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Abstract

We present some recent results on control and stabilization of waves on 1 — d net-
works.

The fine time-evolution of solutions of wave equations on networks and, conse-
quently, their control theoretical properties, depend in a subtle manner on the topology
of the network under consideration and also on the number theoretical properties of
the lengths of the strings entering in it. Therefore, the overall picture is quite complex.

In this paper we summarize some of the existing results on the problem of control-
lability that, by classical duality arguments in control theory, can be reduced to that
of observability of the adjoint uncontrolled system. The problem of observability refers
to that of recovering the total energy of solutions by means of measurements made on
some internal or external nodes of the network. They lead, by duality, to controllabil-
ity results guaranteeing that L?-controls located on those nodes may drive sufficiently
smooth solutions to equilibrium at a final time. Most of our results in this context,
obtained in collaboration with R. Déager, refer to the problem of controlling the network
from one single external node. It is, to some extent, the most complex situation since,
obviously, increasing the number of controllers enhances the controllability properties
of the system. Our methods of proof combine sidewise energy estimates (that in the
particular case under consideration can be derived by simply applying the classical
d’Alembert’s formula), Fourier series representations, non-harmonic Fourier analysis,
and number theoretical tools.

These control results belong to the class of the so-called open-loop control systems.

We then discuss the problem of closed-loop control or stabilization by feedback.
We present a recent result, obtained in collaboration with J. Valein, showing that the
observability results previously derived, regardless of the method of proof employed,
can also be recast a posteriori in the context of stabilization, so to derive explicit decay
rates (as t — oo) for the energy of smooth solutions. The decay rate depends in a very
sensitive manner on the topology of the network and the number theoretical properties
of the lengths of the strings entering in it.

In the end of the article we also present some challenging open problems.

AMS suject classification: 34B45, 35L05, 74J05, 93D15, 35B37, 93B05, 93D15
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1 Introduction and main results

This article is devoted to the presentation of some results on wave propagation phenomena
in multi-link or multi-body structures constituted by a planar network of linear vibrating
strings and undergoing vertical displacements.

There exists a rich mathematical literature on multi-body mechanical systems constituted
by coupled flexible or elastic elements as strings, beams, membranes or plates since their
practical relevance is huge. In most cases they are systems of Partial Differential Equations
(PDE) on networks or graphs. The interested reader is referred to the books [82] and [6] for
an introduction to the theory of Partial Differential Equations on networks which is an active
subject since the early 80’s ([75], [88]). In [58] and [63] wide information may be found on
modeling and control issues. We also refer to [61] for a systematic analysis of the application
of domain decomposition techniques for networks. But elasticity and flexible structures are
not the only motivation for dealing with wave equations on graphs or networks. This topic
is also closely related to many other applications such as water supply and irrigation, in
which case the relevant models are often the Saint Venant equations, a first order hyperbolic
system (see [19], [20]).

The model we address in these notes is, to some extent, the simplest one in this context
but, as we shall see, it is complex enough to present a rich variety of new qualitative prop-
erties. Indeed, the interaction between the different components of the multi-link structure
generates new dynamics that can not be predicted by simply analyzing the dynamics of each
component separately. Doing that requires taking into account various ingredients as the
topology of the graph of the network, the lengths of the strings entering in it, the boundary
conditions on the external nodes, the joint conditions, etc.

The goal of these notes is to present some by now well-known results that illustrate this
complex dynamics, indicating the needed analytical tools and pointing towards some open
problems and directions of research. We mainly focus on the control theoretical problems
of observation, control and stabilization. These issues are intrinsically interesting but, in
fact, constitute a way of analyzing and describing the fine propagation properties of waves
in these media. We mainly focus on the case where controllers, observers and dampers are
located in one single external node of the network. This is somehow the most degenerate
situation, in which, control theoretical properties are harder to be fulfilled. The methods
and ideas we develop for addressing this case can then easily be adapted to deal with other
problems in which, in particular, several controllers are located in different nodes (internal
or external ones) of the network.

We follow closely our previous book on the subject [37], devoted mainly to the problem
of controllability and our more recent article on the stabilization [98], incorporating some
new results and material.

As we mentioned before, we consider the scalar 1 — d wave equation on a finite planar
network of strings. Deformations are assumed to be perpendicular to the reference plane.
The main advantage of considering this model, as compared to other more complex equations
or systems along the graph, is that, while waves propagate within one of the strings, one
can have a complete and explicit representation through the classical d’Alembert formula.
This allows to easily follow the propagation of the energy along each individual string. But,
the overall dynamics turns out to be rather complex, due to the interaction of the various
strings at the joints. Indeed, when waves reach a node or junction point, part of the energy
bounces back and part of it is transmitted to the other strings with the same common node.
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This occurs whenever some wave reaches a node or the external boundary (in which, in the
case of conservative boundary conditions, the whole energy bounces back).
Then, the overall picture necessarily depends on a number of ingredients:

e The topology of the graph;
e The lengths of the various strings constituting the graph;
e The boundary conditions imposed at the extremes of the graph;

e The joint conditions.

In these notes we consider the simplest model involving the so-called Kirchhoff type
joint conditions. Other joint conditions can also be considered so that the model under
consideration is well-posed. That is for instance the case when imposing dynamical point-
mass equations on the joints. But, in that case, the dynamics is even more complex since
the phenomena we address here have to be complemented with the possibility that waves
have a different degree of regularity on the various strings involved in the network, a fact
that was observed in [49] in the simplest case of two vibrating strings connected by a point
mass and later extended to the multi-dimensional case in [55] and [66].

Thus, the results we present here are not exhaustive, by any means. However, most of
the ideas and methods we develop here can be adapted and extended to more sophisticated
and realistic wave models in networks.

As we mentioned above, one of the issues we address is that of observability. It concerns,
roughly speaking, the issue of determining whether one can estimate the total energy of
vibrations by partial measurements made, for instance, in one or several interior or external
nodes of the network. ' It is therefore intimately related to the way the energy of solutions
is distributed along the various components of the multi-structure, as time evolves. This
problem is relevant, not only because it is a way of analyzing deeply the nature of vibrations,
but because it is also of immediate application in the context of inverse and control problems.

We also present the consequences of the observability properties in what concerns con-
trollability issues. In this context, we are interested in driving the solutions to a given final
state by means of the action of one or several controllers located in some of the internal
nodes and/or the extremes of the network. 2 The problems of observability and controlla-
bility are dual one to each other and, therefore, the observability inequalities have immediate
consequences in the controllability setting.

It is however important to underline that one of the difficulties related to dealing with
networks and not the standard wave equation in an open domain of the Euclidean space or
a smooth manifold is that, even if observability holds, the observed norm is weaker than the
energy of the system, in analogy of the well-known behavior for the 1 — d wave equation
with point-wise interior observations. 3

As we shall see, for instance, when the network is a tree, observing/controlling in all but
one external vertices suffices to get full observation or control in the natural energy spaces
(see [63]). This case is similar to that of the wave equation in a bounded domain with a

L As mentioned above, most of this article is devoted to the case in which the observation is only done on
one external node of the network.

20nce more, we shall focus in the case in which one single controller acts on one of the external nodes of
the network.

3We refer to [111] and [113] for relatively complete and updated surveys on the state of the art of the
observability and controllability of PDE’s.
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control on a sufficient large subset of the boundary, fulfilling the so called Geometric Control
Condition (GCC) by Bardos, Lebeau and Rauch [18]. But the problem becomes immediately
much more complex when the control misses two external vertices. Then, diophantine
approximation issues enter, as it happens for the internal point-wise control of the 1 — d
wave equation ([44]). The situation is even more complex when the graph contains closed
circuits. Then there may exist eigen-vibrations of the network that remain concentrated and
trapped in that circuit, without being propagated to the rest of the network. In those cases,
obviously, it is impossible to achieve the observation and/or control property if the observer
or controller is not located on the circuit where the solution is trapped. But whether a circuit
may support a localized eigen-vibration depends also strongly on the number theoretical
properties of the lengths of the strings composing the circuit. This is an issue that is not
completely well understood.

Our main result for general networks asserts that the problem of observability or control-
lability for a sufficiently large time (twice the total length of the network) is equivalent to
the property that all eigen-vibrations to be observable. The later is, obviously, a necessary
condition for observability and controllability. Our result shows that it is also sufficient for
observability /controllability to take place in spaces that can be described in Fourier series
in terms of a summability condition of the Fourier coefficients with suitable weights. This is
done using a corollary due to Haraux and Jaffard ([50]) of the celebrated Beurling-Malliavin’s
Theorem. However, characterizing the rate of decay of these weights for high frequencies
(or, in other words, the spaces in which observability/controllability holds) in terms of the
topological and geometrical properties of the graph is an open problem.

The overall picture is quite complex, and still not complete. We shall summarize the
known results in this topic in Section 3.

In what concerns the problem of stabilization, recently, a black-box strategy has been
developed in [98] allowing to automatically transfer the known observability/controllability
results into stabilization ones. This provides a new way of getting stabilization results and
complements the existing literature on the subject (some of the main references are collected
in the bibliography at the end of the paper). Roughly speaking, whenever the wave process
in the network is observable/controllable by some internal or exterior nodes, then the system
can also be stabilized by feedback laws acting on the same nodes. But, of course, there is
also a price to pay for the fact that the observation/control properties only hold in weaker
spaces. In the context of stabilization, this amounts to get slow decay rates for smooth
solutions (say, in the domain of the generator of the semigroup) and not exponential ones.
The decay rate, roughly speaking, is polynomial when there is a loss of a finite number of
derivatives in the observation/control process, but it may be even slower, say, logarithmic,
when an infinite number of derivatives is lost in the observation/control process. Once
again, the precise weak norm in which observability and/or controllability holds, depends
on diophantine properties of the mutual lengths of the strings of the network.

