totals the bill and calculates the 

required change. Items can also be put into "classes" (groceries or stationery, 

for example), and the total value of goods sold in each class can be printed out 

at the end of the day. This is achieved via the "master" key, which acts like a 

shift, followed by another keystroke. Using this facility the sales assistant can 

identify himself with a number, and the size of the "float" of change can be set. 

All transactions are recorded on a printed receipt, examples of which are shown 

in Figure 7-10. Since the DUART interface was available, this was used to drive 

the printer, although it only uses one of the channels. Since the Z80 system uses 
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Plate 7-4: The cash register being simulated 
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Plate 7-5: The cash register on the exercise machine 
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Conclusions 

In my end is my beginning. 

East Coker 
by T. S. Elliot 

This work is based on the hypothesis that control computers can be de-

scribed completely by the software they are to run. The preceding chapters 

have described a suite of design tools, the USHER system, which can simulate 

and synthesise controllers from programs written in an extended version of oc-

CAM. The examples in Chapter 7 demonstrate that the USHER system works, 

thereby proving the hypothesis correct. The USHER system represents a signifi-

cant step forward in tools for the design of systems that involve both software and 

hardware components. No hitherto published work can simulate and synthesise 

complete control-computers from a single design document. 

The sinrulator-allo s-designs--ta betested- and- debiigged - p-rior-tofabrictioir; 

and the high-level nature of USHER descriptions avoids some of the common 

problems with simulation. As the description is in the form of a programming 

language, simulation is by direct execution, and does not incur the speed penal-

ties that are normal in simulation. The high level of description also reduces 

the quantity of output, and what is produced is readily intelligible. Not only 

is the description functional, but both input and output can be regarded as 

functional. For example seven-segment display output is shown as digits, not 

segment-driving waveforms. 

The prototype synthesis system produces complete board-level, Z80-based 

microcomputers. These are fully functional, but designs would not be commer- 
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cially acceptable for reasons outlined in the following sections. This is due to 

implementation expedience, not flaws in the approach. The experimental version 

of USHER could still be used to produce prototype systems or one-off devices. 

It is particularly suitable for use in areas of scientific research where specialised 

monitoring and control equipment is needed. Here the function is often complex 

and obscure, and the task of conveying it to a design engineer difficult and error 

prone. USHER users need only understand programming to create a complete 

computer system, requiring no knowledge of hardware design. 

The following sections examine each component of the USHER system in 

detail, identifying strengths and weaknesses. The last section outlines further 

work that could be done within the USHER framework, including an examination 

of other possible back-ends, and in particular a potential VLSI architecture. 

8.1 The Language 

The USHER input language can be viewed as two parts: standard OCCAM, and 

extensions. OCCAM was chosen for its concurrency facilities, and these have 

served well. Experience has shown that processes communicating via chan-

nels are an appropriate model for controllers, as proposed in Chapter 3. The 

small number of facilities offered by the language makes it easy to compile and 

amenable to theoretical manipulation, but it is not helpful for writing programs. 

Particularly lacking is any form of data typing or structuring facilities. OCCAM 

2 has had types added, but these are very limited and are not user definable. As 

the control programs used with USHER are unlikely to be very large, these disad-

vantages are probably insignificant, and OCCAM is definitely a more appropriate 

language in which to implement concurrency than assembly code. 

In order to use OCCAM to define control computers, we need to reference 

interface devices, modelled as procedures. This could be done using textual ma-

nipulation and by adopting lexical conventions, but this is inelegant. Instead, 

language extensions were defined that allowed the definition of imported proce- 
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dures from libraries, with dictionary-based, automatic linkage. These were used 

for the definition of an OCCAM runtime environment, and proved most effective. 

The extension was then itself extended to allow the definition of interfaces, both 

as import specifications and as library entries. Interfaces can then be instan-

tiated using the same syntax as procedure calls. The only restriction imposed 

was forcing each instantiation to be in a distinct PAR branch. This is merely 

an inconvenience, however, as it does not limit what can be described, only the 

form that descriptions must take. 

Interface library entries allow the definition of multiple code-bodies for each 

interface. One entry is a simulation body, and the others are for synthesis with 

different technologies. Each of these have a technology-identifier and an asso-

ciated hardware-identifier. This syntax was successful, and is analogous to the 

multiple architecture bodies possible in a VHDL description. A problem associ-

ated with these definitions is the case where the code body changes with varia-

tions in implementation within one technology, as described in Chapter 6. This 

can be solved by allowing multiple SYNTH definitions for each technology, and 

delaying the binding of modules and code generation until after the hardware-

requirements list has been drawn up. 

The very high-level abstractions used in the USHER system allows the inclu-

sion of different low-level design styles. In many cases, OCCAM could not be used 

directly to capture the structure of devices which can be successfully integrated 

as interfaces. The most obvious of these are the analogue converters, but it is 

also true for devices like RS-232 interfaces which have analogue line-drivers. 

8.2 The Simulator 

The simulator can also be divided into standard and extended parts. The con-

ventional OCCAM interpreter has proved itself by supporting an undergraduate 

programming practical. Additionally, a suite of over forty test programs was de-  
- 

veloped to check the interpreter prior to release. The extensions not only include 
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support for the interface definitions, but the ability to vary default word-length 

and clock-rate. These facilites allow the simulator to model different fabrication 

technologies. 

