
1. Stabilization by sampled and discretefeedback with positive sampling rateLars Gr�une, Fachbereich Mathematik, J.W. Goethe-Universit�at, Postfach 11 19 32,60054 Frankfurt am Main, Germany.1.1 IntroductionThe problem of static state feedback stabilization of control systems is oneof the classical problems in mathematical control theory. Whereas for linearcontrol systems a well known result states that if a system is asymptoticallycontrollable then it also asymptotically stabilizable by a continuous staticstate feedback (in fact, even by a linear one), this property fails to hold fornonlinear systems. The well known work of Brockett [2] makes this statementmathematically precise, and the recent survey [24] gives a good introductioninto the geometrical obstructions to continuous feedback stabilization.Thus, looking for stabilizing static state feedback laws for many nonlin-ear systems it is inevitable to consider also discontinuous feedback laws. This,however, causes a number of problems both in the theoretical analysis (dueto the possible lack of uniqueness of trajectories) as well as in the practi-cal implementation. A reasonable solution concept for systems controlled bydiscontinuous feedbacks is the idea of sampling: For a given sequence of in-creasing times (the \sampling times") one evaluates the feedback law at eachof these sampling times and uses the resulting control value as a (constant)control up to the next sampling time. Continuing iteratively, it is not di�cultto see that the usual assumptions on the right hand side of the control sys-tem indeed guarantee existence and uniqueness for this sampled trajectory.A slightly more speci�c concept is the notion of discrete feedback introducedin [7]: Here also sampled trajectories are considered, but instead of using ar-bitrary sequences of sampling times, here the intersampling times are �xedin advance, possibly depending on the state. Thus the resulting closed loopsystem is essentially equivalent to a discrete time system.The concept of sampling is known for quite a while and also used in thecontext of stabilization, see e.g. [11, 12, 22], but only recently it was observedthat for general nonlinear systems asymptotic stabilizability by sampled feed-back laws is equivalent to asymptotic controllability [4]. However, one has tobe careful in the de�nition of the behaviour of sampled systems: Although



2 1. Stabilization by sampled and discrete feedbackit is immediate that for each sequence of sampling times we obtain a uniquetrajectory, the asymptotic behaviour of this trajectory may strongly dependon the choice of the sampling rate (i.e. the maximal time allowed betweentwo discrete sampling times) The general equivalence result mentioned above,for instance, is only true if we consider sampling rates tending to 0. Thus, itmay be interpreted either as a practical stability result for �xed positive sam-pling rate, or as \real" stability for all possible limit trajectories for vanishingsampling rates. These, however, will in general not be unique.In the present paper, we discuss recent results on sampled and discretestability where special emphasis is put on requirements on the sampling rateneeded in order to achieve stability of the sampled closed loop system. Inparticular we formulate the stability properties under consideration alwaysas stability with positive sampling rate, thus describing the system behav-iour of individual sampled trajectories rather than limits of trajectories withvanishing sampling rates. Using this approach we attempt to give a suitablemathematical description for implementations of sampled feedback e.g. usingsome digital controller, in which arbitrary small sampling rates in general willnot be realizable. In fact, the investigation of the e�ect of di�erent samplingrates is interesting not only for discontinuous feedback laws, since in practicealso continuous laws are often implemented in a sampled way using digitalcontrollers, and hence essentially the same problems occur.For general nonlinear systems, a complete characterization of stabilizabil-ity with positive sampling rate has not yet been developed. Such a character-ization is, however, possible for nonlinear systems with certain homogenityproperties, and will be presented and illustrated in this paper.For simplicity, here we will only deal with global or semi-global phenom-ena, however, the concepts can be transferred also to the case where stabiliz-ability is only possible from a proper subset of the state space. Concerningthe proofs of the results to be presented, instead of giving all the technicaldetails (for which we will refer to the appropriate literature) we restrict our-selves to the main arguments hoping that this allows the reader to get someinsight into the problems without being bothered by too much technicalities.1.2 Setup and de�nitionsWe consider nonlinear control systems of the form_x(t) = f(x(t); u(t)) (1.1)where u(�) 2 U := fu : R! U , measurable and locally essentially boundedg,U � Rm, 0 2 U , f : Rd � U ! Rd, f(0; 0) = 0 and f is supposed to becontinuous in both variables and Lipschitz in x for each u 2 U .For all t � 0 for which the (unique) open loop trajectory of (1.1) existsfor some initial x0 2 Rd, some control function u(�) 2 U , and initial timet0 = 0 we denote it by x(t; x0; u(�)).