The same issues arise for all other models like beams, Schrodinger or heat equations.
The theory of observation and control of these models in open domains of R™ is by now
quite well developed (we refer to the survey articles [109] , [111] and [113] for an updated
account of the developments in this field). However, very little is known in the context of
PDE’s on networks. However, as pointed out in [37], one can transform the results obtained
in the context of the wave equation in networks into results on the control of these systems
in the same networks. In [37] this was proved to be true using the classical strategy by D.
L. Russell [94] that was the first one to observe that the control to zero of the heat equation
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can be derived as a consequence of the exact controllability of the wave equation in domains
of the Euclidean space. Recently, this issue has been further developed and clarified by L.
Miller by the so-called transmutation method (see [79]), using the Kannai transform. We
shall not develop this issue here but, for these models, as expected, due to the infinite speed
of propagation, the observability inequalities hold in an arbitrarily small time ([37]). It is
however important to underline that, so far, the direct analysis of the control/observation
properties of the Schrodinger and heat equations on networks has not been addressed.

As we have already mentioned, this article collects the existing results on simple 1 — d
models on networks. Much remains to be done in this field. At the end of this article we
include a list of open problems and possible subjects of future research.

For those who will address these topics for the first time, we refer to [77] for an introduc-
tion to some of the most elementary tools on the controllability of PDE’s and to the survey
articles [109], [111] and [113], for a description of the state of the art in this field.

This article is organized as follows. Section 2 is devoted to present the model under
consideration: the wave equation on a 1 — d network of strings. In Section 3 we make a
brief presentation of known results on the observability and controllability of this model. In
Section 4 we present known results on the problem of stabilization. In Section 5 we present
and discuss some possible further developments of the methods and results in the paper and
some open problems and future directions of research.

2 The wave equation on a network

Let us first recall some definitions and notations about 1 — d networks used in the paper.
We refer to [2, 81, 99, 37] for more details.
A 1 — d network NV is a connected set of R™, n > 1, defined by

M
N = U ej
Jj=1

where e; is a curve that we identify with the interval (0, I;), I; > 0, and such that for k # j,
€; Neg is either empty or a common end called a vertex or a node (here ; stands for the
closure of e;).

For a function v : N'— R, we set v/ = u|e; the restriction of u to the edge e;.

We denote by £ = {e;; 1 < j < M} the set of edges of N, by V the set of external nodes
of A/, and by N the number of these external nodes. For a fixed vertex v, let

& = {je{l,..M};vee}

be the set of edges having v as vertex. If card (£,) = 1, v is an exterior node, while if card
(€,) > 2, v is an interior one. We denote by Ve,: the set of exterior nodes and by V;,; the
set of interior ones. For v € V.., the single element of &, is denoted by j,.

Now we consider a planar network of elastic strings that undergo small perpendicular
vibrations. At rest, the network coincides with a planar graph G contained in that plane.

Let us suppose that the function w/ = u/(t,x) : R x [0, ;] — R describes the transversal
displacement in time ¢ of the string that coincides at rest with the edge e;. Then, for every
t € R, the functions u’, j = 1,..., M, define a function #(t) on G with components u’
:R x [0,4;] = R given by v/ (¢,z) = u?(t,x;(x)).
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As a model of the motion of the network, we assume that the displacements v’ satisfy
the following non-homogeneous system

wl, —ul, =0 inRx[0,4], j=1,...,M,

uvi(t,vy) = h(t) teR,

uvi (t,v;) =0 teR, i=2,...,N, (1)
ul(t,v) = uF(t,v) teR, v &V, j, k€&,

Zjel‘, 6nui(_t,v):0_ _ teR, v eV,

uw (0,2) = uh(z), ul(0,2)=wul(x) z€[0,¢;], j=1,..,M.

The first equation in this system represents the classical 1-d wave equation on the net-
work. Within each of the M strings of the network the d’Alembert equation is fulfilled. The
second and third equalities reflect the condition that over the exterior node v; a control
h = h(t) acts to regulate its displacement, while the remaining N — 1 exterior nodes, are
fixed. The fourth and fifth relations constitute the Kirchhoff joint conditions, expressing
the continuity of the network and the balance of forces at the interior nodes. Finally, the
last equation imposes the initial deformation and velocity of the strings (i.e., at time ¢ = 0).
The pair (@, w1) is called initial state of the network.

Here and in the sequel 9,,u (t, v) denotes the exterior normal derivative of u/ at the node

Thus, (1) corresponds to a network with one controlled exterior node. Similar problems
can be formulated when the controller acts on an interior node or when several controllers
act simultaneously, either on interior or exterior nodes. We refer to [37] for a discussion of
some of these problems.

For a proper functional analysis of this system, it is convenient to introduce the following
Hilbert spaces:

M
V={ue HHl(O,&) cut(v) = w (V) if v €Vipy and u' (V) = 0 if v EVeus ),
i=1

M
H=]]L%0.4),

i=1

endowed with the Hilbert structures

M M 4;
< U, W >y = E <u',w' >pgi0,)= E / uywedz,
i=1 i=170

M M e,
= - i _ i,
< U, W >ppt = E <wu',w' >p20,0)= E / u'w'dx,
i=1 i=1"0

respectively. Besides, we will denote by U = L2(0,T'), the space of controls. We also denote
by W the product eergy space W =V x H.

Since the imbedding V' C H is dense and compact, when H is identified with its dual H’
by means of the Riesz-Fréchet isomorphism, we can define the operator —Ag : V — V' by

<7AG7-_L7 1_)>V/><V - <ﬂ7 1_)>V

The operator —Ag is an isometry from V to V’. The notation —Ag is justified by the fact
that, for smooth functions @ € V', the operator —Ag coincides with the Laplace operator.
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The spectrum of the operator —Ag is formed by an increasing positive sequence (tin)nen
of eigenvalues. The corresponding eigenfunctions (6, ),eny may be chosen to form an or-
thonormal basis of H.

The spaces V' and H may be characterized as

V = {u:Zunﬁnz |u||%/:zz,unui<oo},

neN neN
H = {u:Zuan: ||a||% ::Zui<oo}7
neN neN

and the norms of V and H are equivalent to ||.||y, and ||.|| 7, respectively. The spaces V and
H are Hilbert spaces with respect to the scalar products that generate the corresponding
norms.

System (1) can be shown to be well-posed in an appropriate functional setting by means
of the standard transposition method (see [72]).

To implement the method of transposition we need to consider the adjoint system:*

L=, =0 mRx[0,4], j=1,.,M,

¢’ (t,v;) =0 teR, j=1,..,N,

¢ (t,v) = ¢*(t,v) teR, v EVi, jke&, (2)
Zje]v anqu (t,V) =0 te Ra v GVinta

¢ (0,7) = ¢6($), qﬁi(O,x) = ¢jl(a:) zel0,4], j=1,.,M.

The solution of the adjoint system (2) with initial data

G0 =Y o n0n, $1=>_ b1 ,0n, (3)

neN neN

can be written in Fourier series as follows:

ot x) = Z(¢O,n cos \/nt + % Sin \/fint) 0, (). (4)

neN

When (¢g, ¢1) € V x H, by standard variational or semigroup methods it can be shown that
the solution ¢ satisfies

¢ € C([0,T;V)[()C([0,7); H), (5)

for all T' > 0.
For a classical smooth solution @ of (1), the energy is defined as the sum of the energies
of its components, that is,

E;(t) = Jiw:lEuj (t) with E.(t):= ;/ij ( u{(t,w)'g + ’ufn(tx)’?) dz.

This energy satisfies
M

d E;(t) = Z wl(t, v;)Onu? (t, V). (6)

dt

4More rigorously, for the adjoint system, the initial data should be given at time t = T', but the system
under consideration being time-reversible, we may consider equally that the initial data are given at t = 0.
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In particular, for the adjoint system (2), the energy is conserved for all ¢:
E;(t) = E4(0),

for every t € R. Besides, if the initial data are as in (3) then

1 Los 7
E; = §Z(un¢37n+¢in) = §(||¢oll?/+\|¢1lliz)~ (7)

neN

For every s € R we also consider the Hilbert spaces

V= {u = Un O, : Ha||§ = Zu;|un|2 < oo} ) (8)

neN neN

h® = {(un) : H(un)Hi = ZﬂmunF < 00}7 (9)

neN

endowed with the norms |-||,, where (u,) denotes a sequence of real numbers u,. The
canonical isomorphism ) Unb, — (uy,) is an isometry between V* and h*.

Let us observe that V* is the domain of (—Ag)? considered as an unbounded operator
from H to H. Besides, V = V! and H = V°.

Further, we introduce the Hilbert spaces
We=Vs x Vet
endowed with the natural product structures. We then have
W=V x H, WY =HxV".

