197 research outputs found

    Logics and Models for Stochastic Analysis Beyond Markov Chains

    Get PDF

    Stochastic learning dynamics and speed of convergence in population games

    Get PDF
    We study how long it takes for large populations of interacting agents to come close to Nash equilibrium when they adapt their behavior using a stochastic better reply dynamic. Prior work considers this question mainly for 2 Ă— 2 games and potential games; here we characterize convergence times for general weakly acyclic games, including coordination games, dominance solvable games, games with strategic complementarities, potential games, and many others with applications in economics, biology, and distributed control. If players' better replies are governed by idiosyncratic shocks, the convergence time can grow exponentially in the population size; moreover, this is true even in games with very simple payoff structures. However, if their responses are sufficiently correlated due to aggregate shocks, the convergence time is greatly accelerated; in fact, it is bounded for all sufficiently large populations. We provide explicit bounds on the speed of convergence as a function of key structural parameters including the number of strategies, the length of the better reply paths, the extent to which players can influence the payoffs of others, and the desired degree of approximation to Nash equilibrium

    Robust Control Algorithm for Drones

    Get PDF
    Drones, also known as Crewless Aircrafts (CAs), are by far the most multi - level and multi developing technologies of the modern period. This technology has recently found various uses in the transportation area, spanning from traffic monitoring applicability to traffic engineering for overall traffic flow and efficiency improvements. Because of its non-linear characteristics and under-actuated design, the CA seems to be an excellent platform to control systems study. Following a brief overview of the system, the various evolutionary and robust control algorithms were examined, along with their benefits and drawbacks. In this chapter, a mathematical and theoretical model of a CA’s dynamics is derived, using Euler’s and Newton’s laws. The result is a linearized version of the model, from which a linear controller, the Linear Quadratic Regulator (LQR), is generated. Furthermore, the performance of these nonlinear control techniques is compared to that of the LQR. Feedback-linearization controller when implemented in the simulation for the chapter, the results for the same was better than any other algorithm when compared with. The suggested regulatory paradigm of the CA-based monitoring system and analysis study will be the subject of future research, with a particular emphasis on practical applications

    On distributed ledger technology for the internet of things: design and applications

    Get PDF
    Distributed ledger technology (DLT) can used to store information in such a way that no individual or organisation can compromise its veracity, contrary to a traditional centralised ledger. This nascent technology has received a great deal of attention from both researchers and practitioners in recent years due to the vast array of open questions related to its design and the assortment novel applications it unlocks. In this thesis, we are especially interested in the design of DLTs suitable for application in the domain of the internet of things (IoT), where factors such as efficiency, performance and scalability are of paramount importance. This work confronts the challenges of designing IoT-oriented distributed ledgers through analysis of ledger properties, development of design tools and the design of a number of core protocol components. We begin by introducing a class of DLTs whose data structures consist of directed acyclic graphs (DAGs) and which possess properties that make them particularly well suited to IoT applications. With a focus on the DAG structure, we then present analysis through mathematical modelling and simulations which provides new insights to the properties of this class of ledgers and allows us to propose novel security enhancements. Next, we shift our focus away from the DAG structure itself to another open problem for DAG-based distributed ledgers, that of access control. Specifically, we present a networking approach which removes the need for an expensive and inefficient mechanism known as Proof of Work, solving an open problem for IoT-oriented distributed ledgers. We then draw upon our analysis of the DAG structure to integrate and test our new access control with other core components of the DLT. Finally, we present a mechanism for orchestrating the interaction between users of a DLT and its operators, seeking to improves the usability of DLTs for IoT applications. In the appendix, we present two projects also carried out during this PhD which showcase applications of this technology in the IoT domain.Open Acces

    Distributed Control and State Estimation of DC Microgrids Based on Constrained Communication Networks.

    Get PDF
    PhD ThesesThe intermittent nature of renewable energy sources (RES) such as wind turbines and photovoltaic panels, requires advanced control systems to provide the balance between energy supply and demand in any power system. For better management of power quality and security issues, energy storage systems (ESSs) are deployed to compensate for the temporary mismatch of supply and demand. Furthermore, in rural areas with no connection to the main grid, ESSs such as batteries are deployed in large quantities as a solution for temporary power stabilization during RES unavailability. However, the control complexity of the power system increases as more ESSs are getting installed due to the need for coordination of the power transfer among them. This thesis undertakes a thorough analysis of distributed control and state estimation designs for direct current (DC) microgrids with ESSs based on constrained communication networks. The developed distributed control and estimation strategies are designed for operation over constrained communication networks. They don't require a central coordinator for synchronization of the control tasks between the ESSs. This forms a multi-agent environment where the controllers cooperatively achieve the DC microgrid objectives, i.e. voltage stabilization, proportional power-sharing, and balancing of ESSs' energy level. To overcome the communication network constraints, event-based controllers and estimators are designed, which e ectively reduce the network tra c and as a result, provide higher throughput with reduced delays for the real-time control loops of the DC microgrids. The controllers are designed to be distributed, leading to use cases such as autonomous islanded microgrids, smart villages, and plug-and-play mobile microgrids. The feasibility and performance of the proposed control and estimation strategies are con rmed in several experimental test benches by showing the higher reliability and robustness in the delivered power quality. The results have shown considerable reduction in the network tra c, meanwhile the control system provided high performance in terms of stability, robustness, power quality and endurabilit

