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ABSTRACT

TRANSIENTLY POWERED COMPUTERS

May 2013

BENJAMIN RANSFORD

B.S., CORNELL UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Kevin Fu

Demand for compact, easily deployable, energy-efficient computers has driven the

development of general-purpose transiently powered computers (TPCs) that lack both

batteries and wired power, operating exclusively on energy harvested from their sur-

roundings.

TPCs’ dependence solely on transient, harvested power offers several important

design-time benefits. For example, omitting batteries saves board space and weight

while obviating the need to make devices physically accessible for maintenance. How-

ever, transient power may provide an unpredictable supply of energy that makes

operation difficult. A predictable energy supply is a key abstraction underlying most

electronic designs. TPCs discard this abstraction in favor of opportunistic computa-

tion that takes advantage of available resources. A crucial question is how should a

software-controlled computing device operate if it depends completely on external en-
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tities for power and other resources? The question poses challenges for computation,

communication, storage, and other aspects of TPC design.

The main idea of this work is that software techniques can make energy

harvesting a practicable form of power supply for electronic devices. Its

overarching goal is to facilitate the design and operation of usable TPCs.

This thesis poses a set of challenges that are fundamental to TPCs, then pairs these

challenges with approaches that use software techniques to address them. To address

the challenge of computing steadily on harvested power, it describes Mementos, an

energy-aware state-checkpointing system for TPCs. To address the dependence of

opportunistic RF-harvesting TPCs on potentially untrustworthy RFID readers, it

describes CCCP, a protocol and system for safely outsourcing data storage to RFID

readers that may attempt to tamper with data. Additionally, it describes a simulator

that facilitates experimentation with the TPC model, and a prototype computational

RFID that implements the TPC model.

To show that TPCs can improve existing electronic devices, this thesis describes

applications of TPCs to implantable medical devices (IMDs), a challenging design

space in which some battery-constrained devices completely lack protection against

radio-based attacks. TPCs can provide security and privacy benefits to IMDs by, for

instance, cryptographically authenticating other devices that want to communicate

with the IMD before allowing the IMD to use any of its battery power. This thesis

describes a simplified IMD that lacks its own radio, saving precious battery energy

and therefore size. The simplified IMD instead depends on an RFID-scale TPC for

all of its communication functions.

TPCs are a natural area of exploration for future electronic design, given the

parallel trends of energy harvesting and miniaturization. This work aims to establish

and evaluate basic principles by which TPCs can operate.
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CHAPTER 1

INTRODUCTION

Designers of computing devices constantly run into barriers when the time comes

to consider power. Tethered AC power is not available everywhere and requires

relatively large switching circuitry to obtain the needed DC power. Batteries are

an appealing alternative to tethered power, but they have failed to keep pace with

trends in chip and circuit scaling. Consequently, many electronic devices have their

size, weight, and therefore mobility determined by the batteries that power them.

This thesis posits a world in which energy harvesting allows electronic devices

to operate only on the energy they harvest, without batteries. Some such devices

already exist; others will appear as the building blocks for energy harvesting circuits

become more widely used and more efficient.

Depending on harvested energy can be challenging for devices. They rely on

external parties (or phenomena) instead of themselves. The performance of energy

harvesting can fluctuate, leading to inconvenient power losses or unpredictable power.

Technical limitations of harvesting impose an upper bound on device specifications

such as maximum current. These are the problems that afflict what we call transiently

powered computers ; addressing them is the focus of this thesis.

1.1 Background and Motivation

Demand for small, easily embedded computers and sensors is driving the de-

velopment of general-purpose transiently powered computers (TPCs) that lack both

batteries and wired power and that operate exclusively on energy harvested from ex-
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ternal supplies or environmental phenomena. Such devices range from computational

RFIDs (CRFIDs) [30], which are microcontroller-based devices that harvest energy

from RFID readers via radio (RF) waves, to general-purpose batteryless sensor de-

vices [169] powered by solar panels, to platforms powered by RF–solar hybrid har-

vesting [62], to “interaction-powered” wireless user-interface devices [164]. Academic

and industrial research continues to produce new energy-harvesting mechanisms, gen-

erating power from phenomena as diverse as vibration [7], heat differentials [71], and

stomach fluids [43].

Without batteries—which require periodic replacement, are relatively heavy, and

dominate board layouts—TPCs require virtually no maintenance and can be embed-

ded in situations for which battery-powered computers are unsuitable, such as inside

building materials or living tissue.

1.2 Challenges

The transient manner of TPCs’ operation has burdensome implications for system

design, which manifest as the following challenges:

1. Power. TPCs that operate on harvested energy may operate very close to their

minimum requirements, resulting in constant losses of power that result in the

disappearance of volatile state and increased risk of soft errors.

2. Communication. On unpredictable power, a TPC cannot depend on being

able to schedule, or even initiate, communications—which may break protocol

participation or other application assumptions. Additionally, TPCs’ power bud-

gets may preclude them from having active radios, depending instead on other

less flexible forms of communication (e.g., backscatter radiation for CRFIDs).

3. Security. TPCs completely depend on entities that are external to them to

provide power. For some TPCs such as CRFIDs that also use the power link for
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data exchange, this complete dependence raises the question of trust: how can

such a TPC offer any kind of application-level guarantees of data integrity or

confidentiality if the tag will communicate with any entity that agrees to power

it?

4. Storage. Nonvolatile memories such as NOR flash are available on-chip in

many microcontrollers, but these memories require two orders of magnitude

more energy than volatile memories per byte written. Applications that require

persistent storage must use nonvolatile memory judiciously, if at all.

Each of these challenges limits the suitability of energy harvesting as the sole sup-

ply of power for devices. However, software-based approaches can provide solutions

that correct or ameliorate each of these problems.

1.3 Thesis Statement and Summary

The motivating idea of this thesis is:

Software techniques on simple energy-harvesting hardware can make
energy harvesting a practicable way to power computing devices, and can
expand the capabilities of electronic devices without imposing extra energy
costs.

The software techniques in this thesis are meant to complement, not replace,

energy-harvesting hardware. Rather than posing the question of how to harvest en-

ergy most effectively, the thesis focuses on how to build capable, trustworthy systems

from components that are unreliably powered, energy constrained, and dependent on

possibly untrustworthy external devices.

The thesis comprises two main thrusts, summarized below. The first describes

problems that are peculiar to TPCs and evaluates software systems that are designed

to address the challenges listed at the beginning of this section. The second explores

a specific application of TPCs to demonstrate empirically that introducing a TPC

can materially improve an existing system.

3



1. Thrust #1: Addressing TPC challenges. In light of the challenges de-

scribed above, I describe and demonstrate the effectiveness of Mementos, a

software system designed to make computation on TPCs robust against fre-

quent power failures. In particular, I perform end-to-end evaluation with a

cycle-accurate, energy-accurate simulator to show that Mementos enables TPCs

to run applications that fail to run without it. I also describe CCCP, a commu-

nication mechanism that provides cryptographically protected off-board storage

for CRFIDs that is less energy intensive than on-board flash storage for data

sizes above 32 bytes.

2. Thrust #2: Improving devices with TPCs. This thrust focuses on an

application area for TPCs: medical devices that operate inside body tissue. I

first offer a template for augmentation of a device with a TPC, in the form of

a challenge–response protocol for CRFIDs that endows an implantable cardiac

device with an authentication mechanism. Cardiac devices such as pacemak-

ers are particularly good candidates for augmentation with TPCs because (1)

the total implanted size depends largely on battery capacity and (2) battery

capacity depends largely on non-life-supporting functions such as wireless com-

munication and signal processing. Extending the aforementioned template for

augmentation with a TPC, I implement Noradio, a simplified pacemaker, and

show how to decompose its functions into therapeutic sensing and actuation, on

one hand, and communication and storage, on the other. For the communica-

tion subsystem, I use a UMass Moo CRFID to replace the pacemaker’s on-board

radio.

1.4 Contributions

To address the problem of constant power loss destroying volatile state, I de-

scribe Mementos, a system that instruments programs with energy checks that induce

4



energy-aware state checkpoints [124]. Designed for use on CRFIDs but applicable to

other TPCs, Mementos continually monitors the voltage of an energy buffer (e.g., a

storage capacitor) at run time. When the voltage drops below a programmer-specified

threshold value, a checkpointing routine writes all of the program’s volatile state (reg-

isters, stack, and globals) to nonvolatile memory, where it survives during a power

loss. At next boot, a checkpoint-restoration routine copies the state from nonvolatile

memory back to volatile memory and resumes execution. Mementos thereby spreads

computations across multiple power lifecycles. Compared to previous checkpointing

systems, Mementos is designed for tighter resource constraints and a finer, config-

urable granularity of checkpointing based on energy available at run time.

Additionally, I describe a CRFID simulator, originally designed for use with Me-

mentos, that couples an architectural cycle-accurate MSP430 microcontroller sim-

ulator [49] with an energy-trace-driven simulated energy-harvesting front end that

governs execution. Unlike most architectural or circuit simulators, this CRFID sim-

ulator incorporates inputs from the analog and digital domains.

A second contribution is a mechanism for secure outsourced storage for CRFIDs.

A system called CCCP—for cryptographic computational continuation passing [135]—

addresses the challenges of security and storage and partially addresses the challenge

of communications. CCCP is software that provides CRFIDs with an off-tag storage

facility layered on existing radio protocols. As data size increases, CCCP requires

less energy than local storage on flash memory.

A third contribution is a “zero-power” security mechanism that endows a medi-

cal devices with enhanced security properties without requiring any of the medical

device’s limited battery power. Modern implantable medical devices (IMDs) are

sensing and actuation devices that depend on a nonrechargeable battery for power.

Unfortunately, IMDs designed without security as a design goal are vulnerable to

battery-depletion attacks that can significantly reduce the device’s availability over
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time. I present WISPer, a mechanism designed to augment an IMD with security

features missing from its original design: authentication of external parties, and a

“sensible” key-exchange mechanism that enables patients to sense security-sensitive

events.

A final contribution is an extension of WISPer that outsources all the communi-

cations of a medical device to a TPC in order to save energy versus an active radio.

Extending the example of WISPer, I design and implement Noradio, a prototype

simulated pacemaker, and evaluate its energy use both with a radio—when it re-

sembles cardiac IMDs on the market—and with all of its communication outsourced

to a connected CRFID. The most salient novel component of this preliminary work

is the method of completely outsourcing communication, turning synchronous pro-

tocol participation into asynchronous, query-oriented data collection. Restructuring

telemetry transmissions as an asynchronous, CRFID-driven task results in a 44% re-

duction of current consumption during communication. The techniques I develop to

build Noradio are applicable to other devices that are battery powered and use radios

to communicate.

1.5 Thesis Outline

The remainder of this thesis is structured as follows.

Chapter 2 describes computational RFIDs, a kind of TPC that is powered by

harvested radio frequency energy. Reproducibility of experiments is problematic on

CRFIDs, and existing simulation tools are not well suited to simulating them, so the

chapter develops a simulation framework that accurately captures the behavior of a

CRFID.

Chapter 3 considers the problem of computing steadily on TPCs. It describes

Mementos [124], a system that protects computations from power failures with energy-

aware state checkpointing.
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Chapter 4 addresses communication and storage on CRFIDs. It describes CCCP [135],

a mechanism for outsourced storage that improves energy efficiency for CRFIDs stor-

ing state checkpoints.

Chapter 5 summarizes the security problems inherent in an implantable medical

device [27, 69], then describes WISPer, a TPC-based communication subsystem that

uses lightweight cryptography and a simple challenge–response protocol to address

several of the security problems.

Chapter 6 describes an emulated cardiac pacemaker that couples with a TPC to

obviate the need for any radio—typically an energy-hungry component—on board

the pacemaker at all.

Chapter 7 discusses the implications of this work’s improvements to and study of

TPCs—in particular, ways in which they can enable new kinds of devices and improve

battery-powered devices.
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CHAPTER 2

SIMULATING TRANSIENTLY POWERED
COMPUTERS1

Modeling and simulation together provide a convenient way to experiment on

the design of computing systems. A typical research approach is to change designs

in simulation before fabricating hardware. System designers can choose tools that

model computers from the circuit level to the OS level—but these models typically

do not span the analog and digital domains.

Transiently powered computers are difficult to model with conventional analog- or

digital-domain tools because analog-domain inputs (specifically, the amount of energy

available from the power supply) govern execution in the digital domain. Digital-

domain simulators’ abstraction of the power supply as a bottomless resource therefore

does not apply.

This chapter’s contribution is a simulator for TPCs that incorporates both

digital-domain and analog-domain inputs—a computer program and an energy trace

against which to run the program. The simulator is an extension of MSPsim [49],

a cycle-accurate simulator for the MSP430 family of microcontrollers, that newly

incorporates models of energy harvesting and consumption. We tuned and evaluated

the model according to empirical measurements of two computational RFIDs (CRFID,

Section 2.1) that perform sensing and computation tasks solely on harvested radio

frequency (RF) energy.

1This chapter describes extensions to a simulator developed for the Mementos system presented
in Chapter 3 and in an earlier paper by Ransford, Sorber, and Fu [124].
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To simulate the running of a program on a CRFID under energy harvesting, the

simulator adjusts current consumption to match empirical measurements of hard-

ware MSP430 microcontrollers. An input energy trace, collected with an analog

RF-harvesting front end from a CRFID, charges a simulated capacitor that models a

CRFID’s storage capacitor. The simulated microcontroller executes instructions from

the input program, drawing an empirically calibrated simulated current according to

its activity mode, thereby discharging the capacitor. When the capacitor’s simulated

voltage declines to a certain level, a simulated power loss occurs, and components

of the simulator reset—all in-progress operations stop, all volatile memory is zeroed,

and the program counter is reset to the beginning of code memory.

2.1 Computational RFIDs

Computational RFIDs (CRFIDs) are a class of programmable, batteryless com-

puters that operate solely on harvested energy, much like widespread passive RFID

tags used in supply-chain applications [23, 22, 122, 124].

The key difference between supply-chain RFID tags and CRFIDs is that CRFIDs

use general-purpose microprocessors that allow them to execute general-purpose pro-

grams; the former are typically implemented as application-specific integrated circuits

(ASICs), resulting in low power consumption but fixed functionality that is tightly

coupled to certain applications. Supply-chain ASICs often implement only an RFID

protocol state machine and a chunk of memory containing static information. This

static information is particularly useful for tracking retail objects.

The first instance of a CRFID is the Wireless Identification and Sensing Platform,

or WISP [138], Figure 2.1, a prototype device slightly smaller than a postage stamp

(discounting its antenna, which is several centimeters long). The WISP is built around

an off-the-shelf TI MSP430 microcontroller, as are many of its descendants, such as

the UMass Moo [175], Figure 2.2.
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The WISP and its descendants share physical attributes and, to an extent, circuit

designs. The common elements of these prototype CRFIDs are:

• a low-power microcontroller such as the TI MSP430 [155];

• on-chip RAM;

• flash memory (on or off the microcontroller);

• energy-harvesting circuitry tuned to a certain frequency (e.g., 913MHz for EPC

Gen 2 RFID);

• an antenna;

• a transistor between the antenna and the microcontroller to modulate the analog

front end’s impedance;

• a capacitor for storage of harvested energy;

• optional sensors for physical phenomena such as acceleration, heat, or light; and

• one or more analog-to-digital converters (ADCs) for measuring voltage (and

interacting with sensors).

The energy-harvesting circuitry, antenna, and transistor comprise the CRFID’s ana-

log front end. The microcontroller, memory, sensors, and other digital components

together comprise the digital back end. The analog front end provides power (by

charging the capacitor) and information to the digital back end, which can in turn

transmit its outputs via the analog front end.

CRFIDs combine properties of supply-chain RFID tags with those of sensor motes

such as the Telos [117]. Like passive RFID tags but unlike motes, CRFIDs are powered

solely by harvested RF energy and lack active radio components (dedicated radio

circuits or chipsets that require their own power). Instead of active radios, CRFIDs
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Figure 2.1. Photo of DL WISP 4.1 [138].

Figure 2.2. Photo of UMass Moo [175].

use backscatter communication: in the presence of incoming radio waves, a CRFID

electrically modulates its analog front end’s impedance using a transistor, encoding

binary information by varying the amount of signal the antenna reflects. While the

omission of active radio circuitry saves energy, it gives up the tag’s autonomy; a

CRFID can send and receive information only at the command of an RFID reader.

The small size and low maintenance requirements of CRFIDs make them espe-

cially appealing for adding computational capabilities to contexts in which placing

or maintaining a conventional computer would be infeasible or impossible. However,

CRFID systems require that nearby, actively powered RFID readers provide energy

whenever computation is to occur, a requirement that may not suit all applications.

2.2 Reproducibility and Simulation

A key concern in system design and evaluation is the classic scientific goal of

reproducibility : People other than the researcher should be able to achieve the same
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results under similar conditions, and the researcher herself should be able to achieve

the same results multiple times.

A typical approach to enabling reproducible experiments is simulation, in which

a computer program models all or part of a system to predicts its behavior un-

der given input conditions. For computers, traditional simulation methods fall into

two categories. Architectural simulators such as Simics [145] or gem5 [56, 99] im-

plement the target architecture’s instruction set and model pipelines, memory, and

various other hardware features at the digital level. In contrast, circuit-level simula-

tors such as those based on SPICE [100] model hardware components at the analog

level, enabling accurate predictions of electrical behavior, thermal behavior [147], or

component reliability [12] under a variety of conditions.

In contrast to conventional computers that are continuously powered, a TPC’s

behavior can be difficult to predict because energy harvesting can be unpredictable.

RF harvesting, in particular, depends on factors such as the physical orientation

of the harvesting antenna in relation to the energy source, the distance from the

source, the variety of paths an electromagnetic wave can take from the source to the

harvester, and the physical properties of materials in the vicinity of the source and

harvester. Other harvesting modalities come with similar complications—light levels

for solar panels, elasticity and reverberations for vibration harvesters, heat dissipation

for thermal harvesters, and so on.

Because TPCs’ behavior depends so much on environmental factors, traditional

simulators used to model continuously powered computers are a poor match for sim-

ulating TPCs. Traditional simulators are designed for deterministic simulations in

which the same inputs—either analog or digital—produce the same outputs. In the

case of a TPC, both kinds of inputs matter. Nondeterministic energy harvesting re-

sults in pauses or stoppages of computation, re-execution of instructions, and loss of

computational state at inconvenient times, and it is unlikely that any two runs of a
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Analog sim. Digital sim. MSPsim +
Feature (e.g., SPICE) (incl. MSPsim) this work
Electrical simulation 3 — 3

a

Instruction-set emulation — 3 3

Can run compiled programs — 3 3

Accurate memory timing 3 3 3

Cycle-accuracy 3 3 3

Simulation of power supply 3 — 3

Radio-wave simulation — — —

Table 2.1. Comparison of simulator features.

aOur tools simulate a subset of the electrical components on a CRFID, most crucially the storage
capacitor that buffers incoming energy and obeys the standard capacitor equations.

program on a TPC will have exactly the same energy conditions. Even “full-system”

simulators such as FeS2 [51] abstract away analog-domain details such as power and

temperature. This abstraction is reasonable for many scenarios, but for TPCs, ig-

noring analog effects on digital computations may result in incorrect or misleading

conclusions.

This chapter describes a set of modifications to MSPsim [49], a cycle-accurate

simulator for the MSP430 family of microcontrollers, to capture the peculiarities of

transiently powered computers. MSPsim models mote-class sensor devices by simulat-

ing an MSP430 microcontroller [155] and a variety of input/output devices (including

active radio hardware and serial peripherals). MSPsim’s microcontroller simulation

implements the 16-bit MSP430 (and 20-bit MSP430X) instruction set architecture,

allowing it to accept MSP430 object code and execute it in a cycle-accurate manner.

Our modifications to MSPsim fall into two categories: modeling energy harvesting

and simulating power loss and restoration. The result is a simulation that incorpo-

rates inputs from the analog and digital domains and enables reproducible, realistic

behavior for a TPC under simulation. Table 2.1 compares this work to conventional

analog and digital simulators.
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CRFID property Simulator mechanism
MSP430 MCU MSPsim fully supports MSP430 ISA
RF harvesting Accept voltage traces recorded on a hardware CRFID’s analog

front end
Low-power modes Recognize programmatic transitions to low-power mode; change

simulated MCU’s current consumption
Electrical current Use empirically determined mapping of MCU power mode and

voltage to current
Dynamic power Obey capacitor equations for charging and discharging under

load
Quiescent power Obey capacitor equations for exponential decay (leakage)
Flash, ADC Use empirically measured time and current per operation
Radio Support bit-banging transmissions onto GPIO

Table 2.2. Mapping of Intel WISP and UMass Moo hardware properties to simulator
mechanisms.

For a concrete choice of TPC to simulate, the system described in this chapter

models the DL WISP 4.1 [138], an RF-harvesting TPC with an MSP430F2132 mi-

crocontroller and a 10µF storage capacitor, and its descendant the UMass Moo [175],

which resembles the WISP but features an MSP430F2618 microcontroller with in-

creased RAM and flash memory. Table 2.2 maps specific hardware properties of

these CRFIDs to their simulations.

The simulation models most properties of the WISP and Moo, but its treatment

of backscatter communication merits special description. Backscatter modulation

operates on the same radio waves that provide energy, making synchronous uplink

communication effectively “free”—modulo the negligible cost of switching a single

transistor—on backscattering devices. Our simulation therefore models only the time

and cycle count of the backscatter modulation. The simulator also makes no attempt

to account for certain environmental parameters such as temperature because the vari-

ations they induce are typically small under laboratory conditions (and predictable

otherwise).
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2.3 Modeling Energy Harvesting in MSPsim

Like the traditional simulators described above, MSPsim models computing com-

ponents in the digital domain, abstracting away analog components such as the power

supply. In MSPsim’s simulation of a mote, the digital components are conceptually

backed by an imaginary battery that provides sufficient voltage and current to every

subsystem. Unlike the continuously powered motes MSPsim models, a CRFID may

lose power several times per second as it simultaneously computes and harvests RF

energy, and the available energy may not be enough to support the components that

should run. To match the behavior of a CRFID simulated in MSPsim to that of a real

CRFID, we extended MSPsim to model the WISP’s energy harvesting. (The Moo

shares the WISP’s energy-harvesting components, so we did not model it separately.)

The WISP’s energy-harvesting hardware, depicted in Figure 2.3 and described

in detail in Sample et al. [138], comprises a dipole antenna, a charge pump, and

a (manually) tuned impedance-matching network that optimizes the transmission

of power from the antenna to the charge pump. The charge pump increases the

voltage coming from the antenna—which is small at distance from an RFID reader—

and charges a storage capacitor that smooths and buffers the supply. The storage

capacitor powers the microcontroller via a voltage regulator that maintains a constant

voltage.

From the microcontroller’s perspective, the storage capacitor hides the details of

the analog energy-harvesting front end. By measuring the capacitor’s voltage Vc, an

application on the microcontroller can learn several things [124]:

• If Vc � Vreg, the regulator’s target voltage, then there is likely enough voltage

to continue computing; the CRFID may be near a reader.

• If Vc is slightly greater than Vreg, the CRFID’s power consumption may be

outpacing its energy harvesting, or the CRFID may be at such a distance from

the reader that harvesting is difficult.
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Figure 2.3. Block diagram of DL WISP 4.1. Reproduced from Sample et al. [138]
with permission.
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capacitor
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Figure 2.4. Block diagram of our simulation environment based on MSPsim.

• If Vc < Vreg, a power outage may be imminent.

Because the capacitor effectively isolates the analog front end from the digital back

end, our simulation approach is to abstract away the harvesting hardware and sim-

ulate the storage capacitor rather than the harvesting components—effectively em-

ulating, rather than simulating, the analog front end. Figure 2.4 is a block diagram

depicting the simulation environment.

The main loop of the simulator consumes instructions from the input executable.

At each iteration of the main loop (i.e., after each instruction is executed), it re-

calculates the capacitor’s voltage. Being a cycle-accurate simulator with a known

clock rate, the simulator keeps track of time via its cycle counter; from this source
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the simulated capacitor derives its notion of time for use in its voltage calculations,

described in the following paragraph.

The simulated capacitor follows the time-dependent equations that govern a real

capacitor’s operation. The equation for a charging capacitor is:

V (t) = V0(1− e−t/RC), (2.1)

where R and C are the load and capacitance of the circuit, and V0 is the “initial”

charge. Each time the simulator recalculates the capacitor’s voltage (i.e., with each

CPU instruction), V0 is the voltage calculated at the previous check, R depends

on the power mode, and C is the storage capacitor’s (constant) capacitance, which

dominates the overall circuit’s capacitance. The discharge equation is

V (t) = V0e
−t/RC (2.2)

where V0, R, and C are defined in a similar manner.

2.3.1 Energy-Harvesting Traces

We modified MSPsim to accept a voltage trace that governs energy availability

over time. On a hardware CRFID, the capacitor’s voltage is a proxy for energy

availability and usage—it increases as the analog front end gathers energy from RF

waves, and decreases as a factor of both time (via leakage) and current consumption

(via computation).

To capture voltage traces from real hardware, we physically isolated a WISP’s RF-

harvesting analog front end by cutting its connections to other parts of the circuit,

attached it to a ∼ 10 KΩ resistor that approximated the electrical load of the WISP’s
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Figure 2.5. Simulated capacitor’s voltage approximates the discharge time and
voltage drop of a hardware WISP’s capacitor. Both were charged to 4.5 V and
allowed to discharge while executing an infinite loop at 1 MHz in active mode. Both
traces end at 2.2 V, the nominal minimum voltage for flash writes on an MSP430.

microcontroller during active computation,2 and connected an Agilent U2541A data

acquisition unit sampling at 1 KHz. With this measurement setup, we recorded traces

of voltage across the resistor (sequences of time, voltage pairs) as the measurement

setup moved within the read range of an RFID reader. Figure 3.1 [p. 29] shows several

of these traces.

2.3.2 Simulating Power Loss

To model the frequent losses of power that afflict CRFIDs under normal circum-

stances, we extended MSPsim with an MSP430 microcontroller’s shutdown and reset

behavior (documented in its datasheet [156]).

