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Econometrica, Vol. 84, No. 2 (March, 2016), 627–676

STOCHASTIC LEARNING DYNAMICS AND SPEED
OF CONVERGENCE IN POPULATION GAMES

BY ITAI ARIELI AND H. PEYTON YOUNG1

We study how long it takes for large populations of interacting agents to come close
to Nash equilibrium when they adapt their behavior using a stochastic better reply dy-
namic. Prior work considers this question mainly for 2 × 2 games and potential games;
here we characterize convergence times for general weakly acyclic games, including
coordination games, dominance solvable games, games with strategic complementar-
ities, potential games, and many others with applications in economics, biology, and
distributed control. If players’ better replies are governed by idiosyncratic shocks, the
convergence time can grow exponentially in the population size; moreover, this is true
even in games with very simple payoff structures. However, if their responses are suffi-
ciently correlated due to aggregate shocks, the convergence time is greatly accelerated;
in fact, it is bounded for all sufficiently large populations. We provide explicit bounds
on the speed of convergence as a function of key structural parameters including the
number of strategies, the length of the better reply paths, the extent to which players
can influence the payoffs of others, and the desired degree of approximation to Nash
equilibrium.

KEYWORDS: Population games, better reply dynamics, convergence time.

1. OVERVIEW

NASH EQUILIBRIUM IS THE CENTRAL SOLUTION CONCEPT for noncooperative
games, but many natural learning dynamics do not converge to Nash equilib-
rium without imposing strong conditions on the structure of the game and/or
the players’ level of rationality. Even in those situations where the learning dy-
namics do eventually lead to Nash equilibrium, the process may take so long
that equilibrium is not a meaningful description of the players’ behavior. In
this paper, we study the convergence issue for population games, that is, games
that are played by a large number of interacting players. These games have nu-
merous applications in economics, biology, and distributed control (Hofbauer
and Sigmund (1998), Sandholm (2010b), Marden and Shamma (2014)). Two
key questions present themselves: are there natural learning rules that lead to
Nash equilibrium for a reasonably general class of games? If so, how long does
it take to approximate Nash equilibrium behavior starting from arbitrary initial
conditions?

To date, the literature has focused largely on negative results. It is well
known, for example, that there are no natural deterministic dynamics that
converge to Nash equilibrium in general normal-form games. The basic dif-

1The authors thank Yakov Babichenko, Gabriel Kreindler, John Levy, Jason Marden, Bary
Pradelski, William Sandholm, and Cheng Wan. We also thank the co-editor and several anony-
mous referees for constructive comments on an earlier draft. This research was supported by the
Air Force Office of Scientific Research Grant # FA9550-09-1-0538 and by the Office of Naval
Research Grant # N00014-09-1-0751.
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ficulty is that, given virtually any deterministic dynamic, one can construct
the payoffs in such a way that the process gets trapped in a cycle (Hofbauer
and Swinkels (1996), Hart and Mas-Colell (2003), Hofbauer and Sandholm
(2007)). Although stochastic learning algorithms can be designed that select
Nash equilibria in the long run, their convergence time will, except in special
cases, be very slow due to the fact that the entire space of strategies is repeat-
edly searched (Hart and Mas-Colell (2006), Foster and Young (2003, 2006),
Germano and Lugosi (2007), Marden, Young, Arslan, and Shamma (2009),
Young (2009), Marden and Shamma (2012), Babichenko (2012), Pradelski and
Young (2012)).

There is, however, an important class of games where positive results hold,
namely, games that can be represented by a global potential function. In this
case, there are various decentralized algorithms that lead to Nash equilibrium
quite rapidly (Shah and Shin (2010), Chien and Sinclair (2011), Kreindler and
Young (2013), Borowski, Marden, and Frew (2013), Borowski and Marden
(2014)). These results exploit the fact that better replies by individual play-
ers lead to monotonic increases in the potential function. A similar approach
can be employed if the dynamical process has a Lyapunov function, which is
sometimes the case even when the underlying game does not have a potential
function (Ellison, Fudenberg, and Imhof (2014)).

Another class of games where positive results have been obtained are games
that can be solved by the iterated elimination of strategies that are not con-
tained in the minimal p-dominant set for some p> 1/2 (Tercieux (2006)). For
such games, Oyama, Sandholm, and Tercieux (2015) showed that if players
choose best responses to random samples of other players’ actions, and if the
distribution of sample sizes places sufficiently high probability on small sam-
ples, then the corresponding deterministic dynamics converge in bounded time
to the unique equilibrium that results from the iterative elimination procedure.

Finally, rapid convergence can occur when agents are located at the vertices
of a network and they respond only to the choices of their neighbors (Elli-
son (1993), Young (1998, 2011), Montanari and Saberi (2010), Kreindler and
Young (2013)). The main focus of this literature is on the extent to which the
network topology affects convergence time. However, the analysis is typically
restricted to very simple games such as 2 × 2 coordination games, and it is not
known whether the results extend to more general games.2

This paper examines the speed of convergence issue for the general case of
weakly acyclic games with global interaction. There are numerous examples
of such games that are not necessarily potential games, including n-person co-
ordination games, games with strategic complementaries, dominance-solvable
games, and many others with important applications in economics, computer
science, and distributed control (Fabrikant, Jaggard, and Schapira (2013)). The
key feature that these games share with potential games is that, from every

2Golub and Jackson (2012) studied the effect of the network topology on the speed with which
agents reach a consensus when they update their beliefs based on their neighbors’ beliefs.
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initial state, there exists a better reply path to some Nash equilibrium. If the
players can find such a path through some form of adaptive learning, there is a
hope that they can reach an equilibrium (or at least the neighborhood of such
an equilibrium) reasonably quickly.

Consider an n-person game G that is played by individuals who are drawn at
random from n disjoint populations, each of size N .3 In applications, G is often
a two-person game, in which case pairs of individuals are matched at random
to play the game. These are among the most common examples of population
games in the literature. Here we shall call them Nash population games, since
the idea was originally introduced by Nash as a way of motivating Nash equilib-
rium without invoking full rationality on the part of the players (Nash (1950)).
In what follows, we develop a general framework for estimating the speed of
convergence as a function of the structure of the underlying game G and the
number N of individuals in each population. One of our key findings is that
weak acyclicity does not in itself guarantee fast convergence when the popula-
tion is large and the players’ responses are subject to idiosyncratic independent
shocks. By contrast, when the shocks are sufficiently correlated, convergence
to equilibrium may occur quite rapidly.

For the sake of specificity, we shall focus on the important class of better
reply processes variously known as “pairwise comparison revision protocols”
or “pairwise comparison dynamics” (Björnerstedt and Weibull (1996), Sand-
holm (2010a)). These dynamics are very common in the literature, although
their micro foundations are often not made explicit. Here we show that they
have a natural motivation in terms of idiosyncratic switching costs. Specifically,
we consider the following type of process: players revise their strategies asyn-
chronously according to i.i.d. Poisson arrival processes. The arrival rate deter-
mines the frequency with which individuals update their strategies and serves
as the benchmark against which other rates are measured.4 When presented
with a revision opportunity, a player compares his current payoff to the payoff
from an alternative, randomly drawn strategy.5 The player switches provided
the payoff difference is higher than the switching cost, which is modeled as the
realization of an idiosyncratic random variable. Thus, from an observer’s stand-
point, the player switches with a probability that is monotonically increasing in
the payoff difference between his current strategy and a randomly selected al-
ternative. We shall call such a process a stochastic pairwise comparison dynamic.
One of the earliest examples of a stochastic pairwise comparison dynamic is a

3For a discussion of the origins and significance of this class of games, see Weibull (1995),
Leonard (1994), Björnerstedt and Weibull (1996), and Sandholm (2009, 2010a).

4This is a standard assumption in the literature; see, among others, Shah and Shin (2010),
Marden and Shamma (2012, 2014), Chien and Sinclar (2011), Kreindler and Young (2013). The
specific context determines the frequency with which players update in real time.

5A variant of this procedure is to choose another player at random, and then to imitate his
action with a probability that is increasing in its observed payoff, provided the latter is higher
than the player’s current payoff (Björnerstedt and Weibull (1996)).
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model of traffic flow due to Smith (1984). In this model, drivers switch from
one route to another with a probability that is proportional to the payoff dif-
ference between them.

Our results may be summarized as follows. Let G be a normal-form n-person
game (n ≥ 2) with a finite number of strategies for each player. Let N be the
number of individuals in each of the n player positions, and let GN be the
population game in which the payoff to each individual is the expected payoff
from playing against a group drawn uniformly at random from the other pop-
ulations. The normal-form game G is weakly acyclic if, from any given strategy
profile, there exists a better reply path to a Nash equilibrium (Young (1993)).
However, the fact that G is weakly acyclic does not necessarily imply that GN

is weakly acyclic. This conclusion does hold for a generic set of payoffs defin-
ing G, but the usual form of genericity (no payoff ties) is insufficient. We in-
troduce a new concept called δ-genericity that proves to be crucial not only for
characterizing when weak acyclicity is inherited by the population game, but
also for estimating the speed of convergence. This condition is considerably
stronger and more delicate than the condition of no payoff ties, but it is still a
generic condition, that is, the set of payoffs that satisfy δ-genericity for some
δ > 0 has full Lebesgue measure. We call the greatest such δ the interdepen-
dence index of G, because it measure the extent to which changes of strategy
by members of one population can alter the payoffs to members of other pop-
ulations.

We are interested in the following question: when G and GN are weakly
acyclic, and players update via a stochastic pairwise comparison dynamic, how
long does it take for the dynamical system to approximate Nash equilibrium
behavior? There are different ways that one can formulate the ‘how long does
it take’ issue. One possibility is to consider the expected first time that the pro-
cess closely resembles Nash behavior, but this is not satisfactory. The difficulty
is that the process might briefly resemble a Nash equilibrium, but then move
away from it. A more relevant concept is the time that it takes until expected
behavior is close to Nash equilibrium over long periods of time. This concept
allows for occasional departures from equilibrium (e.g., as the process transits
from one equilibrium to another), but such departures must be rare.6

Our first main result shows that, under purely idiosyncratic random shocks,
the convergence time can grow exponentially with N . Specifically, we construct
a three-person game G̃ with a total of eight strategies, such that, for all suffi-
ciently small ε > 0, the convergence time grows exponentially in N . In fact, this
is true for a wide class of stochastic better reply dynamics including the stochas-
tic replicator dynamics. This construction shows that results on the speed of

6A more demanding concept is the time it takes until the process comes close to Nash equilib-
rium and remains close in all subsequent periods. As we shall see, rapid convergence in this sense
may not be achievable even when shocks are highly correlated.
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convergence for potential games do not carry over to weakly acyclic games in
general.

This finding complements recent results of Hart and Mansour (2010), who
used the theory of communication complexity to construct N-person, weakly
acyclic games such that the expected time for any uncoupled better reply dy-
namic to reach Nash equilibrium grows exponentially in N . Using similar tech-
niques, Babichenko (2014) showed that it can take an exponential number of
periods to reach an approximate Nash equilibrium.7 Our results are quite dif-
ferent because the games constructed by these authors become increasingly
complex as the number N of players grows. In our examples, the underlying
game G is fixed, the Nash equilibria are trivial to compute, and the only vari-
able is the population size N . Nevertheless, for a large class of better reply
dynamics, it takes exponentially long to reach an approximate Nash equilib-
rium.

The second main contribution of the paper is to show that the speed of con-
vergence can be greatly accelerated when the learning process is subjected to
aggregate as well as idiosyncratic shocks. The nature of the aggregate shocks
depends on the context. They could represent intermittent breakdowns in
communications that temporarily prevent subgroups of players from learning
about the payoffs available from alternative strategies. Or they could repre-
sent switching costs that make it unprofitable for all players currently using a
given strategy i to switch to some alternative strategy j; for example, a strategy
might represent the use of a given product, so that the switching cost affects all
users of the product simultaneously.8 Somewhat paradoxically, these shocks,
which slow down the players’ responses, can greatly reduce the convergence
time; in fact, for a general class of shock distributions, the convergence time is
bounded above for all sufficiently large N . More generally, we show how the
speed of convergence depends on key structural parameters of the underlying
game G, including the length of the better reply paths and the total number of
strategies.

The plan of the paper is as follows. In Section 2, we introduce the concept
of Nash population games, following Weibull’s seminal treatment (Weibull
(1995)). We also define what we mean by “coming close” to equilibrium. Given
a Nash population game, we say that a distribution of behaviors is ε-close to
Nash equilibrium if it constitutes an ε-equilibrium (in mixed strategies) with
respect to the underlying game G. This definition does not require that ev-
eryone in the population play an ε-equilibrium, but it does require that, if

7Our framework also differs from Sandholm and Staudigl (2015), who studied the rate at which
certain types of stochastic learning dynamics converge to the stochastically stable equilibrium. In
games with multiple equilibria, the convergence time can also grow exponentially with N .

8In a similar spirit, Pradelski (2015) showed that by introducing aggregate shocks to a two-
sided matching market, the convergence time becomes polynomial in the number of players,
rather than exponential.
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some players’ behaviors are far from equilibrium, they must constitute a small
fraction of the whole population. Section 3 introduces the class of better re-
ply dynamics known as pairwise comparison dynamics (Sandholm (2010b)),
which form the basis of most of our results. In Section 4, we exhibit a family
of weakly acyclic, three-person Nash population games such that, given any
pairwise comparison dynamic and any ε > 0, there exists a game G such that
it takes exponentially long in the population size N for the learning process to
come ε-close to a Nash equilibrium of G for the first time (see Theorem 1).
A fortiori, it takes exponentially long to come close to equilibrium for an ex-
tended period of time. These games also illustrate a key difference between
our approach and the use of mean-field dynamics to approximate the behav-
ior of the stochastic processes for large N . Namely, for all finite N , conver-
gence to a pure Nash equilibrium occurs almost surely in finite time in any
of these games, whereas under the limiting mean-field dynamics, convergence
may never occur. The reason is that the mean-field better reply dynamics can
have multiple attractors, whereas in the population game with finite N there
must exist a better reply path from every state to a pure Nash equilibrium.

In Section 5, we introduce aggregate shocks to the learning process, and
show that, given any finite, weakly acyclic game G with generic payoffs, and
any ε > 0, the convergence time in the population game GN is bounded above
for all sufficiently large population sizes N . In Section 6, we estimate the con-
vergence time as a function of the degree of approximation ε and the struc-
tural parameters defining the underlying game G, including the total number
of strategies and the length of the better reply paths. In addition, we intro-
duce a novel concept called the interdependence index, δG, which measures the
extent to which changes in strategy by members of one population alter the
payoffs to members of other populations. This index is crucial for estimat-
ing the rate at which individuals change strategies and therefore the rate at
which the stochastic dynamics evolve in GN . Using a combination of results in
stochastic approximation theory, together with novel techniques for measuring
transition times in population games, we show that the expected convergence
time to come close to ε-equilibrium is polynomial in ε−1, and exponential in
the number of strategies and in δ−1

G .