For initial state (@g, 1) € W? the solution of the homogeneous problem ((2) may be defined
by (5) and
¢ € C(R;V*)(CHR; V1),
Furthermore, the solutions of the adjoint system, for all 7" > 0 finite and every exterior
node v € V., satisfy the following hidden regularity inequality

T
/ 10,09 (1, v)Pdt < CE;. (10)
0

The inequality (10) may be proved using d’Alembert formula for the representation of the
solutions of the wave equation in each string of the network, or multiplier techniques (see
7). |

If we multiply the first equation in (2) by w’ and integrate over [0,¢] x [0, ¢;] it holds,
after integration by parts,

t M Zj ) ) X )
/ hOnd* (7, v1)dT = E / (uJ (t, )Pl (t, ) — ul(t, z)d (¢, x)) dz [§.
0 = Jo

We consider this identity as the definition of weak solution @ of (1) in the sense of distri-
butions. Given h € L?(0,T), as a consequence of (10), this solution is well-defined, unique
and, by (10), has the property

ue C([0,T]: H)(C'([0,T]; V"), (11)
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together with the estimate

1@l Lo 0,71y + [|Ut]| oo 0,7:v7) < Cll[(t0, @r)|[mxve + [|h]|L2(0,1)]- (12)

The control problem in time 7" consists in determining for which initial states it is possible
to choose the control h € L%(0,T), such that the system reaches the equilibrium position at
time T'. Depending on how strict we are on requiring the state to reach equilibrium, several
notions or degrees of controllability may be distinguished.

More precisely, given T' > 0, we say that the initial state (4o, u1) € H x V', is exactly
controllable (or simply controllable) in time T, if there exists a function h € L?(0,T),
such that the solution of (1) with initial state (ug, 41) satisfies

Uly=1 = tU|=7 = 0.

The system is said to be approximately controllable in time 7" when for every ¢ > 0
there exists a control i such that the corresponding solutions u° verifies

1@ |, @) | v < e

Here we shall mainly focus on the problem of controllability and present the existing
results guaranteeing that the system is controllable within a class of initial data that one
might identify.

Using the definition of solutions of the state equation by means of transposition the
control property can be characterized in the following manner:

PROPOSITION 2.1 The initial state (tg, 1) € H x V' is controllable in time T with control
h € U if, and only if, for every (¢o, 1) € V x H the following equality holds

T
—(to, $1) g + (U1, po)vixy = / h(t)0n ™1 (t,v1)dt, (13)
0

where ¢ is the solution of system (2) with initial state (¢o, ¢1).

The relation (13) suggests a minimization algorithm for the construction of the control h.
If we look for the control in the form h = —8,1(v1,t), where 1) is a solution of the homoge-
neous system (2), then the equality (13) is the Euler equation I'(3g, 1) = 0 corresponding
to the quadratic functional I : V x H — R defined by

- 1 T ) _
I(¢o, P1) = 5/0 0,,0" (t, v1)|2dt + (1o, ¢1) — (ti1, Po).

Therefore, if (g, 11) is a minimizer of I, the relation (13) will be verified. The functional
1 is continuous and convex. So, in order to guarantee the controllability of an initial state
(g, 1) € H x V' it is sufficient that I be coercive. This is the central idea of the Hilbert
Uniqueness Method (HUM) introduced by J.-L. Lions in [71].

The coercivity of the functional is equivalent to the following observability inequality:

(o, )| < C / 10,6 (1, v)|dt, (14)

for all solutions of the adjoint system, where || - || stands for a norm to be identified.
Once the norm || - ||« has been identified and the observability inequality (14) proved,
the controllability property can be guaranteed to hold for all initial data (@g, 1) in W*)’,
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the dual of W*, the Hilbert space obtained as the closure of W! with respect to the norm
- -

The main issue is then the obtention of inequalities of the form (14), giving quantitative
informations about the norm || - ||«, so that the spaces in which observability and controlla-
bility hold, W* and (W*)’, respectively, might be identified. These issues depend in a very
sensitive manner on the topological and number theoretical properties of the network under
consideration.

As we shall see later, the problem of stabilization can also be solved once the observability
inequality (14) is well understood. Indeed, we shall present a black-box strategy recently
developed in collaboration with J. Valein [98], allowing to get observability inequalities
(and, consequently, decay properties) for the solutions of wave equations in networks with
dissipative boundary conditions, as a consequence of their conservative counterparts.

3 Main results on observability and controllability

3.1 Summary of known results

The state of the art in what concerns the observability/controllability problem is more or
less the one presented in [37], where the following three cases, in increasing complexity, were
discussed. We summarize here the known main results.

e The star. In the star-like network a finite number of strings are connected on a single
point by one of their extremes. This is a particular case of a tree-like network that we
shall discuss below.

A star-shaped network.

If the observation/control acts on all but one external vertices of the star, one gets
observability /controllability in the optimal energy spaces. In other words, we get (14)
with W* = W1,

To the contrary, in the opposite case in which the observation/control is only applied in
one external vertex, as we are doing here, then the space of observation and/or control
can be described in Fourier series by means of suitable weights depending on the lengths
of the strings entering in the star. These weights depend on the ratios of the lengths of
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the strings and, in particular, on their irrationality properties. In case when some of
the non-controlled strings are mutually rational, some of these weights vanish and then
the observability /controllability properties fail to hold. To the contrary, when they are
all mutually irrational, all these weights are strictly positive but their lower envelop
tends to zero for high frequencies so that there is always some loss in the spaces in
which the observability/controllability problems are solvable. How important this loss
is depends on the diophantine approximation properties of the quotients of the lengths.
In particular, the weights may degenerate exponentially when some of the quotient of
the lengths is a Liouville number. But, regardless of the diophantine properties and
the nature of the spaces in which the observability /controllability properties hold, the
time needed for observation turns out to be twice the sum of all the lengths of the
strings of the networks.

It is interesting to analyze the relation of this result with the so-called Geometric Con-
trol Condition (GCC) introduced by Bardos, Lebeau and Rauch [18] in the context
of the boundary observation and/or control of the wave equation in bounded domains
of R". The GCC requires that all the rays of Geometric Optics enter the observation
region in a finite, uniform time, which turns out to be the minimal one for observa-
tion/control. In the case of the star shaped network this would correspond to the
maximum of sum of the lengths of any pair of two strings.

But this time is insufficient for the control from only one end-point. As we mentioned,
above, indeed, the time needed is twice the sum of all the lengths of all the strings
of the star-shaped network. This control time is closer to the one one gets when
one string is controlled at an interior point or two strings are controlled by a single
control on a common vertex. In that case the minimal control time is 2(¢; +¢5) and not
2max(l1,03), {1, {2 being the lengths of the two strings. The wave equation is a second
order problem and therefore, even in 1 — d, for a point-wise observation mechanism to
be efficient we need to measure not only the position, but also the space derivative.
This implies that a necessary condition for observation/control is that all waves pass
twice through the observation point. This is guaranteed when the time of control is
larger than 2(¢; + ¢2). But, in fact, passing twice by the observation point is not
sufficient either. The irrationality of the ratio ¢;/¢5 is needed to guarantee that, when
passing through the observation point the second time, the solution is not exactly at
the configuration as in the first crossing, which, of course, would make the second
observation to be insufficient too. Finally, even when ¢;/¢5 is irrational, we cannot get
a uniform bound of the energy of the solution but rather a weaker measurement in a
weaker norm. The nature of this norm, which is represented in Fourier series by means
of some weights depending on ¢; /{5, depends very strongly on the irrationality class
to which the number ¢; /¢5 belongs. In fact, even in the most favorable case, i.e., when
01/¢5 is an algebraic number of degree two, one looses one derivative with respect to
the expected energy norm.

We refer to [37] for an in depth discussion of the problem of simultaneous control of
a finite number of strings and its connections with the problem of the control of star
networks.

e The tree. The tree-like network is a generalization of the star-like one. As we said
above, it is well known that, when all but one external nodes of the network are
observed on a tree-like configuration, the whole energy of solutions may be observed
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(see [?]). This can be easily seen by sidewise energy estimates for the solutions of
the wave equation. In this case the observation inequality holds in the sharp energy
space in a time which is twice the length of the longest path joining the points of the
network with some of the observed ends, which is much smaller than twice the total
length of the network, which was the time needed for the observation from a single
end in the case of stars mentioned above. This smaller observability time is the one
that coincides with the one given by the GCC in the case of waves in domains of the
Euclidean space.

A tree-shaped network.

In the opposite case in which the observation is made at one single extreme of the
tree-like network, the observation time turns out to be, again, twice the sum of the
lengths of the strings forming the network.

But for the observability inequality to be true in the case of the tree one needs a
condition extending the one that, in the case of stars, requires the strings to have
mutually irrational lengths. In [37] it was observed that this condition can be recast
in spectral terms: two strings have mutually irrational lengths if and only if their
Dirichlet spectra have empty intersection.

The latter condition turns out to be the appropriate one to be extended to general
trees: the wave equation on a tree is observable from one end if and only if the spectra
of all pairs of subtrees of the tree that match on an interior node are disjoint.

This allows showing, in particular, that, generically within the class of trees (i. e.
for almost all tress), this property is satisfied and then, the wave process is ob-
servable/controllable from one single node. But the space in which the observabil-
ity /controllability holds depends in a subtle manner on the distance between the var-
ious spectra of the corresponding subtrees and how it vanishes asymptotically at high
frequencies.

Note however that the identification of the precise norm [|-||. in which the observability
inequality (14) holds is a delicate issue.

e General networks. The characterization we have given of controllable stars and
trees is hard to be extended to general graphs. Indeed, in the general case, we lack of
a natural ordering on the graph to analyze the propagation of waves and, for instance,
when the graph contains cycles, the condition of empty intersection of subgraphs is
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hard to extend. Actually, as we mentioned above, the presence of closed circuits may
trap the waves thus making impossible the controllability /observability properties to
hold from an external node.