When energy is no longer sufficient, our modified MSPsim stops executing instruc-

tions (finishing the currently executing instruction, if there is one), records statistics

about the computation’s progress (e.g., number of cycles executed since the last re-

set), and informs the simulated capacitor that it should use the input voltage trace as

2Because the microcontroller typically spends much of its time in “active” mode when computing,
for the purpose of trace collection we chose a fixed value for the resistor that matched the load of
an “active” MSP430 microcontroller.
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its time reference. When the simulated capacitor has recharged to a threshold value,

MSPsim receives a reset interrupt, beginning the boot sequence.

At boot, MSPSim resets the program counter and status register. The firmware

program’s initialization routine resets the stack pointer and contents of RAM.

We did not attempt to the model memory remanence—the accidental retention

of memory contents after power loss—though it appears that the contents of an

MSP430 microcontroller’s SRAM cells may persist for at least a few seconds before

decaying [121], depending on the size of the storage capacitor, which can provide

sufficient power for RAM retention after harvesting becomes ineffective. Instead, our

modified MSPsim resets all registers and the contents of memory at each boot.

2.4 Profiling Energy Consumption

Section 2.3 discussed our model of energy harvesting and storage. This section

concerns the model of energy consumption we incorporated into MSPsim. We profiled

execution of a variety of micro-benchmarks on DL WISP 4.1 hardware [138] with

MSP430F2132 microcontrollers, comparing energy properties with values from the

microcontroller’s datasheet [156] when possible. We repeated this task for the UMass

Moo [175].

2.4.1 Instruction-Level Energy Measurements

As on larger-scale architectures, programs on the MSP430 microcontroller are

subject to constraints imposed by hierarchical memory organization. On a typical

CPU, registers are faster than caches, which are faster than RAM, which is faster than

disk, with register access requiring the least energy and disk the most (preserving the

ordering). A flash-based MSP430 like the WISP’s includes registers, RAM, and flash

memory within a single package. To understand the relative energy costs of operations

on these different memory types, we wrote a set of programs to test memory operations

19



in a loop; each program tests one type of memory access (e.g., a memory-to-register

read) repeated a known number of times after an initial period of low-power sleeping.

We charged a WISP’s storage capacitor to 4.5V with a benchtop power supply and

allowed the capacitor to discharge such that the loop of instructions occurred after

the power supply was disconnected. We used an Agilent Infiniium 54832D MSO

oscilloscope sampling at 1KHz to measure the voltage drop ∆V due to instruction

execution. The energy stored in a capacitor with capacitance C at voltage V is

E = CV 2/2, so the energy required to execute n instructions can be expressed as

∆E = Ef − E0 = C(V 2
f − V 2

0 )/2, (2.3)

from which the per-operation energy is straightforward to derive.

Table 2.3 illustrates the results of measuring per-operation energy for the MSP430

memory hierarchy on a WISP’s (Revision 1) MSP430F1232 microcontroller, with flash

writes requiring disproportionately large amounts of energy. Note that reading from

flash memory is comparable to reading from RAM.

Instr. Dest. Src. Energy/Instr. (nJ) Perc. Error

NOP — — 2.0 4%

reg 1.1 23%
MOV reg flash 5.2 17%

mem 6.3 33%

reg 8.1 13%
MOV mem flash 11.8 4%

mem 11.7 7%

reg 461.0 4%
MOV flash flash 350.3 1%

mem 1126.2 4%

Table 2.3. Energy required per instruction varies on the TI MSP430F1232. Each
figure is the average of 5 measurements (smallest and largest discarded) on a WISP
(Rev. 1).

Additionally, we observed that the energy consumption of a flash memory write

on the MSP430 is not data dependent. For each of four values containing different
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Figure 2.6. Measuring instruction energy for 64 flash writes, taking leakage into
account. The right figure is a detailed view of the left figure.

numbers of 0 bits, we measured the total energy consumption of writing the value

to five consecutive words of flash memory (averaged over five runs). We observed

that, for example, the energy costs of writing an all-0 value and an all-1 value were

indistinguishable within the error bounds.

2.4.2 Capacitor Leakage and Quiescent Current

In an idealized CRFID, the microcontroller’s active current consumption—plus

that of any peripherals it has explicitly powered on—would account for all of the

energy use from the capacitor. However, real capacitors leak energy, and real circuit

components, such as the WISP’s voltage supervisor, often impose a nonzero quiescent

current that extracts energy from the supply. Fine-grained energy measurements must

therefore take these omnipresent factors into account.

Capacitors leak charge at a rate that depends on their chemistry, the composition

of the circuits connected to them, their age, and their usage patterns. Electronic

components that play a supervisory or monitoring role, e.g., those that must trigger

interrupts when certain conditions occur, generally draw current at all times. For

simplicity, since the WISP components’ quiescent current is approximately constant,

we account for both capacitor leakage and quiescent current with the umbrella term

“leakage.”
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We performed experiments to measure leakage on WISP hardware’s ceramic stor-

age capacitors. In subsequent experiments, we used these leakage measurements to

discount the effect of leakage when measuring the energy consumption of operations.

To measure leakage, we charged a WISP’s storage capacitor to 4.5 V using an

external power supply, then removed the power supply and measured the capacitor’s

voltage as the microcontroller slept in its lowest-power RAM retention mode. For

example, on a WISP (Revision 1.0) with a 10µF capacitor, the voltage of the ca-

pacitor fell from 4.5V to 2.7V (this model of WISP’s minimum operating voltage,

comfortably above the 2.2 V threshold for flash writes and the 1.8 V threshold for

microcontroller operation) in 700 ms, after which the WISP’s voltage supervisor cut

power to the microcontroller and the decay slowed. Figure 2.6 depicts a measurement

of 64 flash writes. We compared the voltage drop for the set of flash writes (dotted

line) against a baseline voltage drop (solid line). The measurements in Table 2.3

discount for leakage in this way.

2.4.3 Current Measurements

Per-instruction microbenchmarks (Section 2.4.1) yield energy-consumption fig-

ures that are useful to illustrate the relative costs of single memory operations. To

measure the energy consumption of longer workloads—and to validate the MSP430

datasheets’ approach of giving current-consumption figures for power modes rather

than instructions—we measured the current consumption in each power mode using

a multimeter.

We wrote a sequence of programs that exercised each power mode of the MSP430:

active, flash write, analog-to-digital converter (ADC) sampling, and five low-power

modes LPM0, LPM1, LPM2, LPM3, and LPM4. The active-mode test case consists

of a single, endlessly repeated jump to the entry to main(). The ADC and flash

test cases consist of endless loops in which the microcontroller reads from its onboard
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Figure 2.7. Current consumption versus voltage for the MSP430F2132 microcon-
troller on a DL WISP 4.1 [138] CRFID in distinct power modes. We model each of
these modes in our simulation environment.

ADC or writes to a portion of onboard flash, respectively. (To minimize loop overhead

for the ADC and flash test cases, we verified that the compiler generated jumps to

immediate addresses instead of conditional branches.) The low-power-mode test cases

simply enter the appropriate low-power mode and terminate.

Our modified MSPsim incorporates these empirical current-consumption measure-

ments, which are also depicted in Figure 2.7. Each operation that changes the power

mode sets the simulated circuit’s resistance (via R = V/I, for use in Equation 2.1

and Equation 2.2).

2.5 Related Work

Computer architects and compiler writers have identified power consumption as a

factor that limits scalability. Some simulation tools take this factor into account by

including a notion of per-logical-block power consumption. Power-aware simulators

built on SimpleScalar [26, 8], such as Wattch [20], and other simulators aimed at

identifying power hotspots [34, 33] model power consumption in terms of the sub-

set of chip components that are active at the time an operation is executed. This
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approach maps cleanly to the approach we take in the modified MSPsim, in which

certain operations can cause the CPU to switch into higher- or lower-power modes.

However, it maintains the abstraction of a power supply that cannot run out of en-

ergy, and therefore does not include a feedback loop that affects program execution.

We took the approach of modifying an MSP430 simulator (MSPsim [49]), rather than

adding a simulated capacitor to a SimpleScalar-based simulator, for the prosaic rea-

son that SimpleScalar (and its derivatives) does not include an MSP430 target. Other

researchers have adopted MSPsim for its simplicity and simulation accuracy [107].

PowerTimer [19], a simulator that targets the PowerPC architecture, follows an

approach similar to Wattch: the simulator keeps track of which processor units are

active and adds power consumption accordingly. Via measurements obtained with

PowerTimer, its authors argue for architectural support for turning off components

when possible. Work on modeling OS power consumption [93] based on the SoftWatt

full-system simulator [64] has revealed correlations between architectural metrics such

as instructions per cycle (IPC) and power consumption when profiling operating-

system energy consumption. Like the SimpleScalar-based simulators mentioned above

but unlike our modified MSPsim, these systems do not model the power supply as a

potentially limited resource that falls short and causes system resets.

HotSpot [147, 75] brings the power simulations of Wattch to the thermal domain—

another important concern for modern architecture—solving for thermal properties

per block at each time step of its input. HotSpot takes a Wattch power trace and a

chip floorplan and produces a temperature trace that helps designers anticipate heat

dissipation. Like other SimpleScalar- or Wattch-based profiling mechanisms, HotSpot

processes traces post facto instead of providing a real-time feedback loop to a running

simulation.

The CRFID Crash Test Simulator (CCTS) [62] is designed to evaluate the suit-

ability of solar power to augment energy harvesting on CRFIDs. To model a solar-
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harvesting supply, CCTS takes a data set describing a solar panel’s voltage–current

(V–I) curve. It accepts two input traces: a sequence of illuminance values represent-

ing the light available to the solar panel over time, and a trace of a CRFID’s overall

power consumption as a program executes. With this representation of computation,

CCTS enables high-level reasoning about solar harvesting but does not support the

execution of arbitrary firmware.

Mindful of nondeterminism in real workloads that comes from timing variations—

run-time nondeterminism that traditional simulations ignore—some simulation method-

ologies employ random perturbations of timing parameters in order to more accurately

simulate variable conditions under deployment [3, 2]. These improved methods al-

low for statistical conclusions that may be more accurate than conclusions drawn

from completely deterministic runs that depend only on the experimenter’s choice of

inputs. In contrast, our trace-driven TPC simulation incorporates unpredictability

(from the CPU’s and program’s perspective) as a crucial property of the simulation,

for the purpose of straightforward, reproducible simulation rather than statistical

validity under random perturbations.

Ekho [176] is a promising energy-trace recording and playback platform meant to

enable reproducible runs of energy-harvesting devices like CRFIDs. It is premature

for our application in its current prototype form, with low capturing resolution and

not-yet-validated V–I curve models for RF harvesting, but a future incarnation may

provide a simulation-free way to debug TPCs in a predictable environment.

2.6 Summary

Reproducible results are difficult to obtain under energy harvesting because phys-

ical inputs—which may completely determine run-time performance—vary from run

to run. Our simulation environment for TPCs, based on the MSPsim cycle-accurate

simulator for MSP430 microcontrollers, addresses this challenge by running firmware
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programs against empirically obtained energy traces. This simulation fits conceptu-

ally between analog circuit simulation (e.g., SPICE) and digital architectural simula-

tion (e.g., Simics) because runs incorporate inputs from both the analog and digital

domains.
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CHAPTER 3

COMPUTING UNDER TRANSIENT POWER1

You build on failure. You use it as a stepping stone. Close the door on the
past. You don’t try to forget the mistakes, but you don’t dwell on it. You don’t
let it have any of your energy, or any of your time, or any of your space.

—Johnny Cash [29]

By definition, transiently powered computers do not receive a constant supply

of operating power. When power availability is limited, or when a program’s power

consumption outpaces energy harvesting, TPCs may lose power before completing

their assigned tasks. The constant threat of power loss is a key limitation.

This chapter explores the power-related challenges inherent to computation un-

der intermittent power, in particular under energy provided by naturally unsteady

RF harvesting. Considering the primary challenge of dealing with frequent losses of

volatile state caused by power losses, this chapter describes Mementos, a system that

protects computations on TPCs from state loss by way of an automatic, energy-aware

state-checkpointing system. Mementos monitors available energy at run time after

instrumenting a program with energy checks at compile time. The key contribution

of Mementos is that it enables the completion of computations that require more

resources than are available during a given burst of power (a lifecycle).

1This chapter extends three papers by Ransford et al. [122, 123, 124].

27



3.1 Introduction

Batteries, the traditional source of operating power for embedded computing de-

vices, impose serious limitations on the size and deployability of these devices. Unlike

microchips, which have continually improved in a way that is consistent with Moore’s

Law, batteries obey no such law [110], resulting in devices whose computing compo-

nents are minuscule—in both size and weight—in comparison to their battery packs.

The desire to sidestep batteries’ limitations has driven the development of general-

purpose transiently powered computers that operate solely on harvested energy. Such

devices range from computational RFIDs [122]—microcontroller-based devices that

harvest RF from readers and communicate via RFID protocols—to general-purpose

batteryless sensor devices [169].

Computing under transient power conditions is a challenge. Transiently powered

RFID tags use simple state machines instead of supporting general-purpose compu-

tation. Contactless smart cards perform more complicated special-purpose computa-

tions (e.g. cardholder authentication); however, they offer no execution guarantees,

and instead rely on the user to provide the needed RF power for a sufficient period

of time. When energy consumption outpaces energy harvesting, these computations

fail and must restart from scratch, when adequate energy becomes available.

With ultra-low-power microcontrollers (MCUs), tiny programmable devices can

perform computation and sensing under RFID-scale energy constraints; however,

these MCUs consume more power than conventional RFID circuitry, and energy con-

sumption can easily outpace harvesting, resulting in frequent power loss.

The status quo of frequent power loss on transiently powered devices hinders de-

velopers in two ways. First, there are certain operations that are simply too time

consuming to complete in the typical amount of time a device may run. For exam-

ple, a smart card is unlikely to receive power for more than a few hundred millisec-

onds, which is not enough time for its low-power microcontroller to complete an RSA
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Figure 3.1. Energy availability under RF harvesting is difficult to predict on
a transiently powered computer (TPC), threatening the successful completion of
long-running programs. These plots show the output of a prototype TPC’s energy-
harvesting frontend during three different smooth movements within 2 m of an RFID
reader. The dashed line at 2.2 V represents this prototype’s nominal minimum volt-
age for flash writes. The solid line at 1.8 V depicts the prototype’s nominal minimum
operating voltage, below which it loses volatile state.

public-key decryption with a long key [132]. Second, developers must pessimistically

and painstakingly hand-tune programs that run CPU-intensive operations like cryp-

tography or sensor data processing on transient power, so that these programs will

complete within a short time window appropriate to their physical use case, often

under 100 ms [24, 31]. (Section 3.3 characterizes power loss for a CRFID in detail.)

If developers can confidently write programs for TPCs while being protected from

the repercussions of frequent power loss, they can write more-sophisticated, longer-

running programs. Mementos is a software system that enables long-running com-

putations to span power loss events by combining compile-time instrumentation and

run-time energy-aware state checkpointing.2 At compile time, Mementos inserts func-

tion calls that estimate available energy. At run time, Mementos predicts power losses

and, when appropriate, saves program state to nonvolatile memory. After a failure,

Mementos restores program state and execution continues rather than restarting from

scratch.

This chapter makes the following contributions:

2In the 2000 film Memento [76], the main character would unpredictably lose short-term memory,
especially when sleeping. He checkpointed state with notes and tattoos in an attempt to execute a
single (all-consuming) long-running task.
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• An energy-aware state checkpointing system that splits program execution across

multiple lifecycles on transiently powered RFID-scale devices. The system is

implemented for the MSP430 family of microcontrollers, requires no hardware

modifications to existing devices, and operates automatically at run time with-

out user intervention.

• A suite of compile-time optimization passes that insert energy checks at con-

trol points in a program. The optimization passes implement three different

instrumentation strategies that are designed to work well on different program

structures. Mementos provides a test harness to help developers choose appro-

priate instrumentation strategies for their programs.

• A set of enhancements to the basic Mementos strategy that add adaptive state

checkpointing, allowing Mementos to adjust its run-time parameters to improve

its use of resources.

The compile-time analysis and program transformation components of Mementos

are built on the LLVM compiler infrastructure [88]. We evaluate the performance

of Mementos using a modified version of the MSPsim cycle-accurate MSP430 sim-

ulator [49] (described in Chapter 2). This simulator accepts empirically recorded

energy-harvesting traces and MSP430 executables and runs programs under simu-

lated energy-harvesting conditions.

Mementos enables long-running or computationally intensive applications on RFID-

scale devices. Moving computing into environments that are ill-suited to batteries

and tethered power, promising applications include environmental monitoring where

battery replacement is not practical, insect-scale wildlife tracking where batteries are

too heavy, and implantable medical devices [108] where battery recharging might heat

and damage surrounding tissue. Mementos aims to enable these new applications by
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extending the computational capabilities of transiently powered computers beyond

simple programs.

3.2 Background and Challenges

Multiple platforms at various stages of maturity enable batteryless, RFID-scale,

transiently powered computing. TheWISP [138] uses an MSP430 microcontroller [155]

for computation and harvests energy from off-the-shelf RFID readers. A system-on-

chip variant, the SoCWISP, is small (2.0 mm2) and light enough to attach to insects in

flight [171]. The Blue Devil WISP improves upon the WISP’s RF-harvesting and com-

munication performance [160]. The UMass Moo provides more memory and storage

than the WISP, improves upon its sensing precision, and supports a greater number

of peripherals [175]. Solar-harvesting “leaves” aim to combine the properties of RFID

tags and sensor motes, with solar harvesting powering active radios to form multi-hop

networks [173]. The EnHANTs platform also situates solar-harvesting nodes between

RFID tags and motes, targeting flexible sensor tags that could be embedded in ob-

jects [59]. All share the goal of enabling sensing and general-purpose computation

under harvested power.

Previously proposed applications for transiently powered computers include envi-

ronmental monitoring [62], activity recognition [25], and cryptographic protocols [31].

Mote-class devices (e.g. Telos [117], TinyNode [45]) offer similar capabilities and can

also be used in these applications, but their size, weight, and maintenance cost (i.e.,

dependence on batteries) significantly limits their deployability. Transiently pow-

ered devices potentially provide the benefits of programmability and general-purpose

computing without the drawbacks associated with more powerful mote-class devices.
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3.2.1 Challenges

Despite their benefits, designing and deploying these systems is challenging. A

first challenge is that of limited, unreliable power. By definition, TPCs cannot depend

on continuous power. Figure 3.1 illustrates typical fluctuations in supply voltage that

occur under RF energy harvesting. Prototype systems like the WISP use capacitors

as short-term energy buffers. For a sense of scale, consider that a WISP’s 10 µF

capacitor can store roughly 100 µJ, whereas a Telos sensor mote’s two AA batteries

can store over 20,000 J—eight orders of magnitude more.

The amount of energy harvested from RF, solar, and other sources varies widely

and is difficult to predict [110, 172]—a problem often compounded by device mobil-

ity. Consequently, unlike traditional computing systems, transiently powered systems

frequently lose power and computational state as a rule, not as a rare exception. Ex-

perience with the WISP has shown that power failures every ∼100 ms are a reasonable

expectation [31, 122]. Existing lightweight operating systems like TinyOS [89] boot

too slowly—in an informal test, TinyOS on a TinyNode booted in 253 ms, and 193 ms

without clock calibration—to provide robustness via OS services on an RFID-scale

device. Under these conditions, long-running programs may never complete, as they

restart their work after each failure. In the context of transiently powered devices,

we refer to such long-running programs as Sisyphean tasks.3

The second challenge is that of disappearing volatile state. With each loss of power

on a TPC, some or all of the volatile state in the CPU disappears, with each unit of

memory probabilistically decaying to a ground state in some amount of time [137].

A key to addressing the problem of Sisyphean tasks on TPCs is that many general-

purpose microcontrollers, notably the MSP430 found on WISP-derived devices, fea-

3In Greek mythology, Sisyphus was the first king of Corinth and a conniving malefac-
tor [73]. His punishment in Tartarus was forever to repeat the task of rolling a boulder to
the top of a hill only to have it roll back to the bottom.
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ture nonvolatile memory that can be written to at run time. The most common

form of on-chip nonvolatile memory is flash memory, typically available on prototype

RFID-scale devices in the amount of several kilobytes.

But a third challenge—constraints on nonvolatile memory—makes it nontrivial to

use flash memory for checkpoint storage, for the following reasons:

1. Even small flash memories are coarsely divided into segments, 512 bytes each on

the MSP430. Each segment must be erased all at once, and erasing a segment

requires energy comparable to filling the entire segment with data.

2. Flash memories have a one-way property: once a bit is set to 0, the only way

to set it back to 1 is to erase the entire segment that contains it.

3. Flash reads are nearly as fast as volatile RAM reads, but flash writes are two

orders of magnitude slower (and correspondingly more energy intensive) than

RAM writes.

4. Many microcontrollers use flash memory for program storage, which limits the

amount of nonvolatile storage available for other purposes.

As mentioned in Section 3.1, Mementos uses energy-aware state checkpointing to

insulate programs from continual power losses. It stores state checkpoints in on-chip

flash memory. Despite the above caveats, Mementos can use flash as a nonvolatile

backing store for volatile state by judiciously copying data—minimizing the frequency

and duration of flash writes—and by carefully managing bundles of checkpointed

state to minimize the risk of corruption from power failures. Mementos incorporates

a flash-management strategy that reserves two segments of flash memory, erasing

a segment only when it no longer contains the most recent state checkpoint. To

minimize flash writes, Mementos avoids checkpointing until the energy supply drops

below a threshold level.
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3.3 Power Loss and CRFIDs

To quantify the frequency of power loss events on a prototype TPC, we performed

an experiment using UMass Moo CRFIDs [175] harvesting energy from a commercial

Impinj Speedway Revolution RFID reader.

We connected a Tektronix MSO5204 oscilloscope between a general-purpose in-

put/output (GPIO) pin on the Moo’s microcontroller and the Moo’s ground pin. This

setup allowed us to observe the state of the digital output on the pin. Setting the

GPIO “high” and then “low” in the Moo’s firmware, with a 0.1 ms delay in between,

resulted in a visible spike on the oscilloscope. Raising and lowering a pin for this

amount of time draws a negligible amount of the Moo’s capacitor’s energy, so we

used these visible spikes to signify boot events as we tested various workloads. To

calculate the frequency of boot events in an oscilloscope trace, we saved a 5-second

period of time-series data to a text file, plotted the text file, counted the spikes, and

divided by 5 to yield an average number of boot events per second over the 5-second

period.

We tested four workloads:

• A 100% duty-cycle workload that executes an infinite loop after spiking the

GPIO pin.

• A 75% duty-cycle workload that executes an infinite loop for 75% of the time

after spiking the GPIO pin. For the remaining 25% of the time, the microcon-

troller sleeps in a lower-power mode (MSP430’s LPM0) with a timer enabled.

• A 50% duty-cycle workload, similar in all other respects to the 75% duty-cycle

workload.

• A 25% duty-cycle workload, similar in all other respects to the 75% and 50%

duty-cycle workloads.

34



Figure 3.2. Test harness for testing the frequency of reboots on a UMass Moo. An
oscilloscope probe observes the voltage of a pin that the Moo raises and lowers on
each boot.

We set up the RFID reader with its panel antenna (a Cushcraft S9028PCL panel

antenna) pointing straight down an empty hallway ∼ 2.2 m wide. We marked points

at 25 cm intervals up to 3 m.

For each workload, we programmed the Moo with the workload, attached the Moo

to a non-conductive test harness to hold oscilloscope probes (Figure 3.2), and placed

the Moo at each distance marker with its dipole antenna parallel to the plane of

the reader’s antenna (the optimal orientation). We then recorded data as described

above.

3.3.1 Experimental Results

The metric we used to measure the frequency of power losses was the number

of boots events per second over a 5-second window. Boot events per second, as a

metric, is an upper bound on the number of destructive losses of volatile state a

workload experiences. This is because the workload may finish before it loses power,

or data remanence in RAM may preserve some of the volatile state. In the case of

our infinite-loop workloads, boots per second is the same as reboots per second.
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Figure 3.3. Boots per second for a UMass Moo for all four test workloads (25%
duty cycle to 100% duty cycle).

Figure 3.3 summarizes our experimental results for all four workloads. Each work-

load exhibited increasing boots per second as we moved the Moo farther away from

the antenna, up to a certain distance; the boot frequency decreased as we moved the

Moo past this distance. Before this inflection point, the workload faced power losses

during execution; after this inflection point, the Moo faced the same power losses

during execution and increasingly could not boot at all because it could not harvest

enough energy.

Only the least-strenuous workload—the 25% duty cycle workload—booted at all

at 1 m during the 5-second measurement windows, because it had more time (the 75%

of its duty cycle that it slept) to harvest energy in between boots. Figure 3.4 shows

the effect of varying the distance under this workload. Near the antenna (at 25 cm

and 50 cm), the Moo booted with regularity, indicating that it completed each 25%

portion of its workload, then lost power during the remaining 75% of its duty cycle.

Farther from the antenna (at 75 cm), the Moo booted more frequently and with less

regularity, indicating that it was interrupted by power losses while waiting to begin

its next duty cycle. At the greatest distance at which it booted at all (100 cm), the

Moo booted infrequently and with no discernible regularity, indicating that it needed

a long charge time between boots and lost power before completing its duty cycles.
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Figure 3.4. Boot events for a single workload (25% duty cycle) as we vary the UMass
Moo CRFID’s distance from an RFID reader.

A second Moo programmed with the same workloads produced results that were

visually indistinguishable from these results, so we omit them here for brevity.

This experiment provides evidence that power failures occur multiple times per

second on a UMass Moo CRFID. These results may not generalize to other devices

or harvesting modalities, for several reasons:

• Antenna shape, orientation, and efficiency vary from CRFID to CRFID. We

used hand-tuned (manually impedance-matched) Moos to maximize RF-harvesting

efficiency; other prototypes (e.g., the WISP) may exhibit different patterns of

power loss because their harvesting circuits differ.
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• Environmental factors affect harvesting efficiency; this is true for RF harvesting

and other modalities (e.g., solar). For a CRFID, the RF supply is subject to

multipath interference (signal bouncing), the presence of occluding bodies, and

physical properties of the RFID reader. Changing these variables may increase

or decrease the frequency of power losses.