2. PRELIMINARIES

Let G = (P� (Sp)p∈P� (up)p∈P) be a normal-form n-player game, where P is
the finite set of players, |P | = n≥ 2.9 Let Sp and up denote the strategy set and
the payoff function of player p ∈ P , respectively. For every player p ∈ P , let
mp = |Sp| and M = ∑

p∈P mp. Let S = ∏
p∈P Sp be the set of all pure strategy

9The case where there is a single population and G is symmetric can be analyzed using similar
methods, but requires different notation. For expositional clarity, we shall restrict ourselves to
the case n≥ 2.
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profiles. We let Xp = Δ(Sp) denote the set of mixed strategies of player p. Let
χ= ∏

p∈P Xp be the Cartesian product of mixed strategies.
A sequence of pure strategy profiles (s1� � � � � sk) ∈ S × · · · × S︸ ︷︷ ︸

k times

is called a strict

better reply path if each successive pair (sj� sj+1) involves a unilateral change of
strategies by exactly one player, and the change in strategy strictly increases
that player’s payoff.

DEFINITION 1: A game G is weakly acyclic if, for every strategy profile s ∈ S,
there exists a strict better reply path to a Nash equilibrium. G is strictly weakly
acyclic if, for every s ∈ S, there exists a strict better reply path to a strict Nash
equilibrium. If G is weakly acyclic and has no payoff ties, then clearly G is
strictly weakly acyclic.

Examples of weakly acyclic games include potential games, coordination
games, games with strategic complementaries, dominance-solvable games, and
many others (Fabrikant, Jaggard, and Schapira (2013)).

2.1. Nash Population Games

For every natural number N , the n-person game G gives rise to a population
game GN in the spirit of Nash as follows. Every “player” p represents a finite
population of size N . The strategy set available to every member of population
p is Sp. A population state is a vector x ∈ χ, where, for each p ∈ P and each
i ∈ Sp, the fraction x

p
i is the proportion of population p that chooses strategy i.

Let χN denote the subset of states that results when each population has N
members, that is,

χN = {
x ∈ χ :Nx ∈ N

M
}
�

Let up
i (x) be the payoff to a member of population p who is playing strategy

i in population state x, that is,

u
p
i (x) = up

(
e
p
i � x

−p
)
�

Note that the payoff of any individual depends only on his own strategy and on
the distribution of strategy choices in the other populations; it does not depend
on the distribution in his own population. Let Up(x) be the vector of payoffs
(u

p
i (x))i∈Sp . Every pure Nash equilibrium of the game GN can be interpreted

as a mixed Nash equilibrium of the game G.
A population state x is a population ε-equilibrium (ε-equilibrium for short)

if x is an ε-equilibrium of the original game G, that is, for every population p

dp(x)= max
yp∈Xp

up
(
yp�x−p

) − up(x)≤ ε�
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Intuitively, x is an ε-equilibrium if the proportion of any population that can
significantly improve its payoff by changing strategies is small.

DEFINITION 2: For every x ∈ χ, let d(x) denote the minimal ε for which x is
an ε-equilibrium. We shall say that d(x) is the deviation of x from equilibrium,
that is,

d(x)= max
p∈P

dp(x)�

3. THE ADAPTIVE DYNAMIC

In this section, we introduce a natural class of updating procedures that de-
fine a stochastic dynamical system on the space χN . Suppose that every individ-
ual receives updating opportunities according to a Poisson arrival process with
rate one per time period, and suppose that these processes are independent
among the individuals. Thus, in expectation, there are N updates per period in
each population. The speed of convergence of the process is measured relative
to the underlying rate at which individuals update.10

Let x ∈ χN be the current state and Up(x) the vector of payoffs in that state.
If a random member of a population p updates, the probability is xp

i that he is
currently playing strategy i. Assume that he switches to strategy j with proba-
bility ρ

p
ij , where

∑
j �=i ρ

p
ij ≤ 1. We shall assume that

(i) ρ
p
ij is Lipschitz continuous and depends only on u

p
i (x) and u

p
j (x);

(ii) ρ
p
ij(u

p
i (x)�u

p
j (x)) > 0 ⇔ u

p
j (x) > u

p
i (x).

We shall denote this stochastic process by XN(·) and refer to it as a stochastic
pairwise comparison dynamic; the matrix of transition functions ρ = [ρp

ij ] con-
stitutes a “revision protocol” (Sandholm (2010b)).11 It will also be convenient
to write ρ

p
ij(U

p(x)) as a function of the entire vector Up(x) even though in fact
it depends only on the two components u

p
i (x) and u

p
j (x). As noted by Sand-

holm (2010b), this class of dynamics has a number of desirable properties. In
particular, the informational demands are very low: each individual need only
compare his payoff with the potential payoff from an alternative strategy; he
does not need to know the distribution of payoffs, or even the average payoff
to members of his population, which would pose a heavier informational bur-
den. It is assumed, however, that everyone knows the potential payoffs from
alternative strategies.12

10This is the standard approach in the literature; see, among others, Hart and Mansour (2010),
Shah and Shin (2010), Kreindler and Young (2013), Babichenko (2014), Marden and Shamma
(2014).

11A more general definition of revision protocols was given by Björnerstedt and Weibull (1996),
here we shall only consider the pairwise comparison format.

12One could assume instead that payoffs are observable with some error, or that individuals
try out alternative strategies in order to estimate their payoffs. These and other variations can be
analyzed using similar methods, but we shall not pursue them here.
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One way of motivating these dynamics is in terms of switching costs. Con-
sider a member of population p who is currently playing strategy i in state
x ∈ χ. He receives updating opportunities according to a Poisson arrival pro-
cess with unit expectation. Given an updating opportunity, he draws an alter-
native strategy j �= i uniformly at random and compares its payoff up

j (x) with
his current payoff up

i (x). Let c be the realization of an idiosyncratic switching
cost distributed on an interval [0� bp] with c.d.f. Fp(c). He then switches if and
only if c ≤ u

p
j (x) − u

p
i (x). Thus, in each unit time interval, an updating indi-

vidual in population p who is currently using strategy i switches to j �= i with
probability

ρ
p
ij

(
Up(x)

) = 1(
mp − 1

)Fp
(
u
p
j (x)− u

p
i (x)

)
�(1)

Suppose that Fp(c) has a density f p(c) that is bounded above and also
bounded away from zero on [0� bp]. Then ρ

p
ij(U

p(x)) is Lipschitz continuous,
and it satisfies conditions (i) and (ii).

From Lemma 1 in Benaïm and Weibull (2003), we know that, as the size of
the population grows, the behavior of the process XN(·) can be approximated
by the following mean-field differential equation on the space χ of population
proportions:

∀p�∀i� j ∈ Sp� ż
p
i =

∑
j∈Sp

z
p
j ρ

p
ji

(
Up(z)

) − z
p
i ρ

p
ij

(
Up(z)

)
�(2)

A particularly simple example arises when Fp(c) is the uniform distribution,
that is, Fp(c)= c/bp for all c ∈ [0� bp]. In this case,

ρ
p
ij

(
Up(x)

) =
[
u
p
j (x)− u

p
i (x)

]
+ ∧ bp(

mp − 1
)
bp

�(3)

(In general, a ∧ b denotes the minimum of a and b.) In other words, the rate
of change between any two strategies is proportional to the payoff difference
between them (subject to an upper bound). To avoid notational clutter, we
shall consider the case where (mp − 1)bp = 1, and all payoffs up

i (x) lie in the
interval [0� bp]. In this case, we can write

ρ
p
ij

(
Up(x)

) = [
u
p
j (x)− u

p
i (x)

]
+�(4)

This yields the following mean-field differential equation on the state space χ:

∀p�∀i� j ∈ Sp� ż
p
i =

∑
j∈Sp

z
p
j

[
u
p
i (z)− u

p
j (z)

]
+ − z

p
i

[
u
p
j (z)− u

p
i (z)

]
+�(5)



636 I. ARIELI AND H. P. YOUNG

This is known as the Smith dynamic (Smith (1984)) and was originally proposed
as a model of traffic flow. We shall take this as our benchmark example in what
follows, but our results hold for every responsive revision protocol.

4. EQUILIBRIUM CONVERGENCE

Let G be a finite normal-form game and let GN be the population game
induced by G. Given a revision protocol ρ and a starting point in χN , recall
that XN(·) denotes the stochastic process defined by ρ. Recall that for every
point x ∈ χ, the deviation d(x) is the minimal ε such that x constitutes a mixed
ε-equilibrium of the game G. Thus d(XN(t)) is a random variable that repre-
sents the deviation of the population from equilibrium at time t.

DEFINITION 3: Equilibrium convergence holds for G if, for every N , every
revision protocol ρ, and every initial state x ∈ χN ,

P
(∃t� d(

XN(t)
) = 0

) = 1�

Once the process reaches a Nash equilibrium, it is absorbed. Hence equi-
librium convergence holds if and only if there exists a random time such that,
from that time on, the process is at an equilibrium.

PROPOSITION 1: Equilibrium convergence holds for a generic subset of weakly
acyclic population games G.

The proof of this proposition is given in Appendix C. We remark that the
usual definition of genericity (no payoff ties) is not sufficient; a more delicate
condition is needed for equilibrium convergence. We introduce this condition
in Section 6.1, where we show that it also plays a key role in determining the
speed of convergence.

4.1. Convergence Time in Large Populations

Our goal in this section is to study the convergence time as a function of the
population size N . One might suppose that convergence occurs quite rapidly,
as in potential games. It turns out, however, that in some weakly acyclic games
the convergence time can be extremely slow. Consider the following example.
For every δ�γ > 0, let Γγ�δ be the following three-player game:

L
L M R

T −1�−1�1 γ�0�1 0�γ�1

M 0�γ�0 −1�−1�1 γ�0�1

B γ�0�1 0�γ�1 −1�−1�1

R
L M R

0�0� δ 0�0� δ 0�0� δ

2�2� δ 0�0� δ 0�0� δ

0�0� δ 0�0� δ 0�0� δ
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This game is weakly acyclic: starting from any state where the third player
plays L, the first two players have a sequence of strict best replies that take
them to (M�L�L), at which point R is a strict best reply for the third player.
Alternatively, if the initial state is not (M�L�R) but the third player is play-
ing R, then it is a strict best reply for the third player to switch to L. After that,
the first two players have a sequence of strict best replies that takes the state
to (M�L�L), at which point R is a strict best reply for the third player, which
takes the process to (M�L�R).

Fix a revision protocol ρ. Let XN(·) be the stochastic process associated with
the preceding population game Γ N

γ�δ, where the members of each population
update their strategy choices in accordance with ρ. Given ε > 0 and an initial
state y , let TN(ε� y) be the first time t such that d(XN(t))≤ ε. Further, let

T̄ N(ε)= sup
y∈χ

E
(
TN(ε� y)

)
�

THEOREM 1: Given any revision protocol ρ, there exist values γ�δ�ε > 0 such
that T̄ N(ε) grows exponentially with N .

Before giving the detailed proof, we shall outline the overall argument. If
populations 1 and 2 are playing the strategy combination (M�L), then pop-
ulation 3 would prefer R over L because the payoff gain is δ. However, if a
proportion of at least δ of populations 1 and 2 are not playing (M�L), then
population 3 prefers L to R. The idea is to begin the process in a state such
that: (i) population 3 is playing L, and (ii) populations 1 and 2 are distributed
among the cells of the cycle

(M�L) → (B�L)→ (B�M)→ (T�M) → (T�R)

→ (M�R) → (M�L)�

The expected (deterministic) motion leads to sluggish movement around the
cycle with a very low proportion of populations 1 and 2 in the diagonal cells of
the left matrix, while population 3 continues to play L. The stochastic process
also follows this pattern with high probability for a long time, although even-
tually enough mass accumulates in the cell (M�L) of the left matrix to cause
players to switch to strategies in the right matrix. Using a result in stochastic
approximation theory due to Benaïm and Weibull (2003), we show that the
expected waiting time until this happens is exponential in N .

Although we prove this result formally for pairwise comparison dynamics, a
similar argument holds for a wide variety of better reply dynamics including
the replicator dynamic. Indeed, consider any continuous better reply dynamic
such that the expected rate of flow from a lower to a higher payoff strategy is
strictly increasing in the payoff difference. Then the expected flow out of each
cell in the above cycle is bounded away from zero. When the population size
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N is large, it becomes extremely improbable that a large enough proportion of
the population will accumulate in the particular cell (M�L), which is needed
to trigger a shift from the left to the right matrix (and thus escape from the
cycle).

PROOF OF THEOREM 1: Even though the game is not generic, it can be ver-
ified that the proof of the theorem remains valid under a slight perturbation of
the payoff functions. For expositional clarity, we shall work with the nongeneric
version.

Let ρ be the given revision protocol. Consider the subgame for players 1
and 2 when player 3 is held fixed at L:

L M R

T −1�−1 γ�0 0�γ

M 0�γ −1�−1 γ�0

B γ�0 0�γ −1�−1

(6)

Let Y = X1 × X2 be the product space of the mixed strategies of play-
ers 1 and 2. Consider the following differential equation with initial condition
z(0)= y ∈ Y :

for p= 1�2 and i ∈ Sp� ż
p
i =

∑
j∈Sp

z
p
j ρ

p
ji

(
Up(z)

) − z
p
i ρ

p
ij

(
Up(z)

)
�(7)

Let Φγ : R+ × Y → Y be the semi-flow of the differential equation (7) that
corresponds to the game with parameter γ, that is, for every t ≥ 0 and y ∈ Y :

Φγ(t� y)= z(t)

where z(·) is the solution of (7) with initial condition z(0)= y�

Let A ⊂ Y be the set of states such that the diagonal strategy combinations
have mass zero:

A= {
y ∈ Y : y1

T y
2
L + y1

My
2
M + y1

By
2
R = 0

}
�

Consider the case γ = 0. We claim that A is an attractor of the semi-flow Φ0;
that is, A is a minimal set with the following properties:

1. A is invariant: for all t ≥ 0, Φ0(t�A)=A.
2. There exists a neighborhood U of A such that

lim
t→∞

sup
y∈U

dist
(
Φ0(t� y)�A

) = 0�(8)

The first property follows at once from (7) and the fact that A is a subset of
Nash equilibria when γ = 0. To establish the second, note that, when γ = 0, the
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corresponding game is a potential game with potential function

P
(
y1� y2

) = −y1 · y2 = −(
y1
T y

2
L + y1

My
2
M + y1

By
2
R

)
�

The potential is weakly increasing along any solution of the dynamical sys-
tem (7), and is strictly increasing if the starting point is not a Nash equilib-
rium. In addition, by Theorem 7.1.2 in Sandholm (2010b), any solution of (7)
converges to a Nash equilibrium. The unique fully mixed Nash equilibrium
e = (( 1

3 �
1
3 �

1
3)� (

1
3 �

1
3 �

1
3)) has potential − 1

3 . All other Nash equilibria are par-
tially mixed and have potential zero. Thus, whenever the starting point has
potential greater than − 1

3 , the potential must increase to zero, and the limit
state must be a Nash equilibrium. For every value a ∈ R, let Ua be the set of
states with potential strictly greater than a. The fact that A satisfies the second
property in (8) follows by letting the open set U = U−1/4.