Simulation is definitely at a behavioural level, and does not attempt to pro-

vide accurate electrical information. The interface designer is required to use 

a low-level simulator to verify that interfaces work before they are used with 

USHER. By doing this, the USHER user can work at a high level without con-

cern for implementation detail. As outlined at the end of Chapter 4, it is possible 

to abuse the simulator and make it produce false results, but this is true of all 

simulation tools. In normal use it provides an accurate model of the final envi-

ronment, and correctly shows how control programs will operate. 

In the hardware-first design style, control programs can be developed in situ. 

The purpose of the simulator is to support this development and debugging 

phase. To do this, it provides a variety of tracing and diagnostic facilities. These 

are superior to those provided by any other OCCAM system, and have proved 

useful for debugging both USHER programs and programming exercises. The 

screen driving facilities built into the simulator and the provision of a micro-

window for each interface enhances the comprehensibility of simulator output. 

8.3 The z80 Back-End 

The Z80 microprocessor family was chosen on the basis of availability rather than 

desirability. Despite this inauspicious start, it proved a good research vehicle. 

The processor architecture is such that it is possible to generate native code of 

good quality from OCCAM. The code contains a number of optimisations, and 

these (combined with the clock frequency of 4MHz) ensure good performance. 

Further optimisations were possible, but were outside the field of research. On 

an 8-bit processor it is inevitable that hand-written machine code will always 

be faster and more compact than that generated by a compiler. Many USHER 

applications will not find this a problem as they do not require enormous speed. 
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But for some designs, high performance is essential for them to function at all, 

and the solution for these is to use a more powerful microprocessor. Section 8.5.1 

discusses other microprocessors which could be used as a basis for US  ER back-

ends. 

Unquestionably the most severe drawback in a Z80 based systems is the 16-

bit address space. There will frequently be enough processing power available, 

but insufficient memory space. This is compounded in the prototype Artificial 

Engineer by using A15 to select between RAM and ROM, but this could easily 

be corrected leaving the 64k bytes total limit. The solution that is commonly 

used to work round this problem is paging. Here a range of addresses can be used 

to access several areas, or pages, of memory, depending on the state of a page-

select register. The OCCAM compiler and operating system could be extended 

to implement this automatically. If the main code of a program is, for example, 

a PAR construct, each branch could reside in its own page of memory, with the 

executive selecting between them when it reschedules processes. Global variables 

and code can exist in unpaged memory and be available to all. The alternative 

and preferable solution is to use a processor with a larger address space. 

The use of user-definable libraries of interfaces means that the back-end soft-

ware does not "compile" the hardware-requirements list; it simply assembles it 

according to the designer's plan. This has the advantage that the back-end does 

not need to be changed when implementations change, nor does it restrict the 

range of devices that can be used by the designer. However, it does have one. 

disadvantage: the back-end cannot optimise the hardware in any way. In the 

stopwatch example in Chapter 7, two Z80 PIOs are used: one to monitor two 

switches, and one to illuminate a single LED. Obviously a single PlO could per-

form both of these jobs and still have spare capacity. The interface designer 

could provide a bidirectional interface that would perform this function, but the 

back-end cannot automatically merge the two. 

Whether to leave the "smart" part of the design process in the hands of 

the human engineer or to build it into the compiler is a difficult question. The 

technology that is being used must influence where the division is placed. In 
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the case of a board level system, such as this one, the range of possible interface 

devices is unbounded since it can include custom chips; so it is probably better 

to leave the interface designer free to choose which devices he or she offers the 

high-level designer. In a closed technology like VLSI, the range of available 

interfaces will be much smaller, and their use will be amenable to automated 

optimisation. Automation might even be essential to make designs fit into the 

available silicon area. 

8.4 The Artificial Engineer 

The prototype Artificial Engineer successfully produces single-board, Z80-based 

computers; but it does not reach its full potential as an expert system. This is due 

to the small number of options that are available with each interface, giving no 

room for automated decision making as there are none to be taken. The shortage 

of interface options is, in turn, due to a lack of resources and my inexpertise in 

hardware design. An electronic engineer with access to components with which 

to build prototypes would soon be able to construct an extensive library of 

interfaces. 

The use of Prolog and a rule-based idiom has, however, been most effective. 

The shell structure, which loads interface-designer modules as required, palpably 

demonstrates the value of Prolog's dynamic syntax. The interactive development 

environment is also helpful for creating and extending interface definitions. My 

experience confirms the conclusions of the OCCAM-to-CMOS researchers at Fu-

jitsu, that Prolog can be used to succinctly express algorithms and represent 

knowledge effectively, making it suitable for use in the construction of intelligent 

design-tools. 
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8.5 Further Work 

This section identifies some directions in which the USHER system could be 

developed. The extended OCCAM input language is complete and would not 

benefit from further development. The extensions follow the OCCAM philosophy 

by providing the minimum sufficient features. Similarly the only work which 

could usefully be done on the simulator would be optimisation to improve per-

formance. Different back-end technologies, however, can be developed without 

limit. The following two sections discuss first possible board-level technologies, 

and then a possible VLSI based synthesiser. 

8.5.1 Other Standard-Part Processors 

There are now many microprocessors on the market, with word lengths from 1 

bit' to 32 bits. Any processor with a word length of 8 bits or greater could be 

used as the basis of an USHER back-end, but some are more appropriate than 

others. INMOS have coined the term transputer to mean a complete computer 

on a chip, comprising processor, memory and input-output connections. The 

term has become synonymous with the INMOS products, T414 and T212, but 

there are other devices which qualify for the title. 