1.2 Setup and de�nitions 3In order to characterize asymptotic behaviour at the origin, recall that afunction � : [0;1)! [0;1) is called of class K, if it satis�es �(0) = 0 and iscontinuous and strictly increasing (and class K1 if it is unbounded), and acontinuous function � : [0;1)2! [0;1) is called of class KL, if it is of classK in the �rst argument and decreasing to zero in the second variable.Using this de�nition we are now able to characterize asymptotic control-lability.De�nition 1.2.1. System (1.1) is called asymptotically controllable (to theorigin) if there exists a class KL function � such that for each x0 2 Rd thereexists ux0(�) 2 U withkx(t; x0; ux0(�))k � �(kx0k; t) for all t � 0;and it is called asymptotically controllable with �nite controls if it is as-ymptotically controllable and there exists an open set N 3 0 and a constantC > 0 such that for all x0 2 N the control ux0(�) from above can be chosenwith kux0(�)k1 < C.Note that sometimes the de�nition of asymptotic controllability alreadyincludes �nite controls, e.g. in [4, 24]. Here we do not necessarily demand thistechnical property, since for certain results we can do without it.An important tool in the stability analysis is the control Lyapunov func-tion as given by the following de�nition.De�nition 1.2.2. A continuous function V : Rd! [0;1) is called a controlLyapunov function, if it is positive de�nite (i.e. V (0) = 0 i� V = 0), proper(i.e. V (x) ! 1 as kxk ! 1), and there exists a continuous and positivede�nite function W : Rd! [0;1) such that for each bounded subset G � Rdthere exists a compact subset UG � U withminv2cof(x;UG)DV (x; v) � �W (x) for all x 2 G:Here DV (x; v) denotes the lower directional derivativeDV (x; v) := lim inft&0;v0!v 1t (V (x+ tv0)� V (x)) ;f(x; UG) := ff(x; u) ju 2 UGg, and cof(x; UG) denotes the convex hull off(x; UG).It is a well known result in control theory that system (1.1) admits a controlLyapunov functions if and only if it is asymptotically controllable with �nitecontrols.Finally, we introduce the concepts of sampled and discrete feedback con-trol.



4 1. Stabilization by sampled and discrete feedbackDe�nition 1.2.3. (i) A sampled feedback law is is a (possibly discontinu-ous) map F : Rd ! U with supx2K kF (x)k < 1 for all compact K � Rdwhich is applied the following way:An in�nite sequence � = (ti)i2N0 of times satisfying0 = t0 < t1 < t2 < : : : and ti !1 as i!1is called a sampling schedule. The valuesti; �ti := ti+1 � ti; and d(�) := supi2N0�tiare called the sampling times, intersampling times, and sampling rate, respec-tively. For any sampling schedule � the corresponding sampled or �-trajectoryx�(t; x0; F ) with initial value x0 2 Rd at initial time t0 = 0 is de�ned induc-tively byx�(t; x0; F ) = x(t� ti; xi; F (xi)); for all t 2 [ti; ti+1]; i 2 N0where xi = x�(ti; x0; F ) and x(t; xi; F (xi)) denotes the (open loop) trajectoryof (1.1) with constant control value F (xi) and initial value xi.(ii) A discrete feedback law is a sampled feedback law together with a (possiblystate dependent) time step h(x) > 0, x 2 Rd with infx2K h(x) > 0 for eachcompact set K 63 0, which for each initial value x0 2 Rd is applied usingsampling schedules � satisfying �ti = h(xi). We denote the correspondingtrajectories by xh(ti; x0; F ).Observe that uniqueness of the �-trajectories for sampled and discretefeedbacks (on their maximal intervals of existence) follows immediately fromthe de�nition also for discontinuous feedback maps F .The sampling schedules speci�ed in the de�nition of the discrete feed-back are uniquely determined by the initial value. The name \discrete feed-back" origins from the fact that the resulting sampled closed loop sys-tem is in one-to-one correspondence to the discrete time system given byxi+1 = x(h(xi); xi; F (xi)). The discrete feedback concept is particularly use-ful when numerical methods involving discretization of trajectories are usedfor feedback design, since in this situation the time step h can correspond tosome numerical discretization parameter, cp. [7].1.3 Stability concepts for sampled systemsIn this section we introduce and discuss appropriate (asymptotic) stabilityconcepts for nonlinear control systems with sampled and discrete feedback. Incontrast to the classical case, here we have an additional parameter, namelythe sampling rate, which we take into account in our de�nition.