3.4 Design of Mementos

The key observation motivating the design of Mementos is that, in general, it

is difficult to predict the behavior of energy harvesting on a transiently powered

RFID-scale computer. For example, devices that harvest energy from RFID read-

ers are subject to fluctuations in voltage (Figure 3.1) that are highly dependent

on the operating environment and the device’s physical orientation. With the ad-

vent of programmable, general-purpose transiently powered computing comes a need

for general-purpose power failure recovery mechanisms. Without general-purpose

mechanisms, programs on these devices must either finish quickly—not always an

option—or include potentially complicated application-specific logic to manage their

own computational state. Mementos aims to remove both of these obstacles.

Mementos has two parts: a set of program transformation passes that insert

energy-measurement code at control points in a program, and a compact library that

provides state checkpointing and recovery functions. Mementos can be integrated into

a project’s build system via standard means (e.g., a Makefile). Following are Memen-

tos’s high-level design goals and guiding design principles. Given the constraints of

RFID-scale devices, we consider the goals of minimizing overhead and maximizing

efficiency to be self-evident.

Goal: Split programs across multiple lifecycles. Mementos must, at run time,

automatically suspend and resume programs without user intervention, so that a
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program that runs in n cycles with unlimited energy may run in n′ ≥ n cycles when

interrupted by power losses.

Design principle #1: Run on existing hardware. Mementos requires no special

hardware support other than the ability to measure the voltage of the platform’s

energy buffer. Circuitry for voltage measurement is common on computing devices

that operate on batteries—for example, many MSP430 variants include an internal

measurement channel dedicated to monitoring supply voltage.

Design principle #2: Reason minimally about energy at compile time, maximally

at run time. Past work has demonstrated that even expert programmers have trouble

reasoning about run-time energy [149]. In fact, reasoning about run-time energy

availability before run time may be impossible because of inconsistent harvesting, and

accurately predicting energy availability at run time may be infeasible because of the

limited computational resources available for prediction. To sidestep these difficult

problems, Mementos uses a simple metric—the voltage on the supply capacitor—

to estimate available energy at run time. It inserts voltage checks at compile time,

obviating the need for complex logic to deal with changing energy conditions.

3.4.1 Compile-Time Instrumentation

Mementos modifies programs in two ways at compile time. First, it places trigger

points—calls to a Mementos library function that estimates available energy—at con-

trol points in the program. Second, it wraps the program’s main() function with a

shim function that searches for a restorable state checkpoint and resumes computation

if it finds one.

Where should Mementos place trigger points? To ensure that it suspends execu-

tion with enough time for a checkpoint to complete, Mementos should insert enough

trigger points at compile time so that it can effectively sample run-time energy trends

(increasing or decreasing voltage); however, it should not insert so many that mea-
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Term Definition

Checkpoint A copy of program state information from which execution
may be restored after a reboot.

Trigger point A check of available energy that may cause a checkpoint.
Checkpoint threshold voltage The voltage below which Mementos turns trigger points into

checkpoints.
Sisyphean task A task that exhausts the platform’s available resources each

time it runs, without finishing.
Loop-latch mode Mode in which Mementos places energy checks at loop

latches.
Function-return mode Mode in which Mementos places energy checks after call

instructions.
Timer-aided mode Mode in which Mementos performs energy checks only when

a hardware timer has raised a flag.
Lifecycle (or power lifecycle) Time during which a transiently pow-

ered device can execute code. Mementos splits computa-
tions across multiple lifecycles.

Table 3.1. Terms used in our discussion of Mementos.

surement cost predominates over execution. To satisfy our goal of supporting a wider

range of TPC applications, Mementos must also be compatible with programs that

are structured in different ways. To these ends, Mementos offers three different

instrumentation strategies that enable it to instrument common, recurring control

structures—namely loops and function calls—and to execute energy checks according

to a preconfigured timer.

• In loop-latch mode, Mementos places a trigger point at each loop latch (the

back-edge from the bottom to the top of a loop), resulting in an energy check

for each iteration of each loop in the program.

• In function-return mode, Mementos places a trigger point after each call in-

struction, resulting in an energy check each time a function returns.

• In timer-aided mode, which is designed to reduce the frequency of energy-

intensive checkpointing operations, Mementos adds to either the loop-latch or

function-return mode a hardware timer interrupt that raises a flag at predeter-
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mined intervals. Each trigger point then checks the flag and proceeds with an

energy check only if the flag is up. The flag is lowered again for the next trigger

point.

Besides offering these three strategies for automatic trigger-point placement, Me-

mentos supports application-specific customization by providing a simple API. A

programmer can opt not to run any of Mementos’s instrumentation passes and in-

stead insert trigger points manually, simply by including a header file and placing

calls to Mementos functions in her program. In the same manner, she can similarly

insert code to force checkpointing at a certain point in the program.

3.4.2 Run-Time Energy Estimation

At run time, Mementos estimates the energy remaining in the device’s energy

buffer by measuring its voltage. Microcontrollers suitable for TPCs typically have

on-chip analog-to-digital converters (ADCs) that sample voltage as a proxy for any

number of environmental phenomena (e.g. temperature and physical orientation);

Mementos simply makes use of this subsystem.

For an ideal capacitor, the amount of energy it presently contains (E) is deter-

mined by the capacitor’s present voltage (V ) and its fixed capacitance (C), via the

following equation: E = CV 2/2. However, since calculating energy from voltage

may require computationally intensive operations such as squaring and floating-point

arithmetic, Mementos uses the ADC’s voltage measurement directly when making

checkpointing decisions: it compares the measured voltage to a checkpoint threshold

voltage (Vthresh) represented as a threshold ADC value. Above this voltage, Mementos

assumes that it does not need to write a state checkpoint. It interprets a voltage below

the threshold as indicating that power failure is imminent and begins checkpointing

state.
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Ideally, program state should be saved at the last practicable opportunity before

a power failure in order to minimize unsaved computation. However, unpredictable

energy harvesting and the variations in the cost of saving checkpoints make perfect

failure prediction infeasible.

Mementos predicts future power failures conservatively by assuming that no en-

ergy will be harvested between the trigger point and a power failure. (In practice, this

assumption may result in underestimates of available energy because the harvester

may still be working even during checkpointing.) Worst-case run times can be cal-

culated as follows. The charge on a capacitor is Q = CV . Under a constant current

draw I, the charge decreases as dQ
dt

= I, and the time between two voltage levels Vmax

and Vmin is ∆t = C(Vmax − Vmin)/I. If, for example, an MSP430 draws 238 µA in

active mode, fails to write to flash below 2.2 V, and needs 17.5 ms to write a 200-byte

checkpoint, Mementos should start checkpointing at the latest when supply voltage

falls to 2.62 V. However, two factors complicate the task of checkpointing at the last

moment: checkpoint sizes and times may vary at run time depending on stack depth;

and Mementos’s ability to precisely time a checkpoint depends on the frequency of

trigger points. Section 3.5 describes the mechanisms that help a programmer choose

a reasonable checkpoint threshold voltage above the lower bound.

Because it may suffer power loss during a checkpointing operation, Mementos

exhibits defensive behavior that ensures correctness at a cost of time—i.e., its pre-

cautions err on the conservative side and may increase the amount of redundant

computation during a complete execution. Mementos’s first precaution is that it

writes checkpoints head first and tail last : the first word of data it writes to non-

volatile memory contains enough length information for a complete checkpoint to be

reconstructed and an incomplete checkpoint to be detected; the last word it writes is

the magic number that ends every valid checkpoint. Second, if Mementos detects an

incomplete checkpoint during recovery or next-checkpoint location, it refuses to write
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Figure 3.5. Overview of run-time checkpointing in Mementos. This diagram depicts
the loop-latch mode in which Mementos instruments loop back-edges with energy
checks that conditionally trigger checkpointing.

any more information to the containing segment of nonvolatile memory and marks

the segment for deletion. Mementos erases such marked segments immediately after

boot when available energy is guaranteed to be above a predefined threshold.

3.4.3 Run-Time Checkpointing

Mementos links trigger-point instrumented programs with a run-time checkpoint-

ing library. When a trigger point initiates a checkpoint, Mementos copies relevant

program state to nonvolatile memory along with meta-information (Figure 3.5). After

a power failure, Mementos searches for a restorable checkpoint and, if it finds one,

copies the stored state into RAM and resumes execution.

Checkpointing on RFID-scale devices is more difficult than checkpointing on more

powerful platforms. With no operating system, Mementos must be linked into a de-

ployed program. Mementos shares all of the program’s resources and must perform

in-place checkpointing to capture the state of the program as it was immediately

before entering the trigger point. Additionally, the limitations of flash memory (dis-

cussed in Section 3.2 and below) complicate checkpoint management.

Most checkpointing systems are designed to run on multiprogrammed operat-

ing systems (e.g. the MPI checkpointing of Bronevetsky et al. [18]) or in hardware

environments that support the issuance of commands by other devices (e.g. the sen-

43



sornet checkpointing of Österlind et al. [109]). Mementos runs on RFID-scale devices

without resources to run conventional operating systems and may have no electrical

connection to their environs. It interacts with its host program via function calls and

shares the program’s address space, stack, registers, and globals.

Flash writes are slow and energy intensive relative to volatile memory writes, so

instead of blindly copying the entire contents of RAM in each checkpoint, Mementos

captures only the regions of RAM that are in use at the time the trigger point is called.

These comprise the stack, whose depth can be calculated via the stack pointer; the

global variables, captured by Mementos in an analysis pass at compile time; and

the register file, which includes the stack pointer, program counter, and a status

register. Mementos does not capture the program’s executable code because this

code is typically already stored in (and executed from) memory-mapped nonvolatile

memory.

Keeping with a convention generally followed by programs targeting memory-

limited mote-class devices, none of our test cases allocates memory dynamically. This

allows our implementation of Mementos to sidestep the problem of checkpointing a

fragmented heap by not checkpointing the heap at all; we note instead that the feasi-

bility of efficient heap checkpointing depends on the quality of the dynamic memory

allocator and its internal state at the time of checkpointing. setjmp and longjmp

operations are unsupported for similar reasons; exception-style control flow is not

typically used in embedded software. Notably, the Embedded C++ standard lacks

support for exceptions [116]. However, Mementos is compatible with interrupt ser-

vice routines (ISRs) that behave like normal function calls, as they do on MSP430.

Finally, Mementos does not currently provide special support for reentrant code or

threading libraries; its checkpointing operation is non-reentrant.

At checkpoint time, Mementos first pushes all of the registers onto the stack;

registers tend to change during program execution. (On the MSP430, the register file
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size, S

Globals 
size, G

Contents of registers Contents of stack Contents of globals End marker

1 byte 15 x 2 = 30 bytes S bytes G bytes 2 bytes1 byte

30 + S + G bytes

Figure 3.6. A state checkpoint in Mementos. The length of the entire checkpoint
can be calculated from the two-byte header.

includes the status register R2; Mementos takes minor precautions to avoid affecting

this register’s value before saving it.) It stores the value of the stack pointer, adjusted

for the function call that initiated the checkpoint, and sets the stored value of the

program counter to the return address from the checkpoint function’s own stack

frame. It then finds space for a new checkpoint (details below), and writes at the

beginning of the free space a checkpoint size header that includes the adjusted stack

depth. Mementos then writes the saved registers, stack, and globals to flash. Finally,

it writes a magic number to indicate the end of the checkpoint. The location of

the magic number is trivial to calculate from the size header, allowing Mementos to

detect incomplete checkpoints that are due to power failures during checkpointing.

Figure 3.6 depicts a checkpoint as it is stored.

At boot, Mementos searches for an active checkpoint (details below), then copies

its contents into RAM. As when checkpointing, it must copy carefully so that it

restores the saved state rather than a mixture of the saved state and its own state.

For example, on the MSP430 architecture, it restores the register file in descending

numeric order, leaving the stack pointer (R1) and the program counter (R0) for last.

Restoring the program counter from the checkpoint implicitly transfers control to the

program where it left off.

Idempotent actions pose a design challenge. Some code cannot be re-executed

safely. For example, an RFID-scale device may contain an actuator that toggles a

property of another device. To enable programmers to work with non-idempotent
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code, Mementos allows programmers to selectively disable instrumentation on a per-

loop or per-function basis. Appending the token _mnotp4 to any function’s name

causes Mementos to skip the function, i.e., not instrument its loops or a return from

it. A programmer can disable instrumentation even for inline functions, which means

she can direct Mementos to ignore any piece of code she wishes. We implemented an

optional additional pass that emits compile-time warnings upon encountering possibly

non-idempotent actions such as volatile writes—e.g. a write to a memory address that

is mapped to a hardware output pin. The warning messages suggest points at which

the programmer might profitably disable checkpointing.

Unlike prior systems that rely on OS facilities to simply dump process memory to

a file system (e.g. libckpt [115]), Mementos must manage its own checkpoint storage.

Its strategy approximates a circular buffer, but the characteristics of flash memory

require special care.

Mementos is designed to facilitate the execution of programs from beginning to

end; as a result, once a checkpoint is successfully written to nonvolatile memory,

all previous checkpoints are superseded. Mementos maintains at most one active

checkpoint at any given time. At boot or when searching for free space, Mementos

uses a simple active-checkpoint search algorithm: it walks a reserved region of flash

memory, skipping over sequentially stored valid checkpoints (those that end with

correct magic numbers) and stopping when it discovers a valid checkpoint that is

followed by a byte in the erased state (0xFF for flash).

Flash is erasable only segment-by-segment. To erase old or invalid checkpoints

without destroying active checkpoints, Mementos reserves two segments of flash mem-

ory to checkpoint storage. When a checkpoint is completely written to one of these

segments, it supersedes all checkpoints stored in the other, and Mementos marks the

4Mnemonic: “Mementos, no trigger points!”
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other segment erasable by zeroing its first word—an operation that can be reversed

in flash only by erasing a whole segment. Mementos erases segments marked erasable

at two times: at boot, when energy is likely to be plentiful, and when it cannot find

space for a new checkpoint in either segment (i.e., when one segment is marked for

erasure and the other is full of checkpoints).

A natural question is why Mementos polls the hardware energy supply instead

of waiting for an interrupt to occur when voltage falls below a threshold. Voltage

supervisors are common circuit components, but most—crucially, including existing

prototype RFID-scale devices—do not feature an adjustable threshold voltage. Me-

mentos is designed to work on existing devices without design modifications, so it

polls for supply voltage. However, if such a device featured an adjustable or multi-

level voltage supervisor, Mementos could avoid polling and simply associate itself

with the appropriate interrupt(s). The checkpointing routine is designed to be called

as a subroutine and works equally well as an interrupt handler (which is how the

checkpointing oracle described in Section 3.6 works).

3.5 Implementation

Mementos formulates its program transformations as LLVM [88] optimization

passes. These passes operate on intermediate LLVM bitcode before LLVM’s MSP430

backend generates target-specific assembly. They are implemented in C++ and com-

prise (at the time of this writing) a total of 912 lines of code including whitespace,

comments and header files. Mementos’s run-time library comprises an additional 843

lines of C and inline MSP430 assembly.

We provide a build harness that instruments an existing C program with Memen-

tos and builds multiple MSP430 ELF executables per input program: one version for

each of Mementos’s three instrumentation strategies and an uninstrumented version

for comparison. A script repeatedly calls the build harness with different parameters,
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varying the checkpointing voltage threshold Vthresh and, when applicable, the timer

interval used for timer-aided checkpointing. Finally, another script allows a program-

mer to compare the performance of all the variants in a simulator. Section 3.6 details

our use of this simulator for evaluation.

Instrumenting programs at the level of LLVM’s intermediate representation allows

Mementos to use simple, target-agnostic transformations, but it limits Mementos’s

visibility into later compilation stages. In particular, Mementos’s LLVM passes do not

have access to the results of code generation, so they cannot, for example, leverage

empirically measured instruction-energy estimates. We originally considered static

analysis to count post–code-generation instructions and simply tag basic blocks with

energy estimates [122], but that simple approach proved inadequate because of the

complexity of calculating at run time the amount of work remaining until program

completion; such calculations necessarily occur at trigger points, which may be fre-

quent.

3.6 Evaluation

This section evaluates Mementos’s ability to correctly and efficiently preserve com-

putational state across frequent power failures. To simulate the energy conditions a

deployed device might face, we feed voltage traces from a hardware prototype’s ana-

log energy-harvesting frontend into a trace-driven, cycle-accurate simulation of an

RFID-scale device. We consider three distinct workloads that exercise different com-

putational resources found on prototype RFID-scale devices: computation, sensing,

and storage. We evaluate executions of these workloads with each of Mementos’s

instrumentation strategies and compare the results to baseline measurements taken

against predictable energy conditions and uninstrumented programs. Finally, we offer

the results of running Mementos on hardware instances of the model we simulate.
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3.6.1 Mementos in Simulation

Mementos is designed with RFID-scale devices in mind, so we developed a flexible,

trace-driven testbed featuring a simulated microcontroller (MCU) and energy supply

modeling those found on a hardware device (a prototype WISP [138], revision 4.1).

While the WISP supports interactive debugging via a standard JTAG interface, the

simulator adds several key features: the ability to perform repeatable experiments

against recorded traces of RF energy harvesting; the ability to vary hardware param-

eters (e.g. available memory) to overcome limitations of the prototype device; and

the ability to obtain exact profiling information such as cycle counts. We therefore

primarily present results obtained in simulation.

We augmented MSPsim [49], a cycle-accurate MSP430 simulator that accepts

MSP430 ELF binaries, with a simulated capacitor of our design that obeys the basic

capacitor equations for charging and discharging.5 The simulated capacitor halts

execution whenever its voltage falls below the MCU’s nominal minimum operating

level and resets the MCU when the voltage returns to an operable level after a power

failure. We also added to MSPsim a notion of electrical current, which governs the

speed at which a capacitor’s energy is depleted, and associated each of the simulated

MCU’s operating modes (active mode, flash write, analog-to-digital conversion, and

five low-power modes) with current values measured from a hardware WISP. We

made other minor changes to MSPsim to simulate power failures (e.g. preserving

nonvolatile memory contents across resets).

Chapter 2 describes our simulation efforts in detail.

3.6.1.1 Test cases

Our evaluation of Mementos considers three test cases representing common tasks

for low-power embedded systems.

5We refer the reader to Horowitz and Hill [74] for a detailed discussion of capacitor behavior.
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The rsa64 test case uses iterative left-to-right modular exponentiation of multiple-

precision integers to encrypt a 64-bit message under a 64-bit public key and 17-

bit exponent. (Larger sizes cause the computation to exceed the RAM capacity of

a WISP.) The program’s data segment comprises 124 bytes of globals. Mementos

instruments 24 loop latches in loop-latch mode and 51 call sites in function-return

mode, in both cases primarily inside the multiple-precision integer library underlying

the RSA implementation.

The sense test case takes 64 consecutive ADC samples of a simulated accelerom-

eter and computes the minimum, maximum, mean, and standard deviation of the

samples, then stores these statistics to nonvolatile memory. Such computations are

common in sensing applications that sample environmental phenomena. The program

stores raw sensor readings in a 128-byte global in RAM. Mementos instruments three

loop latches in loop-latch mode and four call sites in function-return mode.

The crc test case, drawn directly from WISP firmware, computes a CRC16–

CCITT checksum over a 2 KB region of on-chip flash memory. The WISP firmware

computes CRC checksums to send along with responses to an RFID reader. CRC

also provides a mechanism for data-integrity checks; we imagine such a check being

important for future in-place firmware updates on RFID-scale devices. The program

comprises a tight CRC nested loop and an outer loop that repeatedly calls the CRC

function; Mementos instruments three loop latches in loop-latch mode and two call

sites in function-return mode. Because the CRC loop is tight, we use the crc test case

to evaluate the _mnotp mechanism for selectively disabling checkpoints (Section 3.4),

reducing the number of loop latches instrumented to one.

A testbed provided with Mementos compiles each test case against a variety of

Mementos configurations, varying by instrumentation strategy and static checkpoint

threshold voltage Vthresh. It runs each variant against two modes of the simulator:

trace-driven mode and decay-only mode. In trace-driven mode, a voltage trace from
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real hardware governs simulated energy availability. In decay-only mode, the sim-

ulated capacitor’s voltage begins at a fixed value and strictly decreases with time

and use; it starts at the same voltage in subsequent lifecycles. In both modes, trig-

ger points induce checkpointing below Vthresh and simulated power loss occurs at the

platform’s nominal minimum voltage for flash writes (2.2 V). Finally, the simula-

tor collects baseline measurements by running each variant without instrumentation,

then without energy constraints, and finally in an “oracle” mode that predicts power

losses and checkpoints at the last practicable opportunity (Section 3.6.1.3).

3.6.1.2 Baselines and Metrics for Comparison

Programs instrumented with Mementos differ in several key ways from their unin-

strumented counterparts. First, they include additional code that provides check-

pointing and restoration mechanisms. This extra code endows programs with robust-

ness properties at a cost of storage space and available cycles at run time. Second,

they can execute over multiple device lifecycles instead of restarting from the begin-

ning with each failure. Third, they exhibit different behavior under different energy

conditions; checkpoint sizes vary with stack size, and the point at which checkpoint-

ing begins varies with supply voltage. With these differences in mind, we adopt the

metrics shown in Table 3.2.

Metric Description

Lifecycles The number of reboots (including initial boot) required to com-
plete the program

Total cycle count The number of CPU cycles required to complete the program
over all lifecycles

Mementos cycles Percentage of total cycle count spent in Mementos code
Waste Percentage of total cycles that occurred between the last check-

point in a lifecycle and the subsequent power loss

Table 3.2. Metrics for evaluation.

A natural question is what is the smallest number of CPU cycles in which a pro-

gram can complete? To determine the minimum number of CPU cycles required to
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execute each test case variant, we consider a scenario in which the simulated capaci-

tor’s voltage is held in the CPU’s normal operating range. Under these circumstances,

Mementos’s voltage checks never trigger checkpointing and the program completes in

a single lifecycle. It is easy to see that, for a given program, its run time against

unlimited energy is a lower bound on its run time against any energy scenario. Ta-

ble 3.3 gives results for all three test cases. For the instrumented variants, the program

spends a nonzero number of cycles executing energy checks at trigger points. The

differences in percentage of cycles spent in Mementos are due to the prevalence of

different control-flow structures in the test cases.

Instrumentation Strategy crc /%M sense /%M rsa64 /%¡
Uninstrumented 575,315 /— 157,635 /— 70,218 /—
Loop latches 619,450 / 6.9 284,795 / 44.3 303,250 / 76.2
Function returns 577,702 / 0.2 201,151 / 21.9 214,177 / 66.5
Timer+latches 598,171 / 3.4 166,375 / 4.5 78,914 / 8.6

Table 3.3. Cycle counts (and percentage of cycles spent in Mementos code) for three
Mementos test cases under an unlimited-energy scenario, i.e., voltage always above
Vthresh. This table illustrates the base cost of Mementos’s energy checks at run time,
when its instrumentation runs but never results in a state checkpoint to nonvolatile
memory.

3.6.1.3 Energy Oracle

Another natural question is what is the minimum number of lifecycles over which a

program’s execution can spread? If energy is scarce, lifecycles may occur infrequently

and the difference between k and k+1 lifecycles may be vast. To establish a baseline

for evaluation, we implemented an oracle mode for the simulator. In oracle mode, the

simulator accepts an uninstrumented program that has been linked against Mementos.

It monitors the simulated capacitor’s voltage during the program’s execution and, for

each power lifecycle, initiates checkpointing at the last practicable opportunity—i.e.,

when allowing the voltage to fall any farther would result in an incomplete checkpoint.

Given the difficulty of predicting power loss events at run time (Section 3.4), the
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simulator uses a binary search strategy to adjust its notion of “last practicable” over

repeated executions of each lifecycle.

Because programs executed in oracle mode are uninstrumented, they contain no

trigger points and no automatically inserted calls to the checkpointing function. The

build process splices Mementos’s restoration code in front of the program’s original

main() function to enable boot-time restoration from saved checkpoints.

The oracle mode’s main benefit is establishing a lower bound on the number

of lifecycles and CPU cycles a program needs to complete under a given energy

condition, e.g. a trace in the simulator. An ancillary benefit is that the oracle mode

guides the implementer in selecting a fixed voltage threshold Vthresh. As the simulator

runs in oracle mode, it reports the last practicable threshold voltage discovered for

each lifecycle. If the implementer can provide a representative voltage trace to the

simulator, then choosing a Vthresh suitable for the application is a matter of observing

the oracle mode’s reported cutoff voltages and choosing a slightly higher value.

Table 3.4 shows results obtained in oracle mode under variable voltage (rather

than the fixed high voltage of Table 3.3). The cycle counts and lifecycle counts in

the table should be considered near-lower bounds6 on those metrics for instrumented

versions.

3.6.1.4 Performance and Overhead

Via experiments on our test cases in the simulator and on WISP hardware, we

find that Mementos satisfies the design goal of splitting program execution across

multiple lifecycles with intervening power losses.

For a given voltage trace and test case, the performance of Mementos along all of

our metrics depends on the compile-time choice of voltage threshold Vthresh. There

6These lifecycle counts are from a version of the simulator that counted cycles correctly but
occasionally repeated lifecycles unnecessarily; they are therefore not hard lower bounds.
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crc sense rsa64

Decay-only 621,501 (8) 197,215 (3) 70,886 (1)
Trace #1 685,555 (15) 308,986 (7) 179,626 (4)

#2 685,150 (15) 304,678 (6) 158,187 (3)
#3 685,801 (15) 308,724 (7) 219,970 (5)
#4 685,641 (15) 288,063 (6) 157,438 (3)
#5 685,096 (15) 840,594 (16) 153,181 (3)
#6 685,099 (15) 287,876 (6) 139,211 (3)
#7 683,884 (15) 287,573 (6) 180,195 (4)
#8 685,005 (15) 287,741 (6) 139,840 (3)
#9 685,608 (15) 287,422 (6) 157,613 (3)
#10 685,045 (15) 287,927 (6) 158,805 (3)

Table 3.4. Oracle-mode lower bounds [CPU cycles (lifecycles)] for three test cases
against ten voltage traces and decay-only mode. For the crc test case, the mean
proportion of cycles spent in Mementos code was 24.5±1.3%; for sense, 49.1±11.0%;
for rsa64, 56.6± 5.6%.

are natural bounds on practicable values for this variable. From above, Vthresh is

practically bounded by the wakeup threshold Vw at which the platform boots after a

power failure. If Vthresh ≥ Vw, Mementos will in the worst case begin checkpointing the

first time a trigger point is encountered. From below, Vthresh is strictly bounded by the

minimum flash-write voltage, but a higher application-specific threshold effectively

lower-bounds Vthresh because incomplete checkpoints are not restorable.