Several members of the Motorola 6800 family, for example, now have on-chip 

interfaces. The 11D68P05W0 features an analogue-to-digital converter on chip, as 

well as a "piggyback" EPROM socket. From the same family, the HD63701X0C 

has a clock, serial input-output, 4k bytes of EPROM, 192 bytes of RAM, and 

53 parallel input-output lines. The Z8 microprocessor has on-chip clock, two 

timers and serial communications. These and other devices are intended for use 

in control computers, and greatly reduce chip count in systems using them. The 

6800 family offers a variety of different members with different configurations, 

'This is the MC14500BP "Industrial Control Unit," which has 16 instructions. 
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more memory but less input-output for example, and the Artificial Engineer 

would be able to select the optimum device. 

The only processor to offer the larger address space and improved perfor-

mance of 16/32 bit words as well as these on-chip interfaces is the 68070. Pre-

liminary data for this device was released at the end of 1985. It includes on-chip 

memory management, two direct-memory-access channels, a serial interface, two 

16-bit timers and two 16-bit data-capture registers. At the time of writing this is 

the ideal chip for the USHER system. The 68000 processor is sufficiently power-

ful that the loss of efficiency caused by compiler-generated code is insignificant. 

The address space is 16M bytes, so removing the need for paging. The bus con-

nection is compatible with the 6800 peripheral chips; so many interface devices 

are already available. 

As stated at the start of Chapter 5, the INMOS T414 or T212 are the obvious 

processors to use with this system. They are fast, with a large address space, and 

are specifically designed for running OCCAM. They are also partially intended 

for use in control applications, as graphics- and disc-control transputers are 

available, but unfortunately they were too expensive to be used. A disadvantage 

of the transputer is that non-INMOS peripherals must be connected via a serial 

link and a link adaptor. Transputers only provide four links, so if more than 

four interfaces are needed, they require either two link adaptors or transputer 

machine code to drive them. Because OCCAM does not provide any means of 

explicit memory access, if the interface itself is memory-mapped in the address 

space, it must be driven by machine code. Alternatively the ! and? operations 

can be used if a link adaptor is placed in the address space, followed by a second 

adaptor to connect to the interface. 

8.5.2 A VLSI Architecture 

Chapter 1 describes the use of core-processors; that is, the use of a standard-part 

microprocessor as a subcomponent of a chip. An Artificial Engineer could be 

built to create chips in this style, but it does not make good use of the medium. 
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Chapter 2 describes a number of design systems which take a behavioural de-

scription of a task and produce a datapath and microcode to animate it. This is 

suitable for small tasks, typically the definition of a microprocessor intended to 

run other programs. For a task of larger size, the size of both the datapath and 

the microcode becomes unwieldy. An alternative approach has been developed. 

• This new approach is embodied in the Plex system, developed at Bell Lab-

oratories [Buric 83, Buric 841. This is based on a pre-designed, modular micro-

computer, with variable word length, number of registers, and size of ROM and 

RAM. The input is in the form of a C program, which is compiled to an in-

termediate code which is examined to see what hardware resources are needed. 

For example, if the program does not use the exclusive-OR function, then the 

ALU need not contain that logic. Having calculated the number of registers 

and required operations, the instruction set is created from a set of templates. 

This is then used to generate code for the program and to define the datapath 

and microcode. In this way, a manually designed processor is optimised for a 

particular application. 

The INMOS generic transputer architecture, shown in Figure 8-1, is already 

modular and so ideally suited to this type of compilation. The instruction set is 

designed to work with any word length that is a multiple of eight bits, and the 

processor-block microarchitectiire is also highly modular. Since the transputer 

uses an evaluation stack, there is no need to adjust the instruction format to 

allow for different sizes of register fires. The hardware-requirements list could 

be extended to include processor configuration data, and the Artificial Engi-

neer could generate a custom processor-block. By implementing the process-to-

processor configuration parts of OCCAM, multiprocessor control systems could 

be built, using the serial links for communication. The links could also be used 

for maintenance and diagnostic purposes, with the service program running on 

a separate transputer, and plugged in only when required. 

The R2  system [Widdowson 841, on which I collaborated, provided a Prolog-

based environment for the development of VLSI design tools. It provided facili-

ties for the definition of geometric items and cells as Prolog facts. These could be 
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manipulated by the applications program, or by procedures in the system. The 

design could be stored as a Prolog program, or dumped as CIF. By providing 

facilities for the construction of user interfaces, such as menus and command line 

interpretation, R 2  encouraged consistency in the appearance of design tools. 

Electronic design at the silicon-level is much harder than at the board-level. 

When designing with standard parts, many functions which the silicon designer 

must create for herself already exist. It follows that fewer engineers will be 

able to develop interfaces for a VLSI based USHER system. Various methods 

of semi-custom design have been developed to help combat this problem, and 

these could be integrated with an US  ER system generating custom transputers. 

The Lattice Logic Chipsmith system [Lattice 84a] generates gate arrays from a 

structural description. Using this system interfaces could be implemented as 

small gate arrays, and driven as channels via a standard logic-block. Interfaces 

defined like this would not require SYNTH bodies as they respond directly to 

channel communications. It would also be possible use the Switchsmith simulator 

[Lattice 84b] instead of SIMUL bodies. This simulator has a procedural interface, 

which could be connected to the channel-communication code of the USHER 

simulator, creating a mixed structural and behavioural simulator. 
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Appendix ,A 

Extended' Occam Grammar 

Less is more. 