By Theorem 9.B.5 in Sandholm (2010b), for all sufficiently small γ ≥ 0, there
exists an attractor Aγ of Φγ such that A0 = A and the map γ → Aγ is upper-
hemicontinuous. It follows that for all sufficiently small γ > 0, all elements
y ∈Aγ satisfy

y1 · y2 ≤ 1/10(9)

and

lim
t→∞

sup
w∈U−1/4

dist
(
Φγ(t�w)�Aγ

) = 0�(10)

Fix any γ > 0 such that (9) and (10) hold, and let C = Aγ . For every positive
constant r > 0, let Cr be the set of points that lie within a distance r of C. The
proof of the theorem is based on two lemmas. The first lemma asserts that,
among all states in C, the proportion of the population playing the strategy
pair (M�L) is bounded away from 1.

LEMMA 1: There exists θ∗ > 0 such that, for every y ∈ C,

y1
My

2
L ≤ 1 − θ∗�

PROOF: We note first that the switching probability of population 2 between
pairs of strategies is bounded above by some positive number τ. Hence the flow
into strategy L (and a fortiori into (M�L)) is at most τ(1 − y2

L) for every state
y . Let y be such that y2

L is larger than 1+(3/2)γ
1+2γ . It can be checked that in any

such state, strategy B yields γ

2 more than strategy M to population 1. Hence
there is a positive number τ′ > 0 such that the outflow from M to B is larger
than τ′y1

M . This holds in particular for every y that is sufficiently concentrated
on (M�L). Hence there exists a number θ′ such that, whenever y1

My
2
L ≥ 1 − θ′,

the outflow to strategy B in population 1 is greater than the inflow to strategy
L in population 2. Let θ∗ = θ′

2 . It therefore must hold that y1
My

2
L ≤ 1 − θ∗ for

every y ∈ C. This establishes our first claim. Q.E.D.
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Using Lemma 1 and the properties of the attractor C, we shall next show the
following.

LEMMA 2: There exist constants r� δ > 0, T > 0, and ε > 0 with the following
properties:

1. Φγ(T�C2r)⊂ Cr .
For every point w ∈ Cr , every time t ≥ 0, and every point y such that

‖y −Φγ(t�w)‖ ≤ r, the following two conditions hold:
2. y assigns a proportion smaller than 1 − 2δ to the profile (M�L), that is,

y1
My

2
L < 1 − 2δ;

3. d(y) > ε.

We use these key properties to establish that the waiting time to reach an
ε-equilibrium grows exponentially with the population size N .

PROOF OF LEMMA 2: By (10), for every small enough r > 0, there exists a
large enough T > 0 such that

∀w ∈ C2r� Φγ(T�w) ∈ Cr�(11)

which establishes claim 1. Let θ∗ be the constant guaranteed by Lemma 1 and
let δ = θ∗

4 . It follows from equation (9) and the properties of the attractor C
that there exists r ∈ (0� δ) such that:

If
∥∥y −Φγ(t�w)

∥∥ ≤ r for some w ∈ C2r�(12)

then y1
My

2
L ≤ 1 − 2δ and y1 · y2 ≤ 1/5�

This establishes claim 2 in Lemma 2. To establish claim 3, it suffices to show
that there exists ε > 0 such that any point y with inner product y1 · y2 ≤ 1/5
has a deviation greater than ε. To see this, note that the unique Nash equilib-
rium of the game in (6) is e = ((1/3�1/3�1/3)� (1/3�1/3�1/3)) and e1 · e2 = 1

3 .
Therefore, any such y must be bounded away from e, hence the deviation of y
must be bounded away from 0. This completes the proof of Lemma 2. Q.E.D.

We shall now prove Theorem 1. Let Γγ�δ be the game that corresponds to
the constants γ and δ. For every x ∈ χ, let x′ be the projection of x onto the
set Y . Let Ψγ be the semi-flow of the dynamic over the space χ. By Lemma 1
in Benaïm and Weibull (2003), there exists a constant c > 0 such that, for every
x ∈ χ and all sufficiently large N ,

P

(
sup

0≤t≤T

∥∥Ψγ(t�x)−XN(t)
∥∥ > r

)
≤ exp(−cN)�(13)

Note that, by definition of the game Γγ�δ, if x ∈ χ assigns a proportion that is
smaller than 1 − δ to the profile (M�L), then L is the unique best reply for
player 3. Hence as long as the population state x satisfies x1

Mx
2
L < 1 − δ, no

member of population 3 switches to strategy R. Hence if x = (x′� (1�0)) for
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some x′ ∈ C2r , then by claim 2 in Lemma 2 and the definition of Φγ , we have

∀t ≥ 0� Ψγ(t�x) = (
Φγ(t�x)� (1�0)

)
�

Let x = (x′� (1�0)) ∈ χN be a starting point of XN(·) such that x′ ∈ C2r . We
claim that if sup0≤t≤T ‖Ψγ(t�x) − XN(t)‖ ≤ r, then the following conditions
hold with certainty:(

XN(T)
)′ ∈ C2r�(14)

∀t ∈ [0�T ]� y = (
XN(t)

)′
satisfies y1

My
2
L ≤ 1 − 2δ�(15)

d
(
XN(t)

)
> ε�(16)

To verify (14), note that by claim 1 of Lemma 2,

Ψγ(T�x) = (
Φγ

(
t� x′)� (1�0)

) ∈ Cr × {
(1�0)

}
�

Since ‖XN(T)−Ψγ(T�x)‖ ≤ r, it follows that (XN(T))′ ∈ C2r . Condition (15)
follows from claim 2 of Lemma 2. Condition (16) follows at once from claim 3
of Lemma 2. Hence by equation (13), the above three conditions hold with
probability at least 1 − exp(−cN).

Now divide time into blocks of size T . If there exists a time t ≥ 0 such that
the deviation of XN(t) is smaller than ε, then by the above three conditions,
there must exist a k≥ 0 such that, for some kT ≤ t ′ ≤ (k+ 1)T ,∥∥XN

(
t ′
) −Ψγ

(
t ′ − kT�XN(kT)

)∥∥ > r�

Therefore, the expectation of the first time t0 such that d(XN(t0)) < ε is greater
than exp (cN)T . Q.E.D.

5. CONVERGENCE TIME UNDER AGGREGATE SHOCKS

5.1. Aggregate Shocks

The stochastic dynamic treated in the preceding section can be thought of as
a better reply process with idiosyncratic shocks: whenever an individual revises,
he chooses a new strategy with a probability that depends on its payoff gain rel-
ative to his current strategy. As we have seen, it can take exponentially long
in the population size for average behavior to come close to Nash equilibrium
even in very simple weakly acyclic games. In this section, we show that the con-
vergence time can be greatly accelerated if, in addition to idiosyncratic shocks,
there are aggregate shocks that affect all members of certain subpopulations
at the same time. Such shocks can arise from interference to communications
that temporarily prevent some groups of individuals from learning about the
payoffs available from alternative strategies. Or they could arise from com-
mon payoff shocks that affect all members of a given subgroup at the same
time. Suppose, for example, that xp

i represents the proportion of population p
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that is currently using a given product i with a payoff up
i . For each j �= i, let cpij

be the realization of a stochastic switching cost that affects all i-users who are
contemplating a switch to j. If cpij > u

p
j −u

p
i , then the cost is prohibitive and no

one wants to switch, whereas if cpij = 0, they switch at the same rate as before.
In what follows, we shall make the simplifying assumption that these aggre-

gate shocks are binary and i.i.d.13 Specifically, we shall assume that for each
population p ∈ P , every pair of distinct strategies i� j ∈ Sp, there is a binary
random variable α

p
ij(·) that changes according to a Poisson process with unit

arrival rate. At every arrival time t, αp
ij(t) takes the value 0 or 1 with equal

probability. Let Ap(·) = [αp
ij(·)]i�j∈Sp and let �A(·) = (A1(·)� � � � �An(·)), where

the variables αp
ij are independent. When α

p
ij(t) = 1, the switch rate from i to j

is as before, and when α
p
ij(t) = 0, it equals zero. Thus the random variables αp

ij

retard the switch rates in expectation. They represent aggregate or common
shocks in the sense that αp

ij(t) affects all of the individuals in the subpopulation
p who are currently playing strategy i at time t.

We assume that individual changes of strategy are governed by i.i.d. Poisson
arrival processes that are independent of the process �A. At every arrival time t,
a member of some population is “activated.” The probability that the activated
individual is in population p and is currently playing the particular strategy
i equals x

p
i

n
. The switch rate of the activated individuals depends on the cur-

rent shock realization �A(t)= (α
p
ij(t))i�j∈Sp . In particular, an individual switches

from strategy i to strategy j with conditional probability α
p
ij(t)ρ

p
ij (U

p(x)). We
shall denote this process by ( �A(·)�XN(·)), and sometimes write simply XN(·)
when the associated process �A is understood.

Theorem 1 demonstrates that, for all sufficiently small ε > 0 there exists a
starting point such that the expected first time that the process is in a state with
deviation at most ε increases exponentially with the population size. We now
show that when the process is subjected to aggregate shocks, due, for example,
to interruptions in communication, convergence time can be greatly acceler-
ated. In fact, we shall show that convergence is more rapid for an even more
demanding notion of convergence time than the one used in Theorem 1.14

Given a population size N , a length of time L, and an initial state x ∈ χN , let

DN�L(x)= 1
L

∫ L

0
d
(
XN(s)

)
ds�

DN�L(x) is the time average deviation from equilibrium over a window of length
L starting from state x.

13The analysis can be extended to many other distributions, including those that have both a
common and an idiosyncratic component, but this would substantially complicate the notation
without yielding major new insights.

14A fortiori, Theorem 1 continues to hold for this more stringent notion of convergence time.
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DEFINITION 4: Given a game G, a revision protocol ρ, and an ε > 0, the as-
sociated sequence of processes ( �A�XN)N∈N exhibits fast convergence with pre-
cision ε if there exists a number L and a positive integer Nε such that

∀L′ ≥L�∀N ≥Nε�∀x ∈ χN� E
[
DN�L′

(x)
] ≤ ε�(17)

The convergence time with precision ε, Lε, is the infimum over all such num-
bers L. The sequence ( �A(·)�XN(·))N∈N exhibits fast convergence if (17) holds
for every ε > 0.

Another notion of fast convergence is the expected first passage time to
reach the basin of attraction of some Nash equilibrium. This concept is more
demanding, and in our setting it may become arbitrarily large as N grows. Un-
der our definition, it suffices that behavior comes close to Nash equilibrium
behavior over long periods of time; we do not insist that the process remains
close to a given equilibrium forever.

THEOREM 2: There exists a generic set G of weakly acyclic population games
such that, for every revision protocol and every game G ∈ G, the sequence of pro-
cesses ( �A(·)�XN(·))N∈N exhibits fast convergence.

5.2. Proof Outline of Theorem 2

Here we shall sketch the general gist of the argument; the proof is given in
the next section. Given a pure strict Nash equilibrium y , define its ε-basin to
be a neighborhood of y such that the deviation of every state is smaller than ε
and the dynamic cannot exit from this neighborhood.15

Given ε > 0, let us say that a population state is “good” if its deviation from
equilibrium is smaller than ε. It is “very good” if it lies in the ε-basin of some
pure Nash equilibrium. Otherwise, the state is “bad.” The first step in the proof
is to show that, starting from any bad state x, there exists a continuous better
reply path to a very good state. Surprisingly, this property is not guaranteed by
weak acyclicity of the underlying normal-form game. However, it does hold for
almost all weakly acyclic games, that is, for a set of payoffs having full Lebesgue
measure. (The proof of this fact is quite delicate, and does not follow merely if
there are no payoff ties; the details are given in Appendix C.)

The second step is to show that, with positive probability, there is a sequence
of shocks such that the expected motion of the process is very close to the path
defined in the first step. The third step is to show that, for every initial bad
state x, there is a time Tx such that, whenever the process XN(·) starts close
enough to x and N is large enough, there is a positive probability that, by time
Tx + t, the process will be in a very good state. Using compactness arguments,

15The existence of such a neighborhood is demonstrated in Section 5.3.
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one can show that there is a population size Nε and a time Tε such that the
preceding statement holds uniformly for all bad states x whenever N ≥ Nε.
(The existence of a uniform time is crucial to the result, and relies heavily on
the assumption of aggregate shocks.) Once the process is in a very good state, it
is impossible to leave it. From these statements it follows that, after some time
T ′
ε > Tε, the process is not in a bad state with high probability. Therefore, at T ′

ε

and all subsequent times, the process is in a good or very good state with high
probability, hence its expected deviation is small.16 From this, it follows that
there is a bounded time Lε such that the expected deviation is at most ε over
any window of length at least Lε. Moreover, this statement holds uniformly for
all N ≥Nε.

5.3. Proof of Theorem 2

Before commencing the proof, we shall need several auxiliary results. Let
v = ∑

p∈P
(|Sp|

2

)
and let β : [0�T ] → {0�1}v be a piecewise constant function

that results from a finite series of shocks ( �A(t))0≤t≤T on the interval [0�T ]. (All
other realizations have total probability 0.) We shall call (β(t))0≤t≤T a shock
realization on [0�T ]. Given any x ∈ χ, let z : [0�T ] → χ be the solution of the
following differential equation:

∀p�∀i� j ∈ Sp� ż
p
i =

∑
j∈Sp

[
z
p
j ρ

p
ji

(
Up(z)

)
βji(t)− z

p
i ρ

p
ij

(
Up(z)

)
βij(t)

]
�(18)

z(0)= x�

Such a solution z(·) is called a continuous better reply path.
Fix a time T > 0. For any two shock realizations β : [0�T ] → {0�1}v and

γ : [0�T ] → {0�1}v, define the distance between β and γ on [0�T ] as follows:

dT(β�γ) ≡ μ
({

0 ≤ t ≤ T : β(t) �= γ(t)
})
�

where μ is a Lebesgue measure.
The following lemma provides an approximation of the distance between

two continuous better reply paths as a function of the initial conditions and the
distance between the corresponding two shock realizations β : [0�T ] → {0�1}v,
and γ : [0�T ] → {0�1}v.