For an example of how the above bounds apply, consider the crc test case and a

particular voltage trace (#9). Uninstrumented, the test case fails to complete against

the trace because it cannot sustain computation for long enough. According to the

simulator’s oracle mode (Table 3.4), the minimum number of lifecycles required to run

the test case to completion against trace #9 is 15. With loop latches instrumented,

the test case runs to completion in 17 or more lifecycles depending on the fixed

voltage value Vthresh. With function-return instrumentation, the test case fails to

complete against the trace: the computation’s work loop does not use function calls

to transfer control flow, so there are no function returns to instrument until the main

loop completes. With timer-controlled loop-latch instrumentation, the test case fails
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Figure 3.7. Simulated voltage versus time as Mementos spreads the execution of
the crc test case across 17 power lifecycles (16 resets) against a voltage trace (#9).
The bottom plot highlights a single power lifecycle from the top plot.

to complete against the trace because of infelicitous timing (the voltage when the

timer fired was too low for a subsequent checkpoint to complete).

Figure 3.7 depicts a complete execution of the crc test case against the same volt-

age trace (#9) in the simulator. The simulated capacitor charges (dotted gray line)

when the input voltage increases and discharges (solid black line) during computation

and storage. When capacitor voltage falls into the shaded region between Vthresh (set

to 2.6 V at compile time) and the CPU’s minimum voltage for flash writes (2.2 V),

Mementos checkpoints. Mementos uses the CPU (vertical lines) to check energy, find

space for checkpoints, collect state, and write state to flash. Gaps in the trace are

due to waiting for hardware peripherals (flash and ADC).

Table 3.5 shows the relationships among Vthresh, Mementos’s share of CPU cycles,

and waste for the sense test case instrumented in each of Mementos’s modes. For

brevity, we delve into detail for only a single test case and only two energy conditions.

The top half of the table gives results for decay-only mode, in which the capacitor’s

energy is set to a fixed level and no more energy is delivered until the next lifecycle.

The bottom half of the table gives results for a voltage trace (#9) that elicits repre-
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Loop-latch mode Function-return mode Timer-aided mode interval (µs)
Vthresh lifecycles (cycles/%waste/%M) 20,000 40,000
2.4 V — — — —
2.6 — — — —
2.8 7 (502,576 / 6.8 / 63.9) — 4 (298,890 / 52.8 / 21.2) —
3.0 8 (586,788 / 12.6 / 68.6) 5 (368,255 / 13.0 / 52.9) 4 (298,890 / 52.8 / 21.2) —
3.2 9 (671,849 / 7.2 / 72.1) 6 (429,754 / 2.6 / 58.4) 4 (260,796 / 2.6 / 34.5) —
3.4 9 (725,214 / 15.9 / 73.3) 6 (453,827 / 16.5 / 59.8) 5 (361,471 / 4.6 / 49.1) 4 (314,181 / 20.4 / 27.8)
2.4 — — — —
2.6 89 (5,235,399 / 89.4 / 64.2) — — —
2.8 13 (708,641 / 10.5 / 71.3) 11 (557,164 / 10.8 / 63.7) 53 (2,779,635 / 70.7 / 32.8) 22 (1,044,242 / 70.8 / 29.5)
3.0 46 (2,852,111 / 20.4 / 81.6) 16 (843,093 / 22.6 / 73.4) 10 (473,396 / 13.8 / 55.1) 31 (1,421,150 / 77.9 / 29.7)
3.2 — — 10 (489,739 / 13.5 / 55.3) 15 (702,151 / 56.6 / 29.4)
3.4 — — — 22 (1,194,221 / 30.0 / 58.3)

Table 3.5. In decay-only mode (top half) and against a voltage trace (#9, bottom
half), the sense test case exhibits behavior that is dependent on the voltage threshold
Vthresh and, in timer-aided mode, the timer interval. %M refers to the portion of CPU
cycles spent within Mementos code. This table illustrates the key differences among
Mementos’s various instrumentation modes.

sentative behavior. Without Mementos instrumentation and given unlimited energy,

the sense test case requires 157, 635 CPU cycles to complete. However, when run

against any of our voltage traces, the uninstrumented program cannot complete be-

cause it never receives enough energy to run for long enough; this uninstrumented

program satisfies our definition of a Sisyphean task.

Mementos spreads the sense task across multiple lifecycles, but it increases the

total number of CPU cycles needed for program completion. In oracle mode, the

simulator reports that, if Mementos checkpoints at the last practicable opportunity

in each lifecycle, the program can complete in 3 lifecycles and 197, 215 CPU cycles,

an increase of 25.1% over the uninstrumented program. Varying the compile-time

Vthresh and (in timer-aided mode) the timer interval, we find that Mementos adds

between 65.4% and 360.0% CPU cycles over the uninstrumented program. We infer

from Table 3.5 that Vthresh is effectively lower-bounded by 2.6 V; the oracle-mode

log confirms that the oracle began its last-minute checkpointing at 2.61 and 2.64 V

in the two lifecycles before program completion. The evident difference between

loop-latch and function-return modes in this scenario is that, while loop-latch mode

can accommodate a lower Vthresh with its more frequent trigger points on this loop-
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structured program, function-return mode requires fewer CPU cycles and lifecycles

when it is applicable. We also see that timer mode, in which trigger points at loop

latches are activated only when a timer interrupt raises a flag, offers a tradeoff: a

program may require less time to complete, but a suboptimal value for the timer

interval can introduce unexpected timing-related failures.

Against a specific voltage trace (#9), oracle mode reports that the sense test case

requires at least 6 lifecycles and 287, 422 CPU cycles; the last-minute checkpointing

voltage thresholds it found were between 2.58 V and 2.62 V. Table 3.5 shows the

effects of automatically varying the instrumentation mode and timer interval over a

series of simulated runs. It shows that Mementos adds at least 64.7% CPU cycles

over the uninstrumented program. Table 3.5 also illustrates a hazard of choosing

a fixed Vthresh value too close to upper bound of the oracle’s reported last-minute

voltage threshold choices: at Vthresh = 2.6 V, the latch-instrumented program makes

progress only when it runs against certain felicitous portions of the voltage trace;

none of the other instrumentation modes allow the program to complete. At Vthresh =

2.8 V, the program completes in all tested instrumentation modes, and it becomes

evident that the program’s structure lends itself to function-return instrumentation

as well as loop-latch instrumentation. At Vthresh = 3.0 V, the program’s run time

increases because Mementos begins checkpointing earlier in any given lifecycle, and

the timer-aided latch-instrumented program begins to evince an advantage over the

plain latch-instrumented program because of less-frequent checkpointing. At higher

Vthresh values, the non-timer-aided modes fail to complete in fewer than 500 lifecycles

because the time between checkpoint restoration and subsequent checkpointing leaves

little time for computational progress. A reasonable interpretation of Table 3.5 is

that a fixed value of 3.0 V for Vthresh is appropriate for the sense test case if energy

conditions are not known in advance; in this case a programmer can reasonably expect
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the Mementos-instrumented computation to complete within twice the number of

lifecycles that the oracle reports.

Mementos adds space overhead in two ways: by increasing code size and by reserv-

ing two flash segments (1 KB total on the MSP430) for checkpoint storage. Without

compiler optimizations for code size, Mementos increases executable size by a con-

stant amount (just under 2.4 KB) plus 4 bytes per trigger point. While a 2.4 KB

increase in code size accounts for 30% of the code memory on our prototype, the

sibling chips used in newer RFID-scale devices have much more code space (up to

116 KB) and nearly identical energy characteristics.

3.6.2 Mementos on Hardware

Our evaluation of Mementos focuses on simulation for several reasons, summarized

below and described in more detail in Chapter 2:

• Simulation enables reproducible runs;

• Simulation gives full visibility into machine state, something the programmers

of larger computers may take for granted; and

• Simulation allows experimentation with different machine parameters, to avoid

“overfitting” the system to a specific hardware platform.

We have verified that Mementos works (i.e., spreads computations over multiple

lifecycles) on a variety of hardware, including standalone experimenter boards such

as the Olimex MSP-H1232 and computational RFIDs such as the DL WISP (revision

4.1) [138] and the UMass Moo [175] (revision 1.1). For some devices, we had to make

small hardware changes to make Mementos work. On the WISP, for example, we

substituted a readily available 2.8 V voltage regulator for the supplied 1.8 V regulator

in order to meet the nominal minimum voltage requirement to write to the MSP430’s

on-chip flash memory, but the power consumption of the 2.8 V regulator came to
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dominate the WISP’s overall power consumption at run time. For the Moo, we used

an off-chip flash accessible via a serial bus, at greater energy cost than writing to on-

chip flash. Future TPCs may benefit from designing with checkpointing to on-chip

nonvolatile memory in mind.

To support future explorations of Mementos on hardware, we added to Mementos

a simple logging mechanism that uses a set of general-purpose I/O pins to convey

bit values; toggling these pins at run time allows for coarse-grained observation of

Mementos’s activity.

3.6.3 Extension: Adaptive Checkpointing

As the rest of this section illustrates in detail, compile-time tuning of Mementos’s

parameters can significantly change its behavior. We have designed and implemented

a scheme by which Mementos can adapt its behavior at run time based on its mea-

surement of certain metrics.

In the non-adaptive version of Mementos, there are two parameters that the pro-

grammer must choose. One is the voltage threshold value Vthresh and the other is

the instrumentation strategy. Since the appropriate instrumentation strategy is un-

likely to change at run time for a given program, this technique for making Mementos

adaptive focuses on adjusting the value of the Vthresh value at run time.

3.6.3.1 Minimizing Failed Checkpoints

As mentioned earlier in this chapter, Mementos does not append state checkpoints

to failed checkpoints in its reserved memory segments. This strategy helps it avoid

mistaking partially checkpointed state for valid checkpoints, but because it invalidates

the flash segment for further writes, it can result in excessive flash erasures if failed

checkpoints are commonplace.
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Figure 3.8. A state checkpoint in the adaptive version of Mementos. As in the
non-adaptive version, the length of the entire checkpoint can be calculated from the
two-byte header. Mementos uses an additional four bytes of metadata (shown in
bold) to decide whether to adjust its checkpointing voltage threshold Vthresh up or
down.

To avoid executing time- and energy-intensive flash erasures at the beginning of

lifecycles, an extension to Mementos includes two pieces of extra metadata in each

checkpoint header (depicted in Figure 3.8):

• The current value of Vthresh at the time the checkpoint was saved; and

• A monotonically increasing generation number that changes once per lifecycle.

Accordingly, instead of using a threshold the programmer must choose, this version of

Mementos chooses a starting value for Vthresh and adjusts it up or down as necessary.

The adaptive version of Mementos uses this metadata at run time as follows. When

walking its reserved flash segments at boot time in search of a restorable checkpoint

at boot, Mementos notes the generation number in each checkpoint number, then

chooses a new generation number that is one greater than the maximum generation

number it found. New checkpoints written in the current lifecycle will therefore be

distinguishable from checkpoints written in previous lifecycles. Also during its search

for a restorable checkpoint, it decides whether to adjust Vthresh up or down:

• If multiple checkpoints are from the same previous lifecycle, as indicated by

identical generation numbers, there is an opportunity to start checkpointing

later in the current lifecycle. Mementos notes the Vthresh value stored in those

checkpoints and lowers it by a small amount (0.1 volts) for the current lifecycle.
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• If there is an incomplete checkpoint that is the only checkpoint from its lifecycle—

assuming the incomplete checkpoint at least contains the generation-number

and Vthresh portion of its header, which is written before any volatile state—then

there is an opportunity to start checkpointing earlier in the current lifecycle, to

give the checkpointing operation more time to complete. Mementos notes the

Vthresh value stored in the incomplete checkpoint and raises it by a small amount

(0.1 volts) for the current lifecycle.

Both of these strategies implicitly assume that information about one lifecycle is

relevant to later lifecycles. This may be true if the signal powering the TPC is

periodic or if energy availability is trending in one direction (e.g., a CRFID is moving

away from a reader).

3.6.3.2 Results

These results highlight two test cases to evaluate adaptive checkpointing against

the results in Section 3.6.1.4.

1. The sense test case exhibited the greatest fraction of wasted cycles and failed

to complete at all under many fixed choices of Vthresh. We use this test case to

evaluate the amount by which adaptive checkpointing can reduce the amount

of wasted work, and its ability to compensate for ill-suited values of Vthresh.

2. The crc test case was the longest running of the three test cases, so we use

this test case to evaluate the performance of adaptive checkpointing against the

best-case performance with a checkpointing oracle that always checkpoints at

the last practicable moment.

Table 3.5 in Section 3.6.1.4 gave waste and overhead figures for the sense test

case against a voltage trace (#9 of our 10 traces). Table 3.6 evaluates the same

test case under the voltage-threshold adjustment scheme described in this section.
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(For simplicity of explanation, we focus on the loop-latch instrumented version of

the sense test case.) The results suggest improvements in two key metrics. Under

non-adaptive checkpointing, the sense test case exhibits wildly different performance

against different values of Vthresh. Under adaptive checkpointing, we used the same

values of Vthresh as initial values and allowed the run-time adaptations to adjust this

threshold up and down. The number of lifecycles, number of CPU cycles, and frac-

tion of wasted cycles decreased over the range of Vthresh values, so much so that the

overhead of Mementos dominated the total number of CPU cycles to complete the

workload. (The sense test case is structured as many iterations of a short loop.)

Non-adaptive Adaptive
Vthresh Lifecycles (Cycles, % waste, % Mementos)
2.4 V — 3 (295,573 / 3.85 / 78.14)
2.6 89 (5,235,399 / 89.4 / 64.2) 5 (694,795 / 8.39 / 84.75)
2.8 13 (708,641 / 10.5 / 71.3) 4 (460,458 / 0.40 / 87.52)
3.0 46 (2,852,111 / 20.4 / 81.6) 3 (218,031 / 6.47 / 87.54)
3.2 — 3 (248,497 / 1.27 / 89.48)
3.4 — 3 (281,456 / 8.10 / 90.94)

Table 3.6. For the sense test case with loop-latch instrumentation, against the
same voltage trace used for Table 3.5, adaptive checkpointing reduces the fraction of
wasted cycles and the number of lifecycles. For the Adaptive runs, the Vthresh values
in the left column were initial values rather than fixed values.

Table 3.4 in Section 3.6.1.2 evaluates the run time of the crc test case under a

checkpointing oracle that finds the last practicable time to checkpoint in each lifecycle.

Under adaptive checkpointing, the crc test case completed within roughly a factor

of two of the oracle’s predicted best-case performance in the worst case, and within

8% in the best case.

Energy prediction for adaptive checkpointing is an open problem. Any adaptive

checkpointing mechanism that does not explicitly predict future energy availability is

left to make decisions based on its historical performance—i.e., checkpoints and meta-

data from current and previous lifecycles. An implicit assumption of this approach is
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Oracle Prediction Adaptive Checkpointing
Trace Cycles (lifecycles)
Decay-only 621,501 (8) 669,909 (3)
#1 685,555 (15) 1,372,900 (10)
#2 685,150 (15) 1,382,685 (10)
#3 685,801 (15) 718,898 (6)
#4 685,641 (15) 1,391,161 (10)
#5 685,096 (15) 728,264 (6)
#6 685,099 (15) 725,866 (6)
#7 683,884 (15) 1,397,314 (10)
#8 685,005 (15) 732,225 (6)
#9 685,608 (15) 1,391,328 (10)
#10 685,045 (15) 1,382,879 (10)

Table 3.7. Comparison of oracle-mode predictions and adaptive-checkpointing per-
formance for the crc test case. (Note that the lifecycle counts in the left column may
be overestimates, as mentioned in Section 3.6.1.3.)

that future energy harvesting will resemble past and present energy harvesting. If it

does not, then the adaptations may not be helpful.

Fortunately, some energy-harvesting modalities do offer reliable, predictable power.

At close range, even RF energy can be predictable in a static environment after ap-

plying a low-pass filter to remove unpredictable high-frequency noise.

We have not designed a run-time energy-prediction model for Mementos because

we assume that such a scheme would be prohibitively time intensive. Relaxing some

of our assumptions about unpredictability might lead us to develop lightweight pre-

diction schemes—integer versions of first- and second-order voltage trend approxima-

tions, for example—that could allow Mementos to avoid checkpointing if it believes

power failure is not imminent.

3.7 Discussion and Future Work

In this section, we discuss some alternatives to Mementos that an application

developer might consider. We then suggest some future extensions to Mementos.
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3.7.1 Alternative approaches

As discussed previously, traditional RFID-scale devices provide system design-

ers with three options: use only trivially simple programs, require users to provide

adequate power, or add state-saving logic to application code. Mementos uses au-

tomatic checkpointing to expand the use of RFID-scale devices beyond simplistic

computation—without placing additional requirements on the user or the program-

mer. In addition to checkpointing, we have also considered other approaches to attain

these goals.

Applications permitting, computations might instead be shortened using profiling

and quality-of-service (QoS) information [9, 104]. These techniques make sense only

for applications that tolerate lossy or noisy results, and would require more accu-

rate predictions of power failures. To remain general, Mementos does not include

these program transformations, though they are trivially compatible provided that

Mementos’s instrumentation points are preserved.

Another approach would allow TPCs to outsource long-running computations to

a more powerful device (e.g. a Linux-based RFID reader), rather than attempt to

execute them locally on the TPC. While this approach removes many impediments,

it imposes others. For example, to save power, CRFIDs use low-throughput radio

communication that could make outsourcing time intensive. In security-sensitive

applications, outsourcing cryptographic operations may violate security requirements,

and existing techniques for outsourcing computation to untrusted infrastructure [57]

still require a nontrivial amount of work on the client. Harvesting modalities that

exploit environmental phenomena, such as solar or heat, may not have access to any

other devices.

Finally, some CPU-intensive computations such as cryptography can be executed

on dedicated peripheral hardware instead of a general-purpose microcontroller. Hard-

ware acceleration allows some operations to complete more quickly but removes the
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flexibility afforded by reprogrammable microcontrollers. To remain general, Memen-

tos does not assume that such peripherals are available.

3.7.2 Future Hardware

Moore’s Law does not have an analogue for batteries [110], and increasing energy

storage will likely continue to add significant bulk and weight. Since larger energy

storage also makes devices less responsive—they take more time to charge—we expect

RFID-scale devices to continue to have small energy buffers akin to today’s capacitors.

While Mementos is currently implemented to use widely available flash memory,

other types of nonvolatile memory may be better suited to frequent checkpointing

in the future. Flash cells can tolerate 10,000 to 1 million erasures before becoming

unusable. Information coding schemes that allow rewrites without erasures [21] might

extend a system’s lifetime; however, alternatives like phase-change memory (PCM),

magneto-resistive RAM (MRAM) and ferroelectic RAM (FeRAM) all promise fewer

complications. Our initial experiments with EEPROM storage on a prototype WISP

indicate that its energy characteristics are similar to flash memory’s, but EEPROM

reads are significantly slower. Still, EEPROM or other auxiliary storage may be useful

for storing small pieces of metadata without necessitating coarse-grained erasures.

A factor that complicates Mementos’s use of flash memory is that segment erasure,

an operation that Mementos uses in checkpoint maintenance, causes irreversible wear

to flash cells. It is well known that flash cells can tolerate only 10,000 to 1 million

erasures before becoming unusable. To mitigate the effect of its bundle management

scheme on flash lifetime, Mementos could be extended to use information coding

schemes to allow rewrites without erasures [21]. Future RFID-scale devices might

provide nonvolatile memory in the form of phase-change memory (PCM), magneto-

resistive RAM (MRAM) or ferroelectic RAM (FeRAM), all of which import fewer
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complications and are more forgiving with respect to erasure, but flash remains the

most widespread form of nonvolatile memory in use today.

3.7.3 Future Work

We suggest—but do not evaluate, for brevity—several improvements to Mementos

that may improve its performance. Code for these improvements is available with the

Mementos distribution unless noted otherwise.

As we observed above for the crc test case, Mementos’s loop latch instrumentation

can result in excessively frequent trigger points when applied to loops with small

bodies and large trip counts. Detecting small loop bodies and large trip counts,

whether via static analysis or profiling or a combination, may prove useful toward

reducing Mementos’s share of CPU cycles.

Reducing checkpoint sizes has been a concern for previous checkpointing systems;

past approaches have included memory exclusion [114] and straightforward file com-

pression via external programs. On an RFID-scale device with flash memory that is

expensive to write and erase, Mementos should minimize checkpoint sizes to minimize

the cost of writing them (and the amortized cost of erasing them). However, Memen-

tos is designed to run without an operating system or file system, and we found that

most implementations of well-known compression algorithms were too large to fit in

our devices’ limited code space.

Because many programs do not use all available registers, one promising but not

fully implemented scheme compresses the register file by using a 16-bit bitmask to

indicate which of the CPU’s 16 registers are zero valued. During checkpointing,

Mementos walks the register file, builds the bitmap, and avoids storing any registers

that are zero valued.

We have also considered compressing full checkpoints instead of just the register

file; all of the options predictably trade checkpoint size for run time. Our simulator
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saves checkpoints to files as it validates them, so we used checkpoint files as inputs to

compression algorithms running in a separate MSP430 simulator. We implemented

a reduced variant of the WK compression algorithm [81] but found that, while it

reduced checkpoint sizes by an average of 55% for the crc example, it required 3.5

times as many CPU cycles as it would have taken to write the full checkpoint to flash.

We implemented a variant of the popular LZ compression algorithm and found that

it reduced checkpoint sizes 30% more than WK but was 18 times slower than simply

writing the checkpoint to flash.

A third type of compression, not yet implemented, is incremental compression

of checkpoints. We have not yet implemented incremental compression because of

the complexity of computing incremental updates in a small memory footprint at

run time, but the idea is promising—often the changes between two successive loop

iterations, for example, are small. Additional compile-time analysis combined with

per-trigger-point adjustments might make incremental checkpointing feasible in a

future version of Mementos.

Most microcontrollers have RAM-retention modes that retain processor state and

the contents of volatile memory. Such modes typically require two orders of mag-

nitude less electrical current than active-mode computation, which slows—but does

not stop—capacitor drain. We designed Mementos to be useful when energy delivery

is arbitrarily sporadic. Some energy-harvesting mechanisms, such as solar panels,

exhibit sudden or prolonged periods of harvesting nothing; in this case, Mementos’s

strategy of checkpointing to nonvolatile memory would be more suitable than simply

entering RAM-retention mode. However, we suspect that a hybrid approach incor-

porating both RAM retention and nonvolatile checkpoints would be a fruitful avenue

for improvements to Mementos.
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3.8 Related Work

A wealth of research on checkpointing exists at various levels of computer sys-

tems. Most related approaches adopt a similar (if broader) approach to Mementos’s:

capture relevant program state. A key difference between Mementos and previous

work is that, on RFID-scale devices, Mementos must consider catastrophic failure to

be the common case and not an occasional event. We group related work into general

checkpointing papers and papers related to tolerating failures on small-scale devices.

We borrow our definition of checkpointing from Bernstein et al. [13], who define it

as “an activity that writes information to stable storage during normal operation in

order to reduce the amount of work [the system] has to do after a failure.” Automatic

checkpointing has long provided insurance against occasional failures. Systems in

the 1980s and 1990s explored checkpointing for distributed systems [103, 95, 86],

particularly for process migration or high-assurance computing. Checkpointing is

especially useful for systems that handle precious data or make promises about fidelity,

such as databases [13, 94] or file systems [131, 153].

Plank et al. [115] discuss checkpointing strategies in detail. Their portable libckpt

library for UNIX implements both automatic (periodic, checkpoint-on-write) and

user-directed checkpointing strategies. In the terminology of libckpt, Mementos im-

plements sequential checkpointing, wherein the checkpointing procedure stops execu-

tion of the main program to capture its state. Like Mementos in timer-aided mode,

libckpt automatically captures application state (registers and RAM) at a predefined

frequency. Unlike Mementos, libckpt also supports incremental checkpointing by us-

ing page protection mechanisms to keep track of pages dirtied since the last checkpoint

operation. We have not implemented a similar system because Mementos is designed

to run directly on hardware.

Previous work has considered the use of static analysis and compile-time modifi-

cations to facilitate checkpointing. Compiler-assisted checkpointing systems [90, 92]
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require users to insert checkpointing cues into programs, unlike Mementos, although

Mementos shares the notion of using compile-time instrumentation to make programs

amenable to checkpointing. The Porch source-to-source compiler [152] enables pro-

grams to be suspended, migrated and resumed on different architectures. Porch uses

compile-time analysis to generate program-specific checkpoint and resume functions

specific to each possible stopping point. We consider Porch to be too heavyweight

for Mementos’s target platforms (owing to its lofty goals) although the checkpointing

mechanism is similar.

Also relevant, perhaps surprisingly, are checkpointing systems that work on large-

scale computers. These computers must tolerate frequent node failures, so job migra-

tion is a key feature. Bronevetsky et al. [18] propose a compile- and run-time system

that modifies shared-memory programs and coordinates checkpointing and recovery

among application threads. Their compiler techniques are essentially the same as

Porch’s and import the same differences versus Mementos.

Also on the topic of checkpointing state on larger-scale computers, Narayanan and

Hodson use NVRAM-backed DRAM to endow a server-class computer with whole-

system persistence (WSP) [106]. Their system implements a “flush-on-fail” policy

whereby the system responds to power failures by checkpointing all volatile state to

NVRAM, using only the residual capacitance of the server’s power supply to accom-

plish this task. WSP performs favorably against nonvolatile heaps that implement

“flush-on-commit” policies [38, 165] to provide object persistence; the primary source

of the performance advantage is the delayed flushing behavior. The key difference

between WSP and Mementos, other than scale, is that WSP triggers flushes as a side

effect of power failures, whereas Mementos polls its energy supply. With appropriate

hardware support, a CRFID or other TPC could simply trigger Mementos check-

pointing via an interrupt handler, matching WSP’s behavior. The notion of NVRAM

transparently backing DRAM is harder to match to low-power microcontrollers using
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SRAM and separate memory-mapped flash, but it may be beneficial to evaluate such

an architectural change to support transiently powered computation. Another minor

difference is that WSP implements state checkpointing, but not yet state recovery;

this latter task requires special BIOS support and is presumably more difficult than

Mementos-style state recovery on a microcontroller.