1.3 Stability concepts for sampled systems 5De�nition 1.3.1. We call the sampled closed loop system from De�nition1.2.3(i)(i) semi-globally practically stable with positive sampling rate, if there existsa class KL function � such that for each open set B � Rn and each compactset K � Rn satisfying 0 2 B � K there exists �t > 0 such thatx�(t; x0; F ) 62 B ) kx�(t; x0; F )k � �(kx0k; t)for all t � 0, all x0 2 K and all � with d(�) � �t,(ii) semi-globally stable with positive sampling rate, if (i) holds and thesampling rate �t > 0 can be chosen independently of B,(iii) globally practically stable with positive sampling rate if (i) holds andthe sampling rate �t > 0 can be chosen independently of K,(iv) globally stable with positive sampling rate if (i) holds and the samplingrate �t > 0 can be chosen independently of K and B.We call the stability in (i){(iv) exponential if the function � satis�es�(kx0k; t) � Ce��tkx0k for constants C; � > 0 which may depend on K, anduniformly exponential if C; � > 0 can be chosen independently of K.Note that each of the concepts (ii){(iv) implies (i) which is exactly the s-stability property as de�ned in [4], cf. also [24, Sections 3.1 and 5.1]. In partic-ular, any of these concepts implies global stability for the (possibly nonunique)limiting trajectories as h! 0. The di�erence \only" lies in the performancewith positive sampling rate. From the applications point of view, however,this is an important issue, since e.g. for an implementation of a feedback us-ing some digital controller arbitrary small sampling rates in general will notbe realizable. Furthermore if the sampling rate tends to zero the resultingstability may be sensitive to measurement errors, if the feedback is based ona non-smooth control Lyapunov function, see [17, 24]. In contrast to this it isquite straightforward to see that for a �xed sampling rate the stability is infact robust to small errors in the state measurement (small, of course, relativeto the norm of the current state of the system) if there exists a correspondingLipschitz continuous control Lyapunov function, cf. [24, Theorem E].Analogously, we de�ne the corresponding concepts for systems controlledby discrete feedback.De�nition 1.3.2. We call the discrete feedback controlled system from Def-inition 1.2.3(ii)(i) semi-globally practically stable with positive sampling rate, if there existsa class KL function � such thatkxh(t; x0; F )k � �(kx0k; t)for all x0 2 Rd,(ii) semi-globally stable with positive sampling rate, if (i) holds and the timestep h satis�es infx2K h(x) > 0 for all compact sets K � Rd,(iii) globally practically stable with positive sampling rate if (i) holds and



6 1. Stabilization by sampled and discrete feedbackthe time step h satis�es infx 62B h(x) > 0 for all open sets B � Rd with 0 2 B,(iv) globally stable with positive sampling rate if (i) holds and the time steph satis�es infx2Rd h(x) > 0.Again, we call the stability in (i){(iv) exponential if � satis�es �(kx0k; t) �Ce��tkx0k for constants C; � > 0 which may depend on K, and uniformlyexponential if C; � > 0 can be chosen independently of K.In fact, it is not di�cult to see that the following implications hold.Proposition 1.3.1. Each of the sampled stability concepts from De�nition1.3.1(i){(iv) implies the corresponding discrete stability concept from De�n-ition 1.3.2(i){(iv).Proof. We show the implication De�nition 1.3.1(i)) De�nition 1.3.2(i), theother implications follow similarly.Assume De�nition 1.3.1(i) holds for some class KL function �. Considera sequence of compact sets (Ki)i2Nwith Ki � Ki+1 and Si2NKi = Rd, anda sequence of open sets (Bi)i2Nwith Bi+1 � Bi and Ti2NBi = f0g, suchthat B1 � K1. For each pair Ki and Bi, i 2 N denote by �i > 0 the value�t from the assumption. Now for each point x 2 Rd we pick the minimalindex i(x) 2 N such that x 2 Ki(x) n Bi(x) and de�ne the time step h viah(x) := �i(x).Then from the construction of h and the assumption it follows thatkxh(t; x0; F )k � �(kx0k; 0) for all t � 0: (1.2)Furthermore we can conclude that for each i 2 N there exists times ti > 0and Ti > 0 withxh(t; x0; F ) 2 Bi+1 for all x0 2 Bi; t � tiand xh(t; x0; F ) 2 Ki�1 for all x0 2 Ki; t � Ti:Using the assumption and these two properties by induction it follows thatthere exist times si > 0 such thatxh(t; x0; F ) 2 Bi for all x0 2 Ki nKi�1; t � si:which, together with (1.2) implies the existence of the desired class KL func-tion (which, however, in general will not coincide with the original �.)It is an open question whether the converse implications also hold. Theonly exception is the case of semi-global practical stability where the following(much stronger) theorem holds, whose main statement goes back to [4].Theorem 1.3.1. Consider the system (1.1). Then the following propertiesare equivalent(i) The system is asymptotically controllable with �nite controls



