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Summary (English)

Within the last twenty years, logics and models for stochastic analysis of in-
formation systems have been widely studied in both theory and practice. The
quantitative properties, such as performance and reliability, are evaluated over
discrete–time and continuous–time Markov chains. This thesis lifts the stochas-
tic analysis techniques from the class of Markov chains to the more general
classes of stochastic processes having PHase–type (PH) distributions and Matrix–
Exponential (ME) distributions, such as a Markov renewal process with ME
kernels that cannot be formulated as a Markov process with finite or countable
state space.

PH distributions are known for many explicit analytic properties, such that
systems having PH distributed components can still be formulated as Markov
chains. This thesis presents several results related to PH distributions. We first
show how to use the explicit analytic form of discrete PH distributions as com-
putational vehicle on measuring the performance of concurrent wireless sensor
networks. Secondly, choosing stochastic process algebras as a widely accepted
formalism, we study the compositionality of continuous PH distributions in order
to support modelling concurrent stochastic systems having PH representations
as building blocks. At last, we consider discrete–time point processes having
PH distributed interarrival times with multiple marks, we propose time-lapse
bisimulation, a state-based characterisation of the equivalence relation between
the point processes. We clarify that time-lapse bisimulation is a new contribu-
tion to the existing bisimulation family, which captures probabilistic behaviour
over time for labelled discrete–time Markov chains.

ME distributions is a strictly larger class than PH distributions, such that many
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results from PH distributions also are valid for ME distributions. ME distri-
butions have a very appealing property, called minimality property: generally
a ME representation of a PH distribution will be of lower dimension than PH
representations, and one can always find a ME representation with the minimal
dimension. However, because of the generality of ME distributions, we have to
leave the world of Markov chains. To support ME distributions with multiple
exits, we introduce a multi-exits ME distribution together with a process al-
gebra MEME to express the systems having the semantics as Markov renewal
processes with ME kernels. The most appealing feature is that all the compo-
nents before and after compositions are secured to have a minimal state space
representation. To support quantitative verification, we also propose stochastic
model checking algorithms for our problem.



Summary (Danish)

Gennem de sidste 20 år er logik og modeller for stokastisk analyse af infor-
mationssystemer blevet studeret bredt både i teori og praksis. De kvantitative
egenskaber såsom ydeevne og pålidelighed er blevet bedømt ved hjælp af diskrete
og kontinuerte Markovkæder. Denne afhandling overfører stokastiske analysetek-
nikker for Markovkæder til brug for den mere generelle klasse af Markovprocesser
bestående af Fasetype (PH) fordelinger og MatrixEksponentielle (ME) fordelin-
ger. Således kan Markovprocesser med ME fordelte tider ikke formuleres som en
Markovproces med hverken endeligt eller tælleligt tilstandsrum.

PH fordelinger er kendt for at have mange eksplicitte, analytiske egenskaber.
Det medfører, at systemer, der har PH fordelte komponenter, kan formuleres
som Markovkæder. Denne afhandling præsenterer flere resultater relateret til
PH fordelinger. Vi viser først, hvordan en eksplicit, analytiske form af diskrete
PH fordelinger kan bruges som beregningsmæssigt værktøj til at måle ydeevnen
af trådløse, parallelle sensornetværk.

Ved hjælp af stokastisk procesalgebra, som er et bredt accepteret paradigme,
undersøger vi dernæst kompositionaliteten af kontinuerte PH fordelinger. Dette
gøres for at redegøre for modellering af parallelle, stokastiske systemer, der byg-
ger på PH repræsentationer. Til slut betragter vi diskrete mærkede punktpro-
cesser med PH fordelte mellemankomsttider. Vi foreslår time-lapse bisimulation,
som er en tilstandsbaseret karakterisering af lighedsrelationen mellem punktpro-
cesserne. Vi redegør for, hvordan time-lapse bisimulation er et nyt bidrag til den
eksisterende samling af bisimlationer, der beskriver den probabillistiske opførsel
over tid af mærkede, diskrete Markovkæder.
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Selvom klassen af ME fordelinger er strengt større end klassen af PH fordelinger,
kan mange af de resultater, der gælder for PH fordelinger, overføres til klassen af
ME fordelinger. ME fordelinger har en særlig tiltalende egenskab nemlig mini-
malitetsegenskaben. Denne betyder, at en ME repræsentation af en PH fordeling
generelt vil være af lavere dimension end PH repræsentationen, og der eksisterer
altid en ME repræsentation med minimal dimension. Dog tvinger den generelle
formulering af ME fordelinger os til at forlade Markovkædernes verden. For at
kunne håndtere ME fordelinger med flere udgange introducerer vi en multi–exits
ME fordeling. Ved brug af MEME procesalgebra er vi nu i stand til at formulere
systemer med samme semantik som en Markov–fornyelsesproces med ME kerne.
Fordelen ved dette er, at samtlige komponenter både før og efter kompositioner
kan repræsenteres ved en minimal repræsentation. For at kunne udføre kvanti-
tativ efterprøvning præsenterer vi foreslået en stokastisk algoritme til modeltjek
for vores problem.



Preface

This thesis was prepared at the department of Informatics and Mathematical
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requirements for acquiring a Ph.D. degree in Informatics. The Ph.D. study has
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and was partially supplied by MT-LAB, a VKR Centre of Excellence.

This thesis studies logics and models for analysing stochastic aspects of infor-
mation systems in a general setting. Particularly, we rely on two classes of prob-
ability distributions, those of phase–type distributions and matrix–exponential
distributions, and their generalised stochastic processes.

This thesis consists of several scientific contributions with my excellent research
collaborators, including my two supervisors and Professor Holger Hermanns
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Symbols and Abbreviations

e a column vector of ones
ei a unit column vector with i-th element equals 1
E the expectation
f(·) the (joint) probability density/mass function
F (·) the (joint) cumulative distribution function
G(·) the probability generating function
H(·) the Laplace–Stieltjes transform
N the set of all natural numbers excluding 0
N0 the set of all natural numbers including 0
P the probability
< the set of all real numbers
<>0 the set of positive real numbers
<≥0 the set of non-negative real numbers
ϕ, ψ, Φ, Ψ, . . . the logical formulas
α, β, γ, . . . the initial row vectors
αi the i-th element of a vector α
π, π1, π2, . . . the probability vectors
H, W , X, . . . the random variables
A, P, Q, S, . . . the matrices
Ai,j the (i, j)-th element of a matrix A
Atr the transpose of matrix A
A−1 the inverse of matrix A
I the identity matrix
0 the zero matrix
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CPH Continuous PHase–type
CSL Continuous Stochastic Logic
CTMC Continuous–Time Markov Chain
DPH Discrete PHase–type
DTMC Discrete–Time Markov Chain
EXP Exponential
LMAC Lightweight Medium ACess
LST Laplace–Stieltjes Transform
MAP Markovian Arrival Process
ME Matrix–Exponential
MECPH Multi–Exits Continuous PHase–type
MEME Multi–Exits Matrix–Exponential
MMAP Marked Markovian Arrival Process
MRAP Marked Rational Arrival Process
MRP Markov Renewal Process
PH PHase–type
PHPA PHase–type Process Algebra
PP Point Process
RAP Rational Arrival Process
SMC Semi-Markov Chain
SMP Semi-Markov Process
SPA Stochastic Process Algebra
WSN Wireless Sensor Network
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Chapter 1

Introduction

In the last twenty years, there has been substantial work on the stochastic ex-
tension of labelled transition systems for analysing quantitative properties, such
as performance, reliability, and timeliness. Through stochastic models and logi-
cal expressions, quantitative properties are evaluated and verified for computer
systems and networks. The techniques for exploring transient and stationary be-
haviour of Markov chains have been successfully and widely applied. In Markov
chains, the distributions of the time for jumping from one state to another cor-
respond to (discrete–time) Geometric distributions or (continuous–time) Expo-
nential distributions, which are memoryless probability distributions. Departing
from memoryless probability distributions, this thesis focuses on developing the
formal verification techniques for more general and advanced probability distri-
butions and their related stochastic processes.

Phase–type (PH) distributions were considered first in [Neu75, Neu81], and are
defined as the distributions of the time until absorption in a Markov chain with a
finite number of transient states and one absorbing state. Exponential, Erlang,
Hypo-exponential, Hyper-exponential and Coxian distributions are examples of
Continuous PH (CPH) distributions. Amazingly, CPH distributions can be
used to approximate any kind of probability distributions on [0, ∞) [JT88]. In
Chapter 3, we present two contributions related to PH distributions :

• Discrete PH (DPH) distributions are applied as a computational vehicle
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in a practical case study on the LMAC protocol for concurrent wireless
sensor networks [EZN11].

• A theoretical survey on the compositionality of CPH distributions is for-
malised into a process algebra, called phase–type process algebra, to sup-
port compositional reasoning in large-scale systems with CPH distributed
random variables as primitives [ZNN12].

A Point Process (PP) is a stochastic process such that its realisation consists
of a set of isolated points in time space [DVJ88]. A Markovian Arrival Pro-
cess (MAP) is a PP with PH distributed interarrival times [Neu79, Luc91]. The
MAPs are further extended to allow multiple marks/labels, thus defining marked
MAPs (MMAP) [HN98]. Bisimulation relations allow one to reduce a system to
an equivalent but smaller system, which is obtained by replacing each state in
a system by its bisimulation equivalence class. Such a state aggregation tech-
nique is commonly used as a preprocessing step for model checking. This thesis
introduces the notions of stochastic equivalence between DPHs and discrete–
time MMAPs. Inspired from stochastic equivalence and a weakening of current
family of bisimulations, we define a new bisimulation relation, named time-lapse
bisimulation, on labelled discrete–time Markov chains to capture probabilistic
timed behaviour. Time-lapse bisimulation counts the number of internal actions
on traces, which is coarser than strong bisimulation and not comparable with
weak bisimulation. The details of the equivalence relations are presented in
Chapter 4 and submitted in [ZENN12].

The class of Matrix–Exponential (ME) distributions [AB97, BN03] includes and
generalises CPH distributions, with the dimensionality of representations as a
crucial merit. A minimal ME representation of a CPH distribution will be
of lower order, or of the same order, than the corresponding CPH representa-
tions [BN03], and an efficient algorithm exists to find a minimal representation
of ME distributions. Because of lacking stochastic interpretation in terms of
Markov chains, ME distributions have got much less attention than PH distri-
butions in stochastic analysis. Extending ME distributions with multiple exits,
Chapter 5 introduces the minimality and compositionality of multi–exits ME
distributions, together with a process calculus MEME having Markov Renewal
Process (MRP) semantics, such that its corresponding stochastic model checking
algorithms are also clarified.

This thesis is organised in the following manner. In Chapter 2, we intro-
duce interesting probability distributions and stochastic processes, ranging from
discrete–time processes to continuous–time processes. In Chapter 3, we present
two contributions for PH distributions, one for discrete PH and one for continu-
ous PH. We first present a case study applying DPH distributions for concurrent
wireless sensor networks in Section 3.1, and then illustrate the compositionality
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results for CPH distributions in phase–type process algebra in Section 3.2. In
Chapter 4, we develop a new bisimulation relation called time-lapse bisimulation
on labelled discrete–time Markov chains derived from the notions of stochastic
equivalence. In Chapter 5, we clarify the stochastic model checking techniques
for Markov renewal processes with ME kernels. We conclude in Chapter 6.



4 Introduction



Chapter 2

Stochastic Processes

In this chapter, we introduce interesting stochastic processes for both discrete–
time and continuous–time. The related stochastic processes are defined using
random variables with matrix representations. Unless otherwise specified, let
N denote the set of natural numbers and let N0 = N ∪ {0}. Throughout the
thesis, we use bold letters for vectors and matrices, αi for the i-th element of
a vector α, and Pi,j for the (i, j)-th element of a matrix P. With appropriate
dimensions, 0 denotes a zero matrix, I denotes an identity matrix, e denotes a
column vector of ones, and ei be a unit column vector such that the i-th element
is 1 and the remaining elements are 0. For any matrix A, Atr is the transpose
of A.

Let {Xn}n∈T be a family of random variables, which take values in some count-
able set E, indexed by some set T . We say the process is a discrete–time process
if T = N0, and a continuous–time process if T = <≥0.
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2.1 Discrete–Time Processes

2.1.1 Discrete–Time Markov Chains

A Markov process [GS01] is a stochastic process with the property that the
future is independent of the past, conditioning only on its present value. Since
there is no general acceptance on the terminologies, in this thesis, a Markov
chain is a Markov process having discrete state space according to [Pan09].

Definition 2.1 (Discrete–Time Markov Chain) ADiscrete–Time Markov
Chain (DTMC) is the process {Xn}n∈T satisfying the Markov property P(Xn =
xn | X0 = x0, X1 = x1, . . . , Xn−1 = xn−1) = P(Xn = xn | Xn−1 = xn−1) for all
n ≥ 1.

A DTMC is called homogeneous if it does not depend on time, i.e. P(Xn =
j | Xn−1 = i) = P(X1 = j | X0 = i) for all n, i, j. This thesis only considers
homogeneous DTMC.

To characterise a DTMC, we require an initial probability vector π = {πi}
and a transition matrix P = {Pi,j}, such that πi is the probability that the
system starts at state i, and Pi,j = P(Xn = j | Xn−1 = i) is the probability of a
transition from state i to j. A valid π requires ∀i : πi ≥ 0 and

∑
i πi = 1. A valid

P requires ∀i, j : Pi,j ≥ 0 and ∀i :
∑
jPi,j = 1. The transient probabilities of a

DTMC shall be calculated following the Chapman-Kolmogorov equations. Let
π(t) be the transient probability distribution at time instant t such that π(0) =
π, we have π(t) = πPt. The limiting probability distribution π(∞) of a DTMC
is to consider π(t) for t → ∞, which characterises the long term behaviour.
A DTMC is called irreducible iff it is possible to reach all states with nonzero
probabilities from any state. For irreducible DTMCs, the limiting probabilities
are independent of the initial probabilities, which is also called steady-state or
equilibrium probabilities, such that π(∞) = π(∞)P and π(∞)e = 1 hold.

DTMCs have been well-studied for decades, we refer the other definitions and
properties to [KT75, GS01].

2.1.2 Discrete Phase-type Distributions

Let {Xn} n∈N0
denote a DTMC with transient states 1, . . . , p and one absorbing

state p+ 1. A Discrete PHase–type (DPH) distribution [Neu75] is the distribu-
tion of the time until absorption in the DTMC. DPH distributions are defined
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by considering a probability transition matrix P of the form

P =

[
T t
0 1

]
, (2.1)

where T is a sub-stochastic matrix between the transient states such that I−T
is non-singular, and t = e−Te is the vector of probabilities of transitions to the
absorbing state. Let (π, πp+1) be the initial vector such that for π = (π1, . . . , πp)
∀πi ∈ π : πi ≥ 0 and πe + πp+1 = 1. Unless otherwise specified, we consider
πp+1 = 0 to shorten expressions, but the extension to the case where πp+1 > 0
is straightforward.

Definition 2.2 (Discrete Phase–type Distribution) We say that W =
inf{n ≥ 1|Xn = p + 1} has a Discrete PHase–type (DPH) distribution with
representation (π,T) and write W ∼ DPH(π,T) (cf. Formula (2.1)).

Let P denote probability and E denote expectation, the probability mass (or
density) function f , the cumulative distribution function F , and the probability
generating function G are given by

f(w) = P(W = w) = πTw−1t, for w ≥ 1,

F (w) = P(W ≤ w) = 1− πTwe, (2.2)
G(z) = E(zW ) = zπ(I− zT)−1t, for |z| ≤ 1.

The probability generating function can be written in the rational form

G(z) =
U(z)

V (z)
=

upz
p + up−1z

p−1 + · · ·+ u1z

vpzp + vp−1zp−1 + · · ·+ v1z + 1
(2.3)

for some constants ui, vi ∈ <, having the constraint that
∑p
i=1 ui

1+
∑p
i=1 vi

= 1 as we
have πp+1 = 0 [Neu81].

Taking the i-th derivative of G(z) and evaluating at z = 1 we get the i-th
factorial moment of W , which is given by

E(W (W − 1) . . . (W − (i− 1))) = i!π(I−T)−iTi−1e, i ≥ 1. (2.4)

The order of a DPH representation (π,T) is given by the dimension of T.
Unfortunately, the DPH representation of a given distribution is, in general,
neither unique [O’C89] nor necessarily minimal [Van90, HZ07]. Thus, we define
the order of a DPH distribution to be the minimal order of all possible DPH
representations.
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2.1.3 Discrete–Time Markovian Arrival Processes

Markovian arrival processes (MAPs) [Neu79, Luc91, Asm00, Blo93, AN95] have
many explicit analytic properties and are well-suited for numerical investiga-
tions, e.g. as models for successive interarrival times of phase–type.