LEMMA 3: Let β : [0�T ] → {0�1}v and γ : [0�T ] → {0�1}v be two shock real-
izations, and let z(·) and y(·) be the two continuous better reply paths that cor-
respond to β(·) and γ(·), respectively, with initial states x0 and y0. There exists

16Note, however, that one cannot conclude that the process reaches a very good state in
bounded time for all N ≥ Nε. The difficulty is that, as N becomes large, the state space becomes
larger and the process can get stuck for long stretches of time in states that are extremely close to
equilibrium without being absorbed into the equilibrium.
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a constant ν such that, for all r�η > 0,

dT(β�γ) < r and ‖z0 − y0‖<η

⇒ sup
t∈[0�T ]

∥∥z(t)− y(t)
∥∥< (η+ νr)exp(νT)�

The result shows that when the shock realizations are very close and the
initial states are very close, the resulting dynamical paths are also very close
over the finite interval [0�T ]. The proof is a standard application of Grönwall’s
inequality (see Theorem 1.1 in Hartman (2002)) and is therefore omitted.

Next we shall define a stochastic process z(·) = (z(t))t≥0 on the state
space χ that approximates the behavior of the process ( �A(·)�XN(·)) =
(( �A(t)�XN(t)))t≥0 over any finite interval [0�T ] for all sufficiently large N .
Given a shock realization α(·)= (α(t))0≤t≤T on [0�T ], let z(·) obey the follow-
ing differential equation on [0�T ]:

∀p�∀i� j ∈ Sp� ż
p
i =

∑
j∈Sp

[
z
p
j ρ

p
ji

(
Up(z)

)
α
p
ji − z

p
i ρ

p
ij

(
Up(z)

)
α
p
ij

]
�(19)

The following is a variant of Lemma 1 in Benaïm and Weibull (2003) (the proof
is given in Appendix A).

LEMMA 4: For every ε > 0 and T > 0, and every solution z(·) of (19), there
exists NT�ε such that

∀N ≥NT�ε� P

(
sup
t∈[0�T ]

∥∥XN(t)− z(t)
∥∥> ε

)
< ε�(20)

Let s = (ip)p∈P be a strict Nash equilibrium. Given any ε > 0 there exists
a number φ < 1 such that, for every x satisfying x

p
ip > φ for all p ∈ P , the

following two conditions hold: (i) ip is the unique best response in state x by
all members of every population p ∈P ; (ii) d(x) < ε. Let φε(s) be the infimum
of all such φ.

DEFINITION 5: The ε-basin of a strict Nash equilibrium s = (ip)p∈P is the
open set Bε(s) of all x ∈ χ such that xp

ip > φε(s). Let Bε be the union of all
such sets Bε(s).

We claim that once the process XN(·) enters Bε, it stays there forever. Sup-
pose that XN(t) = x ∈ Bε(s), where s = (ip)p∈P is a strict Nash equilibrium.
Thus, ip is the unique best reply by all members of p, so x

p
ip cannot decrease

under any better reply dynamic. Therefore, for every t ′ ≥ t, XN(t ′)= y implies
y
p
ip > φε(s). Hence XN(t ′) ∈ Bε(s) for all t ′ ≥ t.

LEMMA 5: There exists a generic subset of weakly acyclic games G such that,
for every ε > 0 and for every state y ∈ χ that is not a Nash equilibrium, there exists
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a time Ty and a shock realization β : [0�Ty] → {0�1}v such that the solution of
(18) with initial condition z(0)= y enters Bε by time Ty .

With these lemmas in hand, we can now proceed to the proof of Theorem 2.

PROOF OF THEOREM 2: Let G be the generic subset of weakly acyclic games
guaranteed by Lemma 5. Choose G ∈ G. Given ε > 0, let Eε/2 be the set of
states in χ with deviation strictly smaller than ε

2 . By construction, Bε/2 ⊂ Eε/2

and genericity ensures that Bε/2 �= ∅. Let (Eε/2)c denote the set of bad states.
Given a bad state y , Lemma 5 implies that there is a time Ty and a shock
realization βy : [0�Ty] → {0�1}v such that, starting from y , the path zy(t) de-
fined by (18) enters Bε/2 by time Ty . By Lemma 3, there exists θy > 0 such that,
whenever ‖y−y ′‖ < θy and β′ : [0�Ty] → {0�1}v is a shock realization such that
dTy (β�β

′) < θy , the solution to (18) with starting point y ′ and realization β′ is
also in the open set Bε/2 by time Ty .17

By Lemmas 4 and 5, there exists an open neighborhood Cy of y , a positive
integer Ny , and a positive number ry , such that, for all N ≥Ny ,

P
(
XN(Ty) ∈ Bε/2 :XN(0) ∈Cy

)
> ry�(21)

The family {Cy : y ∈ Eε} covers the set of bad states (Eε/2)c . Since the latter
is compact, there exists a finite covering

(
Eε

)c ⊆
l⋃

m=1

Cym�

Let

Tε = max{Ty1� � � � �Tyl}� rε = min{ry1� � � � � ryl}� and

Nε = max{Ny1� � � � �Nyl}�
It follows from expression (21) that for all N ≥ Nε,

P
(∃s ∈ [0�Tε] s.t. XN

a (s) ∈ Bε/2 :XN(0) ∈ (
Eε/2

)c) ≥ rε�(22)

Fix N ≥ Nε. We have proved that whenever XN(t) is in a bad state, then by
time t + Tε it has entered the absorbing set Bε/2 with probability at least rε.

Starting from an arbitrary state XN(0), let T1 be the first time (if any) such
that XN(T1) is bad. Let T2 be the first time (if any) after T1 + Tε such that
XN(T2) is bad. In general, let Tk+1 be the first time (if any) after time Tk + Tε

17This argument holds for much more general shock distributions: it suffices that the shocks
steer the process sufficiently close to the target path zy(t) with a probability that is bounded away
from zero.
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such that XN(Tk+1) is bad. If the process has entered Bε/2 by time Tk +Tε, then
Tk+1 will never occur. Hence, by equation (22), the probability that Tk+1 occurs
(given that Tk occurs) is at most 1 − rε. It follows that the expected number of
times Tk over the entire interval [0�∞) is bounded above by

∞∑
k=1

k(1 − rε)
k−1 = 1

r2
ε

�(23)

By construction, all of the bad times (if any) fall in the union of time intervals

S =
∞⋃
k=1

[Tk�Tk + Tε]�(24)

Fix a length of time L > 0. From (23) and (24), it follows that the expected
proportion of bad times in the interval [0�L] is bounded above by

Tε

r2
εL

�(25)

Let K be the maximal deviation among all bad states. The deviation of all other
states is, by definition, at most ε

2 . Now choose L = 2KTε
εr2

ε
. From (25), we deduce

that the expected proportion of bad times on [0�L] is at most ε
2K . Hence the

expected deviation of the process on [0�L] is at most

ε

2K
·K + ε

2

(
1 − ε

2K

)
< ε�

This also holds for all L′ ≥L and all N ≥ Nε. Hence the sequence of processes
( �A(·)�XN(·))N∈N exhibits fast convergence. Q.E.D.

6. THE SPEED OF CONVERGENCE

In this section, we shall derive an explicit bound on the speed of convergence
as a function of certain structural properties of G, including the total number
of strategies, the length of the better reply paths, the degree of approximation
ε, and (crucially) the extent to which players can influence the payoffs of other
players—a concept that we turn to next.

6.1. The Notion of Genericity

Fix a game structure, (P� (Sp)p∈P), and let S = ∏
p∈P Sp, which is assumed to

be finite. A game G with this structure is determined by a vector of n|S| payoffs(
up(s)

)
p∈P�s∈S�
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A set G of such games is generic if the payoffs have full Lebesgue measure in
R

n|S|. Genericity is often framed in terms of “no payoff ties,” but in the present
situation we shall need a different (and more demanding) condition on the
payoffs.

For every x ∈ χ, two distinct populations p�q ∈P , and strategies k ∈ Sq and
i ∈ Sp, let up

i (e
q
k�x

−q) be the payoff to a member of population p who is playing
strategy i when all members of population q are playing strategy k and all other
populations are distributed in accordance with x.

Fix a population q, and let x ∈ χ. Let k� l ∈ Sq be two distinct strategies for
population q. Let p �= q and let i ∈ Sp. Define

Δ(k�l)
i (x) = u

p
i

(
e
q
k�x

−q
) − u

p
i

(
e
q
l � x

−q
)
�

Δ(k�l)
i (x) represents the impact that members of population q have on those

members of population p who are currently playing strategy i, when the former
switch from l to k in state x.

Let sp(x) ⊂ Sp be the support of xp. Define the (k� l)-impact q has on p as
follows:

Δ(k�l)
(q→p)(x)= max

i�j∈sp(x)

∣∣Δ(k�l)
i (x)−Δ(k�l)

j (x)
∣∣�

Note that when x is a pure state, Δ(k�l)
(q→p)(x) = 0. Finally, define the impact of

population q in state x as follows:

max
p�=q

min
k�l∈Sq k �=l

Δ(k�l)
(q→p)(x)�(26)

To better understand the notion of impact, consider a state x where all mem-
bers of every population p �= q are indifferent among all of the strategies that
are used by some member of population p. Assume that a proportion of mem-
bers of population q revise their strategy from l to k, and let y be the resulting
state. Consider the case where the impact of population q is zero. In that case,
it follows that all members of every population p �= q would still be indifferent
among their strategies, because the switch has exactly the same impact on the
payoffs of all strategies in Sp. On the other hand, if the impact of population
q is positive, then, for some population p and some i �= j, the difference in
payoffs to those playing i and those playing j is positive in state y . Expression
(26) provides a bound on these payoff differences.

For every state x and population p, let

d̃p(x)= max
i∈sp(x)

u
p
i (x)− up(x)�(27)

Let d̃(x) = maxp∈P d̃p(x). Note that d̃(x) measures the maximum positive gap
between the payoff to some strategy that is played by a positive fraction of the
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population, and the average payoff to members of that population. In particu-
lar, if x is a Nash equilibrium, then d̃(x) = d(x) = 0. However, d̃(x) = 0 does
not imply that x is a Nash equilibrium; in fact, d̃(x) = 0 for every pure state x,
whether or not it is an equilibrium. In general, d̃(x) ≤ d(x) with equality when-
ever x is in the interior of the state space χ. We shall need the function d̃(x)
in order to formulate our condition of δ-genericity, which we turn to now.

DEFINITION 6: A game G is called δ-generic if the following two conditions
hold for every population q ∈P :

1. For every two distinct pure strategy profiles, the associated payoffs differ
by at least δ.

2. The impact of q in state x is at least δ whenever d̃(x) ≤ δ and |sp(x)| ≥ 2
for some p �= q.

We remark that if we wanted the impact of q to be at least δ in all states x,
then the condition would not hold generically (as may be shown by example).

DEFINITION 7: The interdependence index of G, δG, is the supremum of all
δ≥ 0 such that G is δ-generic.

PROPOSITION 2: Given a game structure (P� (Sp)p∈P), there exists a generic set
of payoffs such that the associated game G has positive interdependence index δG.

The proof of Proposition 2 is given in Appendix C.

6.2. Bounding the Convergence Time

Given a generic, weakly acyclic game G, we shall now establish a bound
on the convergence time as a function of the following parameters: the pre-
cision level ε, the interdependence index δG, the number of players n, the total
number of strategies M , and the “responsiveness” of the revision protocol ρ—
a concept that we define as follows.

DEFINITION 8: A revision protocol ρ is responsive if there exists a positive
number λ > 0 (the response rate) such that, for every state x ∈ χ, population
p ∈P , and every two distinct strategies i� j ∈ Sp,

ρ
p
ij

(
Up(x)

) ≥ λ · [up
j (x)− u

p
i (x)

]
+�(28)

This assumption guarantees that the switching rate between two different
strategies, relative to the payoff difference between them, is bounded away
from zero. The Smith protocol, for example, is responsive with λ = 1 (see ex-
pression (4)). More generally, consider any revision protocol that is generated
by idiosyncratic switching costs as described in (1)–(3). If the switching cost
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distribution Fp(c) has a density f p(c) that is bounded away from zero on its
domain [0� bp], then the resulting dynamic is responsive.

To state our main result, we shall need the following notation. Let G be a
weakly acyclic n-person population game where n ≥ 2. For each pure strategy
profile s, let Bs be the length of the shortest pure better reply path from s to
a Nash equilibrium, and let B = maxs Bs. Let M denote the total number of
strategies in G. Recall that, given any small ε > 0, the convergence time with
precision ε > 0, Lε, is the infimum over all L such that the expected deviation
of the process over the interval [0�L′] is at most ε for every L′ ≥ L and for all
sufficiently large N .

In what follows, it will be convenient to assume that the payoffs are normal-
ized so that

∀p�∀i�∀x� 0 ≤ u
p
i (x) ≤ 1�

In addition, we shall assume that

∀p�∀i�∀x�
∑
j �=i

[
u
p
j (x)− u

p
i (x)

]
+ ≤ 1�

THEOREM 3: Let G have interdependence index δ > 0, and let ρ be a respon-
sive revision protocol with response rate λ > 0. There exists a constant K such that,
for every ε > 0, the convergence time Lε is at most

K

[
ε−1 exp

(
nM2

λδ
+B

)]KnM3/(λδ)2

�(29)

The proof of Theorem 3 is given in Appendix B. Here we shall outline the
main ideas and how they relate to the variables in expression (29).

We begin by noting that the convergence time is polynomial in ε−1, while it is
exponential in M and B. Notice that B may be small even when M is large. For
example, in an n-person coordination game, there is a pure better reply path
of length n − 1 from any pure strategy profile to a Nash equilibrium, hence
B = n−1, whereas M can be arbitrarily large. However, there are other weakly
acyclic games in which B is exponentially larger than n and M . For example,
Hart and Mansour (2010) constructed weakly acyclic n-person coordination
games in which each player has just two strategies (so M = 2n) but the length
of the better reply paths is of order 2n. It is precisely this type of example that
differentiates our framework from theirs: in the Hart–Mansour examples the
underlying game grows, whereas in our set-up the underlying game is fixed and
the population size grows.