1.3 Stability concepts for sampled systems 7(ii) There exists a feedback F such that the sampled closed loop system issemi-globally practically stable with positive sampling rate(iii) There esists a feedback F and a time step h such that the discrete feed-back controlled system system is semi-globally practically stable with positivesampling rateSketch of Proof. \(ii)) (iii)" follows from Proposition 1.3.1, \(iii)) (i)" isimmediately clear.We sketch the basic idea of the proof of \(i) ) (ii)", for a detailled proofsee [4]. From [23] asymptotic controllability with �nite controls implies theexistence of a continuous control Lyapunov function V0.For a positive parameter � > 0 we consider the approximation of V0 bythe (quadratic) inf-convolutionV�(x) = infy2Rd�V0(y) + kx� yk22�2 �For each x 2 Rd we denote by y�(x) a point realizing the minimum on theright hand side of this de�nition, and de�ne��(x) := x� y�(x)2�2 :Then a straightforward but technical calculation shows that with F de�nedby h��(x); f(x; F (x))i = infu2UGh��(x); f(x; u)iwe obtainV�(x(�; x0; F (x0))� V�(x) � ��W (x0) + !�(x0)� + C(x0) �2�2 (1.3)where !�(x0)! 0 as � ! 0, !� depends on � and on the modulus of conti-nuity of V in x0, and C(x0) > 0 is a suitable constant essentially dependingon jf(x0; F (x0))j (in fact, behind this estimate lies the theory of proximalsub- and supergradients, see e.g. [3] for an exposition).By a compactness argument now on each ring R = fx 2 Rd j 0 < �1 �kxk � �2g we can formulate inequality (1.3) uniformly for x0 2 R, which for� > 0 and � > 0 su�ciently small implies that on R the function V� is acontrol Lyapunov function which decreases along x(t; x0; F (x0)) for t 2 [0; � ].Choosing a growing family of rings Ri � Ri+1 covering Rdnf0g and carefully(and rather technically) \gluing" the feedback together on @Ri �nally yieldsthe assertion.This result in fact states that a stabilizing sampled feedback can always befound under the assumption of asymptotic controllabilty, provided we allowvanishing sampling rates. The question we want to address in the remainingsections is whether one can give conditions under which (sampled or discrete)



8 1. Stabilization by sampled and discrete feedbackstability with some �xed positive sampling rate can be achieved. Looking atthe Proof of Theorem 1.3.1, one sees that the regularity of V plays a crucialrole in estimate (1.3) (via the function !) and hence in the choice of thetime step � . Thus one might conjecture that certain regularity propertiesof the corresponding control Lyapunov function could serve as a su�cientcondition. However, the example discussed in the next section shows thateven the existence of a C1 control Lapunov function does not necessarilyhelp.1.4 A counterexample to stabilizability with positivesampling rateIn this section we briey discuss an example where stability by discrete orsampled feedback with positive sampling rate is not possible. Consider thesystem_r = r(� � u)2 � r2_� = 1written in polar coordinates r 2 [0;1), � 2 [0; 2�), with U = R.Obviously the (classical) feedback F (r; �) = � stabilizes this system.However, considering the ball B1 := f(�; r) j � 2 [0; 2�); r 2 [0; 1)g and�xing some arbitrary h > 0 it is easily seen that any trajectory with initialvalue (�0; r0) 2 B1 which stays in B1 for t 2 [0; h] satis�eskr(t; r0; u)k � C1r0 for all u 2 U; t 2 [0; h] (1.4)for suitable some C1 > 0. Moreover, there exist constants u0 > 0 and C2 > 0such thatkr(t; r0; u)k � C2r0 for all juj < u0; t 2 [0; h] (1.5)and kr(t; r0; u)k � r0 + tC1r0 for all juj � u0; t 2 [0; h]: (1.6)Thus for each u 2 U with juj < u0 from (1.4) and (1.5) we can concluder(h; (r0; �0); u)� r0 � Z h0 (�0 + � � u)2C1r0 �C22r20d�= �(�0 � u)2h+ (�0 � u)h2 + h33 �C1r0 � hC22r20� h312C1r0 � hC22r20for all trajectories with r(t; (r0; �0); u) 2 B1 for all t 2 [0; h] where for the lastinequality we used that the minimum in u 2 U is attained for u = h=2 + �0.