Mies Van der Rohe 

We are tied to a language that makes up 
in obscurity what it lacks in style. 

Rosencrantz and Guildenstern are Dead 
by Tom Stoppard 

This grammar is based on that given in the Occam Programming Manual, but 
includes the changes made in the VAX Occam Programming System. Further 
extensions introduced in this implementation are marked with the > character. 
Note that this grammar is significantly longer than that in the manual. This is 
because the optional and conditional clauses of productions in its grammar have 
been expanded to the full form for the parser generator, and the indentation and 
line continuation syntax is included in the grammar whereas it is only described 
informally in the manual. 

Terminal symbols are shown in "typewriter" if they are punctuation or key-
words, more complex ones are defined by regular expressions and are shown in 
slanted text. The symbol "" means an end-of-line character, and "U" means a 
space character. These whitespace characters appear in the grammar due to the 
way OCCAM is defined with indentation significance. 

Occam - 
Statement-List; 

Statement-List 
Statement-List Statement 
Statement; 

Statement - 
Indents Process 
error; 

Indents 
"u" Indents 

CommaNL 

"," WhiteSpace; 

WhiteSpace 
WhiteSpace WhiteElem 

WhiteElem -' 

- Processes - 

Process -' 
Primitive-Processes End...Proc 
Declaration 
Construct 
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Compiler-Option I Output_Exp...List - 
Procedure-Call EndProc Output_Exp_List ";" Expression 
Proc_At_End 	; Expression; 

Procedure-Call - Skip - 
Identifier- Actual-Parameters; "SKIP"; 

Actual-Parameters -p Stop. --+  

Actual_Parain_List ")"; "STOP"; 

Actual_Param_List -' Timer-Delay - 
Actual_Param..List CommaNL "TIME" "?" "AFTER" Expression; 

ActuaLParam 
Actual_Param; Timer-Input 

"TIME" "?" Variable; 
ActuaLParam -. 

Expression I Primitive-Processes 
Slice-Value; Assignment 

Input I 
Proc_AtEnd -* Timer-Input I 

Identifier ":"; Timer-Delay 
Output I 

End_Proc -+ Skip I 
Stop; 

- Constructors - 
— Primitive Processes - 

Replicator 
Assignment -+ Identifier "" "C" Expression 

Variable ":" Expression I "FOR" Expression 
Slice ":" Slice-Value; 

Guard -+ 
Input -+ Expression "&" Guard -Primitive; 

Variable "?" Input-List; 
Guard-Primitive -i 

Input-List - Input 
Input_Var_List I Timer-Delay 
Slice I Skip; 
"ANY"; 

PAR-Construct - 
Input_Var..List -' "PAR" 

Input_Var_List ";" Variable "PRI" "PAR"; 
Variable; 

ALT-Construct - 
Output -' "ALT" I 

Variable "!" Output-List; "PRI" "ALT"; 

Output-List -* > Synthesis-Body -, 
Output_Exp_List t> 	"SYNTH" Identifier ",". Identifier; 
Slice-Value I 
"ANY"; Construct 

"SEQ" Replicator 
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Compiler-Option I Output_Exp.List 
Procedure-Call EncLProc OutpuLExp...List ";" Expression 
Proc_At_End f ; Expression; 

Procedure-Call - Skip -p 

Identifier Actual-Parameters; "SKIP"; 

Actual-Parameters - Stop -i 
"(" ActuaL.Param_List ")"; "STOP"; 

Actual_Param_List -p Timer-Delay 
Actual_Param_List CommaNL "TIME" "?" "AFTER" Expression; 

Actual_Param I 
Actual_Param; Timer-Input 

"TIME" "?" Variable; 
Actual_Param -* 

Expression Primitive-Processes 
Slice-Value; Assignment 

Input 
ProcAt..End - Timer_Input I 

Identifier ":"; Timer-Delay I 
Output 

End_Proc -p Skip 
I; Stop; 

- Constructors - 
- Primitive Processes - 

Replicator 
Assignment -p  Identifier "" "[" Expression 

Variable ":" Expression "FOR" Expression  

Slice ":" Slice-Value; 
Guard -~ 

Input -' Expression "&" Guard-Primitive; 
Variable "?" Input-List; 

Guard-Primitive - 
Input-List - Input I 

Input_Var_List I Timer-Delay 
Slice I Skip; 
"ANY"; 

PAR-Construct 
InputVar_List -' "PAR" I 

Input_Var_List ";" Variable "PRI" "PAR"; 
Variable; 

ALTConstruct 
Output "ALT" I 

Variable "!" Output-List; "PRI" "ALT"; 

Output-List - I> Synthesis-Body 
Output _Exp_List I "SYNTH" Identifier "," Identifier; 
Slice-Value 
"ANY"; Construct 

- "SEQ" Replicator 



PAR-Construct Replicator 
ALT-Construct Replicatör 
"IF" Replicator 
"WHILE" Expression 
"SIMUL" 
Synthesis-Body I 
Guard 
Expression; 

- Declarations - 

Variable-Declaration -* 
"VAR" Identifier-Dec-List 

Identifier-Dec-List 
Identifier-Dec-List CommaNL 

Identifier-Dec I 
Identifier-Dec; 

Identifier-Dec 
Identifier Subscript 
Identifier; 

Subscript 
"[" Byte-Option Expression "]"; 

Byte-Option -+ 
"BYTE" 

Channel-Declaration -+ 
"CHAN" Channel_Def_List 

ChannelJDeLList 
Channel_Def_List CornmaNL 

Channel-Del 
Channel_Def; 