An alternative approach to program-state recovery is to partition programs into

pieces that are idempotent, i.e., free of side effects, and then simply re-execute those

pieces at run time to recover state. de Kruijf et al. identify idempotent regions

through static analysis [41]. Such a strategy is appealing on machines that are con-

stantly powered and must, for example, occasionally recover from device driver faults,

but under transient power where power loss is the common case, constant re-execution

may result in Sisyphean tasks—which Mementos aims to avoid.

Recent work in sensor networks considers the problem of whole-network check-

pointing [109], using MSPsim for experimentation on continuously-powered sensor

networks running the Contiki OS [46]. Their checkpointing mechanism saves the en-

tire contents of a sensor node’s memory, plus the state of several peripherals, via

the node’s serial port. A master node freezes and restores nodes using serial-port

commands. Using an OS thread to save a complete memory dump is considerably

simpler than Mementos; however, the required OS support for threads and the size

of the resulting checkpoints make this approach impractical for RFID-scale devices.

The Neutron operating system [35], based on TinyOS [89], uses selective software

restarts to mitigate the effects of software errors. Neutron allows programmers can

mark “precious” state that must be preserved across software resets—but not across

hardware reboots. Rather than requiring programmers to manually mark important

state, Mementos favors an automatic approach. Mementos also does not require an

operating system like TinyOS or Contiki. In our tests on a MSP430-based TinyN-
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ode [45], a vanilla TinyOS instance required 253.4± 1.5 ms to boot—much too slow

to run a device that loses power every ∼ 100 ms.

Sensor networking research has also led to developments in cooperative check-

pointing. Using neighbor nodes to store state information [174] is not an option for

CRFIDs because they lack the ability to initiate conversations. Checkpointing as a

“macroprogramming” primitive [61] is an appealing concept, but no macroprogram-

ming platform for CRFIDs currently exists.

Specific to RFID-scale devices, Buettner et al. [22, 23] describe WISP-based RFID

sensor networks (RSNs) and the difficulty of predicting energy availability. They

suggest, but do not implement, program splitting as an approach to execute large

programs.

Chae et al. [31] implemented the RC5 block cipher on a WISP by carefully choos-

ing parameters so that computations would finish in a single lifecycle. Mementos,

aims to enable such resource-intensive programs to run to completion without requir-

ing modifications to already-complex existing code.

Clark et al. [36] and Gummeson et al. [62] modify the WISP’s hardware to in-

crease its ability to survive power outages. Specifically, they experiment with larger

capacitor sizes—which store more energy but take longer to charge—and auxiliary

solar panels that together prolong the WISP’s ability to retain state in low-power

modes. Mementos eschews these hardware modifications for the sake of generality.

The flash storage mechanisms of Salajegheh et al. [136] treat flash memory as prob-

abilistic “half-wits” and provide reliable writes to flash memory at voltages well below

the nominal operating voltage specified by microcontrollers such as the MSP430. Me-

mentos currently treats the nominal threshold values as hard boundaries; the half-wits

result suggests that Mementos could relax those constraints to reliably write check-

points to flash memory at voltages significantly below the 2.8 V threshold.
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Tseng et al. explore the behavior of NAND flash memory under power failures [162],

arriving at several surprising conclusions. Specifically, they observe nonlinear decrease

in error rates with write time, corruption of data other than the data being written,

and increasing error rates over time in cells to which writes were interrupted. While

these findings may not apply to the NOR flash found on board MSP430 and simi-

lar microcontrollers, they highlight the fact that flash memories—both NAND and

NOR—often exhibit behavior that catches application designers by surprise. An op-

erational goal of Mementos is to finish writing to flash memory before a power failure

occurs, somewhat alleviating these concerns.

Buettner et al. integrate a voltage-aware task scheduler into the firmware of a

WISP [24]. Given a measured voltage level, their scheduler selects a task from pre-

defined set based on its stated resource requirements; they define tasks as small

programs that can run to completion in a single lifecycle under reasonable energy

conditions. Mementos instead focuses on completing a single task that might other-

wise not complete in a single lifecycle.

Reddi et al. observe that designers often conservatively design to accommodate

large deviations in operating current within microprocessors—so-called voltage emer-

gencies that can cause timing problems—but that these conservative designs result

in excessive power draw during idle periods [126]. They develop a system that learns

“signatures” of voltage emergencies at run time, then applies throttling to decrease

power consumption at critical junctures. Under the observation that a few code

points cause most of the emergencies, Reddi et al. develop an extension to restruc-

ture code [127] at run time, dynamically adjusting scheduling to slow the issue rate

during stalls. Mementos would benefit from an ability to predict power failures, but

unfortunately, the power problems Mementos hedges against are unpredictable, as

opposed to the deterministic voltage emergencies Reddi et al. address.
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Accurate predictions of program run time could allow Mementos to predict the

energy use of all or part of a program, then to tag program segments with metadata

to aid in checkpointing decisions. Seshia and Kotker describe GameTime, a tool that

uses game-theoretic analysis of program behavior to predict worst-case run times of

a variety of programs [143]. This approach involves program profiling and may be

compatible with the modified MSPsim described in this thesis, but we have yet to

implement it.

3.9 Summary

Transiently powered RFID-scale devices enable general-purpose computation in

scenarios where energy is scarce. However, the lack of a steady supply of energy

results in frequent complete losses of power and state. Today, programmers either

write short programs or hand-tune assembly code to ensure that computation finishes

before a power loss—severely limiting the application space for these devices and

making programming cumbersome and error prone.

Mementos addresses the challenge of enabling long-running programs to make

steady progress on transiently powered devices. It instruments programs with energy

checks at compile time and provides automatic state checkpointing and recovery at

run time. A suite of simulation tools based on MSPsim enables a programmer to

evaluate the behavior of Mementos-instrumented programs before deploying them.
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CHAPTER 4

COMMUNICATION AND STORAGE UNDER
TRANSIENT POWER1

Research involving low-energy computing systems has long treated radio as an

energy-hungry resource to be used sparingly. For systems that combine a microcon-

troller and an active (powered) radio, this assumption is reasonable—radio transmis-

sion can easily require as least 17 times more power than the microcontroller’s fully

operational active mode [52]. However, for computational RFIDs that harvest RF

energy and lack active radios, there is a key difference in one area: communication

consumes less energy than persistent local storage. Data comes to tags “for free” along

with the RF waves that carry power; transmitting back to a reader involves modu-

lating a single transistor. Writing and erasing on-chip flash memory is comparatively

expensive, leading to the question: can off-tag storage provide a usable alternative to

on-tag nonvolatile storage?

This chapter describes a system that uses radio as a resource to amplify the storage

capabilities of computational RFIDs. The main idea of this chapter is that a CRFID

can securely use radio-based off-tag storage as a less energy-intensive alternative to

local, flash-based storage. The smaller energy requirements of radio allow the CRFID

either to devote more energy to computation or to accomplish the same tasks using

less energy, which may translate into a longer operating range or a longer period of

active computation.

1This chapter first appeared as Salajegheh et al. in 2009 [135]; it appears here with minor modi-
fications.
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To mitigate the threats posed by untrustworthy RFID readers storing state on

behalf of CRFIDs, the system uses established cryptographic mechanisms to pro-

tect against readers that could attempt to violate the confidentiality, authenticity,

integrity, and freshness of the data on a CRFID. However, the cryptographic over-

head threatens to eliminate the energy advantage of remote storage. Thus, the main

challenge is to design an energy-saving remote storage system that provides security

under the constraints of passive RFID systems.

This chapter uses computational state checkpointing as an example of an applica-

tion that benefits from our radio-based storage technique. Our system, Cryptographic

Computational Continuation Passing (CCCP), enables CRFIDs to perform sophisti-

cated computations despite limited energy and continual interruptions of power that

lead to complete loss of the contents of RAM. CCCP extends the Mementos architec-

ture [124] for execution checkpointing by securely storing a CRFID’s computational

state on the untrusted RFID reader infrastructure that powers the CRFID, thereby

making program execution on CRFIDs robust against loss of power. The design of

CCCP is motivated by (1) a desire to minimize the amount of energy devoted to flash

memory writes and (2) the observation that a CRFID’s backscatter transmission is

surprisingly efficient compared to alternatives such as active radio (like that found in

motes) or flash memory writes.

This chapter’s contribution is the synthesis of several existing ideas with tech-

niques that are specifically applicable to computational RFIDs:

• We describe the design and implementation of CCCP, a remote storage protocol

that suits the characteristics and constraints of CRFIDs and is secure under a

reasonable threat model. We show how this protocol can be used in the contexts

of execution checkpointing and external data storage on an untrusted RFID

reader infrastructure (Sections 4.2, 4.3).
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• Motivated by a desire to save energy when storing CCCP’s numeric counters

to nonvolatile memory, we introduce hole punching (Section 4.2.4.4), a unary

encoding technique that allows a counter stored in flash memory to be updated

economically, minimizing energy- and time-intensive flash erase operations. For

a CRFID, less-frequent flash erasure means more energy available for computa-

tion.

Since CCCP involves communication with a potentially untrustworthy RFID reader,

it must ensure the integrity, confidentiality, and data freshness of checkpointed mes-

sages. For message integrity, CCCP employs UMAC [14], a Message Authentication

Code (MAC) scheme based on universal hash functions (UHF) that involves the ap-

plication of a cryptographically secure pseudorandom pad. Remotely stored messages

in CCCP are encrypted for confidentiality using a simple stream cipher. For data

freshness, CCCP employs a monotonically increasing counter to detect superseded

data. CCCP’s frequent use of key material motivates the use of opportunistic pre-

computation: when a CRFID is receiving abundant energy, CCCP generates and

stores keystream bits in flash memory for later consumption. CCCP maintains a

small amount of its own state in local nonvolatile memory, including a counter that

must be updated during checkpoint operations when energy may be low. To minimize

the energy required to update the counter, CCCP employs hole punching.

Conventional passive RFID tags perform rudimentary computation, often in ex-

tremely tight real-time constraints using nonprogrammable finite state machines [1],

but CRFIDs offer true general-purpose computational capabilities, broadening the

range of their possible applications (Section 4.5). Although CRFIDs offer more flex-

ibility, they present challenging resource constraints. While sensor motes, which rely

on batteries for power, often have an active lifetime measured in weeks or months, a

CRFID may be able to compute for less than a second given a burst of energy, and

may receive such bursts in quick succession—putting CRFIDs in an entirely different
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class with regard to energy constraints. Moreover, although CRFIDs have a small

amount of flash memory available as nonvolatile storage, writing to this flash memory

is energy intensive (Section 4.1.1).

CCCP extends the execution checkpointing system Mementos [124] by adding re-

mote, rather than local flash-based, storage capabilities to CRFIDs. While systems

such as Mementos investigate how to effectively store checkpoints locally in trusted

flash memory to achieve computational progress on CRFIDs despite power interrup-

tions, CCCP focuses on using external, untrusted resources to increase tag storage

capacity in an energy-efficient manner with reasonable security guarantees.

4.1 Backscattering CRFIDs

Computational RFIDs use backscatter communication in which they use a small

transistor to modulate their reflection of a more-powerful device’s radio waves. Several

key observations motivate the development of secure remote storage for CRFIDs.

The first observation is that frequent loss of power may interrupt computation.

The CRFID model posits computing devices that are primarily powered by RF en-

ergy harvesting, a mechanism that is naturally finicky because of its dependence on

physical conditions. Any change to a CRFID’s physical situation—such as its position

or the introduction of an occluding body—may affect its ability to harvest energy.

Existing systems that use RF harvesting typically counteract the effect of physical

conditions by placing stringent requirements on use. For example, an RFID transit

card reader presented with a card may behave in an undefined way unless the card is

within 1 cm for at least 300ms, parameters designed to ensure that the card’s compu-

tation finishes while it is still near the reader. CRFID applications may preclude such

a strategy: programs on general-purpose CRFIDs do not offer convenient execution

time horizons, and communication distances are beyond the tag’s control. Without

any guarantees of energy availability, it may be unreasonable to mandate that pro-
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Figure 4.1. Per-component maximum power consumption of two embedded devices.
Radio communication on the WISP requires less power than writes to flash memory.
The relative magnitudes of the power requirements means that a sensor mote favors
shifting storage workloads to local flash memory instead of remote storage via radio,
while a computational RFID favors radio over flash. The numbers for the mote are
calculated based on the current consumption numbers given by Fonseca et al. [52]. For
the CRFID, we measured three operations (radio transmit, flash write, and register-
to-register move) for a 128-byte payload.

grams running on CRFIDs complete within a single energy lifecycle. As an extension

of the Mementos system [124], CCCP aims to address the problem of suspending and

resuming computations to facilitate spreading work across multiple energy lifecycles.

The second observation is that storing remotely may require less energy than

storing locally. Some amount of onboard nonvolatile memory exists on a CRFID,

so an obvious approach to suspension and resumption is simply to use this local

memory for state storage. However, to implement nonvolatile storage, current mi-

crocontrollers use flash memory, which imports several undesirable properties. While

reading from flash consumes energy comparable to reading from volatile RAM, the

other two flash operations—writing and erasing—require orders of magnitude more

energy per datum (Table 4.3). Our measurements of a CRFID prototype reveal that

the energy consumption of storing a datum locally in flash can in fact exceed the

energy consumption of transmitting the same datum via backscatter communication.

Figure 4.1 illustrates the difference between flash and radio storage on a CRFID

and shows how the relationship is different on a sensor mote. The figure helps explain

why designers of mote-based systems choose to minimize radio communication; simi-
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larly, it justifies our exploration of radio-based storage as an alternative to flash-based

storage on CRFIDs.

It should be noted that CCCP, although its primary data storage mechanism

is the communication link between CRFIDs and readers, still requires some flash

writes during storage operations: CCCP maintains a counter in flash to ensure that

it does not reuse key material. However, because CCCP employs hole punching

(Section 4.2.4.4) to maintain the counter, the amount of data written for counter

updates is small compared to the amount of data that can be stored at once—small

enough not to obviate the energy advantage of radio-based storage—and counter

updates do not frequently necessitate erasures.

EPC Gen 2 RFID readers are typically not standalone devices. Rather, they

are connected to networks or other systems (for, e.g., control or logging) that can

offer computing resources such as storage. The benefit to CRFIDs that communicate

with such a reader infrastructure is access to effectively limitless storage. Several

kilobytes of onboard flash memory is minuscule compared to the potentially vast

amount of storage available to networked RFID readers. While unlimited external

storage is not obviously helpful for saving computational state—a CRFID cannot

save or restore more state than it can hold locally—its usefulness as general-purpose

long-term storage is analogous to the usefulness of networked storage for PCs.

RFID protocols allow arbitrary payloads. While the EPC Gen 2 protocol imposes

constraints on the transmissions between RFID tags and RFID readers—for example,

the maximum upstream data rate from tag to reader is 640Kbps [48]—it also offers

sufficient flexibility that CCCP can be implemented on top. In particular, the Gen 2

protocol permits a reader to issue a Read command to which a tag can respond with an

arbitrary amount of data. Previous versions of the EPC RFID standard mandated a

small response size that would have imposed severe communication overhead on large

upstream transmissions.
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CRFID is not married to EPC Gen 2 as an underlying protocol, but the exis-

tence of a widespread RFID reader infrastructure and the availability of commodity

reader hardware makes for easy prototyping. The backscatter anything-to-tag pro-

tocol (BAT) [105] offers an appealing alternative for CRFID communication that is

better suited to arbitrary payloads than Gen 2, but we do not evaluate it in this

chapter because of gaps in its implementation.

4.1.1 Challenges From Energy Scarcity

Several energy-related considerations limit the resources available for computation

on CRFIDs, limiting the utility of CRFIDs as a general-purpose computing platform.

Ransford et al. [122] discuss the difficulty of effectively utilizing a storage capaci-

tor and enumerate the drawbacks of using capacitors for energy storage; Buettner

et al. [23] discuss how energy limitations bear on the deployment of a CRFID-based

system. Two key design features of CRFIDs pose energy challenges to a system like

CCCP: first, the voltage and current requirements of flash memory constrain the

design of flash-bearing CRFIDs and limit the portion of a CRFID’s energy lifecycle

that is usable for computation. Second, a CRFID’s reliance on energy harvesting and

backscatter communication means that a CRFID cannot compute or communicate

without reader contact.

Unfortunately, flash memory imposes limitations. Microcontrollers that incorpo-

rate flash typically have separate threshold voltages: one threshold for computation,

and a higher threshold for flash writes and erases. Because of this difference, flash

writes cannot be executed at arbitrary times during computation on a CRFID; they

require sufficient voltage on the storage capacitor. Without a constant supply of en-

ergy, capacitor voltage declines with time and computation, so waiting until the end

of a computation to record its output to nonvolatile memory may be risky.
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The size of a CRFID’s storage capacitor imposes another basic limitation. Flash

writes, which owe their durability to a process that effects significant physical changes,

require more current and time (and therefore energy) than much simpler RAM or reg-

ister writes. Per-datum measurements show that, on a WISP’s microcontroller, writ-

ing to flash consumes roughly 400 times as much energy as writing to a register [122].

Such outflow from the storage capacitor can dramatically shorten the device’s energy

lifecycles.

Another challenge is that of non-autonomous operation. Backscatter communica-

tion involves modulating an antenna’s impedance to reflect radio waves—an operation

that, for the sender, involves merely toggling a transistor to transmit binary data.

Such communication cannot occur without a signal to reflect; CRFIDs, like other

passive RFIDs, are therefore constrained to communicate only when a reader within

range is transmitting. Computation may occur during times of radio silence, but only

if sufficient energy remains in the CRFID’s storage capacitor. Unlike battery-powered

platforms that can operate autonomously between beacon messages from other en-

tities, a CRFID may completely lose power and volatile state between interactions

with an RFID reader. Our experience shows that, lacking a source of harvestable

energy, the storage capacitor on a WISP can support roughly one second of steady

computation before its voltage falls below the microcontroller’s operating threshold.

(For perspective, note that a single checksum operation over 2KB takes 575ms on an

MSP430 microcontroller running at 1MHz [124].) Such limitations constrain the de-

sign space of applications that can run on CRFIDs. For example, without autonomy,

an application cannot plan to perform an action at a specific time in the future.

A final challenge is the unsteady energy supply. For CRFIDs, the supply of energy

can be unsteady and unpredictable, especially under changing physical conditions.

RFID readers may not broadcast continuously or even at regular intervals, and they

do not promise any particular energy delivery schedule to tags. In our experiments,
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even within inches of an RFID reader that emitted RF energy at a steady known

rate, the voltage on a CRFID’s storage capacitor did not appear qualitatively easy

to predict despite the fixed conditions. A CRFID’s storage capacitor must buffer a

potentially unsteady supply of RF energy without the ability to predict future energy

availability.

4.2 Design of CCCP

CCCP’s primary design goal is to furnish computational RFIDs with a mechanism

for secure outsourced storage that facilitates the suspension and resumption of pro-

grams. This section describes how CCCP is designed to meet that goal and several

others. Refer to Section 4.3 for a discussion of CCCP’s implementation, and refer to

Section 4.4 for an evaluation of CCCP’s design choices and security; in particular,

Section 4.4.3.1 discusses the overhead imposed by cryptographic operations.

Design goal Approach
Computational progress Communication of checkpoints via ra-

dio to untrusted RFID readers
Security: authentication, integrity UHF-based MAC
Security: data freshness Key non-reuse; counter stored by hole

punching in nonvolatile memory
Security: confidentiality Symmetric encryption with keystream

precomputation

Table 4.1. CCCP’s design goals and techniques for accomplishing each of them.

Given a chunk of serialized computational state on a CRFID, CCCP sends the

state to the reader infrastructure for storage. (CCCP is designed to work indepen-

dently of the state serialization method, and does not prescribe a specific method.) In

a subsequent energy lifecycle, an RFID reader that establishes communication with

the tag sends back the state, CCCP performs appropriate checks, and the CRFID

resumes computation where it left off. CCCP provides several operating modes that

allow an application designer to increase security—by adding authentication alone,
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or authentication and encryption—at the cost of additional per-checkpoint energy

consumption. Table 4.1 describes how CCCP meets each of the goals discussed in

this section.

4.2.1 Design Goal: Computational Progress on CRFIDs

CCCP remotely checkpoints computational state to make long-running operations

robust against power loss—i.e., to enable their computational progress, defined as

change of computational state toward a goal (e.g., the completion of a loop). While

CRFIDs are able to finish short computations in a small number of energy lifecycles

(e.g., symmetric-key challenge-response protocols [31, 69]), the challenges described

in Section 4.1.1 make it difficult for a CRFID to guarantee the computational progress

of longer-running computations.

If a CRFID loses power before it completes a computation, all volatile state in-

volved in the computation is lost and must be recomputed in the next cycle. If energy

availability is similarly inadequate in subsequent cycles, the CRFID may never obtain

enough energy to finish its computation or even to checkpoint its state to flash mem-

ory. Following Mementos [124], we refer to such vexatious computations as Sisyphean

tasks. (Sisyphus was condemned to roll a large stone up a hill, but was doomed to

drop the stone and repeat hopelessly forever [73].) A major goal of CCCP is to pre-

vent tasks from becoming Sisyphean by shifting energy use away from flash operations

and toward less energy-intensive radio communication.

4.2.2 Checkpointing Strategies: Local vs. Remote

We consider two strategies for the nonvolatile storage of serialized checkpointed

state. The first, writing the state to flash memory, involves finding an appropri-

ately sized region of erased flash memory or creating one via erase operations. The

second strategy, using CCCP, requires a CRFID to perform zero or more crypto-
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graphic operations (depending on the operating mode) and then transmit the result

via backscatter communication.

The obvious advantage of flash memory is that its proximity to the CRFID makes

it readily accessible. On-chip flash has the further advantage that it may be inac-

cessible to an attacker. However, the operating requirements of flash are onerous in

many situations. With unlimited energy, a CRFID could use flash freely and avoid

the complexity of a radio protocol such as CCCP. Unfortunately, energy is limited in

ways described elsewhere in this chapter, and several disadvantages of flash memory

diminish its appeal as a store for checkpointed state. The most obvious disadvan-

tage is an imbalance between the requirements for reading and writing. Write and

erase operations require more time, energy, voltage and current per bit than reading

(Table 4.3); additionally, the minimum voltage and current requirements are higher.

For example, in the case of the MSP430F2274, read operations are supported at the

microcontroller’s minimum operating voltage of 1.8V, but write and erase operations

require 2.2V. Finally, flash memory (both NOR and NAND types) generally imposes

the requirement that memory segments be erased before they are written: if a bit

acquires a zero value, the entire segment that contains it must be erased for that bit

to return to its default value of 1. Aside from burdening the application programmer

with inconvenience, erase-before-write semantics complicate considerations of energy

requirements. These disadvantages are minor afflictions for higher-powered systems,

but they pose serious threats to the utility of flash memory on CRFIDs.

Backscatter transmission, since it involves modulating only a single transistor to

encode data, requires significantly less energy than transmission via active radio.

In fact, our measurements (Figure 4.4) show that backscatter transmission of an

authenticated, encrypted state checkpoint (plus a small amount of bookkeeping in

flash) can require less energy than exclusively writing to flash memory, even after

including the energy cost of encrypting and hashing the checkpointed state. Because

84



of its consistent behavior throughout the microcontroller’s operating voltage range,

backscatter transmission is an especially attractive option when the CRFID receives

radio contact frequently but cannot harvest energy efficiently, in which case writing to

flash may be infeasible because of insufficient energy in the storage capacitor. These

circumstances may occur far from the reader, or in the presence of radio occlusions,

or when a computation uses energy quickly as soon as the CRFID wakes up.

Despite its advantages over flash storage and active radio, CCCP’s reliance on

backscatter transmission has drawbacks. Bitrate limitations in the EPC Gen 2 pro-

tocol cause CCCP’s transmissions to require up to twice as much time per datum as

flash storage on some workloads. The best choice of storage strategy depends on an

application’s ability to tolerate delay and the necessity of saving energy.

4.2.3 Threat Model

We define CCCP’s threat model as a superset of the attacks that typically threaten

RFID systems [78]. The most obvious way an attacker can disrupt the operation of a

CRFID is to starve it of energy by jamming, interrupting, or simply never providing

RF energy for the CRFID to harvest. Because they depend entirely on harvestable

energy, CRFIDs cannot defend against such denial-of-service (DoS) attacks, so we

consider these attacks as a problem to be dealt with at a higher system level. We

instead focus on two types of attacks that a CRFID can use its resources to address:

(1) active and passive radio attacks and (2) attacks by an untrusted storage facility.

An adversary may attempt to:

• Eavesdrop on radio communication in both directions between a CRFID and

reader.

• Masquerade as a legitimate RFID reader in order to collect checkpointed state

from CRFIDs. Because CRFIDs do not trust reader infrastructure, such an

attack should allow an attacker to collect only ciphertext.
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• Masquerade as a legitimate RFID reader in order to send corrupted data or old

data (e.g., a previous computational state) to the CRFID. Such invalid data

should not trick the CRFID into executing arbitrary or inappropriate code.

• Masquerade as a specific legitimate CRFID in order to retrieve that CRFID’s

stored state from the reader. This state should be useless without access to the

keystream material that encrypted it—keystream material that is stored in the

legitimate owner’s nonvolatile memory and never transmitted.

We additionally assume that an adversary cannot physically inspect the contents of

a CRFID’s memory.

4.2.4 Secure Storage in CCCP

Because computational RFIDs depend on RFID readers for energy—if a CRFID

is awake, there is probably a reader nearby—the reader infrastructure is a natural

choice for storing information. But a reader trusted to provide energy should not

necessarily be trusted with sensitive information such as checkpointed state.

