We consider a controlled Schr\"odinger equation with a dipolar and a
polarizability term, used when the dipolar approximation is not valid. The
control is the amplitude of the external electric field, it acts non linearly
on the state. We extend in this infinite dimensional framework previous
techniques used by Coron, Grigoriu, Lefter and Turinici for stabilization in
finite dimension. We consider a highly oscillating control and prove the
semi-global weak H2 stabilization of the averaged system using a Lyapunov
function introduced by Nersesyan. Then it is proved that the solutions of the
Schr\"odinger equation and of the averaged equation stay close on every finite
time horizon provided that the control is oscillating enough. Combining these
two results, we get approximate controllability to the ground state for the
polarizability system