Channel_Def -* 
Identifier Chan-Subs At-Place; 

Chan-Subs 
"[" Expression 

At-Place -* 
"AT" Expression 

Constant -Declaration -* 
"DEF" Constant _Def..List 

Constant_Def_Ljst 
ConstantiDef_Ljst CommaNL 

Constant_Def 
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Constant-Del; 

Constant-Del -+ 
Identifier "" Constant-Value; 

Constant-Value - 
Expression 
Vector-Constant; 

Formal-Parameters -* 
"(" Formal-Parameter-List ")" 

Formal-Parameter-List -4 

Formal-Parameter-List CommaNL 
Formal-Parameter I 
Formal-Parameter-1; 

Formal-Parameter -+ 
Formal_Parameter_i 
ParamName; 

Formal-Parameter-1 - 
Param_Class Param_Name; 

Param_Class 
"VAR" I 
"VALUE" 
"CHAN" 
"CONFIG"; 

Param_Name 
Identifier "0" 
Identifier; 

Procedure-Declaration - 
Proc_Id Formal -Parameters 

Proc_Id - 
Procedure Identifier; 

Procedure - 
"PROC" 
"IMPORT" 

1' 	"EXPORT" 
"INTERFACE"; 

• Library -Declaration -* 
• 	"LIBRARY" Identifier 

• Source-Declaration -+ 
• 	"FROM" Identifier ":"; 
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Declaration -* "NOT"; 
Variable-Declaration 
Channel-Declaration I Assoc_Arith_Op 
Constant -Declaration I "+" I 
Procedure-Declaration "PLUS" I 

1> 	Library -Declaration I "*" I 
I> 	Source-Declaration; "TIMES"; 

- Expressions - Assoc-Op 
AssocArith_Op I 

Vector-Constant -. Logical-Op 
Table I Boolean-Op; 
StringConst; 

Operator 
Table - Arithmetic-Op, I 

"TABLE" "C" Byte-Option Comparison-Op 
Expression-List "]"; Shift-0p; 

Expression-List -* Element - 
Expression-List CommaNL Number 

Expression I HexNumber 
Expression; Variable 

Vector-Constant Subscript 
Arithmetic-Op -i CharConst 

I "TRUE" 
"MINUS" I "FALSE" I 

Expression  

Expression 
Element 

Comparison -Op -' Element Assoc-Element 
:= Element Operator Element 
<> 	I 

 

Monadic-Op Element; 

:>1 

 

Assoc-Element 
< 	I 

 

Assoc-Element Assoc-Op Element 
Assoc-Op Element; 

Logical-Op Variable - 
"/\" I Identifier 

I Identifier Subscript; 

Boolean-Op - Vector Operations - 

"AND" 
Slice -~ 

Identifier "[" Byte-Option 
Shift-Op Expression "FOR" Expression  

a>>". Slice-Value -+ 

Slice 
Monadic-Op Vector -Constant; 



Appendix B 

Collected Schematic Diagrams 

This appendix contains all the schematic diagrams used in this thesis. They 

have been produced using the same formatter as the rest of the thesis, and this 

constrains the form some of the symbols take. For example, or and nor gates 

are drawn as boxes as TTEX  does not provide general arcs. 

Contents 

Figure Page Title 

B—i 	158 The exercise machine memory subsystem 

B-2 159 The DUART subsystem 

B-3 160 The CTC and interface decoder 

B-4 161 The stand-alone Z80 base design 

B-5 162 The Seven-Segment Display Interface 

B-6 163 The Analogue-to-Digital Converter 
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Appendix C 

An Example Interface Designer 

This appendix contains the Prolog code that synthesises the seven-segment dis-

play interface, described on page .107. This is achieved by outputting ESDL code 

with the utility procedures starting with esdl_. These are defined in the utilities 

library that is consulted by the base-designer. 

six-seven-consulted. 

six_seven_make(Address. _. [Digits 
write('Making a 
write (Digits) 
write(' digit seven-segment display at address 
write (Address). 
ni, 
plant_controller(Address. Digits). 
make_ss(Digits, Address). 

plant_c ontroller(Address, Digits) : - 
esdl_string(' 	hex.display (A<0:2>, D<0:4>, interface.EN' 'C), 
esdi_string (Address), 
esdl_string('>, WR''. .GND, .GND) ->'), 
esdl_nl, 
esdl_string(' 	 segments'), 
esdi_string (Address), 
esdl_string('<1:7>, DP'), 
esdl_string(Address), 
esd]._string(', digits.drive'), 
esdl_string(Address), 
esdl_string(.'<O: 5>'), 
esdi_ni, 
digita_res(Address, Digits), 

-digits_inv(Address, Digits), 
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esdl...string(' -> external<'), 
esdi_string (DP_Edge), 
esdl_string('>'), 
esdi_ni, 
write(', DP on pin 
external_name(DP_Edge), 
ni. 
Last-Digit-Pin is DP-Edge + N, 
connect_digits(Last_Digit_Pin, N, Ad), 
write( 'The eommoms- are- comnec-t-ed- on- pins- ') 
First-Digit-Pin is DP-Edge + 1, 
external_name (First_Digit_Pin), 
write(' to '), 
external_name (Last_Digit_Pin), 

inake_ss(N, Ad) :- 
ni, 
write('Using a 14 pin dii connector, pins 1 to 7 for the segments,'), 
ni, 
write('and 8 for the DP. The commons are wired up to pins 9 to 
Last is 8 + N, 
write (Last), 
write('.'), 
ni, 
esdi_string(' 	con.nector14 (segments'), 
esdi_string(Ad), 
esdl_string('<1:7>, DP'), 
esdl_string(Ad), 
esdi_string(', digits'), 
esdi_string(Ad), 
esdi_string('<O:'), 
M1sN-1, 
esdi_string(M), 
esdl_string('>'), 
ss_dil_un(N). 
esdi_string(')'), 
esdi_ni. 