1.5 Homogeneous systems 9From this estimate and inequality (1.6) we can �nally conclude thatany sampled closed loop trajectory with intersampling times �ti � h with(�0; r0) 2 B"(0) := f(�; r) j � 2 [0; 2�); r 2 [0; ")g leaves B"(0) in �nite timefor each " < minf1; C1h2=(12C22)g, and consequently neither sampled nordiscrete stability with positive sampling rate are possible.We �nally note that the function V (r; �) = r2 is a C1 control Lyapunovfunction for this system, and that the vector �eld is C1, hence these regu-larity properties do not imply stabilizability with positive sampling rate.1.5 Homogeneous systemsIn this section we summarize results from [10] which show that for homoge-neous systems the stabilizability properties with positive sampling rate canbe fully determined just by looking at the degree of the system. Stabiliza-tion of homogeneous systems has already been investigated by a number ofauthors, see e.g. [14, 15, 16, 19, 20, 21, 25].Let us start by de�ning what we mean by a \homogeneous system". Herewe slightly relax the Lipschitz condition on the vector �eld f and do onlyassume Lipschitz continuity in x 2 Rd n f0g.De�nition 1.5.1. We call system (1.1) homogeneous if there exist ri > 0,i = 1; : : : ; d, sj > 0, j = 1; : : : ;m and � 2 (�mini ri;1) such thatf(��x;��u) = ����f(x; u) for all u 2 U; � � 0 (1.7)and f��u ju 2 Ug � U for all � > 0.For compact U � Rm we call system (1.1) homogeneous-in-the-state ifthere exist ri > 0, i = 1; : : : ; d and � 2 (�mini ri;1) such thatf(��x; u) = ����f(x; u) for all u 2 U; � � 0 (1.8)Here �� = 0BBBB@�r1 0 � � � 00 . . . . . . ...... . . . . . . 00 : : : 0 �rd1CCCCA and �� = 0BBBB@�s1 0 � � � 00 . . . . . . ...... . . . . . . 00 : : : 0 �sm 1CCCCAare called dilation matrices. With k = mini ri we denote the minimal power(of the state dilation) and the value � 2 (�k;1) is called the degree of thesystem.The core idea for the construction the stabilizing feedback here lies in�nding a homogeneous control Lyapunov function in order to apply the con-struction of the proof of Theorem 1.3.1. This will �rst be accomplished forsystems homogeneous-in-the-state with a very simple structure, using similarideas as utilized for semilinear systems in [7, 8, 9]. Assume



10 1. Stabilization by sampled and discrete feedbackf(�x; u) = �f(x; u) for all � > 0; u 2 U (1.9)In the notation of De�nition 1.5.1 this system is homogeneous-in-the-statewith degree � = 0 with respect to the so-called standard dilation �� = � I.We assume furthermore that U � Rm is compact. De�ning the exponentialgrowth rates�t(x0; u(�)) := 1t ln kx(t; x0; u(�))kkx0kfor each x0 6= 0 and each u(�) 2 U it is easily seen from the homogenityproperty that the system is asymptotically controllable if and only if thereexist T; � > 0 such that for each x0 6= 0 there exists ux0(�) 2 U with�t(x0; ux0(�)) � �� < 0 (1.10)for all x0 6= 0 and all all t � T , cp. [10, Propositions 3.2 and 3.3]. (The ideaof considering exponential growth rates is strongly connected with | and infact inspired by | the spectral theory developed in [5, 6].)Another easy consequence of this homogenity property is the fact thatthe projections(t; s0; u(�)) := x(t; x0; u(�))kx(t; x0; u(�))k ; s0 = x0kx0kof (1.9) onto the unit sphere Sd�1 is well de�ned. A simple application of thechain rule shows that s is the solution of_s(t) = fS(s(t); u(t)); fS(s; u) = f(s; u) � hs; f(s; u)isand that for s0 = x0=kx0k the exponential growth rate �t satis�es�t(x0; u(�)) = �t(s0; u(�)) = 1t Z t0 q(s(�; s0; u(�)); u(� ))d�with q(s; u) = hs; f(s; u)i. Thus de�ning the discounted integralJ�(s0; u(�)) := Z 10 e��� q(s(�; s0; u(�)); u(� ))d�and the corresponding optimal value functionv�(s0) := infu(�)2U J�(s0; u(�))from (1.10) and [9, Lemma 3.5(ii)] we obtain that if system (1.9) is asymp-totically controllable then for each � 2 (0; �) there exists �� > 0 such thatfor all � 2 (0; ��] and all s0 2Sn�1 the inequality�v�(s0) < ��holds. Note that v� is H�older continuous and bounded for each � > 0,cp. e.g. [1]. We now �x some � 2 (0; �) and some � 2 (0; ��] and de�neV0(x) := e2v�(x=kxk)kxk2:



1.5 Homogeneous systems 11Using Bellman's Optimality Principle a straightforward (but tedious) com-putation shows that the function V0 is a control Lyapunov function which ishomogeneous with degree � = 1 with respect to the standard dilation andsatis�es minv2cof(x;U)DV0(x; v) � �2�V0(x);cp. [10, Lemma 4.1].Now we use this function as the starting point in the proof of Theorem1.3.1, and proceed analogously (for details see [10, Proposition 4.2]). Notethat V� inherits the homogenity properties of V0, thus F can be chosen tobe constant on rays of the form �x, � > 0, x 2 Rd. Now we chose a ring RcontainingSd�1 and consider inequality (1.3) (with W (x) = 2�V0(x)). Againby a compactness argument, from this inequality we obtainV�(x(�; x0; F (x0))� V�(x0) � ���V0(x0)for some � > 0 and some �0 > 0 su�ciently small, all � 2 [0; �0] and allx0 2Sd�1. Then homogenity immediately implies this inequality for all x0 2Rd and hence the resulting feedback law globally stabilizes system (1.9) withpositive sampling rate, in fact even uniformly exponentially.This result can be carried over to the general homogeneous systems fromDe�nition 1.5.1, leading to the following theorem. Here the function N (x) isgiven byN (x) :=  dXi=1 x prii ! 1pwith p = 2Qdi=1 ri.Theorem 1.5.1. Consider a homogeneous system according to De�nition1.5.1 with dilation matrices �� and ��, minimal power k > 0, and degree� 2 (�k;1), and assume asymptotic controllability.Then there exists a feedback law F : Rd ! U satisfying F (x) 2 �N(x)U0for some compact U0 � U and F (��x) = ��F (x) for all x 2 Rd and all� � 0 such that the corresponding sampled closed loop system is either(i) semi-globally stable (if � > 0), or(ii) globally uniformly exponentially stable (if � = 0), or(iii) globally practically exponentially stable (if � < 0)with �xed sampling rate.The analogous result holds for systems homogeneous-in-the-state; here Fsatis�es F (x) 2 U and F (��x) = F (x) for all x 2 Rd and all � � 0.Sketch of Proof. (See [10, Theorem 2.6 and 4.3] for a detailled proof.)First observe that the function N satis�es N (��x) = �N (x). Hence if fora homogeneous system we replace f by f(x;�N(x)u) we obtain a systemhomogeneous-in-the-state. A straightforward application of the homogenity