The idea of the proof of Theorem 3 is as follows. Suppose that the process
starts in some state x0 ∈ χ that is not an ε-equilibrium. If x0 is close to a pure
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strategy profile s of G, the argument is straightforward: with some probability,
the shock realization variables will be realized in such a way that the shocks
steer the process close to a better reply path that runs from s through a series
of pure strategy profiles to a strict Nash equilibrium s∗ of G. Such an equilib-
rium exists because δ-genericity implies that every pure Nash equilibrium is
strict and by weak acyclicity there exists at least one pure Nash equilibrium. By
assumption, this path has at most B “legs” or segments, along each of which
exactly one population is switching from a lower payoff strategy to a higher
payoff strategy. If, on the other hand, x0 is not close to a pure strategy pro-
file of G, we show how to construct a better reply path of bounded length to
the vicinity of a pure strategy profile of G, and then apply the preceding argu-
ment.

The remainder of the proof involves estimating two quantities: (i) how long it
takes to move along each leg of the paths constructed above, and (ii) how likely
it is that the shock realization variables are realized in such a way that the re-
quired paths are followed to a close approximation. The first quantity (the rate
of travel) is bounded below by λδ times the minimum size of the populations
that are currently switching from lower to higher payoff strategies. Although
this estimation would appear to be straightforward, it is in fact quite delicate.
The difficulty is that the process can get bogged down on paths that are nearly
flat (there are almost no potential payoff gains for any player) but the process
is in the vicinity of an unstable Nash equilibrium and does not converge to
it. The second quantity, namely the log probability of realizing a given target
path, is bounded by the number of distinct legs along the path (each of which
corresponds to a specific shock) times the number of independent exogenous
shock variables. The latter is of order M2

2 .
Putting all of these estimates together, we obtain the bound in expression

(29). A particular implication is that the convergence time is bounded inde-
pendently of N by a polynomial in ε−1, where ε is the desired degree of ap-
proximation to equilibrium. The bound depends exponentially on the size of
the game M and on the length of the better reply paths B. The exponential de-
pendence seems inevitable given previous results in the literature such as Hart
and Mansour (2010) and Babichenko (2014). Faster convergence may hold if
the process is governed by a Lyapunov function, but this is much more restric-
tive than the conditions assumed here.

7. CONCLUSION

In this paper, we have studied the speed of convergence in population games
when individuals use simple adaptive learning rules and the population size
is large. The framework applies to weakly acyclic games, which include coor-
dination games, games with strategic complementarities, dominance-solvable
games, potential games, and many others with application to economics, biol-
ogy, and distributed control.
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Our focus has been on stochastic better reply rules in which individuals shift
between strategies with probabilities that depend on the potential gain in pay-
off from making the switch. When these switching probabilities result from id-
iosyncratic shocks, weak acyclicity is not sufficient to achieve fast convergence;
indeed, Theorem 1 shows that there exist very simple weakly acyclic games
such that the expected time to come close to Nash equilibrium grows exponen-
tially with the population size. This result is similar in spirit to earlier work on
the computational complexity of learning Nash equilibrium (see, in particular,
Hart and Mansour (2010) and Babichenko (2014)); the difference is that here
we show that the problem persists even for games with extremely simple pay-
off structures. The nature of the argument is also fundamentally different from
these earlier papers, which rely on results in communication complexity; here
we use stochastic dynamical systems theory to obtain the result.

When the learning process is subjected to aggregate shocks, however, the
convergence time can be greatly reduced; in fact, under suitable conditions,
the convergence time is bounded above for all sufficiently large populations.
Such shocks might result from intermittent interruptions to communication,
or they might represent stochastic switching costs that retard the rate at which
groups switch between strategies. For expositional simplicity, we have modeled
these shocks as independent binary random variables, but similar results hold
for many other distributions. The crucial property is that the shocks steer the
process close to a target better reply path of the deterministic dynamic with
positive probability.

The framework proposed here can also be extended to population games
that are not representable as Nash population games. In this case, the analog
of weak acyclicity is that, from any initial state, there exists a continuous bet-
ter reply path that leads to the interior of the basin of attraction of some Nash
equilibrium. Under suitable conditions on the aggregate shock distribution, the
stochastic adjustment process will travel near such a path with positive proba-
bility. As the proof of Theorem 3 shows, the expected time it takes to traverse
such a path depends critically on the payoff gains along the path. In the case
of Nash population games, the interdependence index provides a lower bound
on the payoff gains and hence on the expected convergence time. Analogous
conditions on payoff gains along the better reply paths govern the expected
convergence time in the more general case.

APPENDIX A: PROOF OF THE AUXILIARY RESULTS OF SECTION 5.2

LEMMA 4: For every ε > 0, and T > 0, and every solution z(·) of (19), there
exists NT�ε such that

∀N >NT�ε� P

(
sup
t∈[0�T ]

∥∥XN(t)− z(t)
∥∥> ε

)
< ε�(30)

PROOF: Lemma 1 in Benaïm and Weibull (2003) implies the following:



STOCHASTIC LEARNING DYNAMICS 653

CLAIM 4: Let ρ be a revision protocol for the game G, and let XN(·) be the
stochastic process corresponding to ρ starting at state x. Let ξ(t�x) be the semi-
flow of the differential equation defined by (2), and let

DN(T�x) = max
0≤t≤T

∥∥XN(t)− ξ(t�x)
∥∥

∞�

There exists a scalar c(T) and a constant ν > 0 such that, for any ε > 0, T > 0,
and N > exp(νT)νT

ε
:

Px

(
DN(T�x) ≥ ε

) ≤ 2N exp
(−ε2c(T)N

)
�(31)

where

c(T)= exp(−2BT)
8TA

�

(Here A and B are constants that depend on the Lipschitz constant of ρ.)

Let F be the event that the state at time t = 0 is (α�x) and during the time
interval [0�T ] the shock realization remains constant. Let (YN(t))0≤t≤T be the
process corresponding to the revision protocol ρ̄ given by

∀p�∀i� j ∈ Sp� ρ̄
p
ij

(
Up(x)

) = α
p
ij · ρp

ij

(
Up(x)

)
�(32)

Conditional on the event F , the process (XN(t))0≤t≤T has the same distribution
as the process (YN(t))0≤t≤T .

Let β : [0�T ] → {0�1}v be any shock realization. Using Claim 4, we shall
approximate the distance between XN(T) and z(T) given that the shock re-
alization is β. We shall express this approximate distance as a function of the
k+ 1 distinct shocks of β in [0�T ]. Let (τ1� � � � � τk) be the sequence of distinct
times at which the shock realization changes. It follows from equation (32) that
along each interval [τl� τl+1), the process XN(·) is distributed according to the
stochastic process generated by the revision protocol ρ̄ defined by

∀p�∀i� j ∈ Sp� ρ̄
p
ij

(
Up(x)

) = ρ
p
ij

(
Up(x)

)
β

p
ij(τl)�

with initial condition XN(τl). Note also that for any realization of the shock
realization β, the protocol ρ̄ has Lipschitz constants that are no greater than
the Lipschitz constant for ρ.

Let s(·) be the piecewise continuous process defined as follows:

ṡ
p
i (t)=

∑
j∈Sp

s
p
j (t)ρ

p
ji

(
Up

(
s(t)

))
β

p
ji(t)−

∑
j∈Sp

s
p
i (t)ρ

p
ij

(
Up

(
s(t)

))
β

p
ij(t)�
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and for all 1 ≤ l ≤ k, let s(τl)= XN(τl). Let τ0 = 0 and τk+1 = T . We then have

sup
0≤t≤T

∥∥XN(t)− z(t)
∥∥(33)

≤ sup
0≤t≤T

[∥∥XN(t)− s(t)
∥∥ + ∥∥s(t)− z(t)

∥∥]

= max
1≤l≤k+1

sup
τl−1≤t≤τl

[∥∥XN(t)− s(t)
∥∥ + ∥∥s(t)− z(t)

∥∥]
�

Hence

P

(
sup

0≤t≤T

∥∥XN(t)− z(t)
∥∥> ε : (β(t))

0≤t≤T

)

≤
k+1∑
l=1

P

(
sup

τl−1≤t≤τl

[∥∥XN(t)− s(t)
∥∥ + ∥∥s(t)− z(t)

∥∥]
> ε

)

≤
k+1∑
l=1

P

(
sup

τl−1≤t≤τl

∥∥XN(t)− s(t)
∥∥ >

ε

2
: (β(t))

0≤t≤T

)
(34)

+
k+1∑
l=1

P

(
sup

τl−1≤t≤τl

∥∥s(t)− z(t)
∥∥ >

ε

2
: (β(t))

0≤t≤T

)
�(35)

Note that expression (34) goes to zero in N , and by Claim 4 it does so uniformly
for all β that have at most k + 1 realizations. Therefore, there exists Nk such
that, for every N >Nk and for every shock realization with k+1 shocks or less,
(34) is less than ε

2 .
We claim that expression (35) also goes to zero in N . By Lemma 3, there

exists a real number ν such that

sup
τl−1≤t≤τl

∥∥s(t)− z(t)
∥∥

≤ exp
(
ν(τl − τl−1)

)∥∥s(τl−1)− z(τl−1)
∥∥�

Inductively, we obtain

sup
0≤t≤T

∥∥s(t)− z(t)
∥∥ ≤

k+1∑
l=2

exp(ντl)
∥∥s(τ1)− z(τ1)

∥∥
≤ kexp(νT)

∥∥XN(τ1)− z(τ1)
∥∥�

which, by Claim 4, goes to zero uniformly in N . Since the random number of
distinct shock realizations on [0�T ] is finite with probability 1, it follows that
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there exists NT�ε such that

∀N >NT�ε� P

(
sup
t∈[0�T ]

∥∥XN(t)− z(t)
∥∥> ε

)
< ε�

This completes the proof of Lemma 4. Q.E.D.

LEMMA 5: For every state y ∈ χ that is not an equilibrium, there exists a time
Ty and a shock realization β : [0�Ty] → {0�1}v such that zy(Ty) ∈ Bε.

This result follows from Corollary 1, Lemma 10, and Lemma 9 where we
provide an explicit construction of such a path.

APPENDIX B: PROOF OF THEOREM 3

For the sake of clarity, we shall restrict attention to the Smith revision pro-
tocol. The same proof applies with minor modifications to any responsive revi-
sion protocol. We shall henceforth write XN(·) instead of ( �A(·)�XN(·)). Recall
that, by assumption, all payoffs lie in the unit interval.

Fix a generic, weakly acyclic game G with interdependence index δG = δ > 0.
The value of δ will be fixed throughout the proof. Let b = maxp∈P |Sp| be the
maximal number of pure strategies available to any player. For every pure pro-
file s = (ip)p∈P ∈ S and every state x, let x(s)= ∏

p∈P x
p
ip denote the proportion

of players associated with the profile s. Let
∥∥xp − yp

∥∥
1
=

∑
i∈Sp

∣∣xp
i − y

p
i

∣∣�
and

‖x− y‖1 =
∑
s∈S

∣∣x(s)− y(s)
∣∣�

CLAIM 5: Let a= 1
8n . For every ν > 0 and all x� y ∈ χ,

∀p ∈P�
∥∥xp − yp

∥∥
1
≤ aν implies ‖x− y‖1 ≤ ν

8
�(36)

PROOF: First we shall establish the result for two populations. Let x1� y1 ∈
Δm1 be a pair of mixed strategies for player 1, and let x2� y2 ∈ Δm2 be a pair of
mixed strategies for player 2. We shall show that if ‖x1 −y1‖1 = ∑m1

i=1 |x1
i −y1

i | ≤
ν and ‖x2 − y2‖ = ∑m2

j=1 |x2
j − y2

j | ≤ ν, then

∑
i�j

∣∣x1
i x

2
j − y1

i y
2
j

∣∣ ≤ 2ν�
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By the triangle inequality,
∑
i�j

∣∣x1
i x

2
j − y1

i y
2
j

∣∣ ≤
∑
i�j

∣∣x1
i x

2
j − x1

i y
2
j

∣∣ +
∑
i�j

∣∣x1
i y

2
j − y1

i y
2
j

∣∣�
The left-hand-side summation equals

∑
i�j

∣∣x1
i x

2
j − x1

i y
2
j

∣∣ =
∑
i

x1
i

∑
j

∣∣x2
j − y2

j

∣∣ =
∑
i

x1
i

∥∥x2 − y2
∥∥

1

= ∥∥x2 − y2
∥∥

1
≤ ν�

Similarly,
∑
i�j

∣∣x1
i y

2
j − y1

i y
2
j

∣∣ = ∥∥x1 − y1
∥∥

1
≤ ν�

Hence ∑
i�j

∣∣x1
i x

2
j − y1

i y
2
j

∣∣ ≤ 2ν�

For general n, it follows by induction that if, for every p ∈ P , ‖xp − yp‖1 ≤ ν,
then ‖x− y‖1 < nν. This concludes the proof of the claim. Q.E.D.

DEFINITION 9: For every population state x, let

s̃p(x)=
{
i ∈ Sp : xp

i ≥ aδ

b

}
�(37)

We shall say that s̃p(x) consists of the strategies in Sp that are played by a
sizeable proportion of the population as defined by the lower bound aδ

b
.

For every population p and state x, let

d̄p(x)= max
i∈s̃p(x)

u
p
i (x)− up(x)�

(Recall that for every population p and state x, up(x) denotes the average
payoff to the members of p.) Let

d̄(x)= max
p∈P

d̄p(x)�

Given x ∈ χ, q ∈ P , and h > 0, let l�k ∈ Sq be two distinct strategies such
that xq

l ≥ h > 0. Let x̃ = x̃(h� l�k�q) be the population state obtained from x
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when a proportion h of population q switches from strategy l to strategy k, that
is,

∀p ∈P� x̃p =
{
xp if p �= q,
xq + h

(
e
q
k − e

q
l

)
if p = q.(38)

LEMMA 6: Given x ∈ χ such that d̄(x) ≤ δ
2 , let x̃ ∈ χ be defined as in (38).

Assume there exists at least one population different from q in which two distinct
strategies are played by sizeable proportions. Then for at least one of these popula-
tions p and two distinct strategies i� j ∈ s̃p(x),

∣∣[up
i (x)− u

p
i (x̃)

] − [
u
p
j (x)− u

p
j (x̃)

]∣∣ ≥ hδ

2
�

PROOF: We shall start with an observation that follows directly from the
definition of s̃p(x).

OBSERVATION 6: For every population p and every xp ∈ Xp, there exists zp ∈
Xp such that ‖zp − xp‖1 ≤ aδ, zp

i ≥ x
p
i for every i ∈ s̃p(xp), and z

p
i = 0 for every

i /∈ s̃p(xp).

