178 research outputs found

    Sparse Stabilization and Control of Alignment Models

    Full text link
    From a mathematical point of view self-organization can be described as patterns to which certain dynamical systems modeling social dynamics tend spontaneously to be attracted. In this paper we explore situations beyond self-organization, in particular how to externally control such dynamical systems in order to eventually enforce pattern formation also in those situations where this wished phenomenon does not result from spontaneous convergence. Our focus is on dynamical systems of Cucker-Smale type, modeling consensus emergence, and we question the existence of stabilization and optimal control strategies which require the minimal amount of external intervention for nevertheless inducing consensus in a group of interacting agents. We provide a variational criterion to explicitly design feedback controls that are componentwise sparse, i.e. with at most one nonzero component at every instant of time. Controls sharing this sparsity feature are very realistic and convenient for practical issues. Moreover, the maximally sparse ones are instantaneously optimal in terms of the decay rate of a suitably designed Lyapunov functional, measuring the distance from consensus. As a consequence we provide a mathematical justification to the general principle according to which "sparse is better" in the sense that a policy maker, who is not allowed to predict future developments, should always consider more favorable to intervene with stronger action on the fewest possible instantaneous optimal leaders rather than trying to control more agents with minor strength in order to achieve group consensus. We then establish local and global sparse controllability properties to consensus and, finally, we analyze the sparsity of solutions of the finite time optimal control problem where the minimization criterion is a combination of the distance from consensus and of the l1-norm of the control.Comment: 33 pages, 5 figure

    Control and stabilization of waves on 1-d networks

    Get PDF
    We present some recent results on control and stabilization of waves on 1-d networks.The fine time-evolution of solutions of wave equations on networks and, consequently, their control theoretical properties, depend in a subtle manner on the topology of the network under consideration and also on the number theoretical properties of the lengths of the strings entering in it. Therefore, the overall picture is quite complex.In this paper we summarize some of the existing results on the problem of controllability that, by classical duality arguments in control theory, can be reduced to that of observability of the adjoint uncontrolled system. The problem of observability refers to that of recovering the total energy of solutions by means of measurements made on some internal or external nodes of the network. They lead, by duality, to controllability results guaranteeing that L 2-controls located on those nodes may drive sufficiently smooth solutions to equilibrium at a final time. Most of our results in this context, obtained in collaboration with R. Dáger, refer to the problem of controlling the network from one single external node. It is, to some extent, the most complex situation since, obviously, increasing the number of controllers enhances the controllability properties of the system. Our methods of proof combine sidewise energy estimates (that in the particular case under consideration can be derived by simply applying the classical d'Alembert's formula), Fourier series representations, non-harmonic Fourier analysis, and number theoretical tools.These control results belong to the class of the so-called open-loop control systems.We then discuss the problem of closed-loop control or stabilization by feedback. We present a recent result, obtained in collaboration with J. Valein, showing that the observability results previously derived, regardless of the method of proof employed, can also be recast a posteriori in the context of stabilization, so to derive explicit decay rates (as) for the energy of smooth solutions. The decay rate depends in a very sensitive manner on the topology of the network and the number theoretical properties of the lengths of the strings entering in it.In the end of the article we also present some challenging open problems

    Explicit approximate controllability of the Schr\"odinger equation with a polarizability term

    Full text link
    We consider a controlled Schr\"odinger equation with a dipolar and a polarizability term, used when the dipolar approximation is not valid. The control is the amplitude of the external electric field, it acts non linearly on the state. We extend in this infinite dimensional framework previous techniques used by Coron, Grigoriu, Lefter and Turinici for stabilization in finite dimension. We consider a highly oscillating control and prove the semi-global weak H2H^2 stabilization of the averaged system using a Lyapunov function introduced by Nersesyan. Then it is proved that the solutions of the Schr\"odinger equation and of the averaged equation stay close on every finite time horizon provided that the control is oscillating enough. Combining these two results, we get approximate controllability to the ground state for the polarizability system
    • …
    corecore