21,740 research outputs found

    Systems Glycobiology: Past, Present, and Future

    Get PDF
    Glycobiology is a glycan-based field of study that focuses on the structure, function, and biology of carbohydrates, and glycomics is a sub-study of the field of glycobiology that aims to define structure/function of glycans in living organisms. With the popularity of the glycobiology and glycomics, application of computational modeling expanded in the scientific area of glycobiology over the last decades. The recent availability of progressive Wet-Lab methods in the field of glycobiology and glycomics is promising for the impact of systems biology on the research area of the glycome, an emerging field that is termed “systems glycobiology.” This chapter will summarize the up-to-date leading edge in the use of bioinformatics tools in the field of glycobiology. The chapter provides basic knowledge both for glycobiologists interested in the application of bioinformatics tools and scientists of computational biology interested in studying the glycome

    GlyGen: Computational and informatics resources and tools for glycosciences research

    Get PDF
    Although ongoing technical advances are accelerating the pace and sophistication of data acquisition in glycoscience, the transformation of these data to glycobiology knowledge, insight, and understanding is slowed by the limited number of tools that facilitate their integration with biological knowledge. Thus, to fill in the critical gaps, there is a need for a broadly relevant and sustainable glycoinformatics resource that can provide tools and data to address specific glycoscience questions. GlyGen is an integrated, extendable and cross-disciplinary glycoinformatics resource that will facilitate knowledge discovery in basic and translational glycobiology by integrating multidisciplinary data and knowledge from diverse resources. It will address glycobiology questions that can currently be answered only by extensive literature-based research and manual collection of data from disparate resources. The aims of the GlyGen project includes integrating and exchange of up-to-date glycobiology-related information and data with partnering data sources such as EMBL-EBI, NCBI, UniProt, UniCarbKB, and others; creating an intuitive web portal to search and browse for glycoscience knowledge that will also include off-line data analysis, data exploration, and mining. Furthermore, the GlyGen project includes the development of essential new information resources, namely the Glycan Microarray Database that will provide key information about the interactions of glycans with other biomolecules and a Glycan Naming Ontology (GNOme) that facilitates interpretation of incomplete structural information in the context of biological functions. GlyGen\u27s comprehensive data integration framework and valuable user\u27s feedback will provide unprecedented support for complex queries spanning diverse data types relevant to glycobiology, extending its scope beyond the mapping of glycan data to genes and proteins. The resource would be publicly available and will facilitate the sharing and dissemination of glycobiology knowledge. It will provide new opportunities for a systems-level understanding of glycobiology in disease and development, even for scientists who do not specialize in glycobiology

    Glycobiology of the olfactory system

    Get PDF
    The olfactory system is a highly plastic region of the nervous system. Continuous remodeling of neuronal circuits in the olfactory bulb takes place throughout life as a result of constant turnover of primary sensory olfactory neurons in the periphery. Glycoconjugates are very important in olfactory development, regeneration and function. This article deals with different aspects of glycobiology relevant for the olfactory system. Various anatomical? developmental and functional subdivisions of the olfactory system have been labeled with exogenous lectins. The application of reverse lectin histochemistry resulted in the visualization of endogenous lectins, involved in fasciculation of olfactory axons. Numerous glycoproteins, among them members of the immunoglobulin superfamily, the cadherins and integrins as well as different,glycolipids and proteoglycans can act as surface adhesion molecules in the olfactory system. The olfactory-specific form of the sialoglycoprotein neural cell adhesion molecule is implicated in olfactory neuronal and axonal guidance. Glycoconjugates including laminin, fibronectin and proteoglycans are abundant components of the olfactory extracellular matrix, influencing neurite outgrowth and cellular migration. Immunohistochemical labeling has revealed occurrence of the carbohydrate differentiation antigen, playing a role in neurulation and morphogenesis of the very early olfactory system. The synaptic vesicle glycoprotein, appearing also early in olfactory development, is used as a marker of olfactory tumors. Finally, membrane and transmembrane glycoconjugates as well as secreted glycoconjugates may act as olfactory receptor molecules

    Bioinformatics and molecular modeling in glycobiology

    Get PDF
    The field of glycobiology is concerned with the study of the structure, properties, and biological functions of the family of biomolecules called carbohydrates. Bioinformatics for glycobiology is a particularly challenging field, because carbohydrates exhibit a high structural diversity and their chains are often branched. Significant improvements in experimental analytical methods over recent years have led to a tremendous increase in the amount of carbohydrate structure data generated. Consequently, the availability of databases and tools to store, retrieve and analyze these data in an efficient way is of fundamental importance to progress in glycobiology. In this review, the various graphical representations and sequence formats of carbohydrates are introduced, and an overview of newly developed databases, the latest developments in sequence alignment and data mining, and tools to support experimental glycan analysis are presented. Finally, the field of structural glycoinformatics and molecular modeling of carbohydrates, glycoproteins, and protein–carbohydrate interaction are reviewed

    Genome-wide association study identifies _FUT8_ and _ESR2_ as co-regulators of a bi-antennary N-linked glycan A2 (GlcNAc~2~Man~3~GlcNAc~2~) in human plasma proteins