ss_dii_ujL(6). 

ss_dil_un(N) :- 
write(', 
Left is 6 - N. 
unused-signals (Left) 

wire_up_ss(N, Ad) :- 
ss_tree(N, N. Ad). 

ss_tree(O, _, J. 

ss_tree(This, All, Ad) :- 
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Next is This - 1, 
ss_tree(Next, All, Ad), 
place_ss(All. Next). 
esdl_string(' 	SS.LED'), 
esd]._string(All), 
esdl_string(' (segments'), 
esdl_string(Ad), 
esdl_string('<1:7>. DP'), 
esdl_string(Ad). 
esdl_string(') -> digits'), 
esdl_string(Ad), 
esdl_string('<'), 
esdl_string(Next), 
esdl_string('>'), 
esdi_ni. 

place_ss(LEDs, 1) 
Pins is LEDs * 10, 
place-device (Pins) 

place_ss(_, J. 

connect_ss(_, 0, J. 

connect_ss(Edge. N. Ad) :- 
Next-Edge is Edge - 1, 
M is N - 1, 
connect_ss(Next_Edge. M. Ad), 
esdl_string(' 	Wire segments'), 
esdl_string(Ad), 
esdl_string('<'), 
esdl_string(N). 
esdl_string('> -> external<'), 
esdl_string(Edge), 
esdl_string('>'), 
esd]._nl. 

connect_digits(_, 0, _). 

comnect_digits(Edge, N. Ad) :- 
Next-Edge is Edge - 1, 
M is N - 1, 
connect_digits(Next_Edge, M, Ad), 
esdl_string(' 	Wire digits'), 
esdl_string(Ad), 
esdl_string('<'), 
esdl_string(M), 
esdl_string('> -> external<'), 
esdi_string (Edge), 
esdl_string( '>'), 
esdi_ni. 



Appendix D 

The Cash Register 

This appendix contains the OCCAM code for the cash-register example from 

Chapter 7, and the Artificial Engineer dialogue that was used to create the 

board shown in the same chapter. 

D.1 Source Code 

INTERFACE Number (CONFIG Digits. VALUE DP, Initial, CHAN Data) = 
FROM Seven. Segment: 

INTERFACE Indicator (CONFIG Number, CHAN Switch 0) = 
FROM Bar.Graph: 

INTERFACE Keypad (CHAN Return 0) 
FROM Switches: 

INTERFACE DUART (CHAN ml, Outi, 1n2, Out2) = 
FROM DUART: 

DEF Price.Ind = 0, 
Times.Ind = 1, 
Class.Ind = 2, 
Change.Ind = 3. 
Paid.Ind = 4, 
Master.Ind = 5: 

DEF Max.Indicators = 6: 

DEF Add.Key 	=  
Times.Key 	=  
Class.Key 	=  
Total.Key 	=  
Error.Key 	=  
Master.Key = 15: 

-- codes for the indicator LEDs 

-- the function keys 
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DEF Price.State = 0, 
Total.State = 1, 
Change.State = 2, 
Times.State = 3: 

-- Control -- 

- - internal state of the 
-- control software 

PROC Control (CHAN Keypad [], Display, Indicators 0, Printer) = 
VAR Pressed, 	 -- last key pressed 

Value, 	 -- number being typed in 
Price, 	 -- price of current item 
Total, 	 -- total for this bill 
State, 	 -- current software state 
Last.Show: 	 -- last indicator illuminated 

VAR Class.Pounds (16], 
Class.Pence (16], 
Other.Pounds, 
Other. Pence: 

VAR Float, 
Sales, 
Operator: 

 -- Show - - 

-- pounds spent, by class 
-- pence spent, by class 
-- unclassified sales 

-- till float of change 
-- total number of sales 
-- assistant number 

PROC Show (VALUE What) = 
SEQ 

IF 
Last.Show < 0 
SKIP 

TRUE 
Indicators [Last.Show] ! ANY 

Indicators [What] ! ANY 
Last.Show := What: 

-- Print -- 

PROC Print (VALUE What, Size) = 
SEQ 
Write (Printer, What/100, Size - 3) 
Printer I 

IF 
(What\100) < 10 
SEQ 

Printer ! '0' 
Write (Printer, What\100, 1) 

TRUE 
Write (Printer, What\100, 2): 

-- Multiple.Add -- 
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PROC Multiple.Add (VALUE Class) = 
VAR TP: 
SEQ 

TP := Price*Value 
Total : Total + (TP) 
IF 

Class < 0 
SEQ 
Printer 
Other.Pounds := Other.Pounds + (TP/100) 
Other.Pence := Other.Pence + (TP\100) 

TRUE 
SEQ 
Printer ! ('A') + Class 
Class.Ponnds [Class] : Class.Pounds [Class] + (TP/100) 
Class.Pence [Class] : Class.Pence [Class] + (TP\100) 