Thus, in the analysis of general graphs, we proceed in a different way by applying a
consequence of the celebrated Beurling-Malliavin’s Theorem on the completeness of
families of real exponentials obtained by Haraux and Jaffard in [50] when analyzing
the control of plates. Using the min-max principle, one can show that the spectral
density of a general graph is the same as that of a single string whose length, L, is the
sum of the lengths of all the strings entering in the network. Then, when the time is
greater than twice the total length, as a consequence of Beurling-Malliavin’s Theorem,
we deduce that there exist some Fourier weights so that the observation property holds
in the corresponding weighted norm if and only if all the eigenfunctions of the network
are observable.

So far we do not know of any necessary and sufficient condition guaranteeing that all
the eigenfunctions are observable in the general case. However, this condition, in the
particular case of stars and trees discussed above turns out to be sharp and equivalent
to the ones we have identified in each particular case: (a) the condition that lengths
of the strings are mutually irrational in the case of stars or (b) that the spectra of all
pairs of subtrees with a common end-point to be mutually disjoint in the more general
case of trees.

3.2 The weighted observability inequality

In the previous section we have described the main existing results on the observability
of graphs distinguishing three different cases, in increasing complexity: the star, the tree
and general graphs. In each case, under suitable assumptions, we obtain the observability
inequality (14) for a suitable norm || - ||«. This norm can be characterized in terms of the
Fourier coefficients by suitable weights. This subsection is devoted to explain this fact, which
plays a critical role in the control and stabilization results one can get out of this analysis,
and that will be discussed in the next section.

Recall that if we suppose that (¢(9), ¢(1)) € W', then problem (2) admits a unique
solution

»€CR; V)NCHR; H).

The observability inequalities we have described can be rewritten in terms of the Fourier
expansion (4) as follows:

2

T
St + ot <€ [ |5 (15)

n>1

This holds in the situations described above, under the corresponding assumptions on the
network, for T large enough (twice the sum of the lengths of all the strings enetring in the
network, I’ > 2L) and for a suitable observability constant C' > 0 and weights {¢,, },,>1. The
norm || - ||« arising in the observability inequality is therefore as follows:

1/2

n>1
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Obviously, the nature of this norm depends on how fast the weights {¢,,}n>1 tend to zero
as n — 00.

Recall however that, in each case, extra assumptions are needed to ensure that the
weights ¢2 are strictly positive for every n € N*.

One of the most interesting open problems in this context is to give sharp sufficient
conditions on the network so that these weights have a given asymptotic lower bound as
n — o0o. At this respect, the case of the star network is the simplest one: it then suffices to
impose diophantine conditions on the quotients of the lengths of the strings entering in the
network to get those lower bounds.

4 Stabilization

4.1 Problem formulation

So far we have considered an open-loop control problem. In this section we discuss the
closed-loop counterpart in which the goal is to find suitable feedback mechanisms ensuring
the decay as t — oo of solutions.

Recall that, in the control and observation problems above we have distinguished one
vertex v; among all the exterior ones V. ;: the one in which the control or the observation is
being applied. The rest of the nodes in which the homogeneous Dirichlet boundary condition
holds for the control problem is denoted by Vp. In this way, we distinguish the conservative
exterior nodes, Vp, in which we impose Dirichlet homogeneous boundary conditions, and
the one in which the damping term is effective, vi. To simplify the notation, we will assume
that vy is located at the end 0 of the edge e;.

The system under consideration then reads as follows:

Tyl Tyl O<z<ljt>0Vje{l, ..M},
Y (v, t) =y (v, ) Vj, 1 €&y, V E Ving, t >0,
Fe(v, 1) =0 YV € Vint, t > 0,
i€ty (17)
yv(v,t) =0 Vv € Vp,t >0,
2 (0,t) = 20, 1) V>0,
5(0) = go. (0) =7,

where 9y’ /0n;(v, .) stands for the outward normal (space) derivative of y’/ at the vertex
v. Similarly the normal derivative at the vertex vi = 0 where the dissipative boundary
condition is imposed is denoted by —dy*(0, t)/dx, y* being the deformation of the first edge
with extreme v; = 0. The deformation of the network at that point is given by y'(0,¢). As
usual, we denote by 7 the vector ¥ = (y7);=1..._ -

The above system has been considered in a number of articles where the decay rate of
solutions has been investigated in some specific examples and, recently, an unified treatment
has been given in [98]. We briefly present here the main ideas and results.

In order to study system (17) we need a proper functional setting which is slightly
different to the one considered until now because of the damped boundary condition on one
of the nodes. To be more precise, the space V' above has to be replaced by:

M
Vp={y¢€ H HY0,45) : 4 (v) = y*(v) if v € Ving, V4, k € & and y/v(v) = 0if v €Vp}.

j=1
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The only difference between the space V' above and the new one Vp is that, in the later, we
do not impose the homogeneous Dirichlet boundary condition on v; = 0.
It is easy to see by semigroup methods that this dissipative system is well posed in in
the Hilbert space
WD = VD X ]'t[7

equipped with the canonical norm.
Then, for an initial datum in Wp := Vp x H, there exists a unique solution such that

g € C([0,00); Vp) [ C([0, 00); H). (18)

Moreover, the solutions remain in D(Ap), the domain of the operator Ap, for all ¢ > 0
whenever the initial data belong to D(Ap):

M
ayl
. 2 . . 2d —
D(Ap) :=={(y, 2) € (VDmHH (0, 1;))xVp Z anJ =0, Vv € Vint }.
j=1 JEEy
For this dissipative system the energy satisfies the energy dissipation law
d 8y ?
ZE(t) = < 1

and therefore it is decreasing.
Integrating the expression (19) between 0 and T', we obtain

/0 (aa%: ©, t)>2dt=Ey(0> — Ey(T) < Ey(0).

This estimate implies that 38—{(0, -) belongs to L2(0, T) for finite energy solutions.

The main goal of this section is to show how the results of previous sections on ob-
servability /controllability can be used to derive energy decay rates as t — oo for smooth
solutions in D(Ap). Obviously, the better the observability /controllability results, faster
decay rates will be obtained.

Note, however, that in the context of observability/controllability we have considered
only Dirichlet boundary conditions while in here we are imposing a dissipative boundary
condition on one node. Thus, we need to reduce the problem of getting decay results for
the damped systems into the one of observability inequalities for the conservative one with
Dirichlet boundary conditions on all the exterior nodes. To do this we proceed in two steps:

e We first reduce it to the case of conservative Dirichlet-Neumann boundary conditions,
e to later reduce it to the case of purely Dirichlet conditions.

As we shall see, overall, this reduction argument allows obtaining an observability in-
equality for 7 out of the known ones for the solutions of the Dirichlet problem. The obtained

observability inequality reads
2
<C/ ( Ot>dt, (20)

for an energy E; (0) that we shall make precise below but that, definitely, will be weaker
than the energy norm.
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To obtain explicit decay rates out of this weak observability inequality we use an inter-
polation inequality which is a variant of the one from Bégout and Soria [21] and which is a
generalization of Holder’s inequality. For this to be done we need to assume more regularity
of the initial data.

To be more precise we shall consider initial data (g, 71) € X := [D(Ap), Wp]|,_, for

0 < s < 1/2 and deduce an interpolation inequality of the form

1§%<Eum>mmﬂm&

CE,(0) ) OB, (0) (21)

where @ is an increasing function which depends on s and on the weak energy E; under
consideration.
The previous interpolation inequality implies

) . E;(0)
E; (0) 2 CEG(0)®" | — - ————5— | -
7 (0) = CE;(0) (omwmmw&>

With (19) and (20), we obtain

-1 E?j(o)
E;(0) — E4(T) > CE(0)&; ' [ ——22 |,
(0) (1) > 0) (C” [l (%o, y1)||xs>

which implies, by the semigroup property (see Ammari and Tucsnak [10])

> 0.By(0) < 08 (2 ) o m)lf (22)
t+1 s

Obviously, the decay rate in (22) depends on the behaviour of the function ®4 near 0. Thus,
in order to determine the explicit decay rate, we need to have a sharp description of the
function @, which depends on s and on the energies E; and E; and thus on the nature of
the weak energy E7 in an essential way and this depends on the topology of the network
and the number theoretical properties of the lengths of the strings entering in it.

This approach allows getting in a systematic way decay rates for the energy of smooth
solutions of the damped system as a consequence of the observability properties of the
undamped one.

The key ingredients of the proof that remain to be developed are the following:

e To get the weak observability inequality (20) out of the previous results on the observ-
ability of the Dirichlet problem:;

e To derive the interpolation inequality (21) with a precise estimate on the behavior of
D,.

4.2 Observability for the damped system

This subsection is devoted to explain how the weak observability inequality (20) can be
proved as a consequence of the results of previous sections on the Dirichlet problem on the
same network.

Let us explain how the observability results of the purely Dirichlet case discussed in
the previous sections can be applied directly to get an inequality of the form (20) for the
solutions of (17).
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For that, we decompose 7, the solution of (17), as the sum of ¢, solution of (2), and a
reminder term €:
y=¢+e
Recall that ¢ is a solution of (2) with appropriate initial data (7o — ya(0)7, §*), where 7 is
a given smooth function such that v1(0) = 1 and vanishing on all other external nodes.
Applying (15) to the solution ¢ of (2), we obtain the following weighted observability
estimate (note that y'(0,0) = y$(0))

1 2
1o~ shor iz <cr [ (S0.0) a (23)

where the weak norm || - ||, is defined with weights (c2),, that tend to zero as n — oo,
depending on the network, as described in the previous sections. It is however important
to underline that (23) holds under the same assumptions on the network needed for observ-
ability to hold for the Dirichlet problem (2) and provided T' > 2L.