Definition 2.3 (Discrete–Time Markovian Arrival Process) Let D be
an transition matrix of a DTMC of dimension p, and let D0 and D1 be two sub-
stochastic matrices whose sum is D such that the matrix I−D0 is non-singular.
The point process defined by an initial probability vector π and matrices {D0,
D1} is called a discrete–time Markovian Arrival Process (MAP) if the initial
distribution and the transition probability matrix of the underlying Markov
chain are given by π and D = D0 + D1 respectively. The matrix D0 gives
the probabilities of state changes without arrivals, and the matrix D1 gives the
probabilities of state changes with arrivals. We say that a discrete–time MAP
has a representation (π,D0,D1) of order p.

An embedded Markov chain describes the sequence of states with arrivals in a
discrete–time MAP. The transition probability matrix of the embedded Markov
chain is (I −D0)−1D1. Let Nt be the accumulated number of arrivals at time
epochs 1, 2, . . . , t, Xt be the state of the Markov chain at time t, and P(n, t)i,j =
P(Nt = n,Xt = j|N0 = 0, X0 = i) be the (i, j)-th entry of a matrix P(n, t). The
matrices P(n, t) satisfy the forward Chapman-Kolmogorov difference equations

P(0, 0) = I,

P(0, t+ 1) = P(0, t)D0,

P(n, t+ 1) = P(n, t)D0 + P(n− 1, t)D1, n ≥ 1.

Proposition 2.4 The generating function of Nt in a discrete–time Marko-
vian arrival process is given by

E(zNt) = π

∞∑
n=0

znP(n, t)e = π(D0 + zD1)te, |z| ≤ 1.

Proof We show that
∑∞
n=0 z

nP(n, t) equals (D0 + zD1)t by induction.

For base case, let t = 0, we have

∞∑
n=0

znP(n, 0) = z0P(0, 0) +

∞∑
n=1

znP(n, 0) = I.
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When t = 1, we have

∞∑
n=0

znP(n, 1) = z0P(0, 1) + z1P(1, 1) +

∞∑
n=2

znP(n, 1) = D0 + zD1.

For inductive step, let s ≥ 2 and let t = s+ 1, we have

∞∑
n=0

znP(n, s+ 1) =

∞∑
n=0

zn (P(n, s)D0 + P(n− 1, s)D1)

=

∞∑
n=0

znP(n, s)D0 +

∞∑
n=1

zn−1P(n− 1, s)zD1

=

∞∑
n=0

znP(n, s)D0 +

∞∑
n=0

znP(n, s)zD1

=

( ∞∑
n=0

znP(n, s)

)
(D0 + zD1) .

That produces
∞∑
n=0

znP(n, s+ 1) = (D0 + zD1)
s+1

.

2

The joint transform f(s, z) of Nt in the [0, t] interval starting with an arrival
right before 0 is

f(s, z) =

∞∑
t=0

stE(zNt) =

∞∑
t=0

stπ(D0 + zD1)te = α (I− s(D0 + zD1))
−1 e.

For a MAP (π,D0,D1), the probability mass function and the i-th factorial
moment of the first arrival time W [Neu81] are

f(w) = πDw−1
0 D1e, for w ≥ 1,

E(W (W − 1) . . . (W − (i− 1))) = i!π(I−D0)−iDi−1
0 (I−D0)−1D1e. (2.5)

Note that (I−D0)−1D1e = e, thus the factorial moments of interarrival times of
a discrete–time MAP is equivalent to the factorial moments of a DPH (cf. For-
mula (2.4)). Notice that by interpreting an arrival as a sort of absorption, the
matrix D0 of a MAP is indeed the sub-stochastic matrix T of a DPH.
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For m ∈ N0, the joint density function and the joint generating function of the
first successive m+ 1 inter-arrival times W0,W1, . . . ,Wm are

f(w0, w1, . . . , wm) = π

(
m∏
i=0

Dwi−1
0 D1

)
e,

G(z0, z1, . . . , zm) = π

(
m∏
i=0

zi(I− ziD0)−1D1

)
e.

Let t0, t1, . . . , tm be nonnegative integers, the joint factorial moments of the first
m+ 1 arrival times W0,W1, . . . ,Wm are

E

(
m∏
i=0

Wi(Wi − 1) . . . (Wi − (ti − 1))

)
= π

(
m∏
i=0

ti!(I−D0)−(ti+1)Dti−1
0 D1

)
e.

(2.6)

2.1.4 Discrete–Time Marked Markovian Arrival Processes

A discrete–time Markovian arrival process with marked transitions, named a
Marked Markovian Arrival Process (MMAP), is a point process generated by
marked transitions of a finite state DTMC with initial probability vector π and
probability transition matrix D.

Suppose that at time t, the chain is in some state i, i.e. Xt = i. At the next time
instant, a transition occurs with or without an arrival. With probability (D0)i,j ,
there is a transition from state i to state j without an arrival. Assume we have
K event types and let h1, . . . , hK be non-negative integers, then without loss
of generality an arrival marked by h = (h1, . . . , hK) counts hk items of type
k for k = 1, . . . ,K. Henceforth (Dh)i,j is the probability of a transition from
state i to state j with the arrival marked by h. Let C be a countable set
of K-tuples of non-negative integers excluding 0, then we have for all i that∑p
j=1

(
(D0)i,j +

∑
h∈C(Dh)i,j

)
= 1.

Similarly to the continuous–time marked Markovian arrival process defined in
[HN98], we have the following:

Definition 2.5 (Discrete–Time Marked Markovian Arrival Process)
A discrete–time Marked Markovian Arrival Process (MMAP) is a point process
defined by a vector π and matrices {Dh}h∈C∪{0}. The initial distribution and
the transition probability matrix of the underlying Markov chain are given by π
and D = D0+

∑
h∈CDh. The matrix D0 gives the probabilities of state changes
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without arrivals. For each vector of marks h, the matrix Dh gives the proba-
bilities of state changes with the arrival marked by h. We say that an MMAP
has a representation (π, {Dh}h∈C∪{0}) of order p, where p is the dimension of
the matrix D0.

The transition probability matrix of the embedded Markov chain of discrete–
time MMAP is (I − D0)−1

∑
h∈CDh. The counting process of the MMAP,

N(t) = (N1(t), . . . , NK(t)), is a tuple of random variables such that Nk(t) is
the accumulated number of items of type k arriving up to and including time
epoch t. Let n1, . . . , nK be nonnegative integers and n = (n1, . . . , nK), we then
define the conditional probability P(n, t)i,j for the underlying Markov chain
being in the state j at time instant t with n accumulated arrivals, given that
the process started in state i at time 0, i.e. P(n, t)i,j = P(N(t) = n, Xt =
j|N(0) = 0, X0 = i) for 1 ≤ i, j ≤ p.

Let P(n, t) be the matrix with the conditional probabilities P (n, t)i,j , which
satisfies the discrete Chapman-Kolmogorov difference equations

P(0, 0) = I,

P(0, t+ 1) = P(0, t)D0,

P(n, t+ 1) = P(n, t)D0 +
∑

h≤n,h∈C

P(n− h, t)Dh.

Proposition 2.6 The generating function ofN(t) in a discrete–time marked
Markovian arrival process is given by

E

(
K∏
i=1

z
Ni(t)
i

)
= π

∑
n≥0

znP(n, t)e = π

(
D0 +

∑
h∈C

zhDh

)t
e, t ≥ 0,

where zh =
∏K
i=1 z

hi
i .

Proof We show that
∑
n≥0 z

nP(n, t) equals
(
D0 +

∑
h∈C z

hDh

)t by induc-
tion.

For base case, let t = 0, we have∑
n≥0

znP(n, 0) = z0P(0, 0) +
∑
n>0

znP(n, 0) = I.
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When t = 1, we have∑
n≥0

znP(n, 1) = z0P(0, 1) +
∑
n>0

znP(n, 1)

= D0 +
∑
n>0

zn

P(n, 0)D0 + P(0, 0)Dn +
∑

h<n,h∈C

P(n− h, 1)Dh


= D0 +

∑
h∈C

zhDh,

such that
∑
h<n,h∈C P(n− h, 1)Dh = 0, because strictly n− h > 0 then

P(n− h, 1)Dh = P(n− h, 0)D0 +
∑

h′≤n−h,h′∈C

P(n− h− h′, 0)Dh′ = 0.

For the inductive step, let s ≥ 2 and let t = s+ 1, we have

∑
n≥0

znP(n, s+ 1) =
∑
n≥0

zn

P(n, s)D0 +
∑

h≤n,h∈C

P(n− h, s)Dh


=

∑
n≥0

znP(n, s)D0 +
∑
n≥0

zn
∑

h≤n,h∈C

P(n− h, s)Dh,

such that the term
∑
n≥0 z

n
∑
h≤n,h∈C P(n − h, s)Dh includes finitely many

terms. Without loss of generality, assume that the vector of marks of the MMAP
are h1, h2, h3 . . . . To expand the term we have the following:

∑
n≥0

zn
∑

h≤n,h∈C

P(n− h, s)Dh

=
∑
n≥0

zn (P(n− h1, s)Dh1
+ P(n− h2, s)Dh2

+ . . . )

=
∑

n≥h1≥0

zn−h1P(n− h1, s)z
h1Dh1

+
∑

n≥h2≥0

zn−h2P(n− h2, s)z
h2Dh2

+ . . .

=
∑

n≥h1≥0

znP(n, s)zh1Dh1 +
∑

n≥h2≥0

znP(n, s)zh2Dh2 + . . .

=

∑
n≥0

znP(n, s)

 ∑
h≤n,h∈C

zhDh

 .
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Then, we have

∑
n≥0

znP(n, s+ 1) =
∑
n≥0

znP(n, s)D0 +

∑
n≥0

znP(n, s)

 ∑
h≤n,h∈C

zhDh


=

∑
n≥0

znP(n, s)

D0 +
∑

h≤n,h∈C

zhDh

 .

That produces

∑
n≥0

znP(n, s+ 1) =

D0 +
∑

h≤n,h∈C

zhDh

s+1

.

2

The joint transform f(s, z) of N(t) in the [0, t] interval starting with an arrival
right before 0 is

f(s, z) =

∞∑
t=0

stE

(
K∏
i=1

z
Ni(t)
i

)
= π

(
I− s

(
D0 +

∑
h∈C

zhDh

))−1

e, (2.7)

where zh =
∏K
i=1 z

hi
i .

For an MMAP with representation (π, {Dh}h∈C∪{0}), the joint density of the
first successive m + 1 interarrival times Θ0, . . . ,Θm with arrivals marked by
H0, . . . ,Hm is

f(θ0,h0, . . . , θm,hm) = P(Θ0 = θ0,H0 = h0, . . . ,Θm = θm,Hm = hm)

= π

(
m∏
i=0

Dθi−1
0 Dhi

)
e. (2.8)

Let t0, . . . , tm be nonnegative integers, the joint factorial moments of the first
successive m + 1 interarrival times Θ0, . . . ,Θm with the arrivals marked by
H0, . . . ,Hm is

E

(
m∏
i=0

Θi(Θi − 1) . . . (Θi − (ti − 1))1(Hi = hi)

)

= π

(
m∏
i=0

ti!(I −D0)−(ti+1)Dti−1
0 Dhi

)
e, (2.9)

such that the 1(Hi = hi) is an indicator function, which equals 1 whenHi = hi.
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2.2 Continuous–time Processes

2.2.1 Continuous–Time Markov Chains

Definition 2.7 (Continuous–Time Markov Chain) A Continuous–Time
Markov Chain (CTMC) is a process {Xt}t≥0 that satisfies the Markov property
P(Xtn = j | Xt0 = i0, . . . , Xtn−1

= in−1) = P(Xtn = j | Xtn−1
= in−1) for any

sequence t0 < t1 < · · · < tn of times.

A CTMC is called homogeneous if it does not depend on time, i.e. P(Xtn = j |
Xtn−1 = i) = P(Xt1 = j | Xt0 = i) for all tn, tn−1, i, j. This thesis only considers
homogeneous CTMCs.

To characterise a CTMC, we require an initial probability vector π = {πi} and
a generator matrix Q = {Qi,j}, such that the πi is the probability that system
starts at state i, and the Qi,j are parameters of (negative) Exponential (for
short Exp.) distributions. A valid Q requires that ∀i 6= j : Qi,j ≥ 0, ∀i :
Qi,i ≤ 0,

∑
j Qi,j = 0. The transient probability vector of a CTMC shall be

calculated as π(t) = πeQt. Like DTMCs, a CTMC is called irreducible iff it
is possible to reach all states with nonzero probabilities from any state in its
embedded Markov chain [GS01]. For an irreducible CTMCs, the steady-state or
equilibrium probability vector π(∞) are given as 0 = π(∞)Q and π(∞)e = 1.

Like DTMCs, CTMCs have been well-studied for decades, we refer the other
definitions and properties to [KT75, GS01].

2.2.2 Continuous Phase–type Distributions

Many definitions and results regarding DPH distributions (cf. Section 2.1.2)
carry over verbatim to the continuous case, other need minor modifications.

Definition 2.8 (Continuous Phase–type Distribution) A Continuous
PHase–type (CPH) distribution is the distribution of the time until absorption
in a finite continuous–time Markov chain with generator matrix Q of dimension
p+ 1 given as

Q =

[
T t
0 0

]
, (2.10)

such that the square matrix T is invertible, has nonpositive row sums and
nonnegative off-diagonal entries. Let (π, πp+1) be the initial probability vector
of the CTMC, the pair (π, T) is called a representation of the CPH distribution.
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The probability density function f , the cumulative distribution function F , and
the Laplace-Stieltjes Transform (LST) H of a CPH distributed random variable
W are given by

f(w) = πeTwt, for w > 0, (2.11)
F (w) = 1− πeTwe,
H(s) = E(e−sW ) = πp+1 + π(sI−T)−1t. (2.12)

LetW be a CPH distributed random variable, the n-th moment E(Wn) is given
by

E(Wn) = n!π(−T)−ne. (2.13)

The order of a CPH representation (π,T) is given by the dimensions of T.
In analogy with DPH distributions, the CPH representation of a given distri-
bution is, in general, neither unique nor necessarily minimal. Thus, we define
the order of a CPH distribution to be the minimal order of all possible CPH
representations.

Provided the LSTs of two independent continuous random variables exist, the
distributions are equal if and only if their LSTs are equal (see the continuity
theorem, page 429 in [Fel68]). By Formula (2.12), we observe that CPH dis-
tributions have a rational function. If the rational function has no common
factor, the degree of the phase–type distribution is defined to be the degree of
denominator. It has been proved in [Van90] that two CPH representations of
order n and m respectively, describe the same CPH distribution if and only if
their first 2·max{n,m} moments agree.

2.2.3 Continuous–time Markovian Arrival Process

Continuous–time Markov arrival processes [Neu79, Asm00, Nie98] have many
analogous results to the discrete–time case mentioned in Section 2.1.3. This
thesis focuses on discrete–time MAPs, so we omit the detailed definitions and
properties for continuous–time MAPs.

2.2.4 Continuous–time Marked Markovian Arrival Pro-
cess

Like continuous–time MAPs, the original definitions of marked Markovian ar-
rival processes and other results are in continuous–time [HN98, BKK10]. This
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thesis focuses on discrete–time MMAPs to supplement the literatures, thus we
omit the detailed definitions and properties for continuous–time MMAPs.

2.2.5 Markov Renewal Processes

A Markov Renewal Process (MRP) [Ros96] is a continuous–time stochastic pro-
cess such that the exponentially distributed sojourn times in a CTMC are now
generalised to follow arbitrary probability distributions. The probability distri-
butions of the holding time of an MRP is referred as the kernel of an MRP.

Definition 2.9 (Markov Renewal Process) Let m ∈ N, E = {1, . . . ,m}
be a discrete state space, and {Hn}n=0,1,2,... be a stochastic process assuming
values in E. Let W0, W1, W2, . . . be the continuous–time transition epochs
on [0,∞), such that 0 = W0 ≤ W1 ≤ W2 ≤ · · · . A two-dimensional process
(H,W ) = {(Hn,Wn)}n=0,1,2,... is a Markov Renewal Process (MRP) if it has
the property

P(Hn+1 = j,Wn+1 −Wn ≤ t | H0, H1, . . . ,Hn = i,W0,W1, . . . ,Wn) =

P(Hn+1 = j,Wn+1 −Wn ≤ t | Hn = i), i, j ∈ E and t ≥ 0.

That is the density of jumping to the future state j at time t depends only on
the current state i.

An MRP represents both the transition epoch and the state of the process at
that epoch. The stochastic process representing the states of an MRP at an
arbitrary time is called a Semi-Markov Process.