12 1. Stabilization by sampled and discrete feedbackyields that this system is asymptotically controllable with control values insome compact set U0 � U if and only if the original homogeneous systemis asymptotically controllable, see [10, Proposition 6.1]; conversely if F sta-bilizes the system homogeneous-in-the-state then �N(x)F (x) stabilizes theoriginal homogeneous system. Hence it su�ces to show the theorem for sys-tems homogeneous-in-the-state.To this end consider the manifold N�1(1) := fx 2 Rd jN (x) = 1g. Ob-viously the function S(x) = x=kxk gives a di�eomorphism from N�1(1)to Sd�1. Thus the function 	 (x) = N (x)kS(P (x)) with P (x) = ��1N(x)xis a continuous cordinate transformation with continuous inverse (both arealso di�erentiable except possibly at the origin), and replacing f(x; u) byD	 (	�1(x))f(	�1(x); u) we obtain a system which is homogeneous in thestate with respect to the standard dilation and with degree  = �=k. Replac-ing further f(x; u) by f(x; u)kxk� | i.e. applying a time transformation| we end up with a system of type (1.9) for which the stabilizing feed-back based on the control Lyapunov function V� has been constructed above.Re-translating this to the general system we �rst have to remove the timetransformation which essentially depends on the sign of degree of the system.This a�ects the sampling rates and thus leads to the three di�erent cases(i), (ii) and (iii). Since the space transformation does not a�ect the stabilityproperties of the sampled closed loop system we obtain the assertion.Note that the numerical methods from [7] are easily transferred to thehomogeneous case, thus they give a possibility to compute stabilizing discretefeedbacks numerically. See the next section for examples.Observe that the stabilizing homogeneous feedback corresponds to a ho-mogeneous control Lyapunov function obtained by applying the coordinatetransformation 	�1 to V�. This may be used to transfer these results tolocal results for systems approximated by homogeneous systems, similar to[13, 16, 18].Furthermore, note that even if a homogeneous system admits a stabilizingcontinuous static state feedback law, a stabilizing continuous and homoge-neous static state feedback for does not exist in general, cp. [21]. One wayto overcome the non-homogenity is by using dynamic feedbacks, see [14], theabove theorem in fact shows that discontinuous feedbacks provide anotherway.If we assume Lipschitz continuity of the homogeneous system in the oroginwe immediately obtain � � 0, and thus at least semi-global stabilizability. Ifwe assume global Lipschitz continuity (i.e. the existence of a global Lipschitzconstant) this implies � = 0 and thus even global stabilizability.



1.6 Examples 131.6 ExamplesLet us now illustrate our results by two examples. The �rst example, givenby the vector �eldf(x; u) = �x1 + u3x2 + x1u2� (1.11)for x = (x1; x2)T 2 R2, u 2 U = R, is taken from [21] where it has been shownthat a stabilizing continuous and homogeneous feedback law cannot exist forthis system. The vector �eld f is homogeneous with �� = diag(�; �3) and
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x1Fig. 1.1. Trajectories for stabilized system (1.11)�� = �. Thus we obtain N (x) = (x61+x22)1=6. For system (1.11) a stabilizingdiscrete feedback has been computed numerically using the techniques from[7] extended to the general homogeneous case. Analyzing the switching curvesof the numerical feedback in this case it was easy to derive the feedbackF (x) = � N (x); x1 � �x32�N (x); x1 > �x32stabilizing the sampled system for all su�ciently small sampling rates. Figure1.1 shows the corresponding (numerically simulated) sampled trajectoriesfor some initial values, here the intersampling times have been chosen as�ti = 0:01 for all i 2 N0.The second example is the nonholonomic integrator given by Brockett [2]as an example for a system being asymptotically null controllable but not



14 1. Stabilization by sampled and discrete feedbackstabilizable by a continuous feedback law. In suitable coordinates (cf. [24],where also the physical meaning is discussed) it is given by the vector �eldf(x; u) = 0@ u1u2x1u21A (1.12)for x = (x1; x2; x3)T 2 R3, u = (u1; u2)T 2 U = R2. For this f we obtainhomogenity with �� = diag(�; �; �2) and �� = diag(�; �), hence N (x) =(x41+x42+x23)1=4. Again a stabilizing discrete feedback law has been computednumerically.Also in this example it should be possible to derive an explicit formulafrom the numerical results. This is, however, considerably more complicated,since a number of switching surfaces have to be identi�ed. Hence we di-rectly used the numerically computed feedback for the simulation shown inthe Figures 1.2{1.4 in di�erent projections; the time step is h � 0:01, thecontrolvalues were chosen as U0 = f�1; 1g.
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16 1. Stabilization by sampled and discrete feedbackder consideration is asymptotically controllable, in general it can only beachieved by using vanishing intersampling times close to the origin, or faraway from it. This fact is illustrated by an example. For general vector �eldsconditions ensuring sampled or discrete stabilizability with positive samplingrate are still unknown. For homogeneous systems, however, this property canbe completely characterized by the degree of homogenity of the system. Twoexamples of stabilized homogeneous systems illustrate this fact.Acknowledgement. Parts of this paper have been written while the author wasvisiting the Dipartimento di Matematica of the Universit�a di Roma \La Sapienza",Italy, supported by DFG-Grant GR1569/2-1.
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