Printer ! 
Write (Printer, Value, 0) 
Printer ! 'x' 
Print (Price, 5) 
Printer ! ' '; '' 
Print (Price*Value, 7) 
Printer ! '*n' 
Price : 0 
Value : 0 
Display 1  Total 
Show (Price.Ind) 
State := Price.State: 

-- Single.Add -- 

PROC Single.Add (VALUE Class) = 
SEQ 

Total := Total + Value 
IF 

Class < 0 
SEQ 

Printer ! 
Other.Pounds : Other.Pounds + (Value/100) 
Other.Pence : Other.Pence + (Value\100) 

TRUE 
SEQ 

Printer ! 'A' + Class 
Class.Pounds [Class] : Class.Pounds [Class] + (Value/100) 
Class.Pence [Class] : Class.Pence [Class] + (Value\100) 

Print (Value, 17) 
Printer ! '*n' 
Price : 0 
Value : 0 
Display ! Total: 

-- Add -- 
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PROC Add. (VALUE Class) = 
SEQ 

IF 
State = Times.State 

Multiple . Add (Class) 
TRUE 
Single.Add (Class): 

-- Give.Total -- 

PROC Give Total = 
SEQ 

Display ! Total 
Value : 0 
State : Total.State 
PrintString (Printer, 
Printer ! '*n' 
PrintString (Printer. 
Print (Total, 10) 
Printer I '*' 
Show (Change.Ind): 

-- Give.Change -- 

PROC Give Change = 
VAR Give: 
SEQ 

Give := Value - Total 
Display ! Give 
PrintString (Printer, 
Printer ! '*n' 
PrintString (Printer, 
Print (Value, 10) 
Printer ! '*n' 
PrintString (Printer, 
Printer ! '*n' 
PrintString (Printer, 
Print (Give, 10) 
Printer ! '*n' 
PrintString (Printer, 
Printer ! '*n'; '*n' 
IF 

" Total ") 

to ----------------- - 

" Paid 	") 

to---------------- --  ti) 

11  Change 9)  

ft ================== It) 

Operator < 0 
SKIP 

TRUE 
SEQ 

PrintString (Printer. "Assistant ") 
Write (Printer, Operator, 0) 
Printer 1 '*fl'; '*' 

PrintString (Printer. "*#OETHANK YOU") 
Printer 1 '*fl'; '*' 
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PrintString (Printer, " Have a nice day") 
SEQ i = [0 FOR 51 

Printer ! '*n' 
Sales := Sales + 1 
Value : 0 
Total : 0 
State : Change. State 
Show (Paid.Ind): 

-- Master.Mode --

PROC Master.Mode = 

-- Print.Split -- 

PROC Print.Split (VALUE Pounds, Pence) = 
SEQ 

Write (Printer, Pounds, 0) 
Printer ! 
IF 
Pence < 10 

Printer ! '0' 
TRUE 

SKIP 
Write (Printer, Pence, 0): 

DEF Set. Operator = 0, 
Set.Float = 1, 
Print.Totals = 2, 
Clear.Totals = 3: 

VAR That, 
TSP, 
TSp: 

SEQ 
Show (Master.Ind) 
ALT i = [0 FOR 161 

Keypad [i] ? ANY 
What : I 

IF 
That = Set.Operator 
SEQ 

Operator := Value 
Value := 0 
Printer I '*n'; '*n' 
PrintString (Printer, "Assistant ") 
Write (Printer, Operator, 0) 
Printer ! '*n'; '*n' 

That = Set.Float 
SEQ 



Appenaix Ii. 1ne c.asn itegister 	 173 

Float : Value 
Value : 0 
Printer ! '*n'; '*' 
PrintString (Printer, "Float ") 
Print (Float. 0) 
Printer ! '*n'; '*n' 

What = Print.Totals 
SEQ 

Printer ! *fl'; '*n  

PrintString (Printer, "Assistant '0 
Write (Printer. Operator. 0) 
Printer ! '*n; '*' 
PrintString (Printer, "Number of sales ") 
Write (Printer, Sales. 0) 
Printer I 

IF 
Other.Pence > 100 

SEQ 
Other.Pounds : Other.Pounds + (Other.Pence/100) 
Other.Pence : Other.Pence\100 

TRUE 
SKIP 

SEQ I = CO FOR 161 
IF 

Class.Pence [I] > 100 
SEQ 
Class.Pounds [i] : Class.Pounds [i] + (Class.Pence [i)/10( 
Class.Pence [i] : Class.Pence [i]\100 

TRUE 
SKIP 

TSP : Other.Pounds 
TSp : Other.Pence 
SEQ i = [0 FOR 161 

SEQ 
TSP : TSP + Class.Pounds [i] 
TSp : TSp + Class.Pence [1] 

TSP : TSP + (TSp/100) 
TSp : TSp\100 
PrintString (Printer. "Total Sales '0 
Print.Split (TSP. TSp) 
Printer ! '*n'; '*' 
PrintString (Printer. "Till balance ") 
TSP : TSP + (Float/100) 
TSp : TSp + (Float\100) 
TSP : TSP + (TSp/100) 
TSp : TSp\100 
Print.Split (TSP. TSp) 
Printer ! '*n-'; •*n 
PrintString (Printer, "Unclassed sales ") 
Print. Split (Other. Pounds • Other. Pence) 
Printer 1 '*n; 	I'X 
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SEQ I = [0 FOR 161 
SEQ 

PrintString (Printer, "Class ") 
Printer !. 'A' + i. 
Printer ! 
Print.Split (Class.Pou.nds [i], Class.Pence Ci]) 
Printer ! '*n' 