Chapter 3

Phase–type Distributions in
Stochastic Analysis

Phase–type (PH) distributions were considered first in [Neu75, Neu81], and are
defined as distributions of absorption times in a Markov chain with finite tran-
sient states and one absorbing state. There are several motivations for using PH
distributions in stochastic modelling, such as well–established analytical results
(cf. Section 2.1.2 and Section 2.2.2), compositionality [Neu75], to approximate
any kind of probability distributions on [0, ∞) [JT88], and so on. The appli-
cations of PHs can be found in various areas in stochastic modelling such as
reliability analysis [Neu81, CP09], queueing theory [Asm92, Neu89], and net-
works [CNI04, EZN11].

This chapter presents our recent developments for both discrete and continu-
ous PH distributions, which consists of two separate parts. In the first part,
we report our recent studies on applying discrete PH distributions for evaluat-
ing performance of probabilistic concurrent wireless sensor network protocols.
This work proposes a highly abstracted probabilistic model using combinatorial
reasoning, such that discrete PH distributions are able to accelerate the perfor-
mance analysis. This result has been published and presented in [EZN11]. The
second part is about exploring compositionality results for continuous PH distri-
butions by introducing a stochastic process algebra, named phase–type process
algebra. Phase–type process algebra provides a way of modelling large-scale and
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complicated systems using continuous PH distributions as building blocks.

3.1 A Probabilistic Model of the LMAC Protocol

In this section, we present a probabilistic model for the network setup phase
of the Lightweight Medium Access Protocol (LMAC) for concurrent wireless
sensor networks. In the network setup phase, time slots are allocated to the
individual sensors through resolution of successive collisions. The setup phase
involving collisions should preferably be as short as possible for efficiency and
energy consumption reasons. This concurrent stochastic process has inherent
internal nondeterminism, and we model it using combinatorics. The setup phase
is modelled by a discrete–time Markov chain such that we can apply results
from the theory of phase–type distributions. Having obtained our model we are
able to find optimal protocol parameters. We have simultaneously developed a
simulation model, partly to verify our analytical derivations and partly to be
able to deal with systems of excessively high order or stiff systems that might
cause numerical challenges. Our abstracted model has a state space of limited
size where the number of states are of the order

(
n+r+1
n

)
, where n is number of

sensors, and r is the maximum back-off time. We have developed a tool, named
LMAC analyser, on the MATLAB platform to assist automatic generation and
analysis of the model.

3.1.1 Introduction

Wireless Sensor Networks (WSN) consist of widely distributed sensors that co-
operatively monitor physical or environmental conditions, and have been used
in widespread applications. WSN are one of the prime examples of net-worked
embedded systems, where many modern computer science challenges exist, such
as the challenges in distributed computing, wireless communication, and system
integration. One major consideration in WSN is how to prolong the network
lifetime. The Lightweight Medium Access Protocol (LMAC) was introduced
in [vHH04], designed as a multi-hop and energy-efficient protocol for WSN at
the Medium Access Control (MAC) layer. In the LMAC protocol, the network
is self-organising in terms of time slot assignment and synchronisation. The
protocol uses Time Division Multiple Access (TDMA), where each time slot is
assigned to a sensor. In this manner, the nodes can communicate collision- free
after the network has stabilised. In this way, the protocol provides energy effi-
ciency. The LMAC protocol gives a significant lifetime improvement compared
to prior protocols, such as EMACs and SMAC. Thus, analysing and reducing
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collisions in order to optimise the network have been some of the remaining
challenges. As a consequence, we will concentrate on the part of the protocol
that is responsible for the distributed and localised strategy of assigning time
slots to sensors.

In previous works [FvHM07, vH07, VR09], the concurrent behaviour of the
LMAC nodes was modelled using parallel decomposition. The complexity of the
models rose drastically with the number of network nodes, limiting the analysis
to small-sized networks far from reality. In addition, the random nature of the
slot selection process required further analysis and modelling. In our approach,
we will use a direct mathematical method with immediate abstraction of network
details that does not influence the time for the network to stabilise.

Related Work Although LMAC came into being just a few years ago, there
are already some interesting studies.

In [FvHM07, vH07], formal verification of the LMAC protocol is investigated in
the timed automaton model checker UPPAAL [BDL04]. The LMAC network is
modelled by parallel composition of single node behaviours. The properties for
model check- ing primarily focus on the fundamental mechanisms. For example,
checking whether collisions can be detected or a new choice of slots is initiated
after collision. The UPPAAL model has been used to systematically investigate
all topologies with 4 and 5 nodes. Based on this work, the LMAC protocol has
been updated by patching discovered bugs, and problematic topologies with pos-
sible scenarios of unsolved collision have been identified. However, the UPPAAL
model has encountered serious state space explosion, if the model contains more
than 5 nodes. Moreover, probabilistic aspects of LMAC, e.g. optimal param-
eters, have been mentioned as important future work. This inspired our work
and has now become one of our key contributions.

A study on probabilistic aspects of LMAC is given in [VR09] relying on timed
automata in the probabilistic version of UPPAAL (UPPAAL PRO 0.2). The
probabilistic choice has been made by pre-assigned weights to all possible tran-
sitions when nodes select back-off time after collision. By changing the weights,
various probability distributions represent different back-off strategies. It shows
that if the back-off time before starting to pick a new time slot increases, the
number of collisions will decrease. In this work [VR09], slot selection is mod-
elled in a deterministic way. Each individual sensor keeps trying from the first
time slot and then the second, until it finds a free one. Thereby, later coming
sensors unavoidably have a number of collisions before they settle down. This
has negative influences on the overhead of the protocol, therefore we suggest
a probabilistic solution. At last, the probabilistic UPPAAL model encounters
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even severer state explosion problem than the non-probabilistic version, which is
capable of modelling a maximum of 4 nodes under the fully connected topology.

In summary, previous works in the slot selection phase of the LMAC protocol
rely on parallel composition approach. Modelling the non-deterministic nature
and solving the state space dilemma are very interesting topics. In our work, we
propose a mathematical approach using a direct abstraction technique to solve
these concurrent stochastic problems.

3.1.2 The LMAC Protocol

Figure 3.1: Time structure in the LMAC protocol.

As a schedule-based MAC protocol, the time in LMAC is organised in time slots,
which are grouped into frames (see Fig. 3.1). For each time slot, the controlling
node always transmits a fixed length (12 bytes, [vHH04]) control message in
order to maintain synchronisation. The control message also carries a node ID
of the time slot controller, the size of the data unit and the intended receiver. In
particular, the control message is critical for broadcasting information regarding
the occupied time slots. For this reason, late coming nodes can pick only free
slots. The remaining part of a time slot is an optional data unit if there are
any needs. The current maximum size of the data unit is 256 bytes, [vHH04].
During each frame, nodes can only transmit messages in their own time slot,
for the rest of the time they can only receive messages. In this manner, energy
consumption is minimised.

At the beginning of the network setup phase, all of the nodes are unsynchro-
nised. In order to get synchronisation, one (or more) gateway node(s) will take
initiative to start controlling the time slot(s), i.e. becoming the master node(s).
Control messages from the gateway will be received by its one-hop neighbours.
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Once these nodes get their time slots, they will start sending control messages
to the other hops. The network will stabilise once all nodes get their reserved
time slots. Thereafter, nodes can communicate with each other in a collision
free manner.

Fig. 3.2 describes the behaviour in terms of the phases for an individual node
in LMAC.

Figure 3.2: Phase diagram for an individual sensor.

Initialisation Phase: When a sensor node powers on, it is unsynchronised. In
this phase, a node will try to detect its neighbouring nodes. As long as at least
one neighbouring node is detected, the node will synchronise with it and go to
the wait phase.

Wait Phase: The wait phase is designed with the purpose of reducing the
number of nodes that pick slots at the same time, which helps to reduce the
probability of collision. In this phase, a node waits for random k frames, where
k is an integer number from the set S = {0, 1, . . . , r}, where r is the maximum
back-off time. After waiting k frames, the node will go to the discover phase.

Discover Phase: Before a node starts to pick a time slot, it registers all the
currently available slots in order to pick only among those. This happens in the
discover phase where nodes compute free slot information based on the control
messages. Afterwards, it will randomly select one of the available slots and go
to the active phase. A node stays one time frame in this phase.

Active Phase: After a node has picked a time slot in the discover phase, it
will start to transmit a message and receive messages from neighbouring nodes.
Here, if there are two or more nodes transmitting simultaneously, a collision
occurs. Then neighbouring nodes will send control messages to ask them to give
up their time slots and go to the wait phase.

In the LMAC specification, the back-off mechanism for collided nodes is under-
specified. Thereby, it is possible for nodes to start back-off in either the current
frame or the next. It depends on whether there are neighbouring nodes to reg-
ister collisions for the discover identities at the remaining time of the frame.
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This non-determinism can be interpreted as implementation freedom. Consid-
ering the worst case scenario, we resolve the non-determinism by assuming that
back-off always starts in the successive frame.

Moreover, to limit the number of time slots necessary in the network, the
LMAC protocol allows for time slots to be reused at non-interfering distances.
In [FvHM07] is proved that it is safe to share the same time slot after at
least three hops. The LMAC protocol uses a distributed algorithm described
in [TSP+03, MW08] to manage the division of time slots.

3.1.3 A Probabilistic Model

The component-based approach to model the concurrency in the stabilisation
process was applied in [FvHM07, VR09], where the behaviour of a single node is
modelled as a basic component. Indeed, the system properties are represented
in terms of parallel composition of individual nodes. The compositional way is
inherently close to the protocol specification, which gives a detailed verification
result. The state space explosion problem, however, restricts model checking
experiments to 5 nodes. This is far from the WSN applications, where the num-
ber of sensors could be up to hundreds. Therefore, we will propose a lightweight
model that will be valid for the verification task at hand.

In [FvHM07], the case with 5 nodes considering all the 61 topologies has been
investigated. These different topologies can lead to dramatically varied verifi-
cation results. Generally, it is hard to identify a representative one. Hence,
throughout the paper, we will assume only the fully connected topology, which
has been proven as one of the successful topologies.

3.1.3.1 System Abstraction

Related to parallel composition, the abstraction methods described in [CGL94,
CC77] produce abstracted models to reduce the state space problem of model
checking. But, in order to do so, they have to start with a detailed model. As an
alternative, our mathematical approach will attack the highly abstracted model
directly, thereby obtaining a huge reduction of the state space. The system is
abstracted by the statistical collection of system level information based on the
given LMAC specification. The statistical collection is represented by a data
vector which also represents the state of the system. In our implementation, we
will propose an injective function, which maps a set of data vectors to a set of
positive integers in order to construct a one dimensional discrete state space.
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In Section 3.1.2, we introduced the LMAC protocol, which uses a distributed
algorithm to divide time slots in order to reuse them in more than 2 hops.
Thereby, it is sufficient to analyse the worst case of at most 2 hops distance to
characterise the overall network. Thus, we will only model the behaviour for
the worst case, defined by max{nt |

n
t ≤ 1;n, t within 2 hops}, where n and t

are the system variables defined below.

In the following we will define the system variables.

• n is the number of sensors.

• t is the number of time slots, where we assume t ≥ n, since the number of
time slots in each frame is, at least, equal to the number of nodes in the
network.

• r is the maximum back-off (waiting) time.

Now, assuming that the system is in frame j ≥ 0, we define the following:

• Xj = (Xj,0, Xdj , Xj,1, Xj,2, . . . , Xj,r) is the state vector which collects the
system information, where

Xj,0 is the number of sensors with a reserved slot.
Xdj is the number of sensors in the discover phase.
Xj,s is the number of sensors which will wait s ∈ {1, . . . , r} frames more.

• Yj is the number of sensors that successfully get a slot.

• Zj,s is the number of sensors that collided in frame j and chose to wait
s ∈ {0, 1, . . . , r} frames. The vector Zj+1 = (Zj+1,1, . . . , Zj+1,r) is used to
record results of the random choice for back-off time from a multinomial
distribution with parameters Xdj − Yj+1 and π, where π is an r dimen-
sional vector corresponding to a uniform distribution, i.e. π = ( 1

r , . . . ,
1
r ).

Based on various kinds of back-off time selection strategies, however, π
can be an arbitrary probability vector.

Hence, we have the basic identity

Xj,0 +Xdj +

r∑
s=1

Xj,s = n, for j ≥ 0,

as the sensors can only be in the active phase (Xj,0), the discover phase (Xdj )
or the wait phase (

∑r
s=1Xj,s). With the variables defined above, we are able

to capture the dynamics of the process.
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Algorithm 1 The LMAC simulation algorithm.

Require: X0 := (0, n, 0, 0, . . . , 0), Y0 := 0, j := 0
1: repeat
2: Generate Yj+1 ← Pt−Xj,0,Xdj (Y = y)
3: Xj+1,0 ← Xj,0 + Yj+1

4: Generate Zj+1 from multinomial distribution
5: for s = 1 to r − 1 do
6: Xj+1,s ← Xj,s+1 + Zj+1,s

7: end for
8: Xj+1,r ← Zj+1,r

9: Xdj+1 ← Xj,1

10: j ← j + 1
11: until Xj+1,0 = n

The dynamic is driven by frames as the basic time unit where the vector Xj
is used to record the system information. The network starts when all the
sensors are unsynchronised and are attempting to get (unreserved) slots. As
time elapses, an increasing number of sensors get a reserved slot. Eventually,
the system stabilises when all of the nodes have a reserved time slot. The whole
process is modelled as a discrete–time Markov chain and the total time spent
on the stabilisation process is discrete phase–type distributed [Neu75, Neu81].
The absorbing state of the underlying Markov chain is the state where all of
the sensors have their reserved slots. Algorithm 1 illustrates the dynamics by
pseudo code. Here, we identify the initial state of the system under the worst
case, where all the sensors are trying to get their slots at the first frame. Indeed,
the worst case gives the highest likelihood for the sensors to experience collisions
at the beginning.

Table 3.1: Example for Algorithm 1 considering r = 3 and n = 3.

Frame j Yj Zj,1 Zj,2 Zj,3 Xj,0 Xdj Xj,1 Xj,2 Xj,3

0 0 0 (3) 0 0 0
1 0 0 2 1 0 0 0 2 1
2 0 0 0 0 0 0 2 1 0
3 0 0 0 0 0 2 1 0 0
4 0 2 0 0 0 1 2 0 0
5 1 0 0 0 1 2 0 0 0
6 0 1 1 0 1 0 1 1 0
7 0 0 0 0 1 1 1 0 0
8 1 0 0 0 2 1 0 0 0
9 1 0 0 0 3 0 0 0 0
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Table 3.1 exemplifies one scenario of the network dynamics of our abstracted
model following Algorithm 1, where r = 3 and n = 3. The initial data vector is
(0,0,0,0,0,3,0,0,0), where 3 sensors are in the discover phase, Xd0 . Unluckily, all
of the three collide (2 sensors wait 2 frames and 1 sensor waits 3 frames), which
is depicted by the second line of the table. Thereafter, time just passes and the
sensors are waiting their turn to retry. In the end, all the sensors successfully
get reserved time slots. Thereby, the number of sensors having reserved slots,
Xj,0, becomes 3.

3.1.3.2 Analysis of randomness

Two probabilistic choices occur in step 2 and 4 of Algorithm 1. In the following,
we shall formalise and calculate both assuming that the system is in arbitrary
frame j.

Probability distribution of slot selection In step 2 of Algorithm 1, we
need to find the random number Yj+1, which is the number of new sensors with
reserved slots. Note that Yj+1 could be any integer value in the interval [0, Xdj ]
except Xdj − 1, which has a probability distribution described below.

To shorten notation, we define some new variables to assist us in calculating
probabilities derived from the state vector Xj .

• l is the number of current free slots, i.e. l = t−Xj,0,the number of current
free slots is equal to the total available number of slots minus the number
of reserved slots.

• k is the number of sensors in the discover phase, i.e. k = Xdj and k ≤ l.

• y is the number of new sensors with reserved slots, i.e. 0 ≤ y ≤ k.

• x is the number of sensors experiencing collision, i.e. x = k − y.

• h is the number of unreserved slots, i.e. h = l − y.

The probability distribution of slot selection (i.e. distribution of Y ) depends only
on l, k, and y. Let Pl,k(Y = y) denote the probability that y sensors successfully
get reserved slots, given the condition that there are l free time slots and k
attempting sensors. Based on combinatorial theory, Pl,k(Y = y) is calculated
by a rational function with parameters l, k, and y. The numerator counts the
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number of combinations where y sensors are reserved, and the denominator is
the number of combinations for all possible values of Y .

When none of sensors collide, i.e y = k, we have that

Pl,k(Y = k) =
1

lk

(
l

0

)
h!

(h− 0)!

k!

x!
=

1

lk

(
k

x

)
.

Obviously, Pl,k(Y = k − 1) = 0 since it is impossible to have collision involving
just one sensor.