The reminder term e is the solution of the following non-homogeneous Dirichlet problem:

ﬁi—ﬁf—o Vo € (0,1;),t>0,Vj € {1,... M},

(v, t) = (v, t) Vi, 1 € Ev, v € Vip, t >0,

Sice, 9o (v, 1) =0 YV € Vin, t > 0, (24)
€5, (v,t)=0 Vv € Vp,t > 0,

€(0, t) = y(0, ) t>0,

€(0) = y5(0)7, 55(0) =0.

Note that e satisfies a non-homogeneous Dirichlet boundary condition at x = 0. Actually
it coincides with the initial value of the solution y! of (17) at that point. We know that
the solution 7 of the dissipative problem, because of the energy dissipation law, is such that
9yt (0, -)/ot € L*(0, T), so that the non-homogeneous Dirichlet boundary condition belongs
to H1(0, T).

Proceeding in this manner, the following result was proved in [98]:

THEOREM 4.1 ([98]). Assume that the network is such that the weighted observability in-
equality (23) is satisfied for T > 2L for the conservative system (2) with Dirichlet boundary
conditions at all the exterior nodes. Define the weak energy Ey (0) by

E; (0) = [II( yo(0)7, 701 +0(0)?] - (25)

Then for all T > 2L, there exists Cr > 0 such that all solution § of (17) satisfies the weak
observability inequality (20).

Note that (E; (O))% as above defines a norm in the space of initial data (go,%1) € Wop.
Indeed, when E; (0) vanishes, y$(0) = 0. Thus (¥, y1) € W and then E; (0) = E4(0), and,
by assumption, (Eg(O))% defines a norm in W.

Let us now present a sketch of the proof of Theorem 4.1.

Note that, standard results on the hidden regularity of the wave equation guarantee that,
for all T' > 0 there exists Cr > 0 such that the solutions § of (17) and € of (24) satisfy the
following estimate

/O (886 (0, t)>2dt§CT/0 l(@ayt o t))2+(y1(0’ t))2] it (26)
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Despite of the fact that we are here working with the wave equation on a network, this result
is of local nature and therefore it is sufficient to apply the standard multiplier techniques of
the scalar wave equation in the string with vertex at vi = 0. With a little extra work the
right hand side term of this inequality can be slightly weakened to yield

/OT (aai(o, t)>2dt <Cr (/OT (8;:(0, t)>2dt + (yé(O))2> ) (27)

Combining (23) and (27) and the fact that

[(Zoo)ac [ (2oo)arz] (“oo)a

and that, due to the choice of the dissipative boundary condition,
T 1 2 T 1 2
Ay dy
=2.(0,t)) dt= =L (0,t)) dt
[ (o) a= [ (o)

/UT (%@i(o, t))ZdH |yg(o)|2] , (28)

In fact, we can remove the last term in the right hand side of (28). To do this, it is

T 1 2
wof <cr [ (%yt(o, t)) dt
0
for a positive constant C'r depending on 7.

This can be done by a classical compactness-uniqueness argument using the fact that
the perturbation is of rank one (and therefore compact with respect to any norm) and the
fact that whenever 9y, (0, t)/0t and dy;(0, t)/0z vanish for ¢ € (0,T) during a sufficiently
long time interval (T" > 2L), then, necessarily, yo(0) = 0.

In this way, we conclude that the wanted inequality (20) is true.

we have

E;(0)<C

sufficient to show that

4.3 The interpolation inequality

In this subsection we recall the main ingredients of the proof of the interpolation inequality
(21). Its proof uses a discrete interpolation inequality, similar to that in [21], introduced in
[98] and a description of the various energies and norms entering in the estimates we have
obtained so far in terms of Fourier series.

The discrete interpolation inequality reads as follows:

Let m € [0, 1), 0 < s < 1/2 and assume that

w: (m, 00) — (0, w(m)) is convex and decreasing with w(co) =0, (29)
D, : (0, w(m)) — (0, c0) is concave and increasing with ®,(0) = 0, (30)
Yt € [1, 00), 1 < @, (w(t))t?, (31)

The function ¢ — %@;1@) is nondecreasing on (0, 1). (32)

Under the conditions (30)-(31), we have the following result which is a generalized
Holder’s inequality, a variant of Theorem 2.1 given in [21]:
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LEMMA 4.1 Let (w, ®5) be as above satisfying (29)-(31). Then for any f = (fn)nen- €
IM(N*), f #0, we have

S lwm)\ 3 [l

n>1 n>1
= = : (33)
> £l > £l
n>1 n>1

as soon as (fpw(n)), € IH(N*) and (f,n*), € I1(N*).
We now give some examples of pairs (w, ®,) satisfying (29)-(32):

o 1. If

We can easily prove that (w, ®) satisfy (29)-(30) with m = 0 and (31)-(32).

o 2. If
w(t) = Ce= A

where A > 2(2s + 1) and C > 0, we can take @, of the form

D, (t) = (m(AC)> .

We can easily prove that ¢ — 1®1(t) is nondecreasing on (0, 1) and that the pair
(w, @) satisfies (31) on [1, 0o). Thus (w, @) satisfy (29)-(32) with m = 1/2.

When applying this argument, > -, |fn|w(n) will play the role of the weak energy E;,
3,51 | fn| the role of the standard energy E; and Y, <, | f| n¢ that of the norm in X,. But
for this to be done, these energies and norms have to written in a suitable discrete manner.

We explain how this can be done distinguishing each of the terms:

e The X;-norm. At this level, the fact that 0 < s < 1/2 plays a key role. The following
Lemma was proved in [98]:

LEMMA 4.2 ([98]) Assume that (o, §1) belongs to X, where 0 < s < 1/2, and
(b0, #1) = (o — ¥$(0)7, 71), where 7 is a given smooth function such that v(0) = 1
and vanishing on all other external mnodes. Then there exists a positive constant C
such that

||(QE07 $1)|‘2((*AG)S) + |y(1)(0)|2 <C H(gOa Zjl)”?{b ’

where D((—Ag)?®) is the domain of the operator (—Ag)®, which is the s-th power of
the Laplacian on the graph, —Ag, with Dirichlet boundary conditions at all exterior
nodes.
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This means that it is sufficient to prove the interpolation inequality (21) with the norm
. - - 2 271/2
in X, replaced by [H(qﬁo, ¢1)HD((7AG)S) + |y$(0)] ] )

On the other hand, the norm H(J)O, ¢_$1)||2D((_AG)S)

the Fourier coefficients of (q_ﬁo, d_>1) in the basis of eigenfunctions of —Ag:

can be written easily in terms of

|| (&07 d_)l) HQD((—A(;)S) = Z [/ufi,,+s|¢0,n|2 + lLLfL|¢1,TL|2:| )

n>1
where (¢g,n, $1,,) are the Fourier coefficients of the data (¢, ¢1).

e The weak energy E;. According to the results of the previous sections and, in
particular, (15), the observed weak energy can be rewritten as

E;(0)= > A (padh,, +62,) + s (0)] (34)

n>1
e The energy Ey. Similarly, the energy Ey is equivalent to the discrete norm:

Ey ~ [|(d0, 61) |5 + |48 0)] = 3 [nldonl® + [61.0]2] + |54 (0)]*.

n>1

Once this is done, the interpolation inequality (21) is a consequence of the abstract discrete
interpolation result (33).
In the next subsection we state the main stabilization result that this analysis yields.

4.4 The main result

Before moving further we observe that, as proved in [98], for 0 < s < 1/2,

Xo=|Von[[H™0,1) | x [[H*(0,1).
J J

Thus, the space X, of smooth initial data can be identified in classical Sobolev terms.

We assume that the network is such that the weighted observability inequality (15) holds.
In the previous sections we have given sufficient conditions on the network for that to hold
with positive weights ¢, > 0.

The main stabilization result is as follows:

THEOREM 4.2 Assume that the weighted observability inequality (15) holds for every solu-
tion of (2) with liminf,, .. ¢, =0 and ¢, # 0 for all n € N*. Let w be defined by a lower
envelope of the sequence of weights (c2) satisfying (29). Assume that the initial data (3o, §1)
belong to Xs where 0 < s < 1/2. Let ®, be a function such that the pair (w, ;) satisfies
(29)-(32). Then there exists a constant C > 0 such that the corresponding solution § of (17)
verifies

1 o
V2 0.By(0) < 0% (2 ) s ), (3)
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We see that the decay rate of the energy directly depends on the behavior of the inter-
polation function ®, near 0 and thus of w and of the weights c2 as n — oco.
Using (35) and making a particular and explicit choice of the concave function @, we
obtain a more explicit decay rate. To be more precise, we set
w(t)
Then there exists a constant C' > 0 such that for any initial data (%o, 71) € X (0 < s < 1/2),
the corresponding solution g of (17) verifies

C
Vt>0,Ey(t) £ ——
S (e (&)

We refer to [37] and [98] for explicit examples of networks in which explicit estimates on
the rate of vanishing on the weights (c2) and, accordingly, of the decay rate of the energy
for the dissipative system are given.