CCCP involves communication with untrusted reader infrastructure, so we estab-

lish several security goals:

• Authenticity: a CRFID that stores information on external infrastructure will

eventually attempt to retrieve that information, and the authenticity of that in-

formation must be cryptographically guaranteed. Under CCCP, the only party

that ever needs to verify the authenticity of a CRFID’s stored information is

the CRFID itself.

• Integrity: an untrusted reader may attempt to impede a CRFID’s computa-

tional progress by providing data from which the CRFID cannot resume com-

putation (e.g., random junk). While CCCP cannot prevent a denial of service

attack in which a reader provides only junk, it guarantees that CRFIDs will

compute only on data they recognize as their own.
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• Data freshness: just as a reader can provide corrupted data instead of usable

data, it can replay old state in an attempt to hinder the progress of a com-

putation. Under CCCP, a CRFID recognizes and rejects state that has been

superseded.

• Confidentiality: in certain applications, the leaking of intermediate computa-

tional state might be a critical security flaw. For other applications, confiden-

tiality may not be necessary. CCCP offers a configurable level of protection for

application designers.

4.2.4.1 Keystream Precomputation

Because CCCP’s threat model assumes a powerful adversary that can intercept

all transmissions, CCCP never reuses keystream material when encrypting data or

computing MACs. We use CCCP’s refreshable pool of pseudorandom bits (a circular

buffer in the CRFID’s nonvolatile memory) as a cryptographic keystream to provide

confidentiality and authentication.

CCCP stores keystream material on the CRFID because we assume that the

CRFID trusts only itself; a CRFID cannot extract trustworthy keystream material

from a reader it does not trust, nor from any observable external phenomenon (which,

in our threat model, an attacker would be able to observe equally well). Because a

CRFID can reserve only finite storage for storage of keystream material, the mate-

rial must be periodically refreshed. CCCP opportunistically refreshes the keystream

material with pseudorandom bits, following Algorithm 3.

To provide unique keystream bits to cryptographic operations (encryption and

MAC), CCCP uses an existing implementation [31] of the RC5 block cipher [128] in

counter mode to generate pseudorandom bits and store them to flash. The choice

of a block cipher in counter mode means that the resulting MAC and ciphertext

are secure against a computationally bounded adversary [17]. A stream cipher would

work equally well in principle, but in implementing CCCP, we found that those under
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consideration required a large amount of internal read-write state. For example, the

stream cipher ARC4 requires at least 256 bytes of RAM [140], whereas RC5 requires

only an 8-byte counter. The RC5 key schedule is preloaded into flash memory the

first time the device is programmed, and the keystream materials are generated dur-

ing periods of excess energy (or power seasons ; see Section 4.2.5). One such period of

excess energy is the CRFID’s initial programming, at which time the entire keystream

buffer is filled with keystream bits. To avoid reusing keystream bits, CCCP main-

tains several variables in nonvolatile memory (the aforementioned “bookkeeping”).

Table 4.2 summarizes the variables CCCP stores in nonvolatile memory.

Variable Description
chk ctr Counter representing the number of checkpoints completed;

used to calculate the location of the first unused keystream
material; updated each time keystream material is con-
sumed; unary representation

kstr end Pointer to the end of the last chunk of unused keystream
bits in keystream memory; updated during key refreshment

rc5counter Incrementing counter used as an input to RC5 while fill-
ing keystream memory with pseudorandom data; updated
during key refreshment

Table 4.2. Variables CCCP stores in nonvolatile memory.

4.2.4.2 UHF-based MAC for Authentication and Integrity

CCCP uses a MAC scheme based on universal hash functions (UHF) [28] to

provide authentication and integrity. CCCP constructs the MAC by first hashing

the message and then XORing the 80-bit hash with a precomputed cryptographic

keystream. Because of the resource constraints of CRFIDs, it is critical to use a

scheme that consumes minimal energy, and according to recent literature [14, 50],

UHF-based MACs are potentially an order of magnitude faster than MACs based on

cryptographic hash functions. We chose UMAC [14] as the UHF-based MAC function

after evaluating several alternatives. Our experiments on WISP (Revision 4.0) CR-
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FIDs determined that UMAC takes on average 18.4ms and requires 28.8µJ of energy

given a 64-byte input.

4.2.4.3 Stream Cipher for Confidentiality

To provide confidentiality, a CRFID simply XORs its computational state with a

precomputed cryptographic keystream. This encryption scheme is low-cost in terms

of computation and energy, but it relies on using each keystream bit at most once.

CCCP ensures that the encryption and MAC functions never reuse keystream bits by

keeping track of the beginning and end of fresh keystream material in flash memory.

The keystream pool is represented as a circular buffer. The address of the first

unused keystream material is derived from the value of chk ctr (Table 4.2), and the

last unused keystream material ends just before the address pointed to by kstr end.

If the application using CCCP demands confidentiality at all times, then if CCCP

cannot satisfy a request for unused keystream bits, it pauses its work to generate

more keystream bits. This behavior is inspired by that of the blocking random device

in Linux [65].

4.2.4.4 Hole Punching for Counters Stored in Flash

To avoid reusing keystream material, CCCP maintains a counter (chk ctr) from

which the address of the first unused keystream bits can be derived. The counter is

stored in flash memory because it is used for state restoration after power loss. How-

ever, incrementing a counter stored in binary representation always requires changing

a 0 bit into a 1 bit (Figure 4.2(a)). On segmented flash memories, changing a single

bit to 1 requires the erasure (setting to 1) of the entire segment that contains it—at

least 128 bytes on the MSP430F2274—before the new value can be written. An ad-

ditional cost that varies among flash cells is that they wear out with repeated erasure

and writing [66].
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000001112 (=710)

000010002 (=810)

111111112 (erase)

…111000000001 (=810)

…111100000001 (=710)

(a) Binary counter (b) Unary counter

Figure 4.2. Illustration of hole punching. While incrementing a binary counter (a) in
flash memory may require an energy-intensive erase operation, complemented unary
representation ((b), with the number of zeros, or “holes,” representing the counter
value) allows for incrementing without erasure at a cost of space efficiency.

To avoid energy-intensive erasures and minimize the energy cost of writing counter

updates, CCCP represents chk ctr in complemented unary instead of binary. CCCP

interprets the value of such a counter as the number of 0 bits therein. Because

1 bits can be changed to 0 bits without erasure, incrementing a counter requires

a relatively small write, with erasures necessary only if the unary counter must be

extended into unerased memory. We call this technique hole punching after the visual

effect of turning 1 digits into 0 digits. Since chk ctr is simply incremented at each

remote checkpoint, updating the counter generally requires writing only a single word.

Table 4.3 illustrates the energy cost of erasing an entire segment and the energy cost

of writing a single word.

Operation Seg. erase Write Read Write
Size (bytes) 128 128 128 2
Energy (µJ) 46.81 56.97 0.64 0.96

Table 4.3. Comparison of energy required for flash operations on an MSP430F2274.
Hole punching often allows CCCP to use a single-word write (2 bytes on the MSP430)
instead of a segment erase when incrementing a complemented unary counter.

To minimize the length of the unary chk ctr’s representation and to facilitate

simple computation of offsets, CCCP assumes a fixed size for checkpointed state;
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in practice an application designer can choose an appropriate value for the fixed

checkpoint size.

4.2.4.5 Extension for Long-Term Storage

Under CCCP, readers can act not only as outsourced storage for computational

state, but also as long-term external storage. Because of their ultra-low-power micro-

controllers, CRFIDs are likely to have only a small amount of flash available for data

storage. Moreover, since flash operations are energy intensive, depending exclusively

on flash memory as a storage medium is undesirable. CCCP could enable a CRFID

to instead use the reader infrastructure as an external storage facility with effectively

limitless space.

Long-term storage requires a different key management strategy than checkpoint-

ing data. With a temporary checkpointing system, the CRFID needs access only to

the keystream material used to prepare the last checkpoint sent to a reader. However,

in the case of long-term storage, the CRFID may require access to all of the data it

has ever stored on the reader and therefore must remember all of the cryptographic

keys from those stores. To avoid this unrealistic requirement, an extension to CCCP

allows the CRFID to generate keys on demand when long-term storage is required.

There are two operations that CCCP can provide to a CRFID application for this

purpose:

• To satisfy a Store(data) request, CCCP provides a keystream generator in the

form of a block cipher in counter mode; this requires a monotonically increasing

counter in addition to CCCP’s chk ctr. CCCP XORs the given data with the

generated keystream and then constructs a MAC, then sends the ciphertext and

MAC to the reader for storage. CCCP then sends the counter value back to the

application.
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• To satisfy a Retrieve(index) request, CCCP asks the RFID reader for the

data at the given index. CCCP then regenerates the same keystream it used

to encrypt the data by passing the index to the block cipher. Finally, CCCP

verifies the MAC provided by the reader and returns the decrypted data to the

application.

4.2.5 Power Seasons

If a CRFID could predict future energy availability, then it would be able to sched-

ule its generation of keystream bits and ensure that it never exhausted its supply of

pseudorandomness during normal operation. However, because CRFIDs lack auton-

omy and cannot depend on RFID reader infrastructure to provide a steady energy

supply, we roughly classify the energy availability scenarios a CRFID faces into two

seasons. We assume that the general case is a winter season, in which a CRFID

cannot consistently harvest enough energy to perform all of its tasks. During winter,

the CRFID must focus on minimizing checkpoints and wasted energy. The other

season is summer, during which harvested energy is plentiful and the CRFID can

afford to perform energy-intensive operations such as precomputation and storage of

keystream material for later use.

CCCP can identify a summer season if one of two conditions is true. First, the

CRFID may find itself awake with no computations left to complete, for example after

it has finished and processed a sensor reading. Second, the CRFID may find itself

communicating with an entity that does not understand CCCP and simply provides

harvestable energy.

4.3 Implementation

The components of CCCP span two environments: CRFIDs and RFID read-

ers. On a CRFID, CCCP accepts data from an application and uses the CRFID’s
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backscatter mechanism to ship the data to a reader. The reader (which we consider

as an RFID reader plus a controlling computer) is programmed to participate in the

CCCP protocol and return computational state where necessary. This section de-

scribes the CRFID-side components, the reader-side components, and the protocol

that ties them together.

The CRFID side of CCCP is implemented in the C programming language on

WISP (Revision 4.0) prototypes. At its core are three primary routines, which we

present in pseudocode: Checkpoint (Algorithm 1), Resume (Algorithm 2), and

Key-Refresh (Algorithm 3). Checkpoint and Resume refer to a counter called

chk ctr from which CCCP derives the address of the first unused keystream material.

For routines that require radio communication, we borrow radio code from Intel’s

WISP firmware version 1.4. Note that, since a CRFID cannot assume that a reader is

listening at an arbitrary time, the Transmit subroutine waits for a signal indicating

that the CRFID has received a go-ahead message from the reader.

The RFID reader side of CCCP consists only of code to drive the reader appro-

priately for communication events. Because of the Gen 2 protocol’s complexity, we

have not completely implemented the reader side of the CCCP protocol. Rather than

write a large amount of code for the reader, we chose to use simple control programs

for the reader and inspect the exchanged messages manually, a strategy that allowed

us to concentrate on the more resource-constrained CRFID side of the system while

avoiding porting applications from one proprietary reader to another. (The WISP is

nominally compatible with only the Alien ALR-9800 and Impinj Speedway readers;

we chose to use a desktop PC to program these readers for the sake of simplicity

and portability.) A full implementation of the reader side would properly parse each

message received from the CRFID and manage storage for checkpointed state.
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Algorithm 1 The Checkpoint routine encrypts, MACs, and transmits a fixed-size
(STATE SIZE, selected by the application designer) chunk of computational state.
〈A,B〉 means the concatenation of A and B with a delimiter in between. 80 bits is the
fixed output size of NH, the hash function used by UMAC. For arithmetic simplicity,
this pseudocode treats the keystream pool as an infinite array.

function Checkpoint(state, keystream, counter)
.How much keystream material will be used in this invocation?
size← STATE SIZE+ Length(〈state, counter〉) + 80 bits

k ← counter × size . keystream[k] holds unused keystream material
counter ← counter + 1 .Update counter in nonvolatile memory

.Encrypt state by XORing with keystream material
C ← state⊕ keystream[k . . . k + STATE SIZE− 1]
k ← k + STATE SIZE . . . . and advance k

.Hash the encrypted state
H ← NH(〈C, k〉, keystream[k . . . k + Length(〈C, k〉)− 1])
k ← k + Length(〈C, k〉) . . . . and advance k

.Construct an 80-bit MAC
M ← H ⊕ keystream[k . . . k + Length(H)− 1]

Transmit(C,M) .Will block until a reader is detected
end function

4.3.1 Communication Protocol

The CRFID model places a number of restrictions on communication. The only

communication hardware on a CRFID is a backscatter circuit involving an antenna

and a modulating transistor; an active radio would require significantly more energy.

Since backscatter simply reflects an incoming carrier signal, a prerequisite for com-

munication is that the reader emits an appropriate carrier signal. In our experiments,

we used two different EPC Gen 2-compatible RFID readers that are readily available

as off-the-shelf products; we used no nonstandard reader hardware or antennas.

CCCP’s communication protocol is based on primitives provided by the EPC

Gen 2 RFID protocol (the RFID protocol the WISP understands). Specifically, CCCP

makes use of three EPC Gen 2 commands:
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Algorithm 2 The Resume routine receives an encrypted checkpoint C and a message
authentication code M from a reader, then restores the computational state of the
CRFID if the received data pass an authenticity test. counter is the value stored in
nonvolatile memory at the beginning of Checkpoint (Algorithm 1). We assume that,
since k and counter are both numbers, their in-memory representations have the same
length. As in Algorithm 1, this pseudocode treats the keystream pool as an infinite
array for arithmetic simplicity. 〈A,B〉 means the concatenation of A and B with a
delimiter in between. 80 bits is the fixed output size of NH, the hash function used
by UMAC.

function Resume(C,M, keystream, counter)
.Find the first unused keystream material, then backtrack to find the keystream

material Checkpoint used to hash and MAC the ciphertext

size = Length(C) + Length(〈C, counter〉) + 80 bits
k ← counter × size
k ← k − (Length(〈C, k〉) + 80 bits)

H ← NH(〈C, k〉, keystream[k . . . k + Length(〈C, k〉) − 1]) .Compute the ci-
phertext’s hash

k ← k + Length(〈C, k〉) . . . . and advance k to point to the MAC

if thenM = H ⊕ keystream[k . . . k + Length(H) − 1] . If the MAC is OK,
then. . .

k ← k − (Length(C) + Length(〈C, k〉)) . backtrack further . . .
state = C ⊕ keystream[k . . . k + Length(C) − 1] . and decrypt C to yield

state
Restore− State(state)

else
.Do nothing

end if
end function

• A reader issues a Query command to a specific tag (in our case, a CRFID).

The Query command comprises a 4-tuple: 〈action, membank, pointer, length〉.

While a conventional RFID tag may require reasonable values for all four tuple

members, a CRFID need examine only the fourth member to learn the maximum

reply length the reader will accept. The reader can use the other three fields to

encode meta-information such as whether the reader wants to offer checkpointed

state to the CRFID.
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Algorithm 3 The Key-Refresh algorithm replaces used keystream material with
new keystream material in nonvolatile memory. Unlike inCheckpoint andResume,
this pseudocode treats the keystream pool as a fixed-size circular buffer. This allows us
to treat keystream material between k and kstr end as unused, and the rest—between
kstr end and k—as used. This pseudocode omits two subtleties for simplicity: first,
the routine must not erase keystream material that is waiting to be used by Resume.
Second, because flash erasure affects entire segments at once, the Erase-Memory-

Range routine must sometimes restore data that should not have been erased.
function Key-Refresh(keystream, kstr end, chk ctr, rc5counter)

.Find the first unused keystream material in the circular keystream buffer
size← STATE SIZE+ (STATE SIZE+ Length(〈null, chk ctr〉)) + 80 bits
k ← chk ctr × chkpt size (mod Length(keystream)/size)

.Erase all used keystream memory, then write pseudorandom data to it
Erase-Memory-Range(keystream[kstr end . . . k])
i← kstr end

while i < k do
rc5counter ← rc5counter + 1 .Update counter in NVRAM
keystream[i]← RC5(rc5counter − 1) .Write keystream into NVRAM
kstr end← i+ 1 .Update kstr end in NVRAM
i← i+ 1

end while
end function

• A reader issues a Read command to a specific tag to request an arbitrary amount

of data from an RFID tag’s memory. A CRFID can respond to a coordinated

Read command with a chunk of checkpointed state.

• A reader issues a Write command to send data for storage in a specific tag’s

memory. Because RFID tags tend to have even fewer resources than CRFIDs,

Write commands transmit only a small amount (16 bits) of data. A CRFID can

request a series of Write commands from the reader to retrieve checkpointed

state, then reassemble the results in memory and restore its state from the

checkpoint.

Figure 4.3 gives an overview of CCCP’s message types and their ordering. CCCP

does not require protocol changes to the EPC Gen 2 standard, but it requires that

an RFID reader be controlled by an application that understands CCCP. While a
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Figure 4.3. Application-level view of the CCCP protocol. The CRFID sends a
request to checkpoint state while in the presence of a reader, and the reader speci-
fies the maximum size of each message. The CRFID then prepares the checkpoint
and transmits it in a series of appropriately sized messages. The reader stores the
checkpoint data for later retrieval by the CRFID. All messages from the reader to the
CRFID also supply power to the CRFID if the latter is within range.

proprietary radio protocol for CCCP could be more efficient than one built atop an

existing RFID protocol, a goal of CCCP—inherited from the design goals of the WISP

CRFID—is to maintain compatibility with existing RFID readers.

4.4 CCCP Evaluation

This section justifies our design choices and offers evidence for our previous claims.

We evaluate the security properties of four distinct checkpointing strategies—three

based on CCCP’s radio transmission and one on local flash storage—and describe

how CCCP provides data integrity with or without confidentiality. We describe our

experimental setup and methods, then provide empirical evidence that CCCP’s radio-

based checkpointing requires less energy per checkpoint than a flash-based strategy.

Finally, we characterize the overhead incurred by CCCP’s cryptographic operations

in terms of both the energy and the keystream material that they consume.

4.4.1 Security Semantics

CCCP trades the physical security of local storage for the energy savings of remote

storage, but its use of radio communications introduces different security properties.
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We consider CCCP’s four operating modes in increasing order of cryptographic com-

plexity. Note that the algorithm listings (Algorithms 1–3) describe the most compu-

tationally intensive operating mode; the other modes involve subsets of its operations.

• Under CCCP’s threat model, storing checkpointed state only in local flash mem-

ory is the most secure option, since it involves no radio transmission at all. How-

ever, for reasons detailed elsewhere in this chapter, writing to flash memory is

not always possible or desirable. We call the flash-only approach Mementos

after the system [122, 124] that inspired CCCP.

• In a mode called CCCP/NoSec, a CRFID sends computational state in plain-

text. Under CCCP’s threat model, CCCP/NoSec allows an attacker to intercept

computational state and trivially recover the information it contains.

• In a mode called CCCP/Auth, the CRFID computes a message authentica-

tion code (MAC), attaches it to plaintext computational state, and transmits

both. To trick a CRFID into accepting illegitimate state, an attacker must

craft a message that incorporates a MAC that the CRFID can verify. However,

since CCCP’s MAC routine incorporates keystream material that is local to

the CRFID, the attacker must guess the contents of a chunk of the CRFID’s

keystream memory, which requires brute force under our threat model.

• In a mode called CCCP/AuthConf, CCCP encrypts computational state, com-

putes a MAC, and transmits both (Algorithm 1). As with CCCP/Auth, an

attacker who wants to trick a CRFID into accepting illegitimate state must find

a hash collision; however, part of her colliding input must be a valid encrypted

computational state from which the CRFID would be able to resume. Since

CCCP does not reuse keystream material, the attacker is limited to brute-force

search to find such an encrypted state.
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4.4.2 Experimental Setup & Methods

We used a consistent experimental setup to obtain timing and energy measure-

ments for a prototype CRFID. We programmed a WISP with a task (e.g., a flash

write) and set a GPIO pin to toggle immediately before and after the task. We then

charged the WISP’s capacitor to 4.5V using a DC power supply, disconnected the

power supply so that the storage capacitor was the only source of energy for the WISP,

and observed the task’s execution and storage capacitor’s voltage on an oscilloscope.

We delivered energy directly from a DC power supply when taking measurements

because the alternative, providing an RF energy supply, results in unpredictable and

unsteady charge accumulation, making it difficult to shut off the energy supply at a

precise capacitor voltage.

After watching the GPIO pin signal the beginning and end of the task, we cal-

culated the task’s duration and the corresponding change in the storage capacitor’s

voltage. When an operation completed too quickly to observe clearly on the oscil-

loscope, we repeated it in an unrolled loop and divided our measurements by the

number of repetitions. Finally, we calculated per-bit energy values by subtracting

the baseline energy consumption of the WISP with its MSP430 microcontroller in the

LPM3 low-power (sleep) mode. We subtract the WISP’s baseline energy consump-

tion in order to discount the effects of omnipresent consumers such as RAM and CPU

clocks. For all measurements that we present, we give the average of five trials.

4.4.3 Performance

Figure 4.4 shows that, for data sizes greater than 16 bytes, a checkpoint oper-

ation under CCCP/NoSec requires less energy than a checkpoint to flash. Under

CCCP/AuthConf, which adds encryption and MAC operations, a similar threshold

exists between 64 and 128 bytes. Checkpointing via flash has an additional cost: if

the checkpointing mechanism needs to overwrite existing data (e.g., old checkpoints)
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Figure 4.4. Energy consumption measurements from a WISP (Revision 4.0) proto-
type for all considered checkpointing strategies. Under our experimental method, we
are unable to execute flash writes larger than 256 bytes on current hardware because
larger data sizes exhaust the maximum amount of energy available in a single energy
lifecycle. The average and maximum percent error of the measurements are 5.85%
and 14.08% respectively.

in flash memory, it must erase the corresponding flash segments and potentially re-

place whatever data it did not overwrite. Even if a flash write does not necessitate

an immediate erasure, it makes less space available in the flash memory and therefore

increases the probability that a long-running application will eventually need to erase

the data it wrote—that is, it incurs an energy debt. In the ideal case, an applica-

tion can pay its energy debt easily if erasures happen to occur only when energy is

abundant—i.e., in summer power seasons. However, since CCCP is designed to ad-

dress scenarios in which energy availability fluctuates, we consider the case in which

each write incurs an energy debt. Factoring in debt, we characterize the energy cost

of a write of size dsize as

Cost∗(write(dsize)) =

(

Cost(seg. erase)×
dsize

Size(seg.)

)

+ Cost(write(dsize)).
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In practice, because some erasures will likely occur in summer power seasons and

some in winter power seasons, the energy cost of a flash write of size dsize falls

between Cost(write(dsize)) (the ideal cost) and Cost∗(write(dsize)) (the worst-case

cost), inclusive.

The energy measurements we present in this chapter (e.g., in Figure 4.4) fail

in some cases to strongly support the hypothesis that radio-based checkpointing is

consistently less energy intensive than flash-based checkpointing. The imbalance is

due to a missed opportunity for optimization on the WISP prototype. The transis-

tor used for backscatter modulation on the WISP (Revision 4.0) draws 500µW of

power, far more than is typical of a comparable mechanism on a conventional RFID

tag. Alien’s Higgs 3, a conventional RFID tag, draws only 15.8µW of power [4] (to-

tal) during operation—an order of magnitude difference that supports an alternative

design choice for future CRFIDs.

4.4.3.1 System Overhead

An application on a CRFID can balance energy consumption against security by

choosing one of CCCP’s operating modes:

• CCCP/NoSec imposes the least overhead because it does not encrypt data or

compute a MAC; it requires no computation and consumes no keystream mate-

rial. However, CCCP/NoSec imposes a time overhead to receive computational

state from a reader at power-up and to transmit new state at checkpoint time.

• CCCP/Auth avoids encryption overhead (like CCCP/NoSec) but requires time,

energy, and keystream bits to compute a MAC over the plaintext checkpoint.

However, it requires no energy or keystream bits for encryption because it does

not encrypt the plaintext checkpoint.

• CCCP/AuthConf offers the most security, since it adds confidentiality to CCCP/Auth,

but the extra security comes at the expense of time, energy, and keystream bits.
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In this mode, CCCP encrypts the computational state before computing a MAC

and transmitting both. It requires as much keystream material as the size of

the state plus a constant amount for authentication.

4.5 Applications

The outsourced memory introduced by CCCP expands the design space for ap-

plications on a computational RFID. This section offers some illustrative example

applications.

One application for CRFIDs is low-maintenance sensing. Consider a cold-chain

monitoring application for pharmaceutical supplies, in which a CRFID carries an

attached temperature sensor and stores in flash memory a temperature reading each

time it is scanned. To prevent exhaustion of its flash memory, the CRFID periodi-

cally computes aggregate statistics on, then discards, stored readings. Some statistical

computations (e.g., computation of quartiles) require memory-intensive manipulation

of the data set. If the flash memory on the CRFID considerably exceeds the size of

RAM, computation of such statistics would require many writes to flash, an energy-

intensive operation. An alternative is to use outsourced memory for the computation.

(In the case of cold-chain monitoring, maintaining privacy of harvested data with re-

spect to the reader may be unessential, but the integrity of the statistical computation

is important.)

Another application is RFID sensor networks (RSNs), described in recent work [23]

as networks that combine RFID reader infrastructure with sensor-equipped compu-

tational RFIDs. RSNs do not simply replace traditional sensor networks because

of several limitations. First, they require an infrastructure of readers that provide

power to sensor nodes. Second, they are constrained by the distances (several meters)

at which CRFIDs currently operate. Third, because RFID communication is asym-

metric, the nodes of an RSN cannot exchange information with each other except
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through a more powerful reader. However, there are applications for which short-

range networks of batteryless sensors would be appropriate; Yeager et al. offer several

examples [170].

Computational RFIDs may also act like smartcards. Some passive RFID tags are

capable of executing strong cryptographic primitives. For example, various models

of the Mifare DESfire can perform triple-DES or AES, while other RFID devices

can compute elliptic-curve and RSA signatures, such as the RF360 introduced by

Texas Instruments [159]. The RF360 is designed to allow public-key authentication

in RFID-enabled identification documents, such as e-passports.