If 2 or 3 sensors are in collision, they can only collide in a single slot. However,
for 4 or more sensors the collision can happen in more than one time slot. To
consider a general case, we have the formula for y ≥ 2:

Pl,k(Y = y) =
1

lk

(
l

y

) b x2 c∑
i=1

h!

(h− i)!
k!pi(x) =

1

lk

(
k

x

) b x2 c∑
i=1

l!

(l − y − i)!
x!pi(x),

(3.1)
where

• b·c is the floor function. The number of slots with collided sensors can
vary from 1 up to bx2 c. E.g. if we have 7 collided sensors, these can be in
at most b 7

2c=3 slots.

• pi(x) is an iterative function that depends on x and i. The way of finding
the explicit form of this function is described in Appendix A.1.

• k!pi(x) is the number of ways of putting x sensors into i slots, and these
x sensors are under collision.

Thus, from Formula (3.1), we are able to compute the distribution of slot selec-
tion analytically.

Probability distribution of back-off time Intuitively, to shorten the setup
time we give high priority to small back-off times but only in the case where
there are only few sensors in the network [VR09]. If there are a considerable
number of sensors, it becomes necessary to have larger back-off time options to
reduce the probability of collision. Therefore, there exists an optimistic strategy
which chooses the probability distribution(s) of the back-off time such that the
expected time till absorption is minimum.

In [vHH06] network latency is taken into account. Four types of strategy to
ensure a low latency for the most common data traffic in WSN are proposed.
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We chose a uniform distribution of the back-off times, which is one of the four
classic strategies mentioned in [vHH06].

3.1.3.3 Discrete Time Markov Chain

A Markov chain is a discrete state space stochastic process with the Markov
property (cf. Definition 2.1). Since the frames are taken as the time unit, the
model of LMAC is a DTMC. Let E = {1, 2, . . . ,

(
n+r+1
n

)
} denote the state space

of the underlying DTMC with transition matrix defined as follows

P = (pm,m′)m,m′∈E . (3.2)

Now, let M be an injective function which maps state vectors Xj , j ≥ 0, to E
in the following way

M(Xj) =

Xdj∑
s=0

(
n+ r − s

s

)
−

r∑
s=1

a∑
i=Xj,s+1

(
a+ r − s− i

r − s

)
,

where a = n − Xdj −
∑s−1
q=1Xj,q. Note that other mappings could have been

used.

Now, suppose that M(Xj) = m and M(Xj+1) = m′, the (m,m′)-th element of
P is computed as follows

pm,m′ = P(Xj+1|Xj)

= Pt−Xj,0,Xdj (Y = Xj+1,0 −Xj,0)

·
(

Xdj − (Xj+1,0 −Xj,0)

(Xj+1,1 −Xj,2), (Xj+1,2 −Xj,3), . . . , (Xj+1,r−1 −Xj,r), Xj+1,r

)
·
(

1

r

)Xdj−(Xj+1,0−Xj,0)

.

As we can see, the transition probability from the state m to the state m′,
consists of two parts. The first part, Pt−Xj,0,Xdj (Y = Xj+1,0 − Xj,0), is the
probability that Xj+1,0−Xj,0 sensors get reserved slots. The remaining part of
the formula calculates the probability that Xdj−(Xj+1,0−Xj,0) collided sensors
back-off, which is multinomially distributed. Since the discovering sensors can
either become reserved or back-off, the multiplication of these two probabilities
gives the overall transition probability.
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Figure 3.3: Example of the transition matrix P for n = 3, r = 2, and t = 4.

With the above formulae, we have built a DTMC analytically using combina-
torics to represent the dynamics at the LMAC setup phase. Fig. 3.3 shows an
example of a DTMC considering the parameters n = 3, r = 2, and t = 4. With
our proposed mapping functionM , the state vector is ordered with priority from
Xdj until Xr. The initial state of the network is defined with all sensors in the
discover phase at the first frame, corresponding to the last row in the transition
matrix. The absorbing state of the DTMC is state number 1 at the top row.

3.1.3.4 Simulation Study

In this part, we present the result of a simulation study using Algorithm 1.
The network is configured with 4 sensors, 5 time slots, and 2 as maximum
back-off time. We have made statistical inference on the example, where the
standard derivations we obtained indicate the reliability of the estimation from
our simulation.

Besides the purpose of verifying the analytical model, simulation also provides
an optional way of computing probabilities in the case when the model has high
order or stiff systems are hard to be computed analytically.
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3.1.4 Optimisation Using Phase–type

In Section 3.1.3 we have modelled LMAC by a DTMC using a direct mathe-
matical abstraction. Now, we will investigate optimal parameter settings of the
system in order to minimise the time for stabilisation of the WSN. In particular,
we will analyse the stabilisation time when adding a minimal amount of excess
capacity.

The critical property of interest is the expected time to stabilisation. By defi-
nition, the expectation of a discrete random variable is calculated by

E(W ) =

∞∑
w=1

wP(W = w), (3.3)

where in our case w represents the frame number, and P(W = w) is the prob-
ability of absorption occurring exactly at frame w. The formula contains an
infinite sum, therefore it is hard to compute the true value without truncation.
Thus, an iterative method is required to guarantee the convergence. However,
it is very costly to obtain P(W = w) as many vector-matrix multiplications are
required. We now present an alternative and simplified method to obtain (3.3).

It is easy to see that the time till absorption of the underlying DTMC follows
a discrete phase–type distribution (cf. Section 2.1.2). Using DPH distributions
in our analysis gives computational advantages. By assuming that there is at
least the same number of time slots as the number of sensors, we are able to
guarantee absorption. We rewrite the transition matrix P of Formula (3.2) into
the DPH form

P =

[
T t
0 1

]
.

Thus, the expectation can therefore be computed by

E(W ) = π(I−T)−1e, (3.4)

where π is the initial probability vector (cf. Section 2.1.2, Formula 2.4). The
complexity of computing Formula 3.4 can be bounded by O(n2 + n2.376). Us-
ing the Coppersmith-Winograd algorithm [CW90], a matrix inversion has the
complexity O(n2.376).

Moreover, the variance of a random variable is defined as

V ar(W ) = E(W 2)− E(W )2, (3.5)
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where E(W 2) is computed by the second factorial moment of a DPH distributed
random variable (cf. Section 2.1.2, Formula 2.4) given by E(W 2) = E(W (W −
1)) + E(W ), such that E(W (W − 1)) = 2π(I−T)−2e.

As we can see in this analysis, DPH distributions take the role as computational
vehicle in solving optimisation problems.

Figure 3.4: Choosing the optimal number of time slots for LMAC considering
n = 10, r = 2.

Fig. 3.4 illustrates one optimisation problem regarding the number of time slots.
Here, the network contains 10 sensors and the maximum back-off time is 2. In
this case, 12 time slots provide the best possible stabilisation rate, as it has the
lowest expected stabilisation time.

Fig. 3.4 describes how to pick the optimal number of time slots given the number
of sensors and the maximum back-off time. By having this way of finding the
optimal number of time slots, Fig. 3.5 depicts the growing trend by pairing the
number of sensors and optimised number of time slots. Here, the maximum
back-off time is also 2. The result can be divided in linear segments, where the
gap between the sensor number and the slot number increases in larger networks
(i.e. when the network has more sensors), because the probability of collision
increases when more sensors are in the network. Therefore, Fig. 3.5 provides
a guide for network designers to decide how to match the sensor number with
the slot number in an optimal setting. For instance, 17 sensors should match
20 time slots to be optimal with maximum back-off time being 2.

On the way of computing the plot, the state space is growing by having an
increasing number of sensors. To deal with higher order models, we switched the



3.1 A Probabilistic Model of the LMAC Protocol 31

Figure 3.5: Matching the number of sensors with the optimal number of time
slots considering r = 2.

computational engine from analytical to simulation at the point where we had
around 1000 states (i.e. 16 sensors). In Fig. 3.5, we distinguish the two engines
by colours. Note, here we only intend to show how we used the simulation
engine to assist the analytical engine in deriving solutions. Therefore, the point
of switching would depend on your local computing power.

Furthermore, our abstracted model is able to analyse modification issues. In a
predefined LMAC network, the number of sensors, the number of time slots, and
the maximum back-off are identified. For instance, sometimes it is necessary to
add or remove a certain number of sensors in the current network. A question
that may arise is how to adjust the parameters to keep the stabilisation at an
optimal speed. Fig. 3.6 offers some recommendations regarding these issues.

It is clear that more time should be expected if there are more sensors in the net-
work. However, the marginal cost varies due to the fluctuation of the probability
of collision. Fig. 3.6 has been plotted given 20 time slots with maximum back-off
time being 2. The vertical axis describes the incremental cost for plugging in



32 Phase–type Distributions in Stochastic Analysis

Figure 3.6: Matching the number of sensors with the optimal number of time
slots considering r = 2.

one extra sensor. Because of low utilisation rate of the network, i.e. extremely
low probability for collision, the price for incrementing sensors is higher at the
beginning. For example, the probability for 2 sensors in collision is only 0.05.
But the probabilities for 3, 4 and 5 sensors in collision increase to 0.15, 0.27 and
0.42 respectively.

For more than 14 sensors in the network, the cost rises dramatically. Therefore,
the recommended number of sensors for the current configuration should remain
in the middle region. If the required number of sensors has a high additional
cost, it would be better to increase the number of time slots or the maximum
back-off time in order to keep efficiency. In contrast, the number of time slots
or the maximum back-off time should be reduced in order to raise the network
utilisation rate. Evidently, there are many other questions about optimisation
that can be solved. For instance, to find the optimal number of sensors given a
fixed maximum back-off time and a fixed number of time slots.

3.1.5 State Space Explosion

In some experiments, state space explosion emerges considering above 10,000
states even though the sparseness of the transition matrix of the underlying
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DTMC increases as well. With the MATLAB sparse matrix representation, the
number of states in our model, given by

(
n+r+1
n

)
, crashed considering 10660

states (38 sensors and 2 maximum back-off) on 2GB RAM memory. For maxi-
mum 3 and 4 frames waiting time, we are up to 19 and 15 sensors, respectively.
Note that since we work on a relatively old computing platform, we expect our
approach can handle a larger number of states than our experimental data.

Figure 3.7: Measure different maximum back-off time.

Even though the current result is limited due to the state explosion problem,
a pioneer study on different maximum waiting has been depicted in Fig. 3.7.
In Fig. 3.7, the number of sensors and time slots is the same in all the sample
points. It clarifies that maximum 2 frames waiting is the most favourable choice
comparing with the cases of 3 frames and 4 frames given a number of sensors
up to 10. It supposes that the favourable choice will switch to 4 frames after
reaching a certain point because of the reduction of the probability of collision.
Part of our future work will be to extend the current plot, i.e. to consider more
sensors and time slots.

3.1.6 LMAC Analyser

Based on the results described in the previous sections, we have created a tool,
called LMAC analyser, which is a prototype on the MATLAB platform. Fig. 3.8
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is a screen shot of the running prototype. Users are required to input the desired
LMAC parameters (the number of sensors, the number of time slots, and the
maximum back-off time), and the tool will automatically output a probabilistic
model, in the form of a probability transition matrix of a DTMC. The expected
time to stabilisation is also calculated.

3.1.7 Summary

In this work, we have reported a probabilistic model for the analysis of a medium
access protocol LMAC for WSN. The model abstracts the concurrent behaviour
of the setup process in LMAC, where individual sensors are allocated to time
slots, preferably in an efficient way to minimise the price. There are two sources
of randomness in this concurrent stochastic process. First, when the nodes ran-
domly pick time slots, and second when the collided nodes randomly pick back-
off time. Considering the worst case scenario, we resolved the non-determinism,
which comes from the underspecification of the protocol by probabilistic choices.
The probabilities are calculated using combinatorial theory with a uniformity
assumption. Moreover, our simulation engine verifies the analytical model, and
it can optionally compute solutions whenever numerical challenges appear for
the analytical model. After obtaining the model, we have analysed the perfor-
mance of the process and we have calculated optimal parameters for network
configuration.

Contrary to previous work [FvHM07, vH07, VR09], our contribution is an al-
ternative approach of system abstraction, by which parallel composition can be
avoided. The inherent advantage is that no detailed model is required in order
to do the abstraction. Thereby, it is possible to handle larger systems directly.
Note that our model has a moderate state space

(
n+r+1
n

)
, which depends only

on the number of sensors n and the maximum back-off time r.

3.2 Phase–Type Process Algebra

3.2.1 Introduction

In recent years, there have been many works on model checking concurrent
stochastic systems. The mathematical fundamentals for modelling stochastic
aspects of system behaviour are based on Markov chains. In the context of com-
posite stochastic modelling framework, the stochastic process algebras (SPAs)
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Figure 3.8: Screen shot of the LMAC Analyser.

have been a solid research field on formal modelling and analysis. The promi-
nent SPAs, such as TIPP [GHR92], stochastic π-calculus [Pri95], PEPA [Hil96],
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EMPA [BG96] and IMC [Her02], are all based on the delay between states to
be exponential (EXP) distributed, which ensures that the underlying stochastic
process is a continuous–time Markov chain (cf. Section 2.2.1, Definition 2.7).
However, this restriction to the EXP duration is unrealistic when modelling
many phenomena such as traffic sources and system biology, where the system
may include deterministic delays or heavy-tail distributed quantities. Therefore,
we focus on generalising the EXP duration.

Continuous phase–type distributions are distributions of the time until absorp-
tion in a CTMC (cf. Section 2.2.2, Definition 2.8). EXP, Erlang, Hypo-EXP,
Hyper-EXP and Coxian distributions are examples of CPH distributions. CPH
distributions can be used to approximate any kind of probability distributions
on [0, ∞) [JT88]. Statistical inference tools are available for fitting both DPH
and CPH distributions, e.g. EMPHT [ANO96] and PhFit [HT02]. In partic-
ular, well behaved distributions are easily fitted by CPH distributions with a
moderate number like 3-6 transient states [Asm00]. However, for complicated
systems, especially those with concurrency, often it is impossible to fit CPH dis-
tributions for the whole system directly. Therefore, we take the widely accepted
approach to formally model concurrent stochastic systems in SPAs. Using SPAs,
an overall CPH distributed delay could be constructed from the simple CPH dis-
tributed random variables as building blocks through different operators given
proper operational rules.

To serve a sound mathematical construction, we concentrate on the closure prop-
erties of CPH distributions, especially their algebraic laws. We then introduce
Phase–type Process Algebra (PHPA), which takes CPH distributed random vari-
ables as primitives, such that each random variable has its corresponding CPH
representation. According to the closure properties of CPH distributions, PHPA
has several operators to operate on CPH distributed random delays. In this
thesis we focus on the purely stochastic behaviour raised by CPH distributions
without considering nondeterminism.

Related Work Phase Type Processes (PTPs), introduced in [Wol08], are
defined as a generalisation of IMC, where the Markov transition relation in
IMC [Her02] is extended to have PH distributed random delay. The successive
states are decided by an independent discrete probability distribution, following
each PH distributed system delay. The main contribution in this development
is bisimulation equivalence and parallel composition for PTPs. Since PTPs take
PH distributed random variables to represent system delays, it maintains the
usual interleaving semantics in CTMCs.

El-Rayes et al. in [ERKN99] introduce PEPA∞ph, a stochastic process algebra
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extended from Hillston’s PEPA. The activities of PEPA∞ph components have
durations given by PH distributed random variables. The PEPA∞ph focuses on
evaluating the performance of queueing systems, where the matrix-geometric
method is employed to solve the steady state probabilities of an infinite state
model.

A stochastic calculus, Cox & Convenience Calculus, is proposed by R. Pulun-
gan in [Pul09] having Acyclic Phase–type (APH) distributed system delay. APH
distributions constitute a subclass of PH distributions with triangular matrix
representations, such that any APH has an equivalent Coxian representation.
Applying the reduction algorithm for APH representations, the calculus is able
to define the processes having almost surely minimal state space. The reason
behind "almost surely minimal state space" comes from the awareness of po-
tential smaller representation of matrix–exponential distributions [AB99]. We
shall clarify this point when we introduce matrix–exponential distributions in
Chapter 5.

3.2.2 Closure Properties

In contrast to EXP distributions (which are only closed under the minimum),
the class of CPH distributions is closed under a number of operations [AL82].
The closure properties of CPH distributions guarantee that we stay in the class
of CPH distributions with several types of operations.

Let CPHm(π,T) denote a CPH representation such that m is the order of the
phase–type representation, and DPHm(π,T) denote a DPH representation with
m is the order of the representation. To have great generality, in this work,
i.e. Section 3.2, we consider the probability mass at zero does not have to be
zero, i.e. π0 6= 0 is possible. Now, we introduce the closure properties of CPH
distributions.