To prove Lemma 6, choose z such that, for every p �= q, the distribution
zp satisfies the conditions of Observation 6 with respect to xp, and let zq = xq.
Equation (36) implies that ‖z−x‖1 ≤ δ

8 . Since all payoffs lie in the unit interval,
it holds for every population p and strategy i, that

∣∣up
i (x)− u

p
i (z)

∣∣ ≤ δ

8
�

and that

∣∣up(x)− up(z)
∣∣ ≤ δ

8
�

Therefore, since d̄(x) ≤ δ
2 , it follows that d̃(z) ≤ 3δ

4 . Since G is δ-generic,
there exists a population p �= q and i� j ∈ sp(z) = s̃p(x) such that

∣∣[up
i

(
e
q
k� z

−q
) − u

p
i

(
e
q
l � z

−q
)] − [

u
p
j

(
e
q
k� z

−q
) − u

p
j

(
e
q
l � z

−q
)]∣∣ ≥ δ�(39)

By the above, it follows that

∣∣up
i

(
e
q
k� z

−q
) − u

p
i

(
e
q
k�x

−q
)∣∣ ≤ δ

8
�
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Similarly,

∣∣up
i

(
e
q
l � z

−q
) − u

p
i

(
e
q
l � x

−q
)∣∣ ≤ δ

8
�

∣∣up
j

(
e
q
k� z

−q
) − u

p
j

(
e
q
k�x

−q
)∣∣ ≤ δ

8
�

∣∣up
j

(
e
q
l � z

−q
) − u

p
j

(
e
q
l � x

−q
)∣∣ ≤ δ

8
�

Therefore, by (39), we have

∣∣[up
i

(
e
q
k�x

−q
) − u

p
i

(
e
q
l � x

−q
)] − [

u
p
j

(
e
q
k�x

−q
) − u

p
j

(
e
q
l � x

−q
)]∣∣ ≥ δ

2
�

By definition of x̃, it follows that

u
p
i (x)− u

p
i (x̃) = (

x
q
k − x̃

q
k

)
u
p
i

(
e
q
k�x

−q
) + (

x
q
l − x̃

q
l

)
u
p
i

(
e
q
l � x

−q
)

= h
[
u
p
i

(
e
q
k�x

−q
) − u

p
i

(
e
q
l � x

−q
)]
�

Similarly, we have u
p
j (x)− u

p
j (x̃)= h[up

j (e
q
k�x

−q)− u
p
j (e

q
l � x

−q)]. Therefore,
∣∣[up

i (x)− u
p
i (x̃)

] − [
u
p
j (x)− u

p
j (x̃)

]∣∣
= h

∣∣[up
i

(
e
q
k�x

−q
) − u

p
i

(
e
q
l � x

−q
)] − [

u
p
j

(
e
q
k�x

−q
) − u

p
j

(
e
q
l � x

−q
)]∣∣

≥ hδ

2
�

This establishes Lemma 6. Q.E.D.

DEFINITION 10: Call a state x ∈ χ nearly pure if, in every population p ∈ P ,
a unique strategy is played by a sizeable proportion, that is, |s̃p(x)| = 1 for all
p ∈P .

If x ∈ χ is a nearly pure state, then by (37) at least 1−aδ of every population
p is playing a unique strategy ip ∈ Sp.

Recall that under the Smith dynamic, a path z : [0�T ] → χ is called a con-
tinuous better reply path with initial conditions z(0) = x if there exists a shock
realization β : [0�T ] → {0�1}v such that

∀p�∀i ∈ Sp�(40)

ż
p
i =

∑
j∈Sp

[
z
p
j

[
u
p
i (z)− u

p
j (z)

]
+βji(t)− z

p
i

[
u
p
j (z)− u

p
i (z)

]
+βij(t)

]
�
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DEFINITION 11: For every r > 0, let Ar be the set of states x ∈ χ for which
there exists a population q and two distinct strategies k� l ∈ s̃q(x) such that
u
q
k(x) ≥ u

q
l (x)+ r. For every population state x ∈ χ, let σ(x) denote the total

number of strategies that are played by sizeable proportions of the respective
populations:

σ(x) =
∑
p∈P

∣∣s̃p(x)∣∣�

Fix ε ≤ 1 and recall that δ := δG is the interdependence index of the given
game G. Our main goal is to uniformly bound the convergence time Lε for all
sufficiently large population sizes N .

Let x be such that d(x) ≥ ε
2 . Let r∗ = aδ2

16b . In the next few lemmas, we shall
bound the elapsed time to get from such a state x to Bε/2(s), the ε

2 -basin
of a strict Nash equilibrium s, via a continuous better reply path. Lemma 7,
Lemma 8, and Corollary 1 bound the elapsed time to get from x to a state
in Ar∗ . Lemma 9 bounds the elapsed time to get from a state in Ar∗ to a nearly
pure state. Lemma 10 bounds the elapsed time to get from a nearly pure state
to a nearly pure state in Baδ(s) of some strict Nash equilibrium s.

The constant r∗ plays a central role when ε is small. The reasoning in
Lemma 9 can be used to bound the elapsed time to get from a state x satis-
fying d(x) ≥ ε

2 directly to a nearly pure state without going first to Ar∗ . The
difficulty is that this bound is poor for ε � r∗ and the polynomial dependence
of the waiting time on ε−1 cannot be derived in this way. For this reason, we
bound the waiting time to get to a nearly pure state from x in two steps. First,
relying on δ-genericity, we provide an efficient bound for the process to go
from x to Ar∗ . Then we bound the waiting time to go from Ar∗ to a nearly pure
state. This yields an escape route from x to Ar∗ that establishes a bound that is
polynomial in ε−1.

LEMMA 7: Let x ∈ χ be such that d(x) ≥ ε
2 . Assume that there exist at least

two distinct populations p�q such that |s̃p(x)| ≥ 2 and |s̃q(x)| ≥ 2. There exists a
time T ≤ 1, and a continuous better reply path z : [0�T ] → χ starting at x with a
single shock, such that z(T) = y ∈Aδε/(16b).

PROOF: If x ∈Aδε/(16b), then we are done. If x /∈ Aδε/(16b), then, by definition
of Aεδ/(16b), for every population p and two sizeable strategies i� j ∈ s̃p(x),

u
p
i (x) < u

p
j (x)+ δε

16b
�(41)

Since d(x) ≥ ε
2 , there exists a population q and a strategy k ∈ Sq such that

u
q
k(x)≥ uq(x)+ ε

2
�(42)
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It follows that∑
j∈Sq

x
q
j

(
u
q
k(x)− u

q
j (x)

) ≥ ε

2
�

Hence there exists a strategy l such that

x
q
l

(
u
q
k(x)− u

q
l (x)

) ≥ ε

2b
�(43)

Since all payoffs lie in the unit interval, it follows from (43) that xq
l ≥ ε

2b . Define
a continuous better reply path z(·) from x with the coefficients β

q
lk = 1 and

β
p
ij = 0 otherwise. Let T be the first time t such that zp

l (t) = x
p
l − ε

4b . By (43),
ż
q
l ≤ − ε

4b so long as zq
l ≥ x

q
l

2 , hence T ≤ 1.
We claim that since x /∈ Aδε/(16b), it must be the case that d̄(x) ≤ δ

2 . Suppose
by way of contradiction that d̄(x) > δ

2 . Then for some strategy k ∈ s̃p(x),

u
p
k(x) > up(x)+ δ

2
�

A similar consideration as in equation (43) above shows that there exists a
strategy l ∈ Sp such that

x
p
l

(
u
p
k(x)− u

p
l (x)

)
>

δ

2b
�(44)

Since all payoffs lie in the unit interval, equation (44) implies that xp
l >

δ
2b >

aδ
b

and u
p
k(x) > u

p
l (x)+ δ

2b . Hence, in particular, x ∈ Aδ/(2b). Since ε ≤ 1, it follows
that x ∈ Aδε/(16b), a contradiction.

Note that z(T) plays the role of x̃ in Lemma 6 for h = ε
4b . Let z(T) = x̃.

Since d̄(x) ≤ δ
2 , Lemma 6 implies that there exists a population p �= q and

i� j ∈ s̃p(x) such that

[
u
p
i (x)− u

p
i (x̃)

] − [
u
p
j (x)− u

p
j (x̃)

] ≥ δε

8b
�

which is equivalent to

[
u
p
i (x)− u

p
j (x)

] − [
u
p
i (x̃)− u

p
j (x̃)

] ≥ δε

8b
�(45)

Inequality (41) implies that up
i (x) − u

p
j (x) <

δε
16b . It follows from this and (45)

that

u
p
j (x̃) > u

p
i (x̃)+ δε

16b
�

Hence x̃ ∈ Aδε/(16b), as was to be shown. Q.E.D.
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Let x ∈ Ar , where 0 < r ≤ r∗ = aδ2

16b . Assume there exist at least two distinct
populations at x, in each of which two strategies are played by sizeable propor-
tions. The role of the next lemma is to estimate the elapsed time to get from x
by a continuous better reply path to a state in A2r .

LEMMA 8: Let 0 < r ≤ r∗ = aδ2

16b and let x ∈ Ar . Assume that there exist at least
two distinct populations p�q such that |s̃p(x)| ≥ 2 and |s̃q(x)| ≥ 2. There exist a
time T ≤ 16b

aδ2 , and a continuous better reply path z : [0�T ] → χ with a single shock
such that z(T) = y ∈A2r .

PROOF: We again use δ-genericity and Lemma 6. If x ∈ A2r , we have noth-
ing to prove. Thus we can assume that x /∈ A2r . Since x ∈ Ar , there exist a
population q and two strategies k� l ∈ s̃q(x) such that

u
q
k(x)≥ u

q
l (x)+ r�(46)

Define a continuous better reply path starting at x, such that β
q
lk = 1 and 0

otherwise. Let T be the first time such that zq
k(T) = x

q
k + 8r

δ
and let x̃ = z(T).

Note that in order to get from x to x̃, we need to transfer a proportion of 8r
δ

individuals from strategy l to strategy k. To estimate how long it takes, note
that r ≤ aδ2

16b and x
q
l ≥ aδ

b
, hence x̃

q
l ≥ aδ

2b . By construction of the better reply
path z(·),

ż
q
l = z

q
l

(
u
q
l (x)− u

q
k(x)

)
�

From (46), it follows that ż
q
l ≤ − raδ

2b as long as z
q
l ≥ aδ

2b . Since z
q
l (t) ≥ aδ

2b for
every t ≤ T , we have

T ≤ 8r
δ

· 2b
raδ

= 16b
aδ2 �

Since x /∈ A2r and r ≤ r∗ = aδ2

16b , it must be the case that d̄(x) ≤ δ
2 . Otherwise, a

similar derivation to that of equation (44) shows that x ∈Aδ/(2b). Since a�δ≤ 1,
it follows that x ∈A2r∗ ⊆A2r , a contradiction.

We can therefore apply Lemma 6 with h= 8r
δ

. There exist a population p �= q
and two strategies i� j ∈ s̃p(x) such that[

u
p
i (x)− u

p
i (x̃)

] − [
u
p
j (x)− u

p
j (x̃)

] ≥ 4r�

Therefore[
u
p
j (x̃)− u

p
i (x̃)

] ≥ 4r − [
u
p
i (x)− u

p
j (x)

]
�

Since x /∈ A2r ,

u
p
j (x)+ 2r > u

p
i (x)�
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Hence

u
p
j (x̃)≥ u

p
i (x̃)+ 2r�

which implies that x̃ ∈A2r . This concludes the proof of Lemma 8. Q.E.D.

REMARK B.1: Let x be a nearly pure state. By definition, there exists a pure
strategy profile s = (ip)p∈P ∈ S such that a proportion at least (1 −aδ) of every
population p is playing the strategy ip. Define the pure state y ∈ χ such that
yp = e

p
ip for every p. By (36), ‖x − y‖1 ≤ δ

8 . Since all payoffs lie in the unit
interval, we also have

∀p ∈P�∀i ∈ Sp�
∣∣up

i (x)− u
p
i (y)

∣∣ ≤ δ

8
�(47)

Since y is a pure state and G has interdependence index δ,

∀p ∈P�∀i� j ∈ Sp� i �= j�
∣∣up

i (y)− u
p
j (y)

∣∣ ≥ δ�

Therefore by inequality (47),

∀p ∈P�∀i� j ∈ Sp� i �= j�(48)
∣∣up

i (x)− u
p
j (x)

∣∣ ≥ ∣∣up
i (y)− u

p
j (y)

∣∣ − δ

4
≥ 3δ

4
�

The following corollary of Lemma 7 and Lemma 8 bounds the elapsed time
to get from a state x /∈Ar∗ that is not nearly pure to a state in Ar∗ .

COROLLARY 1: Let x be such that d(x) ≥ ε
2 . Assume that x is not nearly

pure. There exist a time T ≤ 1 + 2 ln(ε−1) 16b
aδ2 and a continuous better reply

path z : [0�T ] → χ starting at x, with at most 2 ln(ε−1) + 1 shocks, such that
z(T) = y ∈Ar∗ .

PROOF: If, at x, there exists a unique population p for which two strategies
i� j ∈ s̃p(x) are played by sizeable proportions, then by equation (48),

u
p
i (x) ≥ u

p
j (x)+ 3δ

4
�

In particular, it follows that x ∈ Aaδ2/(16b) = Ar∗ .
Case 1: d̄(x) > δ

2 .
A similar argument to that in Lemma 8 shows that x ∈ Aδ/(2b) ⊂ Ar∗ .
Case 2: d̄(x) ≤ δ

2 .
There exist at least two distinct populations p�q such that |s̃p(x)| ≥ 2,

|s̃q(x)| ≥ 2, and d̄(x) ≤ δ
2 . Lemma 7 implies that there exist a time T ≤ 1 and
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a continuous better reply path z : [0�T ] → χ starting at x with a single shock,
such that z(T) = y0 ∈ Aδε/(16b).

If, at y0, there exist a unique population p and two strategies i� j ∈ s̃p(y0) that
are played by sizeable proportions, or if d̄(y) > δ

2 , then we conclude as above
that y ∈ Aaδ2/(16b). Otherwise, there exist at least two distinct populations p�q
such that |s̃p(y)| ≥ 2, |s̃q(y)| ≥ 2, and d̄(y) ≤ δ

2 . Lemma 8 implies that there
exist a time T ≤ 16b

aδ2 and a continuous better reply path z : [0�T ] → χ starting
at y0, with a single shock, such that z(T) = y1 ∈ A2(δε/(16b)).