(%o, ?71)||§(S- (36)

5 Further comments and open problems

As we have mentioned thoughout the article, there are many interesting questions (most of
them are difficult) to be investigated in connection with the topics we have addressed here
and some other closely related ones, in connection with PDE in networks. We mention here
some of them. Of course the list is non exhaustive. We refer to [57], for instance, for a
recent survey on this area.

e Lower bounds on the weights. As we have seen, the weights entering the observ-
ability inequalities, and, more precisely, their decay at high frequencies, play a key
role when identifying the control/observation spaces and also the decay rates on the
dissipative framework. It would be very interesting to analyze how the degeneracy
of these weights at high frequencies depends on the properties of the network under
consideration.

¢ Wave equations with potentials. We have considered here the pure wave model.
What happens when the equations are perturbed by lower order terms? In the context
of the equation in domains of the Euclidean space, it is well known that these lower
order perturbations do not matter in the sense that they add compact perturbations
that can be get rid-of by a compactness-uniqueness argument. But the situation is dif-
ferent in networks because the best expected observability results are weak and require
the loss of at least one derivative. This derivative is precisely the one that the zero
order potentials allow gaining, but it is not enough to ensure the compactness of the
perturbations. Note moreover that this happens in very special situations where the
diophantine theory can be applied. But, in general, the loss of derivatives can be ar-
bitrary. Thus, the problem of whether the observability /controllability /stabilizability
properties we have proved here are preserved when one adds arbitrary bounded po-
tentials on the various strings of the network is open.

¢ Wave equations with variable coefficients. The same problem above can be
formulated for wave equations on 1 — d networks with variable and sufficiently smooth



5 FURTHER COMMENTS AND OPEN PROBLEMS 23

coefficients (say BV-ones). Note that, even for the 1 — d wave equation on an interval
the BV-regularity is the minimal one required for the observability property to holds

([28)).

e Semilinear wave equations. Similar issues arise for semilinear wave equations. In
the case of domains of the Euclidean space, sharp estimates on the cost of controlling
wave equations with potentials, together with fixed point techniques, allow proving
the controllability of semilinear wave equations, under suitable growth conditions on
the nonlinearity at infinity. This is an open issue in the context of networks, the
first difficulty being, as mentioned above, that of dealing with wave equations with
potentials.

e Transmutation. As we have mentioned above, most of the analysis of control prob-
lems on networks has been developed for the wave equation. Then, the obtained result,
using the method of transmutation based on Kannai’s transform, leads to null control
results for the heat equation. This can also be done establishing a continuity result on
the property of null controllability between the wave and the heat equation through
the damped wave equation (see [74], [90]).

But, in the case of the heat equation in bounded domains of the Euclidean space,
the corresponding observability inequalities are often obtained applying Carleman in-
equalities directly to the heat model. This is still to be done in the context of the heat
equation on graphs. Note however that the evidence that the expected results need
to depend on the topological and number theoretical properties of the network makes
this method very hard to be applied in this context. In any case the issue of applying
Carleman inequalities to obtain directly observability inequalities for PDE in networks
is widely open.

e Multipliers. The results in this paper were obtained using a fine analysis of the
propagation properties of waves along the network. However, in the context of the
wave equation in the Euclidean space, relevant results can be obtained much more
easily by using the method of multipliers (see [73]). It would be interesting to explore
if the observability results for waves on networks (other than the one guaranteeing the
observability of the energy of a tree-like network when measurements are done on all
but one external node) can be obtained by the method of multipliers.

e Thermoelasticity. In the context of PDE in domains of the Euclidean space one
can combine the theory of the wave and heat equations to obtain results on the con-
trollability of several relevant systems, including the system of thermoelasticity (see
[65]).

e Hyperbolic-Parabolic systems. Recently, motivated by problems of fluid-structure
interaction, there has been work done for models coupling a wave and a heat equation
along an interface. The coupling turns out to be quite weak so that the corresponding
system does not even decay uniformly exponentially ([104]). Similar issues could be
considered on networks where, in principle, one could choose arbitrarily the location
of the heat and wave equations. In the context of the control of those systems in 1 —d
(a wave equation and a heat equation coupled through a point-wise interface) it is
well known that the controllability properties depend on the location of the controller.
In particular, the system is much more easily controllable when the control is on the
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external boundary of the wave domain than in the one of the heat domain (see [110]).
Using the methods in [110], which combine sidewise energy estimates with known
controllability results on the heat equation, and the results on the heat equation that
one can derive from the results on the wave equation we have presented here by
transmutation, one could prove controllability results on general networks provided:
a) All the wave components are located on external segments so that the system
under consideration is the heat equation on a graph surrounded by external vibrating
controlled strings; b) the resulting heat-like configuration is controllable. But all the
other situations are still to be investigated.

e Other joint conditions. All the results presented here refer to the Laplacian on
networks defined through the so-called Kirchhoff conditions. But the systems under
consideration have a physical meaning and are well-posed for other joint conditions.
In particular we could assume that the external and/or internal nodes contain point
masses. Very likely similar results will hold in that case but, even in the case of
two strings connected by a point-mass it is well-known that the control theoretical
properties change dramatically because of the presence of the mass. In particular it is
well known that, in those cases, the observability /controllability spaces are asymmetric
to both sides of the point-mass (see [49]). Similar asymmetry properties may be
expected in the case of networks with point masses on the joints.

e Switching control. Recently, a theory of switching controls has been developed for
PDE with various actuators or controllers. This is particularly suited for networks en-
dowed with different controllers, located in various nodes (internal or external ones).
It would be interesting to analyze systematically the possibilities of controlling net-
works (in particular for the heat equation in which the time-analiticity of solutions can
be guaranteed) by means of switching controls (see [105]). The same can be said in
the context of stabilization, in which the various feedback controllers are requested to
be activated in a switching manner. At this respect, the work [48] is worth mention-
ing. There the authors consider a star-like network composed by M strings endowed
with M feedback controllers on the exterior nodes, each of which can be deactivated
by a time-dependent switching law. They provide conditions on the switching laws
guaranteeing that the network can be stabilized asymptotically to rest.

e Infinite networks of finite length. It would be interesting to investigate the pos-
sible extension of the results of this paper to newtorks involving an infinite number of
strings, but of finite total length.

¢ Optimal placement of controllers. We have discussed here the problem of obser-
vation, control or stabilization from a given external vertex. But it would be of interest
to discuss the problem of the choice of the optimal placement of the controller. This
is a widely open subject. We refer to [7] for some of the few existing results in context
of the string equation on a segment.

e Graph-like thin manifolds. In these notes we have considered the control and
stabilization of the wave equation on 1 — d networks. We have also discussed similar
issues for other models as the heat or Schrodinger equations. It is very natural to
analyze the same issues in thin 2 — d domains obtained by simply adding a thickness
of size € to the network on the perpendicular direction to each string.
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A graph-like thin manifold or a 3 — d branching-domain

The control of PDE’s in thin cylinders is reasonably understood. In the case of the
wave equation, due to the existence of trapped rays in the perpendicular directions,
the wave and plate process can not be controlled from the lateral boundary and the
filtering of the high frequency trapped rays is needed to get uniform controllability
results ([45]). To the contrary, in the case of the heat equation, the intrinsic strongly
dissipative effect damps out the high frequency components that the added dimension
generates, and the limit of null controls in thin domains is a null control in the limit
cross section (see [108] and [39]).

It would be natural and interesting to analyze similar questions in the context of “thick
networks” when the thickness tends to zero. The subject will however be more complex
than in domains of the Euclidean space since, as the results concerning 1 — d networks
show (see [37]), the results one has to expect when passing to the limit, necessarily,
will depend on the number theoretical properties of the lengths of the edges of the
network.

We refer to [43] for recent results on the behavior of the spectrum of the Laplacian
under this singular perturbation and to [46] for a recent survey on the subject.

e Numerics. In recent years the problem of numerical approximation of control prob-
lems, especially for waves, has been the object of intensive research (see [112]). But
very little is known in the context of networks. The abstract results in [42] can be
applied in this context and we can obtain controllability results for time-discrete wave
equations on networks, provided the high frequency components are appropriately
filtered out. But the analysis of space-discretizations is a widely open subject.

e Strichartz inequalities. There are other interesting features of PDE on domains
of the Euclidean space that are badly understood in the context of networks. That
is for instance the case of the dispersive or Strichartz estimates for the Schrodinger
equation. This issue is still to be investigated in a systematic manner in the context
of networks. We refer to [52] for the first results in this direction in the case of some
particular tree like infinite networks.

Note also that these dispersive estimates play a key role when analyzing the solvability
of the corresponding nonlinear problems and in their numerical approximation ([52]).
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Inverse problems. Inverse problems for waves on networks are intimately related to
the control problems we have considered in this paper. The issue consists roughly on
determining the topological and geometric properties of the network through measure-
ments done on the exterior vertices. We refer to the recent paper [12] for the analysis
of tree-like networks through the so-called boundary-control-approach developed in
[22] and to the references in [57]. These kind of problems are widely open in the case
of networks containing circuits.

References

1]

2]

[3]

[7]

[10]

[11]

F. Alabau, Stabilisation frontiére indirecte de systémes faiblement couplés, C. R. Acad.
Sci. Paris, Série I 328 (1999), 1015-1020.

F. Ali Mehmeti, A characterization of a generalized C*°-notion on nets, Integral Equa-
tions Operator Theory 9 (1986), no. 6, 753-766.

, Regular Solutions of Transmission and Interaction Problems for Wave Equa-
tions, Math. Meth. Appl. Sci. 11 (1989), 665-685.