1. Sum of independent CPH variables
Given two random variablesW1 andW2 with representations CPHm(π1,T)
and CPHn(π2,S) respectively, then the random variable W = W1 + W2

follows a phase-type distribution with the representation CPHm+n(π3, L)
given by π3 = (π1, π0

1π2), and

L =

[
T tπ2

0 S

]
. (3.6)
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Proposition 3.1 The convolution of a finite number of continuous
phase–type distributed random variables is itself continuous phase–type dis-
tributed.

2. Finite order statistics (min, max)

Given two CPH distributed random variables W1 and W2 with represen-
tations CPHm(π1, T) and CPHn(π2, S) respectively, we have Wmin =
min(W1,W2) is CPH distributed with the representation CPHmn(π3, L)
given by π3 = π1 ⊗ π2, and

L = T⊗ In + Im ⊗ S = T⊕ S. (3.7)

We haveWmax = max(W1,W2) is CPH distributed with the representation
CPHmn+m+n(π3,L) given by π3 = (π1 ⊗ π2, π1π

0
2 , π0

1π2), and

L =

T⊕ S Im ⊗ s t⊗ In
0 T 0
0 0 S

 . (3.8)

Proposition 3.2 The finite minimum and maximum of continuous
phase–type distributed random variables is itself continuous phase–type dis-
tributed.

3. Finite mixture of CPH distributions
Let k be a finite integer, Wi be a CPH distributed random variable with
representation CPHmi(πi, Ti) respectively, and let W = IiWi such that∑k
i=1 Ii = 1 and P(Ii = 1) = pi. The random variable W is itself phase-

type distributed with the representation CPHm1+m2+···+mk(π, L) given
by π = (p1π1, p2π2, . . . , pkπk), and

L =


T1 0 . . . 0
0 T2 . . . 0
...

...
...

...
0 0 . . . Tk

 . (3.9)

Proposition 3.3 Any finite convex mixture of continuous phase–type
distributed random variables is itself continuous phase-type distributed.

4. Random sum
Let W1 be a discrete PH distributed random variable with representation
DPHm(π1, T) and W2 be CPH distributed random variable with repre-
sentation CPHn(π2, S), the random variable W = W2 + · · ·+W2︸ ︷︷ ︸

W1

follows
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a CPH distribution with the representation CPHmn(π3, L) given by π3

= (π1 ⊗ π2), and
L =

[
In ⊗ S + T⊗ sπ2

]
. (3.10)

Proposition 3.4 The continuous phase–type distributed random vari-
able compounding with discrete phase-type distributed random variable is
itself continuous phase–type distributed.

It is worth mentioning that discrete phase–type distributions have the most
closure properties with minor modifications, see e.g. [Neu75].

3.2.3 Race Condition for Phase–type Distributions

In CTMCs, the race condition is known as for multiple outgoing transitions
the fastest one will determine the completion time. Hence, the overall delay
caused by race condition is determined by the minimum of all participating EXP
distributed random variables, which is still EXP distributed with the parameter
as the sum of all the outgoing rates.

p0start

p1

p2

λ1

λ2

Figure 3.9: Race condition in CTMCs.

Given the probability density function of an EXP distribution f(w) = λe−λw;
let W1 and W2 be two EXP distributed random variables with parameters λ1

and λ2 respectively, and let 1(W1 < W2) is an indicator function, which equals
1 when W1 < W2. We have the basic formula

1(W1 < W2)P(W1 < W2) + 1(W1 > W2)P(W1 > W2) = 1,

such that P(W1 = W2) = 0 in continuous–time, and the probability of W1 <
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W2 is given as

P(W1 < W2) =

∫ ∞
0

P(W2 > W1|W1 = w)f1(w)dw

=

∫ ∞
0

P(W2 > w)λ1e
−λ1wdw =

∫ ∞
0

e−λ2wλ1e
−λ1wdw

= λ1

[
− 1

λ1 + λ2
e−(λ1+λ2)w

]∞
0

=
λ1

λ1 + λ2
(3.11)

The probability stated in Formula (3.11) is known as the probability that the
transition from p0 to p1 in Fig. 3.9 to win the race. In race condition for EXP
distributions, the random delays, i.e. W1 and W2, and the winning variable,
i.e. 1(W1 < W2) = 1 or 1(W1 > W2) = 1, are independent.

Turning our attention to CPH distributions, let a CPH transition be a transition
labelled by a CPH distributed random variable, the race condition carries over
for multiple outgoing CPH transitions. In analogy with EXP distributions, the
overall delay of the race condition is given as the minimum of the participating
CPH distributions, which follows Formula (3.7).

p0start

p1

p2

W1(π1,T1)

W2(π2,T2)

Figure 3.10: Race condition for phase–type distributed random variables.

Given the probability density function of CPH (cf. Formula (2.11)), and let
W1(π1,T1) (W1 for short), W2(π2,T2) (W2 for short) be independent CPH dis-
tributed random variables with representations (π1,T1) and (π2,T2) respec-
tively, we have again the basic formula

1(W1 < W2)P(W1 < W2) + 1(W1 > W2)P(W1 > W2) = 1,

such that we shall show how to compute P(W1 < W2). To clarify that, we assume
readers are familiar with the standard properties of Kronecker operations (see
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Appendix A.2 for reference).

P(W1 < W2) =

∫ ∞
0

P(W2 > W1|W1 = w)f1(w)dw

=

∫ ∞
0

P(W2 > w)π1e
T1wt1dw

=

∫ ∞
0

π2e
T2weπ1e

T1wt1dw

=

∫ ∞
0

(
π2e

T2we
)
⊗
(
π1e

T1wt1

)
dw

By (A1A2A3)⊗ (B1B2B3) = (A1 ⊗B1)(A2 ⊗B2)(A3 ⊗B3)

=

∫ ∞
0

(π2 ⊗ π1)(eT2w ⊗ eT1w)(e⊗ t1)dw

= (π2 ⊗ π1)

∫ ∞
0

(eT2w ⊗ eT1w)dw (e⊗ t1)

By eA1 ⊗ eA2 = eA1⊕A2

= (π2 ⊗ π1)

∫ ∞
0

e(T2⊕T1)wdw (e⊗ t1)

By

∫ ∞
0

eAwdw = (−A)−1

= (π2 ⊗ π1)(−T2 ⊕T1)−1(e⊗ t1) (3.12)

The closed form stated in Formula (3.12) computes the probability that the
transition from p0 to p1 in Fig. 3.10 to win such a race between CPH transitions.
Since EXP distribution is a subclass of CPH distribution. It is no surprise that
Formula (3.12) contains Formula (3.11) for a special case. However, rather than
the race condition for EXP distributions, for CPH distributions the random
delays, i.e. W1(π1,T1) and W2(π2,T2), and the winning variable, i.e. 1(W1 <
W2) = 1 or 1(W1 > W2) = 1, are dependent.

3.2.4 Compositionality of Phase–type Distributions

3.2.4.1 Composite Operators and Algebraic Properties

Having the closure properties of CPH distributions (cf. Section 3.2.2), we are
ready to introduce composite operators for continuous phase–type distributions
and their algebraic properties. The composite operators operate on CPH dis-
tributed random variables, which are convolution (

∑
) by Proposition 3.1, mini-

mum (min) and maximum (max) by Proposition 3.2, and convex mixture (+) by
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Proposition 3.3. For these composite operators, we study their algebraic prop-
erties, those of commutativity, associativity, idempotence and distributivity.

For the remaining part of this section, let W (π,T), W1(π1,T1), W2(π2,T2), and
W3(π3,T3) be CPH distributed random variables with representations (π,T),
(π1,T1), (π2,T2), and (π3,T3) respectively.

Theorem 3.5 The convolution
∑

of a finite number of continuous phase–type
distributed random variables is commutative and associative, but not idempotent.

Proof For commutativity. We have

W1(π1,T1)

∑
W2(π2,T2) = W̄(π1,π0

1π2),

T1 t1π2

0 T2

.

The Laplace–Stieltjes Transform (LST) of above CPH distributed random vari-
able (cf. Formula (2.12)) is

H(s) = π0
1π

0
2 + (π1, π

0
1π2)

(
sI−

[
T1 t1π2

0 T2

])−1 [t1π
0
2

t2

]
= π0

1π
0
2 + π1(sI−T1)−1t1π

0
2 − π1(sI−T1)−1t1π2(sI−T2)−1t2

+π2(sI−T2)−1t2π
0
1 .

On the opposite direction, we get

W2(π2,T2)

∑
W1(π1,T1) = W̄(π2,π0

2π1),

T2 t2π1

0 T1

.

The LST of above CPH distributed random variable is

H(s) = π0
1π

0
2 + (π2, π

0
2π1)

(
sI−

[
T2 t2π1

0 T1

])−1 [t2π
0
1

t1

]
= π0

1π
0
2 + π2(sI−T2)−1t2π

0
1 − π2(sI−T2)−1t2π1(sI−T1)−1t1

+π1(sI−T1)−1t1π
0
2

= π0
1π

0
2 + π1(sI−T1)−1t1π

0
2 − π1(sI−T1)−1t1π2(sI−T2)−1t2

+π2(sI−T2)−1t2π
0
1 .

By random variables having the same LST, we proof that commutativity holds.
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For associativity. We consider(
W1(π1,T1)

∑
W2(π2,T2)

)∑
W3(π3,T3) = W ′(π1,π0

1π2),

T1 t1π2

0 T2


∑

W3(π3,T3)

= W̄(π1,π0
1π2,π0

1π
0
2π3),


T1 t1π2 t1π

0
2π3

0 T2 t2π3

0 0 T3



,

and

W1(π1,T1)

∑(
W2(π2,T2)

∑
W3(π3,T3)

)
= W1(π1,T1)

∑
W ′(π2,π0

2π3),

T2 t2π3

0 T3


= W̄(π1,π0

1(π2,π0
2π

0
3)),


T1 t1(π2, π

0
2π3)

0 T2 t2π3

0 0 T3




= W̄(π1,π0
1π2,π0

1π
0
2π3),


T1 t1π2 t1π

0
2π3

0 T2 t2π3

0 0 T3



.

By random variables having the same CPH representation, we proof that asso-
ciativity holds.

For idempotence. The convolution of a CPH distribution with itself is equivalent
to visit the same absorbing Markov chain twice with the same initial states,
which is given as

W (π,T)

∑
W (π,T) = W̄(π,π0π),

T tπ
0 T

,

such that the block matrix tπ contains the probability densities that the process
exits the transient phases by t and immediately restarts with the same initial
distribution π. Thus idempotence does not hold. 2

Theorem 3.6 The finite minimum of continuous phase–type distributed ran-
dom variables is commutative and associative, but not idempotent.

Proof For commutativity. We have

W1(π1,T1) minW2(π2,T2) = W̄(π1⊗π2,T1⊕T2),
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and
W2(π2,T2) minW1(π1,T1) = W̄(π2⊗π1,T2⊕T1),

have the same structure. By reordering the states, we are able to proof that the
representations are indeed identical, thus commutativity holds.

For associativity. We have that the representations

(W1(π1,T1) minW2(π2,T2)) minW3(π3,T3) = W ′(π1⊗π2,T1⊕T2) minW3(π3,T3)

= W̄(π1⊗π2⊗π3,T1⊕T2⊕T3),

and

W1(π1,T1) min(W2(π2,T2) minW3(π3,T3)) = W1(π1,T1) minW ′(π2⊗π3,T2⊕T3)

= W̄(π1⊗π2⊗π3,T1⊕T2⊕T3)

are identical, thus associativity holds.

For idempotence. We show the property does not hold through a counterexam-
ple. Consider the EXP distributions with parameter λ, i.e. the CPH represen-
tation (π, T) is now (1, [−λ]), we get

W(1,[−λ]) minW(1,[−λ]) = W̄(1,[−2λ]),

which is clearly not same to W(1,[−λ]). Thus, idempotent property doesn’t hold.
2

Theorem 3.7 The finite maximum of continuous phase–type distributed ran-
dom variables is commutative and associative, but not idempotent.

Proof For commutativity. We have

W1(π1,T1) maxW2(π2,T2) = W̄(π1⊗π2,π1π0
2 ,π

0
1π2),


T1 ⊕T2 IT1

⊗ t2 t1 ⊗ IT2

0 T1 0
0 0 T2



,

and

W2(π2,T2) maxW1(π1,T1) = W̄(π2⊗π1,π2π0
1 ,π

0
1π1),


T2 ⊕T1 IT2

⊗ t1 t2 ⊗ IT1

0 T2 0
0 0 T1



.

By reordering the states, we are able to prove that two random variables have
the same CPH representation.
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For associativity. Applying the same reordering strategy, we are able to proof
associativity holds. We omit the expansion since the presentation will be very
large for the maximum of three CPH distributed random variables.

For idempotence. We show idempotent property does not hold by considering
EXP distribution with parameter λ, i.e. let W (π,T) be W(1,[−λ]), as counterex-
ample.

W (π,T) maxW (π,T) = W̄(π⊗π,ππ0,π0π),


T⊕T IT ⊗ t t⊗ IT

0 T 0
0 0 T




= W̄(1,0,0),


−2λ λ λ

0 −λ 0
0 0 −λ



,

which is not equal to W(1,[−λ]). 2

Convex mixture operator is a multinary operator such that for a finite integer k,
and some probabilities p1, p2, . . . , pk such that

∑k
i=1 pi = 1 operated by Formula

(3.9). However, considering the process algebra which comes later, we prefer
binary operation. Therefore, we define the binary version of convex mixture
operator for CPH distributions.

Definition 3.8 (Binary Convex Mixture) Let p and q be some probabili-
ties such that p+q = 1, the binary convex mixture of two continuous phase–type
distributed random variables with representations CPHm1

(π1, T1) and CPHm2

(π2, T2) respectively, is itself continuous phase–type distributed with represen-
tation CPHm1+m2(π3, L) given by π3 = (pπ1,qπ2), and

L =

[
T1 0
0 T2

]
. (3.13)

Unless otherwise specified, the left side of binary operator + is always assigned
with probability p and the right side has the complement probability of q. Thus, it
immediately yields that commutativity does not hold in general. Without loss
of expressiveness, one could derive any finite convex mixture by successively
applying binary convex mixture.

Theorem 3.9 The binary convex mixture of continuous phase–type distributed
random variables is idempotent but not commutative and associative.

Proof For commutativity. Commutativity does not hold, because in general
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p 6= q:

W1(π1,T1) +W2(π2,T2) = W̄(pπ1,qπ2),

T1 0
0 T2

,

W2(π2,T2) +W1(π1,T1) = W̄(pπ2,qπ1),

T2 0
0 T1

 = W̄(qπ1,pπ2),

T1 0
0 T2

.

For associativity. Let probabilities p1 and q1 for binary convex mixture between
W1(π1,T1) andW2(π2,T2), and probabilities p2 and q2 for binary convex mixture
between W2(π2,T2) and W3(π3,T3), we have

(W1(π1,T1) +W2(π2,T2)) +W3(π3,T3) = W ′(p1π1,q1π2),

T1 0
0 T2

 +W3(π3,T3)

= W̄(p1p2π1,q1p2π2,q2π3),


T1 0 0
0 T2 0
0 0 T3



,

and

W1(π1,T1) + (W2(π2,T2) +W3(π3,T3)) = W1(π1,T1) +W ′(p2π2,q2π3),

T2 0
0 T3


= W̄(p1π1,q1p2π2,q1q2π3),


T1 0 0
0 T2 0
0 0 T3



.

Generally, p1p2 6= p1 and q2 6= q1q2, thus associativity doesn’t hold.

For Idempotence. Idempotence holds, because

W (π,T) +W (π,T) = W̄(pπ,qπ),

T 0
0 T

,

which is clearly identical to W (π,T). 2

Theorem 3.10 The binary convex mixture of continuous phase–type distributed
random variables is distributive over convolution, minimum and maximum.

Proof From Theorem 3.5, Theorem 3.6, and Theorem 3.7, convolution operator∑
, minimum operator min and maximum operator max are commutative, thus

it is sufficient to show just right-distributivity.
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For distributivity over convex mixture + , we get the following identical random
variables: (

W1(π1,T1) +W2(π2,T2)

)∑
W3(π3,T3)

= W ′(pπ1,qπ2),

T1 0
0 T2


∑

W3(π3,T3)

= W̄(pπ1,qπ2,(pπ0
1+qπ0

2)π3),


T1 0 t1π3

0 T2 t2π3

0 0 T3



,

and

(W1(π1,T1)

∑
W3(π3,T3)) + (W2(π2,T2)

∑
W3(π3,T3))

= W ′(π1,π0
1π3),

T1 t1π3

0 T3

 +W ′′(π2,π0
2π3),

T2 t2π3

0 T3


= W̄(pπ1,pπ0

1π3,qπ2,qπ0
2π3),


T1 t1π3 0 0
0 T3 0 0
0 0 T2 t2π3

0 0 0 T3




= W̄(pπ1,qπ2,(pπ0

1+qπ0
2)π3),


T1 0 t1π3

0 T2 t2π3

0 0 T3



.