We can apply this argument again. Namely, if there exist a unique population
p and two strategies i� j ∈ s̃p(y1) that are played by sizeable proportions, or
if d̄(y1) >

δ
2 , then y1 ∈ Aaδ2/(16b). Otherwise, by Lemma 8, there exist a time

T ≤ 16b
aδ2 and a continuous better reply path z : [0�T ] → χ starting at y1, with a

single shock, such that z(T)= y2 ∈ A4(δε/(16b)).
By repeatedly applying the preceding argument, we conclude that there exist

a time T ≤ 1 + k 16b
aδ2 and a continuous better reply path z : [0�T ] → χ starting

at x, with at most k + 1 shocks, such that either z(T) ∈ Aaδ2/(16b) = Ar∗ or
z(T) ∈A2k(δε/(16b)). Note that 2k δε

16b ≥ aδ2

16b if

k≥ ln
(
ε−1

) + ln(aδ)
ln(2)

�(49)

By Claim 5, a = 1
8n < 1, and by assumption on the payoffs, δ ≤ 1. Hence,

ln(aδ) < 0. Furthermore, ln(2) > 1
2 . We conclude that if k ≥ 2 ln(ε−1), then

(49) is satisfied and hence 2k δε
16b ≥ aδ2

16b . Hence, by time 1 + 2 ln(ε−1) 16b
aδ2 , the pro-

cess has reached Aaδ2/(16b) with at most 1 + 2 ln(ε−1) shocks. This concludes the
proof of Corollary 1. Q.E.D.

The role of the next lemma is to bound the elapsed time to get from x ∈Ar∗
to a nearly pure state.

LEMMA 9: Let x ∈ Ar∗ . There exists a continuous better reply path z : [0�T ] →
χ such that z(0) = x, there are at most 2M shocks in [0�T ], z(T) = y is a nearly
pure state, and T ≤ 2M 64b2

a2δ3 .

PROOF: Case 1: There exists a unique population p with more than one strat-
egy that is played by a sizeable proportion.

In this case, all other populations are playing a nearly pure strategy. By Re-
mark B.1, there is a unique strategy i ∈ Sp such that, for every strategy j ∈ Sp

different from i,

u
p
i (x) ≥ u

p
j (x)+ 3δ

4
�(50)
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Define a continuous better reply path z(·) starting at x by letting β
p
ji = 1 for

every j �= i and 0 otherwise. Thus z(·) reaches a nearly pure state in a time that
is bounded above by 2b

aδ2 .
If Case 1 does not hold, then there exist at least two distinct populations

at x, in each of which two strategies are played by sizeable proportions. Since
x ∈ Aaδ2/(16b), there exist a population q and two strategies k� l ∈ s̃q(x) such
that

u
q
k(x)≥ u

q
l (x)+ aδ2

16b
�(51)

Let h= x
q
l − aδ

2b and let x̃ be defined as in equation (38) (note that h≥ aδ
2b since

l ∈ s̃q(x)).
Case 2a: x̃ ∈ Aaδ2/(16b).
Define a continuous better reply path z : [0�∞) → χ that starts at x, and

let βq
lk = 1 and 0 otherwise. Recall that x̃ is obtained from x by a transfer of a

proportion of h from strategy l to strategy k. Hence there exists a unique time
T ′ such that z(T ′) = x̃. Clearly, σ(x̃) = σ(x) − 1. Since ż

q
l ≤ −( aδ2

16b
aδ
2b ) so long

as zq
l ≥ aδ

2b , and since h≤ 1, we get that

T ′ ≤ 2b
aδ

· 16b
aδ2 = 32b2

a2δ3 �

Case 2b: x̃ /∈Aaδ2/(16b).
Let z(·) be the continuous path defined in Case 2a. Let t0 be any time t <

T ′ such that z(t0) ∈ Aaδ2/(32b), and z(t0) /∈ Aaδ2/(16b). (Such t0 exists since x ∈
Aaδ2/(16b) and x̃ /∈ Aaδ2/(16b).) Let w = z(t0). Note that σ(w) ≤ σ(x). If there
exists a unique population p at w with more than one strategy that is played
by a sizeable proportion, then we are back in Case 1. If there is more than one
such population, it follows as in the proof of Lemma 7 that d̄(w)≤ δ

2 .
Since w ∈ Aaδ2/(32b), there exist a population q and two strategies k� l ∈ s̃q(w)

such that

u
q
k(w) ≥ u

q
l (w)+ aδ2

32b
�

Let h = w
q
l − aδ

2b . Note that h ≥ aδ
2b since l ∈ s̃q(w). Let w̃ ∈ χ be as defined

in equation (38) for this value of h. By construction, w̃q
l = aδ

2b < aδ
b

and hence
σ(w̃) = σ(w)− 1 ≤ σ(x)− 1. Define a continuous better reply path z(·) from
w to w̃ by letting β

q
lk = 1 and β

p
ij = 0 otherwise. Let T be the first time such

that z(T) = ω̃. An argument like the one given for Case 2a shows that T ≤ 64b2

a2δ3 .
Recall that there exists at least one population different from q in which two
distinct strategies are played by sizeable proportions. Therefore, since d̄(w) ≤
δ
2 , an argument like the one given for Lemma 8 shows that w̃ ∈Aaδ2/(16b).
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The two cases considered above demonstrate that there exists a continuous
better reply path z : [0�2T ] → χ starting at x, with at most two shocks, such
that T ≤ 64b2

a2δ3 , and the state z(2T) is either nearly pure or the following two
conditions hold: (i) σ(z(2T)) ≤ σ(x) − 1, (ii) z(2T) ∈ Aaδ2/(16b). A repeated
application of the argument shows that we can construct a better reply path
from x to a nearly pure state such that: (i) there are at most 2M shocks along
the path, and (ii) the length of the path between two successive shocks is at
most 64b2

a2δ3 . Q.E.D.

REMARK B.2: Let s = (ip)pP be a strict Nash equilibrium, and let ε ≤ aδ.
Recall that Bε(s) is characterized by the minimal φε such that, if a state x
satisfies x

p
ip > φε for every population p, then ip is a unique best reply at x

and the deviation of x is at most ε. Let x satisfy x
p
ip ≥ 1 − ε ≥ 1 − aδ for every

population p. By equation (48) of Remark B.1,

∀p ∈P�∀i �= ip� u
p
ip(x) ≥ u

p
i (x)+ 3δ

4
�(52)

Therefore, ip is the unique best reply at x for every population p. We claim
that x ∈ Bε(s). To see this, note that since all payoffs lie in the unit interval, it
follows that the deviation dp(x) is bounded above by the proportion that is not
playing ip. Hence the deviation dp(x) satisfies dp(x) ≤ ε.

LEMMA 10: For every nearly pure state x, there exists a continuous better reply
path z : [0�T ] → χ starting at x with at most B shocks, such that z(T) = w is a
nearly pure state that lies in Baδ, and T ≤ B4b

3aδ2 .

PROOF: Since x is a nearly pure state, there exists a pure strategy profile
s = (ip)p∈P such that xp

ip ≥ 1 − aδ for every population p. Assume first that
s is a pure Nash equilibrium. By δ-genericity, the payoff to every two distinct
pure strategy profiles is different for every player. It follows that every pure
Nash equilibrium is strict. From Remark B.2, it follows that x ∈ Baδ(s), so in
this case we are done.

Suppose, on the other hand, that s is not a Nash equilibrium. By weak
acyclicity, there exists a pure strict better reply path in G from s to some Nash
equilibrium s′, which by the above must be a strict Nash equilibrium. Denote
this path by (s1� � � � � sk). Clearly, the length of this path is bounded by B. We
shall construct a continuous better reply path that stays close to this pure better
reply path and is of bounded length.

Let s2 = (jp)p∈P be the second element in the pure better reply path. Let y2

be such that, for every population p, yp
2 = e

p
jp . By definition of a better reply

path and δ-genericity, there exists a unique population p such that ip �= jp and

u
p
jp(y)≥ u

p
ip(y)+ δ= u

p
ip(y2)+ δ�
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Again by equation (48) we obtain

u
p
jp(x) ≥ u

p
ip(x)+ 3δ

4
�(53)

Define the first leg of the continuous better reply path z : [0� t2] → χ by letting
z(0) = x and β

p
ipjp(t) = 1 for every t. Set all other βq

kl equal to 0. Note that by
(53),

∀t ∈ [0� t2]� u
p
jp

(
z(t)

) ≥ u
p
ip

(
z(t)

) + 3δ
4
�

Let t2 be the first time t such that zp
ip
(t)= aδ

b
. We claim that

∀t ∈ [0� t2]� ż
p
ip
(t)≤ −aδ

b
· 3δ

4
�

To see this, note that, by (40), the derivative ż
p
ip(t) is bounded by z

p
ip(t) times

u
p
ip(z(t))−u

p
jp(z(t)). Therefore, t2 ≤ 4b

3aδ2 . Let x2 = z(t2). By construction, x2 is
a nearly pure state such that ‖x2 − y2‖1 ≤ δ

8 . We can repeat the same argument
iteratively and extend the continuous better reply path until it reaches a nearly
pure state that lies in Baδ(s

′).
The length of the pure better reply path is bounded by B, and the length of

every leg in the better reply path is at most 4b
3aδ2 . Therefore, the overall length

of the continuous better reply path is at most B4b
3aδ2 . This concludes the proof of

Lemma 10. Q.E.D.

Call a state x strictly pure if x is nearly pure and there exists a strict Nash
equilibrium s = (ip)p∈P such that the unique strategy played by a sizeable pro-
portion of every population p is ip.

LEMMA 11: Let x be a strictly pure state, and let s = (ip)p∈P be the correspond-
ing strict Nash equilibrium. Assume that for every population p, it holds that xp

ip ≥
1 − r. There exist a time T ≤ 4

3δ , and a continuous better reply path z : [0�T ] → χ

such that z(0)= x, z(T) = y , and for every population p, yp
ip ≥ 1 − r

2 .

PROOF: Equation (48) of Remark B.1 implies that, for every population p
and strategy j �= ip,

u
p
ip(x) ≥ u

p
j (x)+ 3δ

4
�(54)

Define a continuous better reply path z(·) by letting β
p
jip = 1 for every pop-

ulation p and j �= ip, and 0 otherwise. Note that by equation (54) for every
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population p and j �= ip,

ż
p
j (t)≤ −3δ

4
z
p
j (t)�

Therefore, as long as zp
j (t)≥ x

p
j

2 ,

ż
p
j (t)≤ −3δ

4
· x

p
j

2
�(55)

Let T = 4
3δ , and let y = z(T). It follows from equation (55) that yp

j ≤ x
p
j

2 for
every population p and strategy j �= ip. Hence for every population p,

y
p
ip = 1 −

∑
j �=ip

y
p
j ≥ 1 −

∑
j �=ip

x
p
j

2
≥ 1 − r

2
�

This concludes the proof of Lemma 11. Q.E.D.

LEMMA 12: Let ε
2 ≤ aδ2

16b , and let x be such that d(x) ≥ ε
2 . Assume that

XN(0) = x. There exists a continuous better reply path z : [0�T ] → χ starting
at x, with at most 1 + 3 ln(ε−1)+ 2M +B shocks such that z(T) ∈ Bε/2 and

T = Cb

aδ2

[
ln

(
ε−1

) +B + Mb

aδ

]
�(56)

for some constant C > 0.

PROOF: Corollary 1 implies that there exist a time T1 ≤ 1 + 2 ln(ε−1) 16b
aδ2

and a continuous better reply path z : [0�T1] → χ starting at x with at most
2 ln(ε−1)+ 1 shocks such that z(T1)= y ∈ Aaδ2/(16b).

Let y ∈ Aaδ2/(16b). By Lemma 9, there exist a time T2 ≤ 2M 64b2

a2δ3 , and a contin-
uous better reply path z : [0�T2] → χ starting at y with at most 2M shocks such
that z(T2) =w is a nearly pure state.

Let w be a nearly pure state. By Lemma 10, there exist a time T3 ≤ B4b
3aδ2 and a

continuous better reply path z : [0�T3] → χ starting at w with at most B shocks
such that z(T3) is a nearly pure state and z(T3) ∈ Baδ(s) for some strict Nash
equilibrium s = (ip)p∈P .

Let w′ ∈ Baδ(s) be a nearly pure state. By definition, (w′)pip ≥ 1−aδ for every
population p. By Lemma 11, there exist a time T ′ ≤ 4

3δ and a continuous better
reply path z : [0�T ′] → χ starting at w′ with a single shock such that z(T ′)=w′′

where (w′′)pip ≥ 1 − aδ
2 . By applying this argument repeatedly, we conclude that

there exist a time T4 ≤ ln(ε−1) 4
3δ and a continuous better reply path starting at
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w′, with at most ln(ε−1) shocks such that y = z(T4) and y
p
ip ≥ 1 − ε

2 . Hence, by
Remark B.2, y ∈ Bε/2.

Overall, we have shown that, from any state x such that d(x)≥ ε
2 , there exist

a time

T ≤ 1 + 2 ln
(
ε−1

)16b
aδ2 + 2M

16b2

a2δ3 + B4b
3aδ2 + ln

(
ε−1

) 4
3δ

�

and a continuous better reply path z : [0�T ] → χ with at most 1 + 2 ln(ε−1) +
2M + B + ln(ε−1) shocks such that z(T) ∈ Bε/2. This concludes the proof of
Lemma 12. Q.E.D.

Lemma 12 implies the following.

COROLLARY 2: There exist a constant K′, and a time

T = K′

aδ2

[
Bb+ ln

(
ε−1

) + Mb2

aδ

]
�(57)

such that for all sufficiently large N , if XN(0) = x with d(x) ≥ ε
2 , then XN(T) ∈

Bε/2 with probability at least exp(−K′Tv) by time T .

PROOF: First we shall estimate the probability that the stochastic process
z(·) defined in equation (19) reaches Bε/2 by time T . On each leg of the contin-
uous better reply path, the shock variables must take on a specific realization
and stay fixed until the process reaches the next leg. Since the number of shock
variables is v, the length of the continuous better reply path is T , and the num-
ber of distinct legs is at most 1 + 3 ln(ε−1) + 2M + B, these events occur with
probability at least exp(−K1v[ln(ε−1) + 2M + B])exp(−K1vT) for some con-
stant K1 > 0.

By Lemma 4, the stochastic process XN(·) lies arbitrarily close to z(·) with
a probability that goes to 1 with N . Hence we can find a constant K2 > 0 such
that, for all sufficiently large N , the process XN(·) reaches Bε/2 by time T with
probability at least

exp
(−K2v

[
ln

(
ε−1

) + 2M +B
])

exp(−K2vT)�

Finally, since T = Cb
aδ2 [ln(ε−1) + B + Mb

aδ
] and both a�δ ≤ 1, there is a constant

K′ such that

exp
(−K2v

[
ln

(
ε−1

) + 2M +B
])

exp(−K2vT) ≤ exp
(−K′vT

)
�

This concludes the proof of the corollary. Q.E.D.
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THEOREM 3: Let G be a weakly acyclic game with interdependence index
δ > 0, and let ρ be a responsive revision protocol with response rate λ > 0.
There exists a constant K independent of G, such that, for every ε > 0, the
convergence time Lε is at most

K

[
ε−1 exp

(
nM2

λδ
+B

)]KnM3/(λδ)2

�(58)

PROOF: Given the hypothesis and ε > 0, consider the process (XN(t))t≥0

starting from an arbitrary state XN(0). We shall say that a time t is bad if
d(XN(t))≥ ε

2 ; otherwise, t is good.
Corollary 2 of Lemma 12 shows that there are a time T and a probability

q = exp(−K′Tv) such that, if t is bad, then the probability is at least q that
XN(t + T) ∈ Bε/2, and hence all times from t + T on are good.