SEQ I = [0 FOR 51 
Printer I '*fl' 

What = Clear.Totals 
SEQ 
Sales : 0 
SEQ i = Co FOR 161 

SEQ 
Class.Pounda Ci) := 0 
Class.Pence Ci) : 0 
Other.Pounds : 0 
Other.Pence : 0 

TRUE 
SKIP 

Printer ! '*n' 
Show (Price.Ind): 

SEQ -- Main code of Control 
Value : 0 
Price : 0 
Total : 0 
State : Price.State 
Sales : 0 
Float : 0 
Operator : -1 
Last.Show : -1 
SEQ I = [0 FOR 161 

SEQ 
Class.Pounds Ci] : = 0 
Class.Pence [I] := 0 

Other.Pounds : 0 
Other.Pence : 0 
Show (Price.Ind) 
WHILE TRUE 

SEQ 
ALT I = [0 FOR 161 
Keypad [i] ? ANY 

Pressed := I 
IF 
State = Change.State 

SEQ 
Show (Price.Ind) 
State := Price.State 

TRUE 
SKIP 
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IF 
(0 <= Pressed) AND (Pressed <= 9) 

SEQ 
Value : (Value*10) +Pressed 
Display Value 

(Value > 0) AND (Pressed = Add.Key) 
Add (-1) 

(Value >0) AND (Pressed = Class.Key) 
VAR Class: 
SEQ 

Show (Class.Ind) 
ALT i = [0 FOR 161 

Keypad [i] ? ANY 
Class : i 

Add (Class) 
Show (Price.Ind) 

Pressed = Total.Key' 
IF 
State = Price.State 

Give . Total 
State = Total.State 

Give . Change 
Pressed = Times.Key 

SEQ 
Price : Value 
Value : 0 
Show (Times.Ind) 
State := Times.State 
Display ! 0 

Pressed = Error.Key 
SEQ 
Value : 0 
Display ! 0 

(State = Price.State) AND (Pressed = Master.Key) 
Master. Mode 

TRUE 
SKIP: 

CHAN Display, 
Indicators [Max.Indicators], 
A . C, D, 
Printer, 
Keys [16]: 

-- MAIN CODE OF CASH REGISTER -- 

PAR 
Control (Keys, Display, Indicators, Printer) 
Indicator (Max. Indicators, Indicators) 
Number (5. 2, 0, Display) 
DUART (A. Printer, C, D) 
Keypad (Keys) 



D.2 Artificial Engineer Dialogue 

C Prolog version 1.4e.edai 
% Restoring file CPLOG:START.UP 
I ?- [ae]. 
-A-r-t-i-f-i-c-i-a-1- -E-n-g-i-n-e-e-r- 
Version 1.0 
yes 
rmm_ae:utils consulted 452 bytes .46078 sec. 
rmin_ae:tech consulted 224 bytes .30125 sec. 
rmm_ae:make consulted 828 bytes .50187 sec. 
yes 
ae consulted 1764 bytes 1.9005 sec. 
yes 
I ?- ae till. 
rmm_ae:z80..uti].s consulted 4300 bytes 2.8804 sec. 
generating Z80 processor and services: please wait.... 
yes 
rmni_ae:z80_base consulted 744 bytes 8.2405 sec. 
rmm_ae:ram consulted 1956 bytes 1.4416 sec. 
rmm_ae:rom consulted 1160 bytes 1.1801 sec. 
yes 

RMM_UL:bar_graph.AE consulted 2716 bytes 1.6416 sec. 
Making a bargraph at address 1 with 6 elements. 
Do you want the bar graphs on the board? (yin): n 
Do you want to use the edge connector? (yin): y 
Edge connector pins 03a to 04c are the bar graph anodes, in increasing order. 
yes 
RMM_UL:six_seven.AE consulted 4036 bytes 2.2809 sec. 
Making a 5 digit seven-segment display at address 2 
Do you want the displays on the board? (yin): n 
Do you want to use the edge connector? (yin): y 
Segments wired up on pins 05a to 07a, DP on pin 07b 
The commons are connected on pins 07c to 09a 
yes 
RI4N...UL:duart.AE consulted 3480 bytes 2.0602 sec. 
Making a Dual Asynchronous Receiver Transmitter (DUART) at address 3 
Remember that the design will now require a +i- 12V power supply 
Do you want to connect the RS232 lines via the Raft?(yin): n 
Connecting to the edge connector 
Receive A is on pin 09b 
Transmit A is on pin OOc 
Receive B is on pin lOa 
Transmit B is on pin lOb 
yes 
RMM_UL: buttons. AE consulted 3232 bytes 1.9413 sec. 
Making a set of 16 buttons at address 4 
Do you want the switches on the board?(yin): n 
Do you want the switches to be connected to the edge connector? (yin): y 
Do you want pull-ups on the switches? (y/n): y 

nd 



Edge connector pins lOc to 15c are the switch lines, the switches must ground 
them. 
yes 
RAN design: 

1K-41187 
invert A15 and OR with MRE' 

yes 
ROM design: 
Do want to use the more expensive but lower power CMOS EPROMs? (yin): y 
The appropriate EPROM is a 27128, but that is not available in CMOS 
Do you want me to use an NMOS 27128? (yin): y 
16K - 27128 
yes 
till.BLD consulted 21624 bytes 28.641 sec. 
yes 
I ?- ^z 
% Prolog execution halted 