For distributivity over minimum min, we get the following identical random
variables: (

W1(π1,T1) +W2(π2,T2)

)
minW3(π3,T3)

= W ′(pπ1,qπ2),

T1 0
0 T2

minW3(π3,T3)

= W̄(pπ1⊗π3,qπ2⊗π3),

T1 ⊕T3 0
0 T2 ⊕T3

,

and

(W1(π1,T1) minW3(π3,T3)) + (W2(π2,T2) minW3(π3,T3))

= W ′((π1⊗π3),T1⊕T3) +W ′′((π2⊗π3),T2⊕T3)

= W̄(pπ1⊗π3,qπ2⊗π3),

T1 ⊕T3 0
0 T2 ⊕T3

.
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For distributivity over maximum max, we get the following identical random
variables:(

W1(π1,T1) +W2(π2,T2)

)
maxW3(π3,T3)

= W ′(pπ1,qπ2),

T1 0
0 T2

maxW3(π3,T3)

= W̄((pπ1⊗π3,qπ2⊗π3,pπ1π0
3 ,qπ2π0

3 ,pπ
0
1π3,qπ0

2π3),
T1 ⊕T3 0 IT1

⊗ t3 0 t1 ⊗ IT3
0

0 T2 ⊕T3 0 IT2
⊗ t3 0 t2 ⊗ IT3

0 0 T1 0 0 0
0 0 0 T2 0 0
0 0 0 0 T3 0
0 0 0 0 0 T3

),

and

W1(π1,T1) maxW3(π3,T3) +W2(π2,T2) maxW3(π3,T3)

= W ′(π1⊗π3,π1π0
3 ,π

0
1π3),


T1 ⊕T3 IT1

⊗ t3 t1 ⊗ IT3

0 T1 0
0 0 T3




+

W ′′(π2⊗π3,π2π0
3 ,π

0
2π3),


T2 ⊕T3 IT2 ⊗ t3 t2 ⊗ IT3

0 T2 0
0 0 T3




= W̄((pπ1⊗π3,pπ1π0
3 ,pπ

0
1π3,qπ2⊗π3,qπ2π0

3 ,qπ
0
2π3),

T1 ⊕T3 IT1
⊗ t3 t1 ⊗ IT3

0 0 0
0 T1 0 0 0 0
0 0 T3 0 0 0
0 0 0 T2 ⊕ T3 IT2

⊗ t3 t2 ⊗ IT3

0 0 0 0 T2 0
0 0 0 0 0 T3

),

such that both representations are indeed the same by reordering the states. 2

Theorem 3.11 There is no other distributive property among convolution,
minimum and maximum operators for continuous phase–type distributions.

Proof This theorem shows three sub-results: the convolution of continuous
phase–type distributed random variables is not distributive over minimum and
maximum; the minimum of continuous phase–type distributed random variables
is not distributive over convolution and maximum; the maximum of continuous
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phase–type distributed random variables is not distributive over convolution and
minimum. We prove them using EXP distributions as counterexamples, such
that the complete proof is given in Appendix A.3. 2

3.2.4.2 Empty PH distributions

A CPH distribution is the distribution of the time until absorption in an ab-
sorbing CTMC. By Definition 2.8 in Section 2.2.2, infinite absorption time is
strictly excluded from CPH distributions (occurs with probability 0), because
infinite absorption time is equivalent to that the CTMC will never reach ab-
sorption, which contradicts the definition. On the other hand, we can consider
absorption times of zero, where the distribution is known as empty phase–type
distribution [O’C90]. An empty CPH distribution has a representation (0, ?),
such that ? is an irrelevant matrix. Empty PH distributions have special prop-
erties when they operate with other CPH distributions.

Neutral element and absorbing element In mathematics, a neutral el-
ement (or identity element) is a special element in a set, which leaves other
elements unchanged when operated with them. An annihilating element (or
absorbing element) is a special element such that operating an annihilating ele-
ment with any element of the set is the annihilating element itself. For example,
let < be the set, 0 is a neutral element under addition, and an annihilating el-
ement under multiplication. This example also shows that, even with the same
set, the same element could be a different kind of element depending on the
type of operation under consideration.

Proposition 3.12 The empty phase–type distributions are neutral elements
of the convolution operator and maximum operator for the class of continuous
phase–type distributions.

Proof For convolution: Theorem 3.5 shows the convolution operator is com-
mutative, thus we just show one direction:

W (π,T)

∑
W ∗

(0,?)
= W̄(π,0),

T 0
0 ?

.

Since the matrix block ? will never be reached, the random variable W̄ is equiv-
alent to W(π,T).

For maximum: Theorem 3.7 shows the maximum operator is commutative, thus
we just show one direction. Let ?̂ = e− ?e, we have
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W (π,T) maxW ∗
(0,?)

= W̄(π⊗0,π,0),


T⊕ ? I⊗ ?̂ t⊗ I
0 T 0
0 0 ?




= W̄(0,π,0),


T⊕ ? I⊗ ?̂ t⊗ I
0 T 0
0 0 ?



.

Since all matrix blocks will never be reached except T, the random variable W̄
is equivalent to W(π,T). 2

Proposition 3.13 The empty PH distributions are absorbing elements of
the minimum operator for the class of continuous phase–type distributions.

Proof Theorem 3.6 shows the minimum operator is commutative, thus we just
show

W (π,T) minW ∗
(0,?)

= W ∗(
(π⊗0),

[
T⊕ ?

]),
which is again an empty phase–type distribution. 2

Now, we conclude our findings on the compositionality of continuous phase–type
distributions in Table 3.2.

Composite Operators
Properties

∑
min max +

Commutativity X X X
Associativity X X X
Idempotence X

Neutral Element X X
Absorbing Element X
Distributive Over + + +

•
∑

– Convolution • min– Minimum • max– Maximum • +– Convex Mixture

Table 3.2: Algebraic properties for the composite operators of continuous
phase–type distributions.

3.2.5 Phase–type Process Algebra

Process algebras are high-level specification languages to formally specify con-
current systems, which provide a mechanism to capture the important aspects
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and behaviours of the systems. In this part, we introduce a process algebra
for continuous phase–type distributions, namely Phase–type Process Algebra
(PHPA), to model concurrent stochastic systems with CPH distributed process
durations.

Let a random delay of the PHPA be a CPH distributed random variable, which
can be formalised as an absorbing CTMC. Recall that CPH distributions can
be versatilely used to approximate any distributions on [0,∞) [JT88]. Having
CPH distributed random delays as primitives, we could straightforwardly encode
the composite operators with their algebraic properties for CPH representations
(cf. Section 3.2.4) into the language. In order to express recursive behaviour, we
also define a finite set V of process variables. Now, we are ready to introduce
the formal syntax of the PHPA.

Definition 3.14 (PHPA Syntax) LetW(π,T) ∈ <≥0 be a continuous phase–
type distributed random variable represented by (π,T), and let X ∈ V be a
process variable, the language PHPA is defined using phase–type processes P by
the following grammar.

P ::= 0 |W(π,T).P | P : P | P + P | P∇P | P4P | X | [X := P ]i

[X := P ] is a shorthand notation for an arbitrary (finite) set of definitions of
the form [X1 := P1 ,X2 := P2 , . . . ,Xn := Pn ].

Process 0 simply expresses a termination.

Process W(π,T).P expresses a phase–type delay prefix, which means that the
process has to delay for a CPH distributed random time W according to the
representation (π,T), and then turns to the process P .

Let P , Q and R range over phase–type processes, the language PHPA includes
four fundamental composite scenarios.

• Process P : Q stands for sequential composition, such that the process
Q behaves after the process P finishes. The sequential composition is
operated as the sum of the CPH distributed delays from P and Q, which
follows Rule (3.6) and holds the algebraic properties in Theorem 3.5.

• Process P + Q stands for probabilistic composition, such that one of the
processes P and Q is chosen probabilistically to execute. The probabilis-
tic composition is operated as the binary convex mixture of the CPH
distributed delays from P and Q, which follows Rule (3.13) and holds the
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algebraic properties in Theorem 3.9. Recall that Rule (3.13) ensures the
processP is assigned with probability p and the processQ is assigned with
probability q, such that p+ q = 1.

• Process P∇Q stands for synchronic composition, such that two processes
P and Q synchronise with each other, that the one finished later corre-
sponds to the continuation. The synchronic composition is operated as
the maximum of the CPH distributed delays from P and Q, which follows
Rule (3.8) and holds the algebraic properties in Theorem 3.7.

• Process P4Q stands for racing composition, such that two processes P
and Q compete with each other, that the one finished earlier corresponds
to the continuation. The racing composition is operated as the minimum
of the CPH distributed delays from P and Q, which follows Rule (3.7) and
holds the algebraic properties in Theorem 3.6.

The expression [X := P ]i defines the behaviour of the i-th process variable of
the mutually recursive behaviour definition set [X := P ]. It means [X := P ]i
behaves like Pi when the recursive variable Xi is reached from somewhere else
in the definition set.

The formal semantics of PHPA are mapped on phase–type labelled transition
systems, which is defined as:

Definition 3.15 (PH Labelled Transition System) A Phase–type Labelled
Transition System is given by the triple ( C, C0, W(π,T), → ), where

• C is the set of all PHPA processes,

• C0 is the initial process,

• W(π,T) is the set of continuous phase–type distributed random variables,
such that a random variable W1(π1,T1) ∈W(π,T) is distributed according
to the representation (π1,T1),

• → is the PH transition relation such that →⊂ C ×W(π,T) × C.

Now, we give the formal semantics of PHPA by Structural Operational Semantics
(SOS) [Plo81]. In general, a SOS derivation rule is of the form

Premises

Conclusions
Conditions

to express that if Conditions hold, then Premises imply Conclusions. The SOS
Derivation Rules for PHPA are given in Table 3.3, where the probabilities of
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Table 3.3: The SOS derivation rules for PHPA.

[PREFIX]
P := W(π,T).P

′

P
W(π,T)→ P ′

[PROB1]
P

W1 (π1 ,T1 )→ P ′, Q
W2 (π2 ,T2 )→ Q′

P +Q
W(π1 ,T1 )+(π2 ,T2 )→ P ′

[PROB2]
P

W1 (π1 ,T1 )→ P ′, Q
W2 (π2 ,T2 )→ Q′

P +Q
W(π1 ,T1 )+(π2 ,T2 )→ Q′

[CONV]
P

W1 (π1 ,T1 )→ 0, Q
W2 (π2 ,T2 )→ Q′

P : Q
W(π1 ,T1 )

∑
(π2 ,T2 )→ Q′

[MAX1]
P

W1 (π1 ,T1 )→ P ′, Q
W2 (π2 ,T2 )→ Q′

P∇Q
W(π1 ,T1 )max(π2 ,T2 )→ P ′

W1 > W2

[MAX2]
P

W1 (π1 ,T1 )→ P ′, Q
W2 (π2 ,T2 )→ Q′

P∇Q
W(π1 ,T1 )max(π2 ,T2 )→ Q′

W1 < W2

[MIN1]
P

W1 (π1 ,T1 )→ P ′, Q
W2 (π2 ,T2 )→ Q′

P4Q
W(π1 ,T1 )min(π2 ,T2 )→ P ′

W1 < W2

[MIN2]
P

W1 (π1 ,T1 )→ P ′, Q
W2 (π2 ,T2 )→ Q′

P4Q
W(π1 ,T1 )min(π2 ,T2 )→ Q′

W1 > W2

[REC]
Pi

W(π,T)→ P ′i

[X := P ]i
W(π,T)→ P ′i

the conditions, i.e. W1 < W2 and W1 > W2, can be calculated according to
Formula 3.12 in Section 3.2.3.
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Now, let P 6= Q 6= R, according to the algebraic properties for the composite
operators of CPH distributions (cf. Table 3.2), the PHPA has the following
algebraic operational rules.

P : Q = Q : P (P : Q) : R = Q : (P : R) (0,?) : P = P
P + P = P
P∇Q = Q∇P (P∇Q)∇R = Q∇(P∇R) (0,?)∇P = P
P4Q = Q4P (P4Q)4R = Q4(P4R) (0,?)4P = (0,?)
P : (Q+R) = (P : Q) + (P : R)
P∇(Q+R) = (P∇Q) + (P∇R)
P4(Q+R) = (P4Q) + (P4R)

Table 3.4: PHPA algebraic rules.

3.2.6 Summary

Process algebra emerged as a formal modelling technique for the qualitative
analysis of concurrent systems for many years. Over the last 20 years, there
have been many attempts to take process algebras to model the field of perfor-
mance evaluation. A process algebra allows one to model systems consisting of
interacting components to be constructed systematically. In this work, we take
the advantage of the attractive features of stochastic process algebras to offer
the compositionality of continuous phase–type distributions in the stochastic
system modelling.

Phase–type process algebra is a stochastic process algebra having CPH dis-
tributed random delays, such that one could model large-scale and complicated
system using CPH distributions as building blocks. From sound mathematical
operations on CPH distributions together with their proved algebraic proper-
ties, one could then express the systems using our language with fully respect
to the underlying stochastic processes. It is important that the stochastic sys-
tems obtained from our language can always be formulated as a huge absorbing
Markov chain, which can be analysed using standard techniques for evaluating
continuous–time Markov chains.



Chapter 4

Stochastic Equivalence and
Time-lapse Bisimulation

A discrete phase–type distribution is the distribution of the time until absorp-
tion of a Markov chain with a finite number of transient states and one ab-
sorbing state. A discrete–time marked Markovian arrival process is a marked
point process with phase–type distributed intervals. In this chapter, we give
the definitions of stochastic equivalence for discrete phase–type distributions
and discrete–time marked Markovian arrival processes. Derived from stochastic
equivalence, we define a new bisimulation relation, named time-lapse bisimu-
lation, for labelled discrete–time Markov chains to capture probabilistic timed
behaviour. We show that time-lapse bisimulation counts the number of internal
actions on traces, which is coarser than strong bisimulation and not comparable
with weak bisimulation. A Hennessy-Milner style logic for characterising time-
lapse bisimulation is presented. Last but not least, we show that bisimulation
characterisation of stochastic equivalence are sound for some bisimulations, but
none of the bisimulations are complete to stochastic equivalence.
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4.1 Introduction

There are many approaches to define relations intending to capture when two
processes have the same behaviour. In the case of non-stochastic process alge-
bras there exist whole families of trace-based equivalences, bisimulations, and
other forms of equivalence. One point of view is that processes have the same
behaviour if there is no way that a series of experiments upon the two processes
can demonstrate their difference. In the case of non-stochastic process algebras
this has given rise to notions of testing equivalence [NH83]. Another point of
view is to give a co-inductive characterisation of when processes can mimic each
other. This has given rise to a variety of bisimulation relations. Comparing
the two notions, the bisimulation characterisation is sound in that two bisimilar
processes are also testing equivalent, whereas we cannot expect completeness,
that two processes that are testing equivalent can necessarily be shown to be
bisimilar. This apparent weakness of bisimulations is compensated by the many
algorithmic techniques that allow demonstrating whether or not two processes
are bisimilar.

Turning our attention to stochastic systems there are notions of stochastic equiv-
alence [LN91] as well as notions of probabilistic bisimulation [JS90, LS91]. Car-
rying over from labelled transition systems, probabilistic versions of strong and
weak bisimulations characterise the probabilistic behaviour of the stochastic
systems. In this work, we integrate the notion of stochastic equivalence from
stochastic processes into probabilistic transition systems to define a new type of
bisimulation relation. First, we introduce the notion of stochastic equivalence
for two classes of stochastic systems, those of discrete phase–type distributions
and discrete–time marked Markovian arrival processes. Discrete phase–type
distributions [Neu75] are distributions of the time until absorption of a Markov
chain. A discrete–time Markovian arrival processes [Neu79] is a point process
with DPH distributed sojourn times between arrivals. These processes are fur-
ther extended to allow marked transitions, thus defining discrete–time Marked
Markovian Arrival Processes (MMAPs) [HN98, BN10].

To express MMAPs with probabilistic transition systems, we introduce labelled
discrete–time Markov chains, which are also called fully probabilistic transition
systems [vGSST90, BH97]. Having introduced stochastic equivalence, we pro-
pose a new bisimulation relation for labelled DTMCs, named time-lapse bisimu-
lation, such that two time-lapse bisimilar states shall have the same probabilistic
behaviour over time. The contributions of this work are

• to give notions of stochastic equivalence to discrete stochastic systems,

• to define time-lapse bisimulation for labelled DTMCs,



4.2 Stochastic Equivalence 57

• to clarify the relationships between time-lapse bisimulation, strong bisim-
ulation and weak bisimulation,

• to characterise time-lapse bisimulation by a Hennessy-Milner style logic,

• to discuss bisimulation characterisation of stochastic equivalence.

