12 research outputs found

    Gesture Based Home Automation for the Physically Disabled

    Get PDF
    Paralysis and motor-impairments can greatly reduce the autonomy and quality of life of a patient while presenting a major recurring cost in home-healthcare. Augmented with a non-invasive wearable sensor system and home-automation equipment, the patient can regain a level of autonomy at a fraction of the cost of home nurses. A system which utilizes sensor fusion, low-power digital components, and smartphone cellular capabilities can extend the usefulness of such a system to allow greater adaptivity for patients with various needs. This thesis develops such a system as a Bluetooth enabled glove device which communicates with a remote web server to control smart-devices within the home. The power consumption of the system is considered as a major component to allow the system to operate while requiring little maintenance, allowing for greater patient autonomy. The system is evaluated in terms of power consumption and accuracy to prove its viability as a home accessibility tool

    Movers and Shakers: Kinetic Energy Harvesting for the Internet of Things

    Full text link
    Numerous energy harvesting wireless devices that will serve as building blocks for the Internet of Things (IoT) are currently under development. However, there is still only limited understanding of the properties of various energy sources and their impact on energy harvesting adaptive algorithms. Hence, we focus on characterizing the kinetic (motion) energy that can be harvested by a wireless node with an IoT form factor and on developing energy allocation algorithms for such nodes. In this paper, we describe methods for estimating harvested energy from acceleration traces. To characterize the energy availability associated with specific human activities (e.g., relaxing, walking, cycling), we analyze a motion dataset with over 40 participants. Based on acceleration measurements that we collected for over 200 hours, we study energy generation processes associated with day-long human routines. We also briefly summarize our experiments with moving objects. We develop energy allocation algorithms that take into account practical IoT node design considerations, and evaluate the algorithms using the collected measurements. Our observations provide insights into the design of motion energy harvesters, IoT nodes, and energy harvesting adaptive algorithms.Comment: 15 pages, 11 figure

    Energy harvesting and wireless transfer in sensor network applications: Concepts and experiences

    Get PDF
    Advances in micro-electronics and miniaturized mechanical systems are redefining the scope and extent of the energy constraints found in battery-operated wireless sensor networks (WSNs). On one hand, ambient energy harvesting may prolong the systems lifetime or possibly enable perpetual operation. On the other hand, wireless energy transfer allows systems to decouple the energy sources from the sensing locations, enabling deployments previously unfeasible. As a result of applying these technologies to WSNs, the assumption of a finite energy budget is replaced with that of potentially infinite, yet intermittent, energy supply, profoundly impacting the design, implementation, and operation of WSNs. This article discusses these aspects by surveying paradigmatic examples of existing solutions in both fields and by reporting on real-world experiences found in the literature. The discussion is instrumental in providing a foundation for selecting the most appropriate energy harvesting or wireless transfer technology based on the application at hand. We conclude by outlining research directions originating from the fundamental change of perspective that energy harvesting and wireless transfer bring about

    Grafting energy-harvesting leaves onto the sensornet tree

    No full text

    Sophisticated Batteryless Sensing

    Get PDF
    Wireless embedded sensing systems have revolutionized scientific, industrial, and consumer applications. Sensors have become a fixture in our daily lives, as well as the scientific and industrial communities by allowing continuous monitoring of people, wildlife, plants, buildings, roads and highways, pipelines, and countless other objects. Recently a new vision for sensing has emerged---known as the Internet-of-Things (IoT)---where trillions of devices invisibly sense, coordinate, and communicate to support our life and well being. However, the sheer scale of the IoT has presented serious problems for current sensing technologies---mainly, the unsustainable maintenance, ecological, and economic costs of recycling or disposing of trillions of batteries. This energy storage bottleneck has prevented massive deployments of tiny sensing devices at the edge of the IoT. This dissertation explores an alternative---leave the batteries behind, and harvest the energy required for sensing tasks from the environment the device is embedded in. These sensors can be made cheaper, smaller, and will last decades longer than their battery powered counterparts, making them a perfect fit for the requirements of the IoT. These sensors can be deployed where battery powered sensors cannot---embedded in concrete, shot into space, or even implanted in animals and people. However, these batteryless sensors may lose power at any point, with no warning, for unpredictable lengths of time. Programming, profiling, debugging, and building applications with these devices pose significant challenges. First, batteryless devices operate in unpredictable environments, where voltages vary and power failures can occur at any time---often devices are in failure for hours. Second, a device\u27s behavior effects the amount of energy they can harvest---meaning small changes in tasks can drastically change harvester efficiency. Third, the programming interfaces of batteryless devices are ill-defined and non- intuitive; most developers have trouble anticipating the problems inherent with an intermittent power supply. Finally, the lack of community, and a standard usable hardware platform have reduced the resources and prototyping ability of the developer. In this dissertation we present solutions to these challenges in the form of a tool for repeatable and realistic experimentation called Ekho, a reconfigurable hardware platform named Flicker, and a language and runtime for timely execution of intermittent programs called Mayfly

    Low-Power and Programmable Analog Circuitry for Wireless Sensors

    Get PDF
    Embedding networks of secure, wirelessly-connected sensors and actuators will help us to conscientiously manage our local and extended environments. One major challenge for this vision is to create networks of wireless sensor devices that provide maximal knowledge of their environment while using only the energy that is available within that environment. In this work, it is argued that the energy constraints in wireless sensor design are best addressed by incorporating analog signal processors. The low power-consumption of an analog signal processor allows persistent monitoring of multiple sensors while the device\u27s analog-to-digital converter, microcontroller, and transceiver are all in sleep mode. This dissertation describes the development of analog signal processing integrated circuits for wireless sensor networks. Specific technology problems that are addressed include reconfigurable processing architectures for low-power sensing applications, as well as the development of reprogrammable biasing for analog circuits

    Low-Power and Programmable Analog Circuitry for Wireless Sensors

    Get PDF
    Embedding networks of secure, wirelessly-connected sensors and actuators will help us to conscientiously manage our local and extended environments. One major challenge for this vision is to create networks of wireless sensor devices that provide maximal knowledge of their environment while using only the energy that is available within that environment. In this work, it is argued that the energy constraints in wireless sensor design are best addressed by incorporating analog signal processors. The low power-consumption of an analog signal processor allows persistent monitoring of multiple sensors while the device\u27s analog-to-digital converter, microcontroller, and transceiver are all in sleep mode. This dissertation describes the development of analog signal processing integrated circuits for wireless sensor networks. Specific technology problems that are addressed include reconfigurable processing architectures for low-power sensing applications, as well as the development of reprogrammable biasing for analog circuits
    corecore