    Get PDF
    HPLC analysis of N-glycans quantified levels of the biantennary glycan (A2) in plasma proteins of 924 individuals. Subsequent genome-wide association study (GWAS) using 317,503 single nucleotide polymorphysms (SNP) identified two genetic loci influencing variation in A2: FUT 8 and ESR2. We demonstrate that human glycans are amenable to GWAS and their genetic regulation shows sex-specific effects with _FUT 8_ variants explaining 17.3% of the variance in pre-menopausal women, while _ESR2_ variants explained 6.0% of the variance in post-menopausal women

    The role of the mobile proton in fucose migration

    Get PDF
    Fucose migration reactions represent a substantial challenge in the analysis of fucosylated glycan structures by mass spectrometry. In addition to the well-established observation of transposed fucose residues in glycan-dissociation product ions, recent experiments show that the rearrangement can also occur in intact glycan ions. These results suggest a low-energy barrier for migration of the fucose residue and broaden the relevance of fucose migration to include other types of mass spectrometry experiments, including ion mobility-mass spectrometry and ion spectroscopy. In this work, we utilize cold-ion infrared spectroscopy to provide further insight into glycan scrambling in intact glycan ions. Our results show that the mobility of the proton is a prerequisite for the migration reaction. For the prototypical fucosylated glycans Lewis x and blood group antigen H-2, the formation of adduct ions or the addition of functional groups with variable proton affinity yields significant differences in the infrared spectra. These changes correlate well with the promotion or inhibition of fucose migration through the presence or absence of a mobile proton

    Mice lacking sialyltransferase ST3Gal-II develop late-onset obesity and insulin resistance

    Get PDF
    Sialyltransferases are a family of 20 gene products in mice and humans that transfer sialic acid from its activated precursor, CMP-sialic acid, to the terminus of glycoprotein and glycolipid acceptors. ST3Gal-II (coded by the St3gal2 gene) transfers sialic acid preferentially to the three positions of galactose on the Galβ1-3GalNAc terminus of gangliosides GM1 and GD1b to synthesize GD1a and GT1b, respectively. Mice with a targeted disruption of St3gal2 unexpectedly displayed lateonset obesity and insulin resistance. At 3 months of age, St3gal2-null mice were the same weight as their wild type (WT) counterparts, but by 13 months on standard chow they were visibly obese, 22% heavier and with 37% greater fat/lean ratio than WT mice. St3gal2-null mice became hyperglycemic and displayed impaired glucose tolerance by 9 months of age. They had sharply reduced insulin responsiveness despite equivalent pancreatic islet morphology. Analyses of insulin receptor (IR) tyrosine kinase substrate IRS-1 and downstream target Akt revealed decreased insulininduced phosphorylation in adipose tissue but not liver or skeletal muscle of St3gal2-null mice. Thin-layer chromatography and mass spectrometry revealed altered ganglioside profiles in the adipose tissue of St3gal2-null mice compared to WT littermates. Metabolically, St3gal2-null mice display a reduced respiratory exchange ratio compared to WT mice, indicating a preference for lipid oxidation as an energy source. Despite their altered metabolism, St3gal2-null mice were hyperactive. We conclude that altered ganglioside expression in adipose tissue results in diminished IR sensitivity and late-onset obesity.Fil: Lopez, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentina. Johns Hopkins University School of Medicine; Estados UnidosFil: Aja, Susan. Johns Hopkins University School of Medicine; Estados UnidosFil: Aoki, Kazuhiro. University of Georgia; GreciaFil: Seldin, Marcus M.. Johns Hopkins University School of Medicine; Estados UnidosFil: Lei, Xia. Johns Hopkins University School of Medicine; Estados UnidosFil: Ronnett, Gabriele V. Johns Hopkins University School of Medicine; Estados UnidosFil: Wong, G. William. Johns Hopkins University School of Medicine; Estados UnidosFil: Schnaar, Ronald L.. Johns Hopkins University School of Medicine; Estados Unido

    A human embryonic kidney 293T cell line mutated at the Golgi -mannosidase II locus

    Get PDF
    Disruption of Golgi -mannosidase II activity can result in type II congenital dyserythropoietic anemia and can induce lupus-like autoimmunity in mice. Here, we isolate a mutant human embryonic kidney (HEK) 293T cell line, called Lec36, that displays sensitivity to ricin that lies between the parental HEK 293T cells, whose secreted and membrane-expressed proteins are dominated by complex-type glycosylation, and 293S Lec1 cells, which only produce oligomannose-type N-linked glycans. The stem cell marker, 19A, was transiently expressed in the HEK 293T Lec36 cells, and in parental HEK 293T cells with and without the potent Golgi -mannosidase II inhibitor, swainsonine. Negative-ion nano-electrospray ionization mass spectra of the 19A N-linked glycans from HEK 293T Lec36 and swainsonine-treated HEK 293T cells were qualitatively indistinguishable and, as shown by collision-induced dissociation spectra, dominated by hybrid-type glycosylation. Nucleotide sequencing revealed mutations in each allele of MAN2A1, the gene encoding Golgi -mannosidase II: a point mutation in one allele mapping to the active site and an in-frame deletion of twelve-nucleotides in the other. Expression of wild-type but not the mutant MAN2A1 alleles in Lec36 cells restored processing of the 19A reporter glycoprotein to complex-type glycosylation. The Lec36 cell line will be useful for expressing therapeutic glycoproteins with hybrid-type glycans and provides a sensitive host for detecting mutations in human MAN2A1 causing type II congenital dyserythropoietic anemia
    corecore