The structure of the chapter is as follows. We introduce the notion of stochas-
tic equivalence and some decidability results in Section 4.2. In Section 4.3,
we develop the definition of time-lapse bisimulation for labelled DTMCs and
illustrate the relationship with strong and weak bisimulations. Section 4.4 clar-
ifies bisimulation characterisation of stochastic equivalence covering time-lapse
bisimulation, strong bisimulation and weak bisimulation. We conclude in Sec-
tion 4.5.

4.2 Stochastic Equivalence

Stochastic equivalence is a fundamental principle of probability distributions
and stochastic processes, see e.g. [LN91, Ros96]. Algebraic equivalence as in-
troduced in [BT11b] is identical to stochastic equivalence. In this section, we
introduce the notion of stochastic equivalence for discrete phase–type distri-
butions (cf. Section 2.1.2, Definition 2.2) and discrete–time marked Markovian
arrival processes (cf. Section 2.1.4, Definition 2.5).

4.2.1 Stochastic Equivalence for Phase–type Distributions

Stochastic equivalence for general probability distributions is defined as:

Definition 4.1 (Stochastic Equivalence for Probability Distributions)
Two discrete random variables X and Y are stochastically equivalent if their cu-
mulative distribution functions FX(x) = P(X ≤ x) and FY (y) = P(Y ≤ y) are
identical, i.e. P(X ≤ z) = P(Y ≤ z) for all z.

Stochastic equivalence for two DPH distributed random variables with repre-
sentations DPH(α,T) and DPH(β,S) respectively implies that for all k ≥ 0 we
must have αTke = βSke. It is known from [O’C90] that a DPH distribution
is characterised by its first 2p− 1 factorial moments (cf. Section 2.1.2, Formula
(2.4)). Using the Cayley-Hamilton Theorem [AM69], the equality of the first
2p− 1 values of the cumulative distribution function ensures the equality for all
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k ≥ 0. We show the decidability of stochastic equivalence for DPH distributions
in Proposition 4.2.

Proposition 4.2 Given two discrete phase–type representations DPH(α, T)
and DPH(β, S) of order n and m respectively, they are stochastically equivalent
iff αTke = βSke for 0 ≤ k ≤ 2 max{n,m}-1.

Proof To prove the proposition, we show that for a representation DPH(α, T)
of order n, the {αTke}0≤k≤2n−1 completely characterises the distribution.

The Cayley-Hamilton Theorem states every square matrix over a real field sat-
isfies its own characteristic equation. Let A be a square matrix of dimension
p, we have that Ap = a0I + a1A + · · · + ap−1A

p−1. That is {Ak}k≥p can be
decided by the linear combination of the lower power terms I, A, . . . , Ap−1 with
the p coefficients, a0, a1, . . . , ap−1. Using the Cayley-Hamilton Theorem for the
DPH(α, T), we have ∀k ≥ n: αTke = a0αT0e+ a1αTe+ · · ·+ an−1αTn−1e.
To determine ∀k ≥ 0: αTke, we require first n basic scalars, i.e. αT0e, . . . ,
αTn−1e, and then the successive n scalars, i.e. αTne, . . . , αT2n−1e, shall
determine the n coefficients, i.e. a0, a1, . . . , an−1, because

αTne = a0αT0e + a1αTe + · · ·+ an−1αTn−1e

αTn+1e = a0αTe + a1αT2e + · · ·+ an−1αTne

= a0αTe + a1αT2e + · · ·+ an−1(a0αT0e + a1αTe + · · ·+ an−1αTn−1e)

...

αT2n−1e = . . .

is a system of linear equations with n equations and n unknowns. Therefore,
the first 2n power terms shall completely characterise the DPH distribution. 2

4.2.2 Stochastic Equivalence for Marked Markovian Ar-
rival Processes

For a stochastic process, stochastic equivalence is defined through the finite
dimensional distributions [LN91]. For discrete–time MMAPs, we consider a
sequence of the pairs of random variables such that the first random variable
gives the interarrival time and the second random variable gives the type of the
arrival mark.

Definition 4.3 (Stochastic Equivalence for MMAPs) Let Qn and Rn
be the random variables of the interarrival times, Yn and Zn be the random
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variables of the arrival marks of two marked Markovian arrival processes. The
two processes {(Qn, Yn)}n∈N and {(Rn, Zn)}n∈N are stochastically equivalent if
for all n ∈ N and mn, ln ∈ N0: P((Q1 = m1, Y1 = l1), . . . , (Qn = mn, Yn =
ln)) = P((R1 = m1, Z1 = l1), . . . , (Rn = mn, Zn = ln)).

By definition, we have that two MMAPs are stochastically equivalent iff all
their corresponding joint density functions (cf. Section 2.1.4, Formula (2.8)) are
identical. The characterisation of continuous–time MMAPs through moments
is studied in [BKK10, Tel11], we adapt their results to the discrete–time setting,
with extra considerations of arbitrary initial distributions.

Definition 4.4 (Non-redundant MMAP representation) A discrete–time
MMAP representation is called non-redundant if the order of representation
equals the maximum degree of the numerator and the denominator of f(s, z) (cf. Sec-
tion 2.1.4, Formula (2.7)), and redundant otherwise.

A non-redundant discrete–time MMAP representation has independent joint
moments. Therefore, one could decide stochastic equivalence through joint mo-
ments.

Theorem 4.5 Consider two non-redundant discrete–time MMAP represen-
tations with k marks of order n and m, and let p = max{n,m}. They are
stochastically equivalent iff the first kp2 + p joint factorial moments of succes-
sive interarrival times agree.

Proof To prove the theorem, we show that a discrete–time MMAP with rep-
resentation (π,D0,Dh0 , . . . ,Dhk−1

) of order n and k marks is completely char-
acterised by kp2 + p joint factorial moments. Our proof follows the idea from
Theorem 2 in [BKK10] and Theorem 4 in [TH07].

Recall that the joint factorial moments of the interracial times and arrival marks
(cf. Section 2.1.4, Formula (2.9) ) are given as

E

(
m∏
i=0

Θi . . . (Θi − (ti − 1))1(Hi = hi)

)
= π

(
m∏
i=0

ti!(I−D0)−(ti+1)Dti−1
0 Dhi

)
e.

Consider a base case that there exists only one arrival mark h, let P = (I −
D0)−1Dh be the transition matrix of embedded Markov chain and let the Jordan
decomposition [Str88] D0 = Γ−1EΓ, such that the E is a diagonal matrix and
the normalised matrix Γ satisfies Γe = e. We rewrite the joint factorial moments
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as

E

(
m∏
i=0

Θi . . . (Θi − (ti − 1))

)
= πt0!(I−D0)−(t0+1)Dt0−1

0 Dh · · · tm!(I−D0)−(tm+1)Dtm−1
0 Dhe

= πt0!(I−D0)−t0Dt0−1
0 (I−D0)−1Dh︸ ︷︷ ︸ · · · tm!(I−D0)−tmDtm−1

0 (I−D0)−1Dh︸ ︷︷ ︸ e
= πt0!(Γ−1Γ− Γ−1EΓ)−t0(Γ−1EΓ)t0−1P · · · tm!(Γ−1Γ− Γ−1EΓ)−tm(Γ−1EΓ)tm−1

Pe

= πt0!(Γ−1(I−E)Γ)−t0Γ−1Et0−1ΓP · · · tm!(Γ−1(I−E)Γ)−tmΓ−1Et0−1ΓPΓ−1Γe

= t0!πΓ−1︸ ︷︷ ︸(I−E)−t0Et0−1 ΓPΓ−1︸ ︷︷ ︸ t1! · · · tm!Γ−1(I−E)−tmEt0−1 ΓPΓ−1︸ ︷︷ ︸Γe,

such that πΓ−1e = e, because πΓ−1Γe = e. Notice that πΓ−1ΓPΓ−1 6= πΓ−1,
because we consider arbitrary initial distribution, i.e. πP 6= π in general. How-
ever, Theorem 2 in [BKK10] and Theorem 4 in [TH07] both consider the sta-
tionary processes of MMAPs, such that πP = π. Thus, in their setting the
vector πΓ−1 is determined by the matrix ΓPΓ−1.

From the above decomposition, all joint factorial moments are determined by
the vector πΓ−1, the matrix E and the matrix ΓPΓ−1, such that the vector
πΓ−1 is determined by n elements, the diagonal matrix E is determined by n
diagonal elements, and the matrix ΓPΓ−1 is determined by n(n− 1) elements,
because ΓPΓ−1e = ΓPe = Γe = e. Thus, totally n2 + n factorial moments
shall decide all joint factorial moments in the base case, which is identical to
the characterisation of a discrete–time MAP.

In analogy with the base case, we consider joint factorial moments with generally
k arrival marks. Let P0 = (I − D0)−1Dh0

, · · · , Pk−1 = (I − D0)−1Dhk−1
,

without loss of generality, we consider

E (Θ0 . . . (Θ0 − (t0 − 1))1(H0 = h0) · · ·Θm . . . (Θm − (tm − 1))1(Hm = hk−1))

= πt0!(I−D0)−(t0+1)Dt0−1
0 Dh0

· · · tm!(I−D0)−(tm+1)Dtm−1
0 Dhk−1

e

= πt0!(I−D0)−t0Dt0−1
0 (I−D0)−1Dh0︸ ︷︷ ︸ · · · tm!(I−D0)−tmDtm−1

0 (I−D0)−1Dhk−1︸ ︷︷ ︸ e
= πt0!(Γ−1Γ− Γ−1EΓ)−t0(Γ−1EΓ)t0−1P0 · · · tm!(Γ−1Γ− Γ−1EΓ)−tm(Γ−1EΓ)tm−1

Pk−1e

= πt0!(Γ−1(I−E)Γ)−t0Γ−1Et0−1ΓP0 · · · tm!(Γ−1(I−E)Γ)−tmΓ−1Et0−1ΓPk−1Γ−1Γe

= t0!πΓ−1︸ ︷︷ ︸(I−E)−t0Et0−1 ΓP0Γ−1︸ ︷︷ ︸ t1! · · · tm!Γ−1(I−E)−tmEt0−1 ΓPk−1Γ−1︸ ︷︷ ︸Γe.
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Therefore, all joint factorial moments are decided by the vector πΓ−1, the matrix
E and the matrices ΓP0Γ−1, . . . , ΓPk−1Γ−1. Such that the vector πΓ−1 is
determined by n elements, the diagonal matrix E is determined by n diagonal
elements, and the matrices ΓP0Γ−1, . . . , ΓPk−1Γ−1 are determined by kn2−n
elements, because Γ

∑k−1
i=0 PiΓ

−1e = Γ
∑k−1
i=0 Pie = Γe = e. Summing up, we

have the first kn2 +n factorial moments are sufficient to characterise a discrete–
time MMAP. 2

The decidability for redundant MMAPs is more complicated. The work in [Tel11]
states that fewer independent joint factorial moments are required than in the
non-redundant case. However one shall be especially careful on identifying inde-
pendent joint factorial moments. It turns out that the complexity is too high for
practical purposes. We leave this problem as an open question, which requires
further investigations.

4.3 Time-lapse Bisimulation

A discrete–time marked Markovian arrival process is a stochastic process in-
volving successive interarrival times of phase–type with marks on arrivals. The
stochastic equivalence for MMAPs is an equivalence relation for the distributions
of interarrival times and the distributions of arrival marks. In discrete–time, an
interarrival time is the number of jumps in the Markov chain before the next ar-
rival. In this section, we show how to formalise the interarrival time of MMAPs
to explore a new bisimulation relation for capturing probabilistic behaviour over
time.

4.3.1 Labelled DTMC

A labelled DTMC is a discrete–time Markov chain with action labels on the
transitions, which is purely probabilistic without nondeterminism.

Definition 4.6 (Labelled DTMC) A labelled DTMC is a tuple (S,Actτ ,P),
where

• S is a finite set of states,

• Actτ is a finite set of actions that contains the internal action τ and the
external actions Act = Actτ \ {τ},
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• P is a function: S ×Actτ × S −→ [0, 1] such that Σ(a,s′)∈Actτ×SP(s, a, s′)
= 1 for all s ∈ S.

An execution $ in (S,Actτ ,P) is an infinite sequence involving states and ac-
tions. Let s0, s1, · · · ∈ S and a1, a2, · · · ∈ Actτ , then an execution $ = s0

a1→
s1

a2→ . . . must satisfy that P(si−1, ai, si) > 0 for i = 1, 2, . . . . Let k be a finite
index number, we express the k-th prefix of $ as $k = s0

a1→ s1
a2→ . . .

ak→ sk.
We define first($) = first($k) = s0, last($k) = sk, length($k) = k, trace($k)
= a1a2 . . . ak. A probability measure µ on $k is uniquely defined by setting
µ($k) = P(s0, a1, s1)× P(s1, a2, s2)× · · · × P(sk−1, ak, sk).

A discrete–time MMAP and a labelled DTMC. To transform an MMAP
representation into a labelled DTMC (the other direction reverses), we map each
element of matrices from an MMAP representation to a transition function of
a labelled DTMC. Without loss of generality, assuming mark vector h1 is re-
placed by external action a1, mark vector h2 is replaced by external action a2,
and so on, an MMAP representation with finite marks (π,D0,Da1 ,Da2 , . . . )
describes a (S,Actτ ,P), such that P(si, τ, sj) = (D0)i,j , P(si, a1, sj) = (Da1)i,j ,
P(si, a2, sj) = (Da2)i,j , . . . . Therefore, an MMAP representation and a labelled
DTMC are inter-definable.

Let P(s, a, C) =
∑
s′∈C P(s, a, s′) be the probability from state s to reach a set

C via an a transition, and let S/R denote the set of equivalence classes under
the equivalent relation R, and let us next recall the definitions of strong and
weak bisimulations [JS90, BH97].

Definition 4.7 (Strong Bisimulation) Given a labelled DTMC (S,Actτ ,P),
a strong bisimulation is an equivalence relation R on S such that for all (p, q) ∈
R, all actions a ∈ Actτ and all C ∈ S/R: P(p, a, C) = P(q, a, C). Two states
p, q are called strong bisimilar, denoted p ∼ q, iff (p, q) ∈ R for some strong
bisimulation R.

It has been proved in [JS90] that the relation∼=
⋃
{R|R is a strong bisimulation}

is an equivalence relation and a strong bisimulation relation, and hence is the
largest strong bisimulation relation.

In strong bisimulation, internal actions, denoted τ , have to be simulated step by
step as is also the case for external actions. However, since internal actions may
be regarded as being invisible, there is no direct need to observe each step of
internal transitions. This motivates defining weak bisimulation by abstracting
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a sequence of internal transitions. The regular expression τ∗aτ∗ defines the lan-
guage {τnaτm|n,m ≥ 0}, which identifies the set of traces for weak transitions.
Let ε denote the empty trace, the probability for a state s to reach a set C via
a weak transition P(s, τ∗aτ∗, C) is to solve the equation system:

P(s, τ∗aτ∗, C) =

{
1, if s ∈ C and ε ∈ τ∗aτ∗,∑

(a′,s′)∈Actτ×S P(s, a′, s′)× P(s′, τ∗aτ∗/a′, C), otherwise,

such that τ∗aτ∗/a′ = {λ | a′λ ∈ τ∗aτ∗}.

Definition 4.8 (Weak Bisimulation) Given a labelled DTMC (S,Actτ ,P),
a weak bisimulation is an equivalence relationR on S such that for all (p, q) ∈ R,
all actions a ∈ Actτ and all C ∈ S/R: P(p, τ∗aτ∗, C) = P(q, τ∗aτ∗, C). Two
states p, q are called weak bisimilar, denoted p ≈ q, iff (p, q) ∈ R for some weak
bisimulation R.

It has been proved in [JS90] that the relation≈=
⋃
{R|R is a weak bisimulation}

is an equivalence relation and a weak bisimulation relation, and hence is the
largest weak bisimulation relation.

4.3.2 Time-lapse Bisimulation

Stochastic equivalence for MMAPs characterises the complete sequence of ar-
rivals associated with their interarrival times, arrival marks and probabilities.
Consider two executions on labelled DTMCs, they are stochastically equiva-
lent iff they not only agree on what sequence of actions they can perform, but
also agree on all the time intervals between actions and all the probabilities
of performing each action. To transform stochastic equivalence into a state
based bisimulation relation, the behaviour of bisimilar states shall be that each
external action performs with the same probability after the same period.

At first, we define an interarrival time to be the accumulated number of internal
transitions between two successive external actions on labelled DTMCs. There-
fore, for each external action we shall count the number of internal actions on
its prefix to determine the distribution of an interarrival time. Recall Act is
the set of external actions, we then define a new transition relation on labelled
DTMCs, named timed transition.