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April l, 1988 through September 30, 1988

    Engineering Self-Adaptive Collective Processes for Cyber-Physical Ecosystems

    Get PDF
    The pervasiveness of computing and networking is creating significant opportunities for building valuable socio-technical systems. However, the scale, density, heterogeneity, interdependence, and QoS constraints of many target systems pose severe operational and engineering challenges. Beyond individual smart devices, cyber-physical collectives can provide services or solve complex problems by leveraging a “system effect” while coordinating and adapting to context or environment change. Understanding and building systems exhibiting collective intelligence and autonomic capabilities represent a prominent research goal, partly covered, e.g., by the field of collective adaptive systems. Therefore, drawing inspiration from and building on the long-time research activity on coordination, multi-agent systems, autonomic/self-* systems, spatial computing, and especially on the recent aggregate computing paradigm, this thesis investigates concepts, methods, and tools for the engineering of possibly large-scale, heterogeneous ensembles of situated components that should be able to operate, adapt and self-organise in a decentralised fashion. The primary contribution of this thesis consists of four main parts. First, we define and implement an aggregate programming language (ScaFi), internal to the mainstream Scala programming language, for describing collective adaptive behaviour, based on field calculi. Second, we conceive of a “dynamic collective computation” abstraction, also called aggregate process, formalised by an extension to the field calculus, and implemented in ScaFi. Third, we characterise and provide a proof-of-concept implementation of a middleware for aggregate computing that enables the development of aggregate systems according to multiple architectural styles. Fourth, we apply and evaluate aggregate computing techniques to edge computing scenarios, and characterise a design pattern, called Self-organising Coordination Regions (SCR), that supports adjustable, decentralised decision-making and activity in dynamic environments.Con lo sviluppo di informatica e intelligenza artificiale, la diffusione pervasiva di device computazionali e la crescente interconnessione tra elementi fisici e digitali, emergono innumerevoli opportunità per la costruzione di sistemi socio-tecnici di nuova generazione. Tuttavia, l'ingegneria di tali sistemi presenta notevoli sfide, data la loro complessità—si pensi ai livelli, scale, eterogeneità, e interdipendenze coinvolti. Oltre a dispositivi smart individuali, collettivi cyber-fisici possono fornire servizi o risolvere problemi complessi con un “effetto sistema” che emerge dalla coordinazione e l'adattamento di componenti fra loro, l'ambiente e il contesto. Comprendere e costruire sistemi in grado di esibire intelligenza collettiva e capacità autonomiche è un importante problema di ricerca studiato, ad esempio, nel campo dei sistemi collettivi adattativi. Perciò, traendo ispirazione e partendo dall'attività di ricerca su coordinazione, sistemi multiagente e self-*, modelli di computazione spazio-temporali e, specialmente, sul recente paradigma di programmazione aggregata, questa tesi tratta concetti, metodi, e strumenti per l'ingegneria di ensemble di elementi situati eterogenei che devono essere in grado di lavorare, adattarsi, e auto-organizzarsi in modo decentralizzato. Il contributo di questa tesi consiste in quattro parti principali. In primo luogo, viene definito e implementato un linguaggio di programmazione aggregata (ScaFi), interno al linguaggio Scala, per descrivere comportamenti collettivi e adattativi secondo l'approccio dei campi computazionali. In secondo luogo, si propone e caratterizza l'astrazione di processo aggregato per rappresentare computazioni collettive dinamiche concorrenti, formalizzata come estensione al field calculus e implementata in ScaFi. Inoltre, si analizza e implementa un prototipo di middleware per sistemi aggregati, in grado di supportare più stili architetturali. Infine, si applicano e valutano tecniche di programmazione aggregata in scenari di edge computing, e si propone un pattern, Self-Organising Coordination Regions, per supportare, in modo decentralizzato, attività decisionali e di regolazione in ambienti dinamici
    • …
    corecore