As in the proof of Theorem 2, it follows that for any length of time L > 0,
the expected proportion of bad times in the interval [0�L] is at most

T

Lq2 �(59)

Since the deviation of the process is bounded by 1 for all bad times the ex-
pected deviation of the process on [0�L] is less than ε if T

Lq2 ≤ ε
2 . Hence the

convergence time Lε satisfies the inequality

Lε ≤ 2T
εq2 �(60)

Since q = exp(−K′Tv), we have

Lε ≤ 2ε−1T exp
(
2K′Tv

)
�(61)

Since T ≤ exp(T), there is a constant K′′ such that

Lε ≤ 2ε−1 exp
(
K′′Tv

)
�(62)

From Corollary 2, we also know that

T = K′

aδ2

[
Bb+ ln

(
ε−1

) + Mb2

aδ

]
�(63)

From (62) and (63), we deduce that there is a constant K̃ such that

Lε ≤
[
ε−1 exp

(
Bb+ Mb2

aδ

)]K̃v/(aδ2)

�(64)
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The final step is to bound a, b, and v. We know from Claim 5 that a = 1
8n .

The maximum number of strategies available to any given population is cer-
tainly less than the total number of strategies, hence b < M . The number of
shock variables, v, is less than the total number of pairs of strategies, hence
v < M2

2 . Finally let us recall that we chose λ = 1 to economize on notation,
hence we need to replace δ by λδ. Making these substitutions, we deduce that
for a suitably defined constant K,

Lε ≤ K

[
ε−1 exp

(
nM2

λδ
+B

)]KnM3/(λδ)2

�(65)

This concludes the proof of Theorem 3. Q.E.D.

APPENDIX C: PROOF OF PROPOSITION 1 AND PROPOSITION 2

C.1. Proof of Proposition 2

Let G = (P� (Sp)p∈P) be a game structure. The players in G are the ele-
ments of P . Call G̃ = (P� (S̃p)p∈P) a subgame of G if G̃ is obtained from G by
restricting the strategy set of every player p to the nonempty subset S̃p ⊆ Sp.
A subgame is nontrivial if, for at least two players p1�p2 ∈ P , the size of S̃p1

and S̃p2 is at least 2.

LEMMA 13: Let G̃= (P� (S̃p)p∈P) be a subgame of G. Fix a player q with dis-
tinct strategies {k� l} �⊂ S̃q. There exists a generic set of payoffs for G, such that for
every player p �= q, every pair of distinct strategies i� j ∈ S̃p, and every equilibrium
x of G̃, ∣∣[up

i

(
e
q
k�x

−q
) − u

p
i

(
e
q
l � x

−q
)] − [

u
p
j

(
e
q
k�x

−q
) − u

p
j

(
e
q
l � x

−q
)]∣∣> 0�(66)

PROOF: Fix a player p �= q and two distinct strategies i� j ∈ S̃p.
Case 1: {k� l} ∩ S̃q = ∅.
By a known result in game theory, the subgame G̃ has finitely many equilibria

for a full Lebesgue measure set of payoffs for G̃ (see Harsanyi (1973)). Fix such
a payoff vector, and let E be the corresponding finite set of equilibria in G̃. Let
Γ

p
k be the vector space of all payoffs to player p in G when player q plays

strategy k, and let Γ p
l be similarly defined.

Let Γ̄G̃ denote the subspace of payoffs to strategy profiles other than those
defining G̃. We claim that, for every x ∈ E, there is a generic set of payoffs
in Γ̄G̃ such that inequality (66) holds strictly. To see this, note that for a fixed
x−q ∈ X−q, the set of all payoffs that satisfy (66) as an equality defines a lower
dimensional subspace of payoffs in Γ

p
k × Γ

p
l , which is a subspace of Γ̄G̃. There-

fore, for any given x ∈ E, the set of payoffs that satisfy (66) as an equality has
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Lebesgue measure zero in Γ̄G̃. Since E is finite for a generic set of payoffs
in G̃, and inequality (66) holds strictly in any equilibrium of G̃ for a generic
set of payoffs in Γ̄G̃, it follows from Fubini’s theorem that there is a generic set
of payoffs for G such that inequality (66) holds strictly for every equilibrium
of G̃. This concludes the proof of Lemma 13 for case 1.

Case 2: {k� l} ∩ S̃q �= ∅.
Without loss of generality, assume that k ∈ S̃q and l /∈ S̃q. As before, there

is a generic set of payoffs in G̃ for which G̃ has a finite number of equilibria.
Fix any such payoffs u for G̃ and let E denote the finite set of equilibria. Fix
x ∈ E. Let up

i (e
q
k�x

−q) = α and u
p
j (e

q
k�x

−q) = β. Inequality (66) is satisfied as
an equality if and only if

u
p
j

(
e
q
l � x

−q
) − u

p
i

(
e
q
l � x

−q
) = u

p
j

(
e
q
k�x

−q
) − u

p
i

(
e
q
k�x

−q
) = β− α�

This equality defines a lower dimensional hyperplane in Γ
p
l , and hence has

Lebesgue measure zero in Γ̄G̃. An application of Fubini’s theorem establishes
Lemma 13 for case 2. Q.E.D.

LEMMA 14: Let G̃ = (P� (S̃p)p∈P) be a nontrivial subgame of G. Given a
player q with distinct strategies {k� l} ⊂ S̃q, there is a generic set of payoffs for
G such that, for every fully mixed Nash equilibrium of G̃, there exist a player p
and two distinct strategies i� j ∈ S̃p such that inequality (66) holds.

PROOF: G̃ has finitely many equilibria for a full Lebesgue measure set of
payoffs for G̃. Fix such a payoff vector. If there are no fully mixed equilibria
in G̃, we have nothing to prove. Otherwise, let E′ be the finite set of fully mixed
equilibria of G̃.

Assume by way of contradiction that (66) is violated for some x ∈ E′, every
player p �= q, and all i� j ∈ S̃p. Let 0 < h < x

q
l . Define a new mixed strategy yq

for player q as follows:

yq
m =

⎧⎨
⎩
xq
m if m �= k� l,

x
q
l − h if m = l,

x
q
k + h if m = k.

Let y = (yq�x−q). For every player p �= q and i� j ∈ S̃p,

u
p
i (y) = u

p
i (x)+ h

(
u
p
i

(
e
q
k�x

−q
) − u

p
i

(
e
q
l � x

−q
))

(67)

= u
p
j (x)+ h

(
u
p
j

(
e
q
k�x

−q
) − u

p
j

(
e
q
l � x

−q
)) = u

p
j (y)�(68)

Equality (67) follows from the definition of y . Since x is a fully mixed Nash
equilibrium, up

i (x) = u
p
j (x). By assumption, (66) does not hold for x, hence
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u
p
i (e

q
k�x

−q)−u
p
i (e

q
l � x

−q)= u
p
j (e

q
k�x

−q)−u
p
i (e

q
l � x

−q), from which equality (68)
follows. Therefore, y is also a fully mixed equilibrium of G̃. Thus we can gen-
erate infinitely many equilibria of G̃, which contradicts the assumption that G̃
has finitely many equilibria. Q.E.D.

PROOF OF PROPOSITION 2: For any xp ∈ Xp, let sp(x) ⊆ Sp be the set of
strategies in the support of xp. Let Γ be a full measure set of payoffs such that
both Lemma 13 and Lemma 14 hold with respect to every player q and ev-
ery pair of distinct strategies {k� l} ⊂ Sq. Assume further that, for every payoff
vector in Γ , every two distinct pure strategy profiles yield different payoffs for
every player p. Let u ∈ Γ . We shall show that there exists a constant δ > 0 such
that G is δ-generic. The first condition of δ-genericity clearly holds for some
δ > 0 (see Definition 6). As for the second condition, assume by contradiction
that it does not hold. Then there exists a sequence {xm}∞

m=1 of mixed strategy
profiles such that the following two properties hold:

(i) for every m,

d̃(xm)≤ 1
m

;(69)

(ii) for every m, there exist a player qm and {km� lm} ⊂ Sqm such that, for
every player p �= qm with two distinct strategies i� j ∈ sp(xm),∣∣[up

i

(
e
qm
km
�x−qm

m

) − u
p
i

(
e
qm
lm
�x−qm

m

)] − [
u
p
j

(
e
qm
km
�x−qm

m

) − u
p
j

(
e
qm
lm
�x−qm

m

)]∣∣(70)

≤ 1
m
�

By taking subsequences, we can assume that xm converges to some profile x.
We can further assume by taking subsequences that the qm’s are constant, say
qm = q, and the {km� lm} are constant, say {km� lm} = {k� l}. We can further
assume that sp(xm) is fixed for every player p and m.

Case 1: {k� l} �⊂ sq(x).
Define a subgame G̃ of G by letting S̃p = sp(xm) for every player p �= q, and

let S̃q = sp(x). By (69), x is an equilibrium of G̃. Therefore, Lemma 13 implies
that, for every player p �= q and i� j ∈ Sp,∣∣[up

i

(
e
q
k�x

−q
) − u

p
i

(
e
q
l � x

−q
)] − [

u
p
j

(
e
q
k�x

−q
) − u

p
j

(
e
q
l � x

−q
)]∣∣> 0�

This stands in contradiction to inequality (70).
Case 2: {k� l} ⊂ sq(x).
Define a subgame Ḡ by letting S̄p = sp(x) for every player p. We claim that

there exists a player p �= q such that |sp(x)| ≥ 2. To see this, note that x is an
equilibrium of Ḡ such that xq

l � x
q
k > 0. Suppose by way of contradiction that

|sp(x)| = 1 for every p �= q. By assumption, every two pure strategy profiles
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yield a different payoff for player q. We conclude that q has a unique best
reply at x, which is impossible because x is an equilibrium and both x

q
k�x

q
l

are positive. Hence Ḡ is nontrivial. Since x is a fully mixed equilibrium of Ḡ,
Lemma 14 implies that there exist a player p and two distinct strategies i� j ∈ S̄p

such that ∣∣[up
i

(
e
q
k�x

−q
) − u

p
i

(
e
q
l � x

−q
)] − [

u
p
j

(
e
q
k�x

−q
) − u

p
j

(
e
q
l � x

−q
)]∣∣> 0�

This again contradicts inequality (70), and completes the proof of Proposi-
tion 2. Q.E.D.

C.2. Proof of Proposition 1

PROPOSITION 1: Equilibrium convergence holds for a generic subset of weakly
acyclic population games G.

PROOF: We start by showing that if, for every N , the game GN is weakly
acyclic, then equilibrium convergence holds. Let ρ be a revision protocol. If GN

is weakly acyclic, then for every population state x ∈ χN , there exists a better
reply path to some pure Nash equilibrium yx of GN . This path has positive
probability under the corresponding stochastic process XN(·). Hence, for every
state x ∈ χN and every time t, there exists a probability px > 0 such that

P
(
XN(t + 1)= yx|XN(t)= y

) = px�

Let p = minx∈χN px. It follows that for every integer T , the probability is at
most (1 −p)T that the process has not reached an equilibrium state by time T .
Therefore, equilibrium convergence holds for G.

It remains to be shown that if G is weakly acyclic and δ-generic for some
δ > 0 (see Section 6.1, Definition 6), then, for every N , the game GN is weakly
acyclic. Thus, we need to show that, for every N and every x ∈ χN , there exists
a better reply path to an equilibrium of GN .

Let σ(x) = ∑
p∈P |sp(x)| be the size of the support of x, that is, the number

of pairs (i�p) such that xp
i > 0. We shall prove the claim by induction on σ(x).

The smallest value of σ(x) is n. In such a state, all players in each population
p are playing the same pure strategy. Let s ∈ S denote the corresponding pure
strategy tuple. By definition of a weakly acyclic game, there exists a better re-
ply path (s1� � � � � sk) ∈ Sk in G such that s1 = s and sk is an equilibrium. We
can now define a better reply path in GN : at every stage, all members of the
corresponding population revise their strategy choice to the one prescribed by
the better reply path in G. This better reply path terminates at sk, which is an
equilibrium of GN .

Now let x ∈ χN be a state such that σ(x) = c > n. If x is an equilibrium, then
we have nothing to prove. If x is not an equilibrium, we shall show that there
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exists a better reply path from x to some state y such that σ(y)≤ c− 1. We can
then use the induction hypothesis to complete the proof.

Since x is not an equilibrium, there must be a population q and a pure best
reply strategy k ∈ Sq such that uq

k(x) > uq(x). If there exists such a population
q with |sq(x)| ≥ 2, then there must be a strategy l ∈ Sq with x

q
l > 0 such that

u
q
k(x) > u

q
l (x). In this case, we can define a better reply path from x by letting

all members of population q revise their strategy choice to k, and the resulting
state y must satisfy σ(y)≤ c − 1.

If this case does not hold, then for every population q that is not in equi-
librium (i.e., some members are playing a suboptimal strategy), |sq(x)| = 1. It
follows that d̃(x) = 0 (see expression (27) and the definition of d̃ immediately
following). Thus there is at least one out-of-equilibrium population q all of
whose members are playing a suboptimal strategy l, where u

q
k(x) > u

q
l (x) for

some k ∈ Sq. Let w be the state obtained from x by having all members of pop-
ulation q revise their strategy to k. Since d̃(x) = 0 < δ, δ-genericity implies
that the impact of q on some population p �= q with |sp(x)| ≥ 2 is at least δ.
Hence there exist two distinct strategies i� j ∈ sp(x) such that∣∣up

i

(
e
q
k�x

−q
) − u

p
i

(
e
q
l � x

−q
) − [

u
p
j

(
e
q
k�x

−q
) − u

p
j

(
e
q
l � x

−q
)]∣∣ ≥ δ�

This is equivalent to∣∣[up
i (w)− u

p
i (x)

] − [
u
p
j (w)− u

p
j (x)

]∣∣ ≥ δ�(71)

Since d̃(x) = 0, d̃p(x) = 0, and therefore u
p
i (x) = u

p
j (x). Hence equation (71)

implies ∣∣up
i (w)− u

p
j (w)

∣∣> 0�

Thus σ(x) = σ(w) = c and we are back in the earlier case which has already
been established. This completes the proof of Proposition 1. Q.E.D.
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