, Nonlinear waves in networks, Mathematical Research, 80, Akademie-Verlag,
Berlin, 1994.

F. Ali Mehmeti and V. Régnier, Splitting of energy and dispersive waves in a star-
shaped network, Z. Angew. Math. Mech. 83 (2003), 105-118.

F. Ali Mehmeti, J. von Below, and S. Nicaise, Partial differential equations on multi-
structures, Lecture Notes in Pure and Applied Mathematics, vol. 219, Marcel Dekker,
2001.

K. Ammari, A. Henrot, and M. Tucsnak, Asymptotic behaviour of the solutions and
optimal location of the actuator for the pointwise stabilization of a string, Asymptot.
Anal. 28 (2001), no. 3-4, 215-240.

K. Ammari and M. Jellouli, Remark in stabilization of tree-shaped networks of strings,

Appl. Maths. 4 (2007), 327-343.

K. Ammari, M. Jellouli, and M. Khenissi, Stabilization of generic trees of strings, J.
Dyn. Control Syst. 11 (2005), no. 2, 177-193.

K. Ammari and M. Tucsnak, Stabilization of second order evolution equations by a
class of unbounded feedbacks, ESAIM Control Optim. Calc. Var. 6 (2001), 361-386.

S. A. Avdonin and S. A. Ivanov, Families of Fxponentials: The Method of Moments in
Controllability Problems for Distributed Parameter Systems, Cambridge Univ. Press,
Cambridge, 1995.

S. A. Avdonin, G. Leugering, and V. Mikhaylov, On an inverse problem for tree-like
networks of elastic strings, ZAMM, to appear.

S. A. Avdonin and W. Moran, Simultaneous control problems for systems of elastic
strings and beams, Systems & Control Letters 44 (2001), no. 2, 147-155.



REFERENCES 27

[14]

[15]

[16]

[17]

[18]

[19]

[25]

[26]

[27]

S. A. Avdonin and T.I. Seidman, Pointwise and Internal Controllability for the Wave
Equation, Appl. Math. Optim. 46 (2002), 107-124.

S. A. Avdonin and M. Tucsnak, Simultaneous controllability in sharp time for two
elastic strings, ESAIM:COCV 6 (2001), 259-273.

C. Baiocchi, V. Komornik, and P. Loreti, Ingham type theorems and applications to
control theory, Boll. Un. Mat. Ital. B 8 (1999), no. II B, 33-63.

, Généralisation d’un théoréme de Beurling et application a la théorie du
controle, C. R. Acad. Sci. Paris, Série I 330 (2000), 281-286.

C. Bardos, G. Lebeau, and J. Rauch, Sharp sufficient conditions for the observation,
control and stabilization of waves from the boundary, STAM J. Control Optim. 30
(1992), 1024-1065.

G. Bastin, J.-M. Coron, and B. D’Andréa-Novel, Lyapunov stability analysis of net-
works of scalar conservation laws, Networks and Heterogeneous Media 2 (2007), no. 4,
749-757.

, On Lyapunov stability of linearised Saint- Venant equations for a sloping chan-
nel, Networks and Heterogeneous Media 4 (2009), no. 2, 177-187.

P. Bégout and F. Soria, An interpolation inequality and its application to the stabi-
lization of damped equations, J. Differ. Equations 240 (2007), no. 2, 324-356.

M. 1. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the
BC method, Inverse Problems 20 (2004), 647-672.

A. Beurling and P. Malliavin, On the Closure of Characters and Zeros of Entire Func-
tions, Acta Math. 118 (1967), 79-93.

U. Brauer and G. Leugering, On boundary observability estimates for semi-
discretizations of a dynamic network of elastic strings, Recent advances in control
of PDEs. Control & Cybernetics 28 (1999), 421-447.

N. Burq, Un théoréme de contréle pour une structure multidimensionnelle, Comm.
Partial Differential Equations 19 (1994), 199-211.

N. Burq and G. Lebeau, Mesures de défaut de compacité, application su systéme de
Lamé, Annales Scientifiques de 1’ Ecole Normale Supérieure 34 (2001), 817-870.

C. Castro and E. Zuazua, A hybrid system consisting of two flexible beams connected
by a point mass: Well posedness in asymmetric spaces, Elasticité, Viscoélasticité et
Controle Optimal, ESAIM Proceedings, vol. 2, 1997, pp. 17-53.

, Concentration and lack of observability of waves in highly heterogeneous me-
dia, Archive Rational Mechanics and Analysis 164 (2001), no. 1, 39-72.

G. Chen, M. Delfour, A. Krall, and G. Payre, Modelling, Stabilization and Control of
Serially Connected Beams, STAM J. Control Opt. 25 (1987), 526-546.

G. Chen and J. Zhou, The Wave Propagation Method for the Analysis of Boundary
Stabilization in Vibrating Structures, STAM J. Appl. Math. 50 (1990), 1254-1283.



REFERENCES 28

[31]

32]

[33]

[44]

[45]

[46]

[47]

R. Déger, Observation and control of vibrations in tree-shaped networks of strings,
STAM J. Control Optim. 43 (2004), no. 2, 590-623.

, Observation and control of vibrations in tree-shaped networks of strings, STAM
J. Control Optim. 43 (2004), 590-623.

R. Déger and E. Zuazua, Controllability of star-shaped networks of strings, In:
Bermuidez A. et al. (Eds), Fifth International Conference on Mathematical and Nu-
merical Aspects of Wave Propagation, STAM Proceedings (2000), 1006-1010.

, Controllability of star-shaped networks of strings, C. R. Acad. Sci. Paris Sér.
I Math. 332 (2001), no. 7, 621-626.

__, Controllability of tree-shaped networks of vibrating strings, C. R. Acad. Sci.
Paris Sér. I Math. 332 (2001), no. 12, 1087-1092.

, Spectral boundary controllability of networks of strings, C. R. Acad. Sci. Paris
334 (2002), no. 7, 545-550.

, Wave propagation, observation and control in 1 — d flexible multi-structures,
Mathématiques & Applications, Springer-Verlag, Berlin, 2006.

B. D’Andréa-Novel and J.-M. Coron, Stabilization of an overhead crane with a variable
length flexible cable, Special issue in memory of Jacques-Louis Lions. Comput. Appl.
Math. 21 (2002), 101-134.

L. de Teresa and E. Zuazua, Null controllability of linear and semilinear heat equations
in thin domains, Asymptot. Anal. 24 (2000), 295-317.

B. Dekoninck and S. Nicaise, Control of mnetworks of FEuler-Bernoulli beams,
ESAIM:COCV 4 (1999), 57-81.

, The eigenvalue problem for networks of beams, Linear Algebra Appl. 314
(2000), 165—189.

S. Ervedoza, Ch. Zheng, and E. Zuazua, On the observability of time-discrete conser-
vative linear systems, J. Functional Analysis 254 (2008), no. 12, 3037-3078.

P. Exner and O. Post, Approximation of quantum graph vertex couplings by scaled
Schrodinger operators on thin branched manifolds, J. Phys. A. Math. Theor. 42 (2009),
415305.

C. Fabre and J.-P. Puel, Pointwise controllability as limit of internal controllability
for the wave equation in one space dimension, Portugal. Math. 51 (1994), 335-350.

I. Figueiredo and E. Zuazua, Ezact controllability and asymptotic limit of thin plates,
Asymptotic. Anal. 12 (1996), 213-252.

D. Grieser, Thin tubes in mathematical physics, global analysis and spectral geometry,
Proceedings of Symposia in Pure Mathematics, vol. 77, Amer. Math. Soc., Providence,
RI, 2008, pp. 565-593.

M. Gugat, G. Leugering, and E. J. P. G. Schmidt, Global controllability between steady
supercritical flows in channel networks, Math. Methods Appl. Sci. 27 (2004), 781-802.



REFERENCES 29

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[56]

[57]

M. Gugat and M. Sigalotti, Star-shaped string networks: Switching boundary feedback
stabilization, preprint (2009).

S. Hansen and E. Zuazua, Ezxact controllability and stabilization of a vibrating string
with an interior point mass, SIAM J. Control Optim. 33 (1995), no. 5, 1357-1391.

A. Haraux and S. Jaffard, Pointwise and Spectral Control of Plate Vibrations, Revista
Matematica Iberoamericana 7 (1991), no. 1, 1-24.

L. F. Ho, Controllability and stabilizability of coupled strings with control applied at
the coupled points, SIAM J. Control Optim. 31 (1993), 1416-1433.

L. Ignat, Strichartz estimates for the Schridinger equation on a tree and applications,
preprint (2009).

S. Jaffard, M. Tucsnak, and E. Zuazua, Singular Internal Stabilization of the Wave
Equation, J. Differential Equations 145 (1998), 184-215.

A.G. Khapalov, Interior point control and observation for the wave equation, Abstract
and Applied Analysis 1 (1996), no. 2, 219-236.

H. Koch and E. Zuazua, A hybrid system of PDE’s arising in multi-structure inter-
action: coupling of wave equations in n and n — 1 space dimensions, Recent trends
in partial differential equations, Contemp. Math., vol. 409, Amer. Math. Soc., Provi-
dence, RI, 2006, pp. 55-77.

V. Komornik and P. Loreti, Dirichlet series and simultaneous observability: two prob-
lems solved by the same approach, Systems & Control Letters 48 (2003), no. 3-4,
221-227.