The RF360 incorporates an MSP430, but also includes a cryptographic co-processor,

and is designed to operate at relatively short range as a high-frequency, ISO 14443

device. As we show in this chapter, CCCP creates the possibility of a more lightweight

device. Such a “CCCP smartcard” has two notable benefits: (1) a CCCP smartcard

eliminates the cost of cryptography-specific hardware; and (2) a CCCP smartcard

can operate in a mode compatible with EPC Gen 2 and achieve read ranges beyond

those of a high-frequency device like the RF360.

Some smartcards are capable of performing biometric authentication—generally

fingerprint verification. Match-on-card, i.e., verification of the validity of a fingerprint

through computation exclusively within the smartcard, has long stood as a technical

challenge. The U.S. National Institute of Standards and Technology (NIST) recently

conducted an evaluation of a range of such algorithms in contactless cards [39]. CCCP

is a promising tool for expanding the class of radio devices for which match-on-card is

feasible. While CCCP does not follow a strict match-on-card paradigm—given that it

outsources data to a reader—it nonetheless provides comparable security assurances

under the same threat model.

Finally, CRFIDs may participate in work-sharing networks that distribute com-

putation over a large area. CCCP permits a computational RFID to use external
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memory via an RFID reader. It can support an even broader design space if we use

CCCP instead for secure outsourcing not of memory, but of computational tasks.

Trusted platform modules (TPMs) [11, 161, 102] offer support for such outsourcing.

A TPM is a hardware device, standard in the CPUs of modern PCs and servers,

that can provide a secure attestation to the software configuration of the computing

platform on which it operates. Briefly stated, an attestation takes the form of a

digital signature on a digest of the software components loaded onto the device. (An

attestation does not provide assurance against hardware tampering or subversion of

running software.)

A computational RFID can in principle make use of a TPM-enabled reader—or

platform communicating with the reader—to gain access to a more powerful external

computer. The process for such use of a TPM is subtle. The operations of verifying a

TPM attestation and creating a secure session are both cryptographic operations that

require computationally intensive modular exponentiation. Hence the computational

outsourcing process requires CCCP as a bootstrapping mechanism.

4.6 Related Work

CCCP is closely related to Mementos [124] in that both systems provide check-

pointing of program execution on CRFIDs. Whereas Mementos relies purely on flash

memory and focuses on finding optimal checkpoint frequencies via static and dynamic

analysis, CCCP relies primarily on untrusted remote storage via radio and focuses on

low-power cryptographic protections to ensure that remotely stored data is as secure

as if it were stored locally.

Several systems share CCCP’s goal of exploiting properties of RFID systems to

enhance security and privacy. For instance, Shamir’s SQUASH hash algorithm [144]

exploits the underutilized radio link between a tag and a reader to reduce the amount

of cryptographic computation necessary on a tag. While number-theoretic hash func-
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tions typically require significant computational resources for modular arithmetic, the

SQUASH function eliminates costly modular reductions and produces large (unre-

duced) hash outputs that a tag can send directly to a reader. Tags can thus use

the SQUASH function to engage in secure challenge-response protocols with minimal

computational resources on the tag. The scheme is provably as one-way as Rabin

encryption [119]. Like SQUASH, CCCP exploits the relatively low cost of radio com-

munication between a tag and a reader to increase security. While SQUASH increases

radio communication to reduce computation, CCCP increases radio communication

to reduce writes to flash memory.

CCCP uses cryptographic techniques from past work on secure file systems and

secure content distribution. CFS [15], the SFS read-only file system [54], and Plu-

tus [80] investigated how to provide secure storage layered on various degrees of

untrusted infrastructure. While scalability and throughput are the main challenges

in such file systems, CCCP primarily addresses energy and memory constraints. The

semantics of CCCP storage are similar to the semantics of secure file systems. None

of the systems explicitly and directly prevent denial of service. Storing information

on untrusted RFID readers trades off the gain in storage capacity and energy con-

servation against the risk of losing data because of compromise or destruction of the

external storage. To mitigate the risk against denial of service, CCCP could choose

to replicate data as do secure file systems.

CCCP shares some goals with power-aware encryption systems such as that pro-

posed by Chandramouli et al. [32]. Both systems are designed to consume little en-

ergy while offering the security of well-known cryptographic primitives, and both are

motivated by a study of power profiling results, but they have different goals. Chan-

dramouli et al. focus on deriving an energy-consumption model and establishing a

relationship between energy consumption and security, and they offer an encryption

scheme that might allow CCCP to consume less energy during its precomputation of
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keystream bits. However, CCCP’s opportunistic precomputation occurs during peri-

ods of abundant energy, when the choice of encryption scheme is not of the utmost

importance. CCCP’s precomputation allows it to use time- and energy-efficient XOR

operations at checkpoint time, when energy is low; an alternative encryption scheme

would have to save time or energy over simple XOR operations to be useful when

energy is waning.

CCCP shares a number of properties with systems built for sensor networks.

Storage-centric sensor networks [42, 101] have focused on reducing radio communica-

tion and increasing writes to flash memory to conserve energy. One of our motivating

observations is that this relationship is inverted in the CRFID model: CCCP reduces

writes to flash memory in favor of increasing radio communication. Performing cryp-

tography is hard on both a CRFID and its elder cousin the sensor mote. Previous

systems, such as SPINS [112] and TinySec [82] for sensor networks, have faced design

challenges similar to CCCP’s. SPINS and TinySec use RC5 because of its small code

size and efficiency, but the battery-powered platform underlying these systems differs

in fundamental ways from batteryless CRFIDs. For a side-by-side comparison of such

embedded systems, see Table 1 of Chae et al. [31].

CCCP provides secure storage for CRFIDs, and CRFIDs are closely related to

existing passively powered RFID tags conforming to the EPC Gen 2 standard [48].

At times the RFID and sensor world fuse together. Buettner et al. [23] propose RFID

sensor networks (RSNs) as a replacement for wireless sensor networks in applications

where batteries are inconvenient, and the authors describe RSNs built on WISP CR-

FIDs. However, the RSN work does not consider remote storage options for CRFIDs.

4.7 Future Work

Avenues for future exploration include enhancements to the CCCP protocol. In

particular, the protocol currently suffers from a potential atomicity problem. In
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Checkpoint (Algorithm 1), chk ctr is updated before the checkpointed state is

transmitted, so that even if the transmission fails, chk ctr will point to unused

keystream material the next time Checkpoint runs. However, if Checkpoint

updates the offset but terminates before transmission succeeds, then the nextResume

operation will see a value of chk ctr from which its normal backtracking operation

will not find the correct keystream material. CCCP cannot currently recover from

such a mismatch.

An unacceptable solution is for Checkpoint to update chk ctr after a successful

transmission; such a strategy opens the possibility that, if power loss occurred between

the transmission and the counter update, CCCP would reuse keystream material.

A more reasonable solution (which we have not implemented) is to use a separate

commit bit that is set in nonvolatile memory after both the chk ctr update and the

transmission; this solution avoids both problems mentioned above. Minimizing the

energy cost of maintaining a commit bit is an opportunity for hardware optimization.

A number of implementation enhancements are also future work. For instance,

shortfalls in over-the-air RFID protocols and a lack of drivers on the WISP make

the restore procedure unnecessarily complicated and difficult to implement. We also

plan to extend the borders of CCCP from checkpointing towards long-term storage

as described in Section 4.2.4.5. Key management makes long-term storage more chal-

lenging than checkpointing. Another area for further investigation is modifying the

checkpoint function to operate at lower voltages. Writing the counter value to flash

memory restricts checkpoints to periods where the available energy can support at

least one write to flash memory. Our future work seeks to circumvent these min-

imum voltages in order to accomplish secure remote storage for CRFIDs whenever

their processors have sufficient energy to compute. Finally, for simplicity, CCCP’s

communication protocol currently addresses only the scenario in which a single tag
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communicates with a single reader. We plan to discard that simplifying assumption

during further testing in multi-reader infrastructures.

4.8 Summary

CRFIDs enable pervasive computing in places where batteries are difficult to main-

tain. However, the high energy necessary to erase and write to flash memory makes

storage difficult without a constant energy source. CCCP extends Mementos [124]

by exploiting the backscatter transmission common on passive RFID systems to re-

motely store checkpoints on an untrusted RFID reader infrastructure. CCCP protects

data with UHF-based MACs, opportunistic precomputation of keystream material for

symmetric cryptography, and hole punching to store a counter used to enforce data

freshness. Our measurements of a prototype implementation of CCCP on the WISP

tag shows that radio-based, remote checkpoints require less energy than local, flash-

based checkpoints—despite the overhead of the cryptography to restore the security

semantics of local, trusted storage. CCCP gives a CRFID increased storage capacity

at low energy cost and enables long-running computations to make progress despite

continual power interruptions that destroy the contents of RAM. Moreover, the ab-

straction provided by CCCP allows application developers to focus on computation

rather than space, energy, and security management. Flash memory generally re-

quires a coarse-grained, high-power erase operation before writing a new value. Our

hole punching technique allows CCCP to partially reuse unerased flash memory, thus

reducing the frequency with which flash memory must be erased.
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CHAPTER 5

ZERO-POWER SECURITY FOR IMPLANTABLE
MEDICAL DEVICES1

This chapter proposes using a transiently powered computer to address the prob-

lem of trust for an implantable medical device (IMD)—a deeply embedded, resource-

limited device that bears similarities to other electronic devices that are installed in

difficult-to-reach places. Starting with the observation that a certain IMD is vul-

nerable to resource-depletion attacks via its radio, we design WISPer, a TPC-based

cryptographic authentication mechanism that external parties must convince of their

authenticity before they are allowed to communicate with the IMD. WISPer’s key

feature that protects the IMD’s resources is its implementation of a bring-your-own-

power policy: a party that wishes to authenticate itself must provide WISPer’s op-

erating power. The power to perform the authentication does not come from the

IMD’s finite battery, and a malicious third party cannot keep the IMD awake with

its attempts to communicate.

This chapter’s contributions are:

• The design and implementation of WISPer, an authentication mechanism that

uses a lightweight cryptographic challenge–response protocol implemented on a

TPC to prevent an IMD from resource-depletion attacks.

1This chapter is adapted from papers by Halperin et al. [70] and Burleson et al. [27].
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• The design and implementation of a sensible key exchange mechanism with

which a TPC can convey a cryptographic key to a nearby device through a

medium such as skin at a rate of 310 bits per second.

Additionally, we evaluate a modification to WISPer that adds a piezoelement to

enable the wearer of a WISPer-enhanced device to detect security-sensitive events

that WISPer signals via sound or vibration; the sound volume of WISPer was louder

than normal conversation at a distance of 1 m.

Throughout this chapter, we refer to these applications of TPCs as zero-power

techniques because they use harvested energy and require no power from the device

they serve to augment.

5.1 Background

In many embedded systems, energy is a limited resource. In an energy-depletion

attack, a type of denial-of-service (DoS) attack, an attacker can cause a system to

consume energy in excess of normal operating energy, depleting the limited supply.

Several examples arise in the context of sensor networks, where battery-powered

nodes communicate via radio and must strive to conserve energy to maximize their

utility. In one kind of attack, intentionally mis-crafted packets result in excessive

path lengths, even loops, in network routes [163], engaging nodes’ energy-intensive

radio subsystems. Another form of attack at the MAC layer—the denial of sleep

attack—can reduce a sensor node’s lifetime by orders of magnitude [125]. Alterna-

tively, an attacker can plant software on a mobile device to induce inexplicable battery

drain [84].

Nodes in sensor networks may be difficult to access for battery recharging or

replacement (being located on treetops or endangered turtles [149]), making energy-

depletion attacks an annoyance. However, more-serious consequences may occur in

the context of implantable medical devices (IMDs) that are inside living tissue. Many
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IMDs use nonrechargeable batteries because of their consistent, long-lasting energy-

delivery performance and to hedge against human error (e.g., an infirm patient forget-

ting to, or being unable to, charge the battery) [98]. These nonrechargeable batteries

have finite lifetimes measured in years, after which time the entire device must be sur-

gically replaced. Recent work has demonstrated that an unauthorized party can keep

an IMD’s radio awake continuously, which poses a serious risk for the battery’s—and

therefore the device’s—longevity [70, 111].

These vulnerabilities to energy-depletion attacks are symptomatic of a more gen-

eral problem of trust : many resource-limited devices implicitly trust external entities

to assign them work to do. Computational—e.g., cryptographic—methods of estab-

lishing trust are an appealing way to address this problem, but they require their own

resources, opening another avenue for abuse.

5.2 Security and Privacy for Implanted Medical Devices

Implantable medical devices (IMDs) perform a variety of therapeutic or life-saving

functions ranging from drug infusion and cardiac pacing to direct neurostimulation.

Modern IMDs often contain electronic components that perform increasingly sophis-

ticated sensing, computation, and actuation, in many cases without any patient in-

teraction. IMDs have already improved medical outcomes for millions of patients;

many more will benefit from future IMD technology treating a growing number of

ailments. Many of these devices are in use worldwide; over 2.6 million cardiac (heart)

devices were implanted in patients in the U.S. alone between 1990 and 2002 [97].

Because of their crucial roles in patient health, IMDs undergo rigorous evalua-

tion to verify that they meet specific minimum safety and effectiveness requirements.

However, security is a relatively new concern for regulatory bodies; bug-averse manu-

facturers have traditionally had little incentive to add security mechanisms that might

cause problems or slow down regulatory approval. Perhaps not surprisingly in light
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Figure 5.1. Two kinds of adversaries for IMD applications: a passive eavesdropper
(left) and an active adversary with a radio (right).

of this situation, recent security research has demonstrated that some IMDs fail to

meet appropriate expectations of security for critically important systems.

The key classes of IMD vulnerabilities researchers have identified are control vul-

nerabilities, in which an unauthorized person can gain control of an IMD’s operation

or even disable its therapeutic services, and privacy vulnerabilities, in which an IMD

exposes patient data to an unauthorized party. Both kinds of vulnerabilities may be

harmful to patients’ health outcomes, and both kinds are avoidable.

5.2.1 Threat model

Threat modeling, which entails anticipating and characterizing potential threats,

is a vital aspect of security design. With realistic models of adversaries, designers can

assign appropriate priorities to addressing different threats.

The severity of vulnerabilities varies along with the sensitivity of the data or the

consequences of actuation; there is no “one size fits all” threat model for IMDs. A

non-actuating glucose sensor incurs different risks than a defibrillator that can deliver

disruptive electrical shocks to a heart.

Adversaries are typically characterized according to their goals, their capabilities

and the resources they possess. Security designers evaluate each threat by consider-
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ing the value of the target and the amount of effort necessary to access it. Recent

work analyzing IMD security and privacy has posited several classes of adversaries,

described below and illustrated in Figure 5.1.

An eavesdropper who listens to an IMD’s radio transmissions, but does not in-

terfere with them, can often learn private information with minimal effort. Such

a passive adversary may have access to an oscilloscope, software radio, directional

antennas, and other listening equipment. Several studies have considered this type

of adversary and demonstrated that eavesdropping on unencrypted communications

could compromise patients’ data privacy [70, 91, 111, 120, 130].

An active adversary extends the passive adversary’s capabilities with the ability to

generate radio transmissions addressed to the IMD, or to replay recorded control com-

mands. Halperin et al. demonstrated that an active adversary with a programmable

radio could control one model of implantable defibrillator by replaying messages—

disabling programmed therapies or even delivering a shock intended to induce a fatal

heart rhythm [70]. Jack and Li have demonstrated similar control over an insulin

pump, including the ability to stop insulin delivery or inject excessive doses [130, 91].

Another adversarial capability is binary analysis, the ability to disassemble a sys-

tem’s software and in some cases completely understand its operation. By inspecting

the Java-based configuration program supplied with his own insulin pump, researcher

Jerome Radcliffe reverse-engineered the pump’s packet structure, revealing that the

pump failed to encrypt the medical data it transmitted or to adequately authenticate

the components to one another [120]. In contrast to design-time static analysis of

source code, a crucial practice that may expose flaws before devices are shipped [77],

binary analysis involves inspecting compiled code; it can expose flaws in systems that

erroneously depend on the supposed difficulty of reverse engineering to conceal private

information.
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In the context of medical conditions, it may be difficult to comprehend why a

malicious person would seek to cause harm to patients receiving therapy, but unfor-

tunately, it has happened in the past. For example, in 2008, malicious hackers defaced

a webpage run by the nonprofit Epilepsy Foundation, replacing the page’s content

with flashing animations that induced migraines or seizures for some unsuspecting

visitors [118]. Although we know of no reports of malicious attacks against IMDs

“in the wild,” it is important to address vulnerabilities before they become serious

threats.

5.3 Zero-Power and Sensible Defenses for IMD Security and

Privacy

Providing security and privacy on an IMD involves health risk factors and tight

resource constraints. Traditional approaches could potentially introduce new haz-

ards to patient safety. For instance, protecting an IMD with a cryptographic key

may provide security, but the unavailability of a key could hinder treatment in emer-

gency situations. Another risk to IMD availability is excessive power consumption by

mechanisms other than those needed for the device’s primary function. For instance,

the energy cost of performing computation for cryptography or radio communication

could directly compete with the energy demands of pacing and defibrillation. Ef-

fective mechanisms for security and privacy should not provide new avenues for an

unauthorized person to drain a device’s battery. For instance, spurious wake-ups or

a cryptographic authentication process itself could cause a device to enter a state

that consumes excessive amounts of energy (as in, e.g., the sleep deprivation torture

attacks of Stajano and Anderson [151]).

Therefore, three goals guided our design of zero-power approaches for IMD secu-

rity and privacy. First, an effective approach should either prevent or deter attacks

by both malicious outsiders with custom equipment and insiders with commercial
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Figure 5.2. The WISP with attached piezo-element.

programmers. Because IMD therapies rely on long-lasting batteries, a second goal

is that security and privacy should draw no power from the primary battery, thus

preventing denial of service attacks on power. Third, security-sensitive events should

be effortlessly detectable by the patient. We must also ensure that new security

mechanisms do not introduce new failure modes.

We do not claim that our defenses are final designs that IMD manufacturers

should immediately incorporate into commercial IMDs. Rather, we believe that our

research establishes a potential foundation upon which others can create, evaluate,

and implement new defensive mechanisms for future IMD designs.

5.3.1 Detection: Zero-Power Notification for Patients

As earlier work notes [68], it may be possible to deter malicious activities by

making patients aware of those activities. Our zero-power notification alerts a patient

to potentially malicious activities both by insiders using commercial programmers

and by outsiders using custom attack hardware, thereby making patients effortlessly

aware of remote communications. On some modern ICDs, triggering a magnetic

switch inside the ICD causes the ICD to beep. Whether intentional or not, such

beeping represents a step towards the concept of patient awareness by way of audible

alerts. But beeps triggered by a magnet alone do not raise patient awareness for

RF-initiated actions, which our approach does.

Our prototype of zero-power notification,WISPer, wirelessly drives a piezo-element

that can audibly warn a patient of security-sensitive events. WISPer builds upon revi-
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sion 1.0 of the Wireless Identification and Sensing Platform (WISP) [139], a postage-

stamp-sized embedded system that contains RFID circuitry and a Texas Instruments

MSP430F1232 microcontroller with 256 bytes of RAM and 8 KBytes of flash memory.

The WISP harvests energy from a 915 MHz RF signal generated by the Alien ALR-

9640 nanoscanner, a UHF RFID reader running the EPC Class 1 Gen 1 protocol.

Although we prototyped at 915 MHz, it may be possible to create similar hardware

that operates at the frequency of current ICD programmers. WISPer adds to the

WISP’s base code a 30-line C program that activates a piezo-element which we at-

tached to the general-purpose I/O (GPIO) ports of the WISP. After WISPer receives

a sequence of wireless requests from the RFID reader, it emits constant chirping,

thereby informing the patient of the wireless interaction. A future version of WISPer

could set a separate GPIO high after buzzing for a certain number of cycles, and the

IMD could allow remote communications only after that GPIO is raised. WISPer

satisfies our zero-power notification design constraints: it draws no energy from a

battery and can issue alerts for all reprogramming activity.

Two measurements quantify the effectiveness of the WISPer prototype for zero-

power notification. We used a sound level meter to measure Sound Pressure Level

(SPL) with a reference pressure of 20 micropascals (the standard for above-water

calculations). The buzzing volume peaked at 67 dB SPL from a distance of 1 m.

For reference, a normal conversation is about 60 dB SPL and a vacuum cleaner at

a distance of 3 meters is about 70 dB SPL [96]. We then placed our prototype in

an environment designed to simulate implantation in a human (Figure 5.3; we called

this experimental apparatus “Alice” after the protagonist of cryptographic protocol

descriptions). We implanted WISPer beneath 1 cm (a standard ICD implantation

depth) of bacon, with 4 cm of 85% lean ground beef packed underneath. Note that

Section 5.3.4 suggests a more-appropriate setup for tissue simulation.
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Figure 5.3. “Alice.” To simulate implantation in a human, we placed WISPer in a
bag containing bacon and ground beef (left and middle). This method of tissue
simulation is deprecated. Section 5.3.4 suggests a preferable method of tissue
simulation (right).

We took several readings at the surface of the bacon in order to ascertain the

effects of obstruction by tissue. We measured 84 dB SPL of sound at the surface of

the tissue, and subjectively were easily able to hear it from a meter away (more than

the distance between standard ICD implantation sites and a patient’s ear).

These tests of our prototype device suggest that its piezo-element is audible under

reasonable simulations. Because malicious attackers may attempt their attacks in

noisy, chaotic environments to vitiate auditory notification, and because some patients

with ICDs may have limited hearing, we note that a piezo-element can be used to

produce vibration instead of audible sound. In our experiments, the 4 kHz alert used

was easily sensed by touch.

5.3.2 Prevention: Zero-Power Authentication

Our second defense implements a zero-power method that allows an IMD to verify

that it is communicating with a real commercial programmer (and not an unautho-

rized software radio programmer).

The device implements a simple challenge-response protocol (Figure 5.5) based

on RC5-32/12/16 [129]. In this model, all commercial programmers know a master

key KM , each IMD has an serial number or identity I, and each IMD has an IMD-

specific key K = f(KM , I), where f is any cryptographically strong pseudorandom
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function (such as AES). The value KM should be stored in secure hardware on the

programmers. The protocol works as follows. The programmer transmits a request

to authenticate to WISPer. WISPer responds with its identity I and a nonce N . The

programmer computes K = f(KM , I) to get the IMD-specific key and then returns

the response R = RC5(K,N) to WISPer. WISPer computes the same value and

verifies the value it received from the programmer against its result. WISPer finally

sets a GPIO high which, if attached to or built into a real IMD, would inform the

IMD that WISPer successfully authenticated a programmer.

For the sake of simplicity, our prototype does not implement the full protocol.

Namely, in our experiments we use a fixed nonce and assume that the programmer

knows the nonce in advance. Using this simplified model, we experimentally verified

that, upon receiving the programmer response R, WISPer was able to perform its own

RC5 encryption and verify equality. We were able to run this subset of the protocol

with complete reliability using only harvested energy. To lift from the simplified

model to a real implementation of our protocol, we note that the nonce should appear

random to an adversary. Since we, and others [31], show that it is possible to run RC5

on a WISP, a natural solution would be to generate the nonce with RC5 in counter

mode. A better approach that would yield a truly random nonce is to exploit process

variations and omnipresent thermal noise by extracting random bits from SRAM

using the FERNS technique of Holcomb et al. [72]. Applying FERNS to 256 bytes of

SRAM could yield 100 bits of true randomness each time the SRAM is powered up.

Our work would benefit from an implementation of the memory-as-TRNG technique

on the WISP.

We learned from our successful attacks that private data transmitted between our

ICD and programmer are not encrypted. We propose that cryptography be added at

least at critical junctures. Encryption of the entire conversation would be optimal—

for example, a secure channel between programmer and ICD could prevent third-

118



party disclosure, replay, and many other attacks—but in the interest of modularity

we consider in this chapter only defensive approaches that might be implemented with

less extensive modifications to current ICD designs. Modularity aside, if we were to

propose cryptographic extensions that required significant changes to ICD design, it

would be necessary to consider the power cost of our proposed changes. Without

detailed knowledge of the inner workings of ICDs, however, we cannot accurately

assess the cost of adding cryptography to existing devices.

The tension between increased security and increased power consumption can be

resolved by requiring successful zero-power authentication before the device switches

to higher power consumption modes. Our prototype shows that this proposal is fea-

sible for bootstrapping stronger (and possibly mutual) authentication methods. Our

prototype harvests power from RF transmissions, performs a cryptographic authenti-

cation, and on successful authentication of a programmer, sets a GPIO high which, if

connected to or built into a real ICD, would permit the ICD to participate in active

RF communication and other higher-level protocols. This approach addresses the risk

of sleep deprivation torture described by Stajano and Anderson [151].

This chapter does not address the well-known problem of key management. Us-

ing a shared secret (called Km above) is reasonable for a prototype implementation,

but a large-scale deployment of shared key material—in implanted devices, hospitals,

clinics, ambulances, IMD programmers, and so on—may pose an unacceptable risk

because of the ease with which an unauthorized party could decrypt transmissions

upon obtaining the key material. (Though our recommendation of storing Km in

secure hardware does partially mitigate this risk under certain threat models.) The

simple scheme described above also fails to address revocation of privilege and is there-

fore ill-suited to situations in which key material might be compromised, although

the proposed system is still no less secure than the open-access model of conventional

systems. An SKEYS [67] or key-regression [55] approach, with periodic updates of
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Figure 5.4. Zero-power sensible key
exchange: a nonce is transmitted from
the ICD to the programmer using acous-
tic waves. It can be clearly picked up
only if the programmer is in contact with
the patient’s body near the implantation
site, and can be used as the secret key in
the authentication protocol from the pre-
vious section. (1 cm is a typical implan-
tation depth. Diagram is not to scale.)
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Figure 5.5. The protocol for com-
munication between an ICD programmer
and a zero-power authentication device
(a WISP RFID tag, in the case of our
prototype).

programmer keys, might mitigate the time-window in which an attacker can use com-

promised keys while also not significantly changing the overall model. Furthermore,

the offline nature of the transactions that must be secured—imagine an ambulance

reaching an ICD patient in a remote setting—further complicates the problem of key

management and revocation.