P. Kuchment, Quantum graphs: an introduction and a brief survey, Analysis on graphs
and its applications, Proc. Sympos. Pure Math., vol. 77, Amer. Math. Soc., Providence,
RI, 2008, pp. 291-312.

J. E. Lagnese, Recent progress and open problems in control of multi-link elastic struc-
tures, Contemp. Math., vol. 209, pp. 161-175, Amer. Math. Soc., Providence, RI,
1997.

, Domain decomposition in exact controllability of second order hyperbolic sys-
tems on 1 — d networks. Recent advances in control of PDE, Control & Cybernetics
28 (1999), no. 3, 531-556.

J. E. Lagnese and G. Leugering, Dynamic domain decomposition in approximate and
exact boundary control in problems of transmission for the wave equation, SIAM J.
Control Optim. 38 (2000), no. 2, 503-537.

, Domain decomposition methods in optimal control of partial differential equa-
tions, vol. 148, Birkh&user Verlag, Basel, 2004.

J. E. Lagnese, G. Leugering, and E.J.P.G. Schmidt, Control of Planar Networks of
Timoshenko Beams, STAM J. Control Optim. 31 (1993), 780-811.



REFERENCES 30

[63]

[64]

[71]

[72]

[73]

78]

[79]

, Modeling, analysis and control of dynamic elastic multi-link structures, Sys-
tems & Control: Foundations & Applications, Birkhduser Boston Inc., Boston, MA,,
1994.

G. Lebeau and E. Zuazua, Null controllability of a system of linear thermoelasticity,
Arch. Ration. Mech. Anal. 141 (1998), 297-329.

, Decay rates for the linear system of three-dimensional system of thermoelas-
ticity, Archives Rat. Mech. Anal. 148 (1999), 179-231.

V. Lescarret and E. Zuazua, Numerical schemes for waves in multi-dimensional media:
convergence in asymmetric spaces, preprint (2009).

G. Leugering, Reverberation Analysis and Control of Networks of Elastic Strings, Con-
trol of PDE and appl., Lect. Notes in Pure and Applied Math. (1996), 193-206.

G. Leugering and E. J. P. G. Schmidt, On the Control of Networks of Vibrating Strings
and Beams, Proc. Of the 28th IEEE Conference on Decision and Control, Vol. 3, IEEE,
1989, pp. 2287-2290.

, On the modelling and stabilization of flows in networks of open canals, STAM
J. Control Optim. 41 (2002), 164-180.

G. Leugering and E. Zuazua, On exact controllability of generic trees, “Control of
Systems Governed by Partial Differential Equations”, Nancy, France, March 1999,
ESAIM Proceedings, vol. 8.

J.-L. Lions, Contrélabilité exacte de systémes distribués, C. R. Acad. Sci. Paris, Série
I 302 (1986), 471-475.

, Controlabilité Ezxacte Perturbations et Stabilisation de Systémes Distribués,

vol. I, Masson, Paris, 1988.

, Exact controllability, stabilizability and perturbations for distributed systems,
STAM Rev. 30 (1988), 1-68.

A. Lopez, X. Zhang, and E. Zuazua, Null controllability of the heat equation as singular
limit of the exact controllability of dissipative wave equations, J. Math. Pures et Applic.

G. Lumer, Connecting of local operators and evolution equations on networks, Lecture
Notes in Math., vol. 787, Springer Verlag, 1980, pp. 219-234.

S. Micu and E. Zuazua, Boundary controllability of a linear hybrid system arising in
the control of noise, STAM J. Control Optim. 35 (1997), no. 5, 1614-1638.

, An introduction to the controllability of linear PDE, “Quelques questions
de théorie du controle”. Sari, T. ed., Collection Travaux en Cours, Hermann, 2005,
pp. 69-157.

L. Miller, Controllability cost of conservative systems: resolvent condition and trans-
mutation, J. Funct. Anal. 204 (2004), no. 1, 202-226.

, Geometric bounds on the growth rate of null-controllability cost for the heat
equation in small time, J. Differential Equations 204 (2004), 202—-226.



REFERENCES 31

[80]

[92]

[93]

[94]

[95]

, How violent are fast controls for Schréodinger and plate vibrations?, Arch.
Ration. Mech. Anal. 172 (2004), 429-456.

S. Nicaise, Spectre des réseauz topologiques finis, Bull. Sci. Math. 111 (1987), no. 4,
401-413.

, Polygonal interface problems, Methoden und Verfahren Math. Physiks, 39,
Peter Lang Verlag, 1993.

, Boundary exact controllability of interface problems with singularities I: Ad-
dition of the coefficients of singularities, STAM J. Cont. Optim. 34 (1996), 1512-1533.

, Boundary exact controllability of interface problems with singularities II: Ad-
dition of internal controls, STAM J. Cont. Optim. 35 (1997), 585-603.

S. Nicaise and O. Penkin, Relationship between the lower frequency spectrum of plates
and networks of beams, Math. Methods Appl. Sci. 23 (2000), 1389-1399.

S. Nicaise and J. Valein, Stabilization of the wave equation on 1 — d networks with a
delay term in the nodal feedbacks, Netw. Heterog. Media 2 (2007), no. 3, 425-479.

S. Nicaise and O. Zair, Identifiability, stability and reconstruction results of point
sources by boundary measurements in heteregeneous trees, Rev. Mat. Complutense
16 (2003), 1-28.

O.M. Penkin, Yu.V. Pokornyi, and E.N. Provotorova, On a vectorial boundary value
problem, Boundary value problems, Interuniv. Collect. sci. Works, Perm, 1983, pp. 64—
70.

K. D. Phung, Observability and control of Schédinger equations, SIAM J. Control
Optim. 40 (2001), no. 1, 211-230.

, Null Controllability of the Heat Equation as Singular Limit of the Exact Con-
trollability of Dissipative Wave Equation Under the Bardos-Lebeau-Rauch Geometric
Control Condition, Computers & Mathematics with Applications 44 (2002), 1289-
1296.

J.-P. Puel and E. Zuazua, Controllability of a multi-dimensional system of Schrédinger
equations: Application to a system of plate and beam equations, “State and frequency
domain approaches for infinite-dimensional systems”, Springer-Verlag, LNCIS 185,
1993, pp. 500-511.

, Ezact Controllability for a Model of Multidimensional Flexible Structure, Proc.
Royal Soc. Edinburgh 123 A (1993), 323-344.

S. Rolewicz, On Controllability of Systems of Strings, Studia Math. 36 (1970), no. 2,
105-110.

D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic
partial differential equations, Studies in Appl. Math. 52 (1973), 189-221.

_, Controllability and stabilizability theory for linear partial differential equa-
tions, SIAM Review 20 (1978), 639-739.



REFERENCES 32

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]
[106]

[107]

[108]

109

[110]

[111]

[112]

[113]

E. J. P. G. Schmidt, On the Modelling and Ezact Controllability of Networks of Vi-
brating Strings, STAM J. Control. Opt. 30 (1992), 229-245.

M. Tucsnak and G. Weiss, Simultaneous exact controllability and some applications,

SIAM J. Control Optim. 38 (2000), 1408-1427.

J. Valein and E. Zuazua, Stabilization of the wave equation on 1 — d networks, SIAM
J. Cont. Optim., to appear.

J. von Below, A Characteristic Equation Associated to an Figenvalue Problem on C?-

Networks, Linear Alg. Appl. 71 (1985), 309-325.

_, Classical Solvability of Linear Parabolic Equations on Networks, J. Diff. Eq.
72 (1988), 316-337.

,  Parabolic Network Fquations, Habilitation Thesis, Eberhard-Karls-
Universitdt Tiibingen, 1993.

G.-Q. Xu, D.-Y. Liu, and Y.-Q. Liu, Abstract second order hyperbolic system and
applications to controlled networks of strings, SIAM J. Control Optim. 47 (2008),
no. 4, 1762-1784.

R.M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New
York, 1980.

X. Zhang and E. Zuazua, Polynomial decay and control for a 1-d model of fluid-
structure interaction, C. R. Acad. Sci. Paris, Série I 336 (2003), 745-750.

E. Zuazua, Switching control, J. European Math. Soc., to appear.

, Exact controllability for the semilinear wave equation in one space dimension,
Ann. THP. Analyse non linéaire 10 (1993), 109-129.

, Controllability of the linear system of thermoelasticity, J. Mathématiques
pures et appl. 74 (1995), 303-346.

, Null controllability of the heat equation in thin domains, Equations aux
dérivées partielles. Articles dédiés a Jacques-Louis Lions, Proc. Sympos. Pure Math.,
vol. 77, Gauthier-Villars, 1998, pp. 787-801.

, Some problems and results on the controllability of partial differential equa-
tions, Progress in Mathematics, 169, Birkhaiiser Verlag, 1998, pp. 276-311.

, Null control of a 1-d model of mized hyperbolic-parabolic type, Optimal Control
and Partial Differential Equations, J. L. Menaldi et al., eds., IOS Press, 2001, pp. 198—
210.

, Controllability of Partial Differential Equations and its Semi-Discrete Ap-
prozimations, Discrete and Continuous Dynamical Systems 8 (2002), 469-513.

, Propagation, observation, and control of waves approximated by finite differ-
ence methods, STAM Review 47 (2005), no. 2, 197-243.

_, Controllability and Observability of Partial Differential Equations: Some re-
sults and open problems, Handbook of Differential Equations: Evolutionary Equations,
C. M. Dafermos and E. Feireis] eds., Elsevier Science 3 (2006), 527-621.