In the context of medical devices, security-related design choices must balance

security, privacy, safety, and efficacy [68]. An ideal key management scheme for this

context, which we present as an important open problem, must provide security and

support privacy without hindering the operation of medical devices that are already

known to provide safe and effective treatments.

5.3.3 Zero-Power Sensible Key Exchange

We now present a key-distribution technique that complements both of our pre-

vious defensive techniques: distribution of a symmetric cryptographic key over a
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human-perceptible sensory channel. The primary goal is to allow the patient to de-

tect a key exchange while it occurs.

The programmer initiates our protocol by supplying an unmodulated RF carrier

signal that could power the passive component of the IMD. The IMD then generates

a random value to be used as a session key and broadcasts it as a modulated sound

wave. The amplitude of this sound wave is such that it can be easily received and

demodulated by a reader with a microphone in contact with the patient’s body near

the implantation site, but it cannot be heard over background noise at any appreciable

distance from the patient, at least not without dedicated sensing equipment. The

close proximity this enforces further ensures patient awareness and consent to the

authentication attempt. Once key exchange has been performed, RF communication

can safely occur over a longer range without fear of eavesdropping.

We implemented our key exchange mechanism on WISPer using as carrier fre-

quency the same 4 kHz audible and tactile signal discussed above. To effect key

exchange, we used the same modulation scheme currently in use by our reader (2-

FSK). We achieved a baud rate of 310 Bd, permitting transmission of a 128-bit nonce

in 0.4 s. The components performed key exchange without drawing power from a bat-

tery, and the exchange was clearly audible, measuring 75 dB SPL through a human

hand. When the microphone was not in contact with the skin, the sound pickup was

too low to be measured on our meter (< 60 dB SPL). In our ad hoc experiments, trans-

mission of the key was easy to feel with the hand, but difficult to hear at a distance.

While these preliminary measurements show the plausibility of making eavesdropping

difficult, further work is necessary to illuminate the relationship between sound levels

and the ability to eavesdrop. Furthermore, an adversary may attempt to eavesdrop

on the electromagnetic emanations [87] of the electrical components that generate the

sound rather than on the sound itself. Radio shielding in the form of a Faraday cage

or use of non-electromagnetic, optical links between security-sensitive modules may
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help to reduce these unintended emanations. An alternate approach for sensible key

exchange might be for the programmer to transmit the key to the IMD over an audio

channel, or for the final key to be derived from keys sent in both directions.

5.3.4 Note on Tissue Simulation

Evaluating hardware or software modifications to (or interference with) IMDs

poses a challenge to researchers who usually design for open-air transmission. The

ideal evaluation environment is human flesh, but human subjects may be unwilling

to receive prototype implantable devices, and arranging for human testing typically

requires extensive paperwork and arduous board approval. Animal subjects (e.g.,

pigs) may anatomically resemble humans, but they are difficult to obtain, house, and

maintain, and implanting devices in animals poses ethical concerns. Cadaverous and

other nonliving tissue such as store-bought beef and bacon [69, 58] is not a widely

accepted substitute electromagnetically for live tissue. In cardiologist parlance, “Dead

meat don’t beat.”

Fortunately, conforming to electromagnetic compatibility (EMC) standards that

do provide a reasonable tissue-simulation environment is within reason for nonmed-

ical researchers. The ANSI/AAMI PC69 standard [5, 6] defines a testing setup for

EMC testing of cardiac devices. Work incorporating a PC69-compliant setup includes

investigations of pacemaker interference by RFID readers [142], MP3 players [10],

walk-through metal detectors [79], and cellphones [133]. The U.S. Food and Drug

Administration (FDA), the agency that regulates medical devices, uses a calibrated

saline-bath phantom (tissue simulation environment) to study RF interference with

IMDs. Seidman et al. refer to the FDA’s preferred phantom as “a modified version

of the ANSI/AAMI PC69 Standard” [142].

Because it electromagnetically approximates a human torso, a PC69-compliant

saline bath is a suitable environment for testing electronic devices that are to be
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embedded in tissue. Based on the description by Seidman et al., we built our own

calibrated saline bath prototype (shown in Figure 5.3) with approximately $30 of

parts from a hardware store, a scale, distilled water and table salt.2

Simulation with a standardized setup offers a controlled environment with a min-

imum number of confounding variables. Such an environment is designed to produce

reproducible results, which is a major challenge for open-air and in vivo experimen-

tation. This reproducibility and experimental control allow for comparison with an-

alytical models and reasoning about how the system under test will behave when

implanted.

5.4 Related Work

In addition to the work mentioned at the beginning of this chapter, other work

has studied the problem of security for IMDs.

Halperin et al. propose a set of design goals and research directions for security

and privacy mechanisms for IMDs, noting the tensions that pose design and opera-

tional challenges [68]. They mention battery depletion as a specific threat and propose

shifting computation to external resources. A follow-up paper (on which this chap-

ter is based) expands these ideas by implementing several attacks and the WISPer

defense [69].

Paul et al. point out challenges and solutions that apply especially to insulin

pumps [111], one kind of IMD that has both internal (to the body) and external com-

ponents, including a user interface for patients. They suggest that energy-depletion

risks can be mitigated with a patient-facing button that allows the radio to be active

for a small amount of time. This approach may work even for IMDs that are fully

implanted, provided that a button mechanism on an implanted device can be made

2A manuscript describing experiments with this PC69-compliant saline bath is in preparation.
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biocompatible and that pressing a button through tissue would not damage the tis-

sue. The techniques in this chapter address the same problem in a different manner,

albeit one that does not require user interaction—which may allow them to generalize

other devices that are not in direct contact with people.

Authentication with an energy-harvesting gatekeeper device like WISPer is most

appealing when the time and energy cost of cryptography are small enough that

the interaction is fast and unintrusive. Performing cryptographic authentication on

a TPC necessitates the use of ciphers that are lightweight—i.e., can fit in limited

memory and execute quickly enough at the slow clock rates that support low-power

operation. Kerckhof et al. ably summarize and compare a variety of ciphers from this

perspective [83].

5.5 Summary

Implantable medical devices (IMDs), like many other kinds of embedded devices,

suffer from resource limitations that make excessive computation a concern. This

chapter presents a medley of mechanisms designed to protect an inaccessible, resource-

limited device like an IMD from radio-based resource-depletion attacks. These “zero-

power” mechanisms include WISPer, a TPC-based cryptographic authentication sys-

tem that requires external parties to pay the power cost of computation, and a key-

exchange mechanism that works through biological tissue.
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CHAPTER 6

AUGMENTING MEDICAL DEVICES WITH
TRANSIENTLY POWERED COMMUNICATION

This chapter presents the design and implementation of Noradio,1 a transiently

powered communication system for an implantable medical device (IMD). Noradio

aims to address the risk of excessive power consumption by an IMD’s radio subsystem—

an increasingly appealing optimization opportunity as IMDs become more networked

to improve patient monitoring.

6.1 Implantable Medical Devices and Power

Power consumption is a critical design consideration for embedded devices [53],

particularly those that are unavailable for maintenance or battery recharging. Many

implantable medical devices (IMDs) perform life-supporting functions from nonrecharge-

able batteries.2 Excessive power consumption may put an IMD’s longevity in jeop-

ardy. (Chapter 5 describes a particularly alarming kind of intentional excessive power

consumption.)

Thanks to advances in home monitoring and automatic electronic therapy delivery,

the trend in healthcare is toward ever more energy use, data collection, and device

connectivity, even for fully implanted devices. For example, all leading makers of

1Apologies to Marcel Molina, Jr. (@noradio on and at Twitter).

2IMDs that are fully implanted in the body, such as pacemakers and implantable cardiac defibril-
lators (ICDs), use nonrechargeable batteries with specially formulated chemistry that are designed
to support up to 10 years of implantation [98]. Doctors typically surgically replace such an IMD after
a predetermined time period, or when its elective replacement indicator (ERI) triggers an alarm.
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implantable cardiac defibrillators offer at-home monitoring and periodic data uploads

to clinical databases, which enables doctors to respond to clinically relevant signs of

trouble before they become severe [40].

Communication interfaces for IMDs improve treatment outcomes by giving doc-

tors advance warning, but they raise a design issue: radios are energy hungry. Radio

communication often dominates embedded systems’ power consumption during times

when the radio is on (either listening or sending). For example, Fonseca et al. pro-

filed a Hydrowatch mote [47] and measured the TI CC2420 2.4 GHz radio’s current

consumption to be 39.4× that of the TI MSP430F1611 microcontroller in its highest-

power “active” computing mode [53].

According to a 2004 survey article, “a cardiac pacemaker” at the time of that

publication “uses half of its battery power for cardiac stimulation and the other

half for housekeeping tasks such as monitoring and data logging” [98]. According

to a semiconductor manufacturer, the radio-communication portion of a pacemaker’s

power budget is approximately 15% [134]. As the trend toward greater connectivity

continues, the total fraction of battery energy used for radio communication is likely

to increase.

This chapter explores the idea of removing the radio from an IMD altogether.

We call our platform for evaluating this idea Noradio. Noradio extends the design

of WISPer—an authentication mechanism for IMDs, described in Chapter 5—by re-

placing the radio subsystem of an IMD with a computational RFID (CRFID) that

communicates via backscatter (reflective) radiation without using any battery power.

Noradio’s overall design goal is to reduce the amount of energy used for IMD com-

munications. To evaluate Noradio, our quantitative goal is to measure the difference

in energy consumption when a CRFID replaces an active radio. We build versions

of Noradio both with and without an active radio circuit, measuring the energy con-

sumption of each during communication.
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6.1.1 Contribution

This chapter presents Noradio, a proof-of-concept prototype for a TPC-augmented

embedded system, as well as an evaluation of Noradio’s energy consumption. The

results validate our approach, suggesting that replacing a radio with a CRFID reduces

the energy required for communication.

The key design challenge of implementing Noradio is translating the synchronous

communications of a system built to use an active radio—one that can transmit at

any time—to the asynchronous communications that are feasible with a CRFID that

lacks an active radio.

Although this work explores the repercussions of removing an active radio com-

ponent from a specific kind of device, our techniques can generalize to other kinds of

devices that currently use active radio components.

6.2 Emulating a Pacemaker

A cardiac pacemaker continuously monitors a patient’s heartbeat, periodically is-

suing small pulses of electricity to stimulate heart tissue to beat at a steady rhythm [167].

The body includes a natural electrical pacing system to perform that function, so elec-

tromechanical devices implanted in patients are also called artificial pacemakers; we

refer to them here as simply pacemakers.

The designs of commercially viable IMDs such as pacemakers are closely held trade

secrets. Various academic projects, notably those responding to McMaster Univer-

sity’s Pacemaker Challenge [148], have aimed to build functionally valid models of

pacemakers that benefit from state-of-the-art techniques in formal methods. To aid in

this effort, Boston Scientific has released functional specifications for the behavior of a

previously available model of pacemaker [16]. In contrast to this formal approach, for

the design of our pacemaker emulator we abstract away most of the clinical functions

in order to focus on the communication subsystem.
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Noradio performs both sensing and “pacing”3 activities in addition to commu-

nication. In cardiology nomenclature, Noradio implements VVO mode, indicating

single-channel pacing (the first “V”), single-channel sensing (the second “V”), and no

inhibition of pacing based on the sensed activity. VVO mode is not used in clinical

settings, since ill-timed pacing pulses can trigger unsafe heart conditions [166], but

for Noradio it serves as a suitable test mode that avoids the need to attach a cardiac

simulator.

To implement both versions of Noradio, we chose a Texas Instruments MSP-

EXP430F5438 evaluation board. This board features a TI MSP430F5438A micro-

controller with 16 KB of SRAM and 256 KB of flash memory. Key to our design

goal, this evaluation board bears a slot for a removable radio daughterboard. We use

a TI CC2500 radio daughterboard that operates in the 2.4 GHz industrial, scientific,

and medical (ISM) band. A typical pacemaker might use a custom purpose-built

CMOS radio consuming approximately 5 mA of current when sending or receiving,

and three to four orders of magnitude less when doing neither—which is its normal

state, since designers target low duty cycles to conserve energy [134]. The CC2500

radio consumes approximately three times as much current as this custom radio while

transmitting and receiving, and within a factor of two while sleeping [157]. Pacemak-

ers may also use a separate wakeup circuit in the 2.4 GHz range (in which regulations

allow higher transmit power) [134]. Table 6.1 compares our emulated pacemaker to

typical pacemaker specifications.
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Typical pacemaker Our emulator Notes
< 10 KB RAM? 16 KB SRAM
< 100 KB NVRAM? 256 KB flash memory Contains program memory
(varies) 8 MHz CPU clock rate
405 MHz + 2.4 GHz radios† 2.4 GHz radio Removable daughterboard

Table 6.1. Comparison of our emulator to typical commercial pacemakers. Because
the designs of cardiac devices are closely held secrets, the entries marked with ? are
estimates based on a 1999 book on real-time systems [44]. The radio specification
(marked with †) is based on public information from a semiconductor manufacturer
that serves IMD manufacturers [134].

6.2.1 Baseline: Radio-Based Pacemaker Emulator

We prototyped a simple clinical communication system wherein our emulated

pacemaker periodically sends telemetry4 to a collecting node that emulates a clinical

programmer (the pacemaker-adjustment device in a doctor’s office). We designed a

simple peer-to-peer telemetry mechanism based on TI’s SimpliciTI protocol, version

1.2.0 [158]. SimpliciTI is a simple packet-based protocol stack that implements link

and network layers. Noradio’s telemetry mechanism operates as follows (also see the

block diagram in Figure 6.2):

• Every 200 ms, the emulated pacemaker uses its onboard 12-bit analog-to-digital

converter (ADC) to sample the voltage on one of its analog inputs (resulting in

a 5 Hz sample rate, enough to capture low-frequency components of a 1–2 Hz

heartbeat).

• Immediately after sensing, the emulated pacemaker pulses a general-purpose

input/output (GPIO) pin for 0.5 ms (following the Boston Scientific pacemaker

3We did not test Noradio on tissue; doing so would not prove anything about the energy required
for communication.

4Transliterated, remote measurements—sensed values sent from one place to another.
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Figure 6.1. Photo of an MSP-EXP430F5438 board with a CC2500 2.4 GHz daugh-
terboard implementing the radio-equipped version of our emulated pacemaker.

specification [16] for on-demand pacing). The pin is connected to a 1 kΩ resistor

to approximate heart tissue [141].

• After the output pulse, the emulated pacemaker assembles a packet containing

the 12-bit ADC value and transmits it via radio to the clinical programmer

emulator.

• The clinical programmer emulator prints each received reading to a PC screen

via its serial port.

The clinical programmer emulator can also send commands to the emulated pace-

maker via the same protocol. These command packets trigger interrupts on the

emulated pacemaker, which updates its state to obey the commands and sends an

acknowledgement packet.
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Figure 6.2. Block diagram of the radio-equipped version of an emulated pacemaker.
The pacemaker reads an analog signal (e.g., a heartbeat) and transmits a represen-
tation of it to an emulated clinical programmer.

6.2.2 CRFID-Augmented, Radioless Pacemaker Emulator (Noradio)

We built a radioless version of our pacemaker emulator in order to evaluate the dif-

ference in energy consumption. This implementation effort required removing the ra-

dio daughterboard, choosing an appropriate interface to connect Noradio to a UMass

Moo CRFID, and rewriting the synchronous communication protocol as an asyn-

chronous protocol. Figure 6.3 depicts our Noradio prototype.

Unlike the radio-equipped version, Noradio does not have a “live” telemetry mode,

because a CRFID cannot transmit information at arbitrary times. Instead, the

CRFID can operate only when it receives enough power from a nearby RFID reader.

Accordingly, Noradio saves samples in its RAM and emits them to the Moo only

when the Moo indicates that it is ready to transmit readings. This process works as

follows (also see Figure 6.4 for a block diagram of Noradio):

• As before, every 200 ms, Noradio uses its onboard 12-bit analog-to-digital con-

verter (ADC) to sample the voltage on one of its analog inputs.

• Also as before, Noradio pulses a general-purpose input/output (GPIO) pin for

0.5 ms. The pin is connected to a 1 kΩ resistor.
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Figure 6.3. Noradio, the Moo-augmented version of the emulated pacemaker.

• Instead of transmitting the sensed value immediately, Noradio saves it in a

circular buffer.

• When the Moo receives a query from an RFID reader, it raises a GPIO pin

that is connected to GPIO on Noradio via a wire. This triggers an interrupt on

Noradio.

• Responding to the interrupt, Noradio drains the circular buffer of sensed values

to the Moo via the Serial Peripheral Interface (SPI) bus, one 16-bit word at a

time.

• The Moo packs these sensed values into the EPC field of its replies to the RFID

reader. (Flit, a bulk-transfer protocol for CRFIDs [63], uses the same field to

carry bulk messages.)
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Figure 6.4. Block diagram of the radioless version of the Noradio prototype. When
an RFID reader provides power, a UMass Moo CRFID triggers an interrupt on the
Noradio board’s CPU, causing it to read commands from the Moo. In response to an
appropriate command, Noradio drains its buffer of stored ADC readings over a data
bus to the Moo.

Lacking a reliable communication mechanism for reader-to-CRFID communica-

tion,5 we did not implement a mechanism by which the RFID reader can issue com-

mands to Noradio via the Moo. A future reliable protocol for reader-to-CRFID data

transmission, such as BAT [105], would serve as an appropriate mechanism to convey

such commands.

6.3 Evaluation

The goal of our evaluation is to compare the energy use of the emulated pacemaker

with and without a radio board.

We replaced the “system power” jumper on each MSP-EXP430F5438 board with

a 1.4 Ω sense resistor, then attached the high-impedance probes of a Tektronix

MSO5204 oscilloscope to the legs of the sense resistor to measure the entire board’s

current consumption (via Ohm’s Law, I = Vobserved/R = Vobserved/1.4 Ω).

5We noticed unpredictable data corruption when attempting to carry data in user-definable fields
of reader-to-tag EPC messages with our Impinj Speedway RFID readers.
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For each version of the system—the radio-equipped version and Noradio—we mea-

sured current consumption as follows. First, we turned on the MSP-EXP430F5438

board (thereby starting the pacemaker emulation) and did not initiate telemetry com-

munications. We verified with the oscilloscope that the board was emitting pacing

pulses. We observed the current consumption in this “unlinked” (not sending teleme-

try) state over a 5-second window. Next, we initiated telemetry communications. For

the radio-equipped emulated pacemaker, we turned on the emulated clinical program-

mer and observed that the link state changed (via a blink of an on-board LED). For

Noradio, the CRFID-equipped version, we queried the attached Moo CRFID with an

Impinj Speedway Revolution RFID reader emitting queries at 30 Hz at its maximum

transmit power of 30 dB and a distance of 50 cm. We verified on the PC control-

ling the RFID reader that the reader was receiving the values sensed on the Noradio

board.

We ran each scenario five times, computing the average current consumption from

each oscilloscope trace; the aggregate results appear in Table 6.2.

Radio Noradio
Unlinked 24.97± 0.26 mA 19.92± 0.08 mA
Linked 36.28± 0.15 mA 20.30± 0.14 mA

Table 6.2. Current consumption of the radio-equipped emulated pacemaker versus
that of Noradio, when not communicating with the emulated clinical programmer
(Unlinked row) and when communicating with it (Linked row).

According to a public presentation by a pacemaker manufacturer, a typical pace-

maker battery contains about 1.5 ampere–hours of energy [150]. If the current con-

sumption of the pacemaker were as measured above, the battery life from full charge

to complete discharge would be t = E/I = 1.5Ah/I (Table 6.3).

Noradio’s energy savings come mainly from the removal of the active radio. A

pacemaker, like our radio-equipped emulated pacemaker, includes wakeup circuitry

that listens for radio communication. Noradio removes the need to listen for commu-
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Radio Noradio
Unlinked 60.07 h 75.30 h
Linked 41.34 h 73.70 h

Table 6.3. Projected battery life of both the radio-equipped and Noradio versions
of the emulated pacemaker with a 1.5 Ah pacemaker battery.

nication, instead saving sensed data locally until an interrupt arrives from a CRFID.

The energy cost of transmitting bits via the SPI bus, as Noradio does, is also lower

than the energy cost of transmitting them via radio.

1.5 Ah pacemaker batteries are, of course, designed to accommodate infrequent

radio communications and low-power on-board ASICs instead of general-purpose mi-

crocontrollers like the MSP430. However, the prototype’s results for telemetry in

Table 6.2 and Table 6.3 suggest that performing communication via an attached

CRFID may offer significant energy savings that can extend battery lifetime.

6.4 Related Work

Recent work on “leadless” pacemakers—which differ from conventional pacemaker

designs in that they do not require long, difficult to implant, potentially brittle wires

to run into the heart—has resulted in a new crop of smaller pacemakers that sit

directly on cardiac tissue.

Medtronic has publicized its work on a leadless pacemaker the size of a grain of

rice, noting that they were still in search of a way to power it [146]. A forthcoming

leadless pacemaker from EBR Systems features a similar form factor for the device

that delivers pacing; it harvests energy from ultrasound transmissions emitted by a

larger device that is implanted in the chest [60]. Details on the device and its power

properties—e.g., whether the ultrasound channel provides both power and data—are

scant, but it is reasonable to expect that the wireless interface will be powered via the

ultrasound transmissions as well. Noradio is meant to serve as a proof of concept to
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illustrate that the radio functions of a pacemaker, such as telemetry, can be handled

via augmentation with a CRFID. Removing components that are energy hungry may

help designers further miniaturize these new IMDs. Alternatively, it may allow the

same devices to last longer before replacement.

In addition to the ultrasound-powered leadless pacemaker mentioned above, recent

research has revisited the idea that IMDs can be powered from outside the body.

Kim et al. performed a numerical study of power transfer from outside the body to a

cardiac implant and determined that a pacemaker could be powered via a 1 mm coil

antenna [85, 154]. The same group designed a system to power a locomotive implant

that can swim through blood or other fluids, propelling itself using Lorentz forces

while harvesting energy from an external supply [113].

Wong et al. design an integrated pacemaker circuit that requires only 8 µW in

operation [168]—minuscule in comparison to the milliwatts a typical “low-power”

radio requires (e.g., the CC2500 radio we used in the Noradio prototype requires at

least 20 mW to transmit [157]—three orders of magnitude more than Wong et al.’s

pacemaker chip).

6.5 Future Work

The results in Section 6.3 are only a preliminary indication that removing the

active radio from an emulated pacemaker may reduce overall energy consumption

and extend battery life. While we strove to meet the functional parameters of a

pacemaker outlined in public documents [16], many fundamental design details differ.

Real implantable cardiac devices commonly use custom low-power components—from

chips to batteries and even capacitors—that the manufacturers make in their own

facilities. We used off-the-shelf hardware with general-purpose components such as a

programmable microcontroller and radio, which partially explains the vastly different

projected battery life of our emulated pacemakers (Table 6.3). However, our choice
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to use off-the-shelf components offers an advantage: it resembles low-cost consumer

devices that are made en masse and require frequent battery changes. Noradio’s

approach to reducing operating energy may apply to these devices.

A sample rate of 5 Hz suffices to capture such metrics as pulse rate (in a normal

range) accurately, but it is not sufficiently high to capture all of the physiologically

interesting signals that an ECG can convey; a better rate is 20 Hz to capture signals

up to 10 Hz [37]. An informative experiment would be to increase the sample rate

and measure the energy consumption as the sample rate increased. The analog-to-

digital converter on our evaluation boards’ MSP430F5438A chips can sample at up

to 200 kHz, suggesting that a small increase in sample rate would have a negligible

effect on energy consumption from the ADC; however, the energy cost of transmitting

more frequently via the radio would likely be noticeable. This difference may have

implications for the simple sample-and-transmit strategy that Noradio currently uses.

6.6 Summary

Implantable medical devices (IMDs) are becoming increasingly connected to sys-

tems outside the body, resulting in proactive patient monitoring that improves thera-

peutic outcomes. IMDs that are fully implanted are usually powered by nonrecharge-

able batteries and use a radio to communicate with clinical systems and at-home

monitoring setups. The increasing connectivity of these devices results in more radio

use, which results in greater demand on the battery. This chapter asks: what if we

eliminated the radio’s portion of an IMD’s energy budget?

We develop a system called Noradio to evaluate the idea of replacing an active

radio with a transiently powered auxiliary device, namely a UMass Moo computa-

tional RFID, that provides asynchronous communication. We implement two versions

of an emulated pacemaker: one with an active radio, and one without (hence “No-

radio”), and keep all other parts of the system identical. Using CRFID-augmented
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communication for telemetry resulted in a 44% reduction of the entire board’s current

consumption versus the radio-equipped version. Using similar techniques on a real

pacemaker may significantly reduce the 15% portion of the battery’s power that is

budgeted for telemetry.

Noradio serves as a proof of concept to illustrate that augmenting parts of a system

with transiently powered computers can result in energy savings.
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CHAPTER 7

CONCLUSIONS

The key idea of this thesis is that software techniques can make energy harvesting

a practicable way to power computing devices. These techniques will make energy

harvesting a viable means to perpetually power some embedded devices that currently

use batteries. In the long term, the same principles may be applied to make computing

technology more robust in areas of the world that lack a reliable or accessible power

infrastructure.

This thesis presented Mementos, a system that automatically spreads long-running

computations over multiple bursts of execution whenever there is sufficient energy. I

evaluated Mementos in a trace-driven simulator that augments an existing cycle-

accurate simulator with a notion of energy. Observing that operating solely on

harvested energy introduces implicit trust that is undesirable, I described CCCP,

a system that safely outsources storage to the potentially malicious harvesting in-

frastructure. I described WISPer, an authentication and notification mechanism to

protect patients who use implantable medical devices. Finally, I presented Noradio,

a prototype emulated pacemaker that saves energy by replacing synchronous radio

communications with asynchronous TPC-augmented communications.

Opportunities for future work include: exploring the architectural and operating-

system implications of operating on harvested energy; building new hardware that

implements the TPC model; and designing ubiquitous-computing environments that

deeply embed TPCs and perform nontrivial computing tasks in a user’s environment.
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