Definition 4.9 (Timed Transition) Let s, s′ ∈ S, t ∈ N0 and a ∈ Act, a
timed transition, s t,a7−→ s′, is defined as a sequence of ordinary transitions such
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that for some states s1, . . . , st

s
t,a7−→ s′ =

{
s
a→ s′, if t = 0,

s
τ→ s1 · · ·

τ→ st
a→ s′, if t > 0.

The probability of a timed transition is given as P(s, τ ta, s′) = µ(s
t,a7−→ s′) =∑

s1,...,st
P(s, τ, s1)× · · · × P(st, a, s

′).

A timed transition s
t,a7−→ s′ includes the time t, the external action type a

and implicitly the probability P(s, τ ta, s′). Two timed transitions are identical
iff t, a and P(s, τ ta, s′) all agree. The regular expression τ ta identifies the
corresponding set of traces for a timed transition. Thus, the probability for s
to reach a set C via a timed transition is P(s, τ ta,C) =

∑
s′∈C P(s, τ ta, s′). We

are now ready to introduce time-lapse bisimulation.

Definition 4.10 (Time-lapse Bisimulation) Given a labelled DTMC (S,
Actτ ,P), a time-lapse bisimulation is an equivalence relation R on S such that
for all (p, q) ∈ R, all external actions a ∈ Act and all C ∈ S/R: P(p, τ ta,C)
= P(q, τ ta,C) for all t. Two states p, q are called time-lapse bisimilar, denoted
p ' q, iff (p, q) ∈ R for some time-lapse bisimulation R.

Theorem 4.11 For all labelled DTMCs, the relation ' =
⋃
{R|R is a time-

lapse bisimulation} is

1. an equivalence relation

2. a time-lapse bisimulation

3. the largest time-lapse bisimulation relation.

Proof Consider a labelled DTMC (S,Actτ ,P), some states s1, s
′
1, s2, s

′
2, s3, s

′
3 ∈

S, and some time-lapse bisimulations R, R′, R′′. We prove the statements in
turn.

1. To show ' is an equivalence relation, we argue that ' is reflexive, symmet-
ric and transitive. Reflexivity : the identity relation I = {(s, s) | s ∈ S}
is clearly a time-lapse bisimulation. Symmetry : consider the relation
R−1 = {(s2, s1) | (s1, s2) ∈ R} that is obtained by swapping any pair
of states in R. By the symmetry of time-lapse bisimulation R, we know
R−1 is a time-lapse bisimulation. Transitivity : consider the relationRtr =
{(s1, s3) | (s1, s2) ∈ R ∧ (s2, s3) ∈ R′}. By (s1, s2) ∈ R, it follows that
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P(s1, τ
ta,C) = P(s2, τ

ta,C) for all timed transitions t,a7−→ to all equivalence
classes C. By (s2, s3) ∈ R′, it follows that P(s2, τ

ta,C) = P(s3, τ
ta,C) for

all timed transitions t,a7−→ to all C. That implies P(s1, τ
ta,C) = P(s3, τ

ta,C)

for all timed transitions t,a7−→ to all C. Therefore, (s1, s3) ∈ R′′, and the
relation Rtr is a time-lapse bisimulation.

2. To show that ' is itself a time-lapse bisimulation, assume s1 ' s2. Then,
there exists a R that (s1, s2) ∈ R. It follows that for any timed transition
s1

t,a7−→ s′1, there is a timed transition s2
t,a7−→ s′2 with (s′1, s

′
2) ∈ R′. Since

' is a union of all time-lapse bisimulations, we have s′1 ' s′2.

3. Because ' is a time-lapse bisimulation, the definition
⋃
{R|R is a time-

lapse bisimulation} immediately yields that all time-lapse bisimulation are
included in '. That is ' is the largest time-lapse bisimulation relation.

2

Similar to strong bisimulation and weak bisimulation, one could lift time-lapse
bisimulation to system level. Therefore, we have two labelled DTMCs are time-
lapse bisimilar iff for each initial state of one system there always exist a corre-
sponding time-lapse bisimilar initial state of the other, such that they have the
same initial probability.

p0

p1

p3

p2 p4 p5

τ , 1
3

τ , 1
3

τ , 1
3

τ , 1

τ , 1

τ , 1 a, 1

Figure 4.1: An example of time-lapse bisimulation: p1 ' p2 ' p3.

Example 4.1 The labelled DTMC in Fig. 4.1 has p1 ' p2 ' p3, because they
have the same probabilistic timed behaviour, i.e. to perform an external action
a after 1 time unit.

Example 4.1 illustrates that probabilistic timed properties are captured by time-
lapse bisimulation relations on labelled DTMCs, such that, for two time-lapse
bisimilar states, one would expect that same external actions will be performed
with the same probability after waiting the same amount of time. It would
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be interesting to see how time-lapse bisimulation used in practice to improve
verification. However, this is outside the scope of this work.

4.3.3 Comparative Study of Bisimulation Relations

As a new member of the bisimulation family, in this part, we compare time-lapse
bisimulation with strong bisimulation and weak bisimulation.

Time-lapse Bisimulation meets Weak Bisimulation Internal actions rep-
resent invisible computations, which have been studied and proved useful in
modelling concurrent and hierarchical systems. In terms of the power of obser-
vation, in weak bisimulation arbitrarily many internal actions may be removed
such that the probabilistic behaviour of the system is still preserved. With re-
spect to stochastic equivalence, time-lapse bisimulation counts the number of
internal actions to express how a stochastic system behaves probabilistically
when time elapses. We clarify that neither time-lapse bisimulation nor weak
bisimulation implies the other.

Theorem 4.12 Time-lapse bisimulation is not comparable with weak bisim-
ulation.

Proof We show two scenarios that the first one holds p ' q but p 6≈ q, and the
second holds p ≈ q but p 6' q.

p p1

p2

q1 qτ , 1
2

τ , 1
2

a, 1

b, 1

a, 1
2

b, 1
2

τ , 1

Figure 4.2: Time-lapse bisimilar states are neither necessarily weak bisimilar
nor necessarily strong bisimilar: p ' q but p 6≈ q and p 6∼ q.

The labelled DTMC in Fig. 4.2 holds p ' q but p 6≈ q. The p ' q is because they
have identical timed transitions 1,a7−→ and 1,b7−→. The p 6≈ q is because p1 6≈ p2 6≈ q1,
however this fact does not affect time-lapse bisimulation. Recall the definition
of p ' q, we have for all external actions a ∈ Act and C ∈ S/R such that
P(p, τ ta,C) = P(q, τ ta,C) for all t. This requires that the equivalence classes
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shall be reached only by external actions. However, in weak bisimulation, the
action a in τ∗aτ∗ can be an internal action, so a sequence of τ actions could
reach new equivalence classes. In Fig. 4.2, p1, p2 and q1 are different equivalence
classes of weak bisimulation reached by τ action.

p qτ , 1 τ , 1 a, 1 τ , 1a, 1

Figure 4.3: Weak bisimilar states are not necessarily time-lapse bisimilar: p ≈
q but p 6' q.

The labelled DTMC in Fig. 4.3 holds p ≈ q but p 6' q. Because weak bisim-
ulation disregards of the time, i.e. the number of τ actions, but time-lapse
bisimulation regards. 2

Time-lapse Bisimulation meets Strong Bisimulation Strong bisimula-
tion is finer than weak bisimulation, such that internal actions are simulated
stepwise. We clarify that strong bisimulation is also finer than time-lapse bisim-
ulation.

Theorem 4.13 Strong bisimulation implies time-lapse bisimulation but not
vice versa.

Proof Let p and q be two states, we first show that p ∼ q implies p ' q.
Recall the definition of p ∼ q, we have P(p, a, C) = P(q, a, C) for all actions
a ∈ Actτ and C ∈ S/R. In general let τ ta′ be the label of a timed transition
for t ∈ N0 and action a′ ∈ Act. For some C and some states s1, . . . , st, we
have P(p, τ ta′, C) = P(p, τ, s1)× . . .×P(st, a

′, C). By the stepwise definition of
strong bisimulation, p ∼ q and p τ→ s1 implies q τ→ s′1 and s1 ∼ s′1. We then use
s1 ∼ s′1 and s1

τ→ s2 to imply further strong bisimilar states until some st ∼ s′t.
Therefore, we have P(p, τ, s1)× . . .×P(st, a

′, C) = P(q, τ, s′1)× . . .×P(s′t, a
′, C),

and that is P(p, τ ta′, C) = P(q, τ ta′, C). Thus, p ∼ q implies p ' q.

Now we show p ' q does not necessarily imply p ∼ q by considering the previous
example in Fig. 4.2. We have argued that p ' q and p1 6≈ p2 6≈ q1. Since weak
bisimulation is coarser than strong bisimulation [AILS07], p1 6≈ p2 6≈ q1 implies
p1 6∼ p2 6∼ q1. Thus, p 6∼ q. 2

From Theorem 4.12 and Theorem 4.13, we conclude that time-lapse bisimulation
is a new bisimulation relation, which is coarser than strong bisimulation and is
not comparable to weak bisimulation.
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4.3.4 Logical Characterisation of Time-lapse Bisimulation

Logical characterisations [LS91, DEP98, PS07] permit to understand what prop-
erties are preserved under different bisimulation relations, and are also very
useful for comparative analysis. In analogy with the results of logical char-
acterisation for deterministic probabilistic systems [DEP98, PS07], we give a
Hennessy-Milner style logic for characterising time-lapse bisimulation on labelled
DTMCs.

Definition 4.14 (Logic L) Let p range over the rational numbers in [0,1],
then the logic L has as syntax the following formulas:

ϕ ::= > |ϕ1 ∧ ϕ2 |3t
paϕ,

The satisfaction relation, s � ϕ, between states of a labelled DTMC (S,Actτ ,P)
and formulas of L is given as follows:

s � > holds always true.

s � ϕ1 ∧ ϕ2 holds iff s � ϕ1 and s � ϕ2.

s � 3t
paϕ holds iff state s can make a timed transition s t,a7−→ s′ such that s′ � ϕ
and P(s, τ ta, s′) ≥ p.

The rest part of this section is dedicated to the proofs of soundness and com-
pleteness of Hennessy-Milner style logic L. We shall now introduce the notations
to be used. Let ϕ, ψ range over formulas of the logic L. We define the depth,
denoted n, of a formula ϕ as the maximum number of nested diamond operators
that occur in ϕ. Let s 'n r denote that s ' r holds at the formula of depth
n, Fn be the sets of the formulas of depth at most n, F(s) be the sets of the
formulas which are satisfied by the state s and Fn(s) be the sets of the formulas
of depth at most n which are satisfied by the state s.

Lemma 4.15 Given a (S,Actτ ,P) and s, r ∈ S, F0(s) = F0(r) for each pair
of time-lapse bisimilar states s and r.

This preliminary lemma shows that the time-lapse bisimilar states of a labelled
DTMC satisfy the same sets of formulas of depth zero.

Theorem 4.16 Given a (S,Actτ ,P) and s, r ∈ S, then s ' r iff s and r obey
the same formulae of L.
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Proof By induction on n, we show that s 'n+1 r iff Fn+1(s) = Fn+1(r) for
each n ≥ 0. The base case n = 0 holds trivially by Lemma 4.15 and definition
of '0. For the inductive step we prove two directions of our claim separately.

For soundness (⇒). Let s 'n+1 r, we show s � ϕ ⇔ r � ϕ by structural
induction on ϕ ∈ Fn+1 that s � ϕ iff r � ϕ. Assume s � ϕ (the case for r � ϕ
is symmetric). If ϕ = >, then r � ϕ trivially. If ϕ = ψ1 ∧ ψ2, then s � ψ1

and s � ψ2. By structural induction, r � ψ1 and r � ψ2, and thus r � ϕ. If ϕ
= 3t

paψ, then ψ ∈ Fn. By definition, there exists a timed transition s t,a7−→ s′

such that s′ � ψ and P(s, τ ta, s′) ≥ p. From s 'n+1 r, there exists an identical
timed transition r t,a7−→ r′ such that r′ � ψ, P(r, τ ta, r′) ≥ p and s′ 'n r′. That
is, r � 3t

paψ.

For completeness (⇐). We show that s 6'n+1 r implies Fn+1(s) 6= Fn+1(r).
Assume s 6'n+1 r and for the sake of contradiction assume that Fn+1(s) =

Fn+1(r). Without loss of generality, assume there exits a timed transition s t,a7−→
s′, which r doesn’t have. The timed transition implies s � 3t

paψ and s′ � ψ. For

the state r, there must not exist r′ that r t,a7−→ r′ and s′ 'n r′. That is r 6� 3t
paψ

and r′ � ψ. That is the formula holds only for Fn+1(s) but not Fn+1(r), a
contradiction appears as needed. 2

4.3.5 A Case Study

In this part, we show the novelty of time-lapse bisimulation through a depend-
able model of 2-stage safety device in Fig. 4.4.

Let us assume a safety device is designed to have two engines, such that the
device can automatically switch to the second engine when the first failed. The
device is broken once both engines failed. Assume now, one of two engines
is reported to have defect, engineers would like to know how likely the device
breaks after a certain period. Given that 1 − p1 is the probability of failure
per day for regular engines, and 1 − p2 is the probability of failure per day for
defective engines, we model this device as a labelled DTMC in Fig. 4.4-(a). The
failure action f is the only observable/external action in the model. Since we
don’t know either normal or defective engine operates first, we use a uniform
probability distribution to enclose both cases.

Now we illustrate how bisimulations perform in the case. Unluckily, it is impos-
sible to reduce state space using strong bisimulation. On the other hand, with
no respect of time, state reduction using weak bisimulation shall aggregate all
τ -enabled states, which is useless if one is interested at time-bounded reacha-
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(a) Original Device.
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(b) Reduced Device.

Figure 4.4: A probabilistic model of 2-stage safety device: s1 ' s2 ' s.

bility properties. E.g. what is the probability that the device is broken after
40 days? However, time-lapse bisimulation successfully aggregates states s1, s2

into state s as showed in Fig. 4.4-(b).

This case study sheds some light on the novelty of time-lapse bisimulation,
one of our future aims is to apply this new bisimulation relation on practical
benchmark cases.
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4.4 Bisimulation Characterisation of Stochastic
Equivalence

We have presented time-lapse bisimulation on labelled DTMCs in order to char-
acterise stochastic equivalence for discrete–time marked Markovian arrival pro-
cess. In this section, we show that bisimulation characterisation of stochas-
tic equivalence for some bisimulation relations are sound in that two bisimilar
states are also stochastically equivalent, but for all bisimulation relations that
two stochastically equivalent states are not necessarily bisimilar.

We have shown that a representation of an MMAP and a labelled DTMC are
inter-definable, therefore for labelled DTMCs we obtain the following observa-
tion on stochastic equivalence for MMAPs, which is identical to Definition 4.3.

Observation 1 Given a labelled DTMC (S,Actτ ,P) and some s, r, s̄, r̄ ∈ S,
s and r are stochastically equivalent if for all n ∈ N, t1, . . . , tn ∈ N0 and external
actions a1, . . . , an ∈ Act: P(s, τ t1a1 . . . τ

tnan, s̄) = P(r, τ t1a1 . . . τ
tnan, r̄), where

τ t1a1 . . . τ
tnan is a sequence of timed transitions.

Having Observation 1 for labelled DTMCs, we are now ready to clarify the
theorem of time-lapse bisimulation characterisation.

Theorem 4.17 Time-lapse bisimulation is a sound but not complete charac-
terisation of stochastic equivalence.

Proof Given a labelled DTMC (S,Actτ ,P) and let s, s̄, r, r̄ ∈ S, we first show
the soundness of time-lapse bisimulation characterisation. Because s ' r,
states s and r have the same set of timed transitions. That is s ' r im-
plies P(s, τ t1a1, s

′) = P(r, τ t1a1, r
′) for all t1 ∈ N0, a1 ∈ Act. By time-lapse

bisimilarity ' being a time-lapse bisimulation (cf. Theorem 4.11), we have that
s ' r also implies P(s, τ t1a1τ

t2a2, s
′′) = P(r, τ t1a1τ

t2a2, r
′′) for all t1, t2 ∈ N0

and a1, a2 ∈ Act. The same step replays for any n ∈ N, that is s ' r implies
P(s, τ t1a1 . . . τ

tnan, s̄) = P(r, τ t1a1 . . . τ
tnan, r̄) for all t1, . . . , tn ∈ N0 and exter-

nal actions a1, . . . , an ∈ Act. That is Observation 1 holds. Therefore, time-lapse
bisimulation implies stochastic equivalence.

Now we show that stochastic equivalence does not necessarily imply time-lapse
bisimulation by considering the τ -free example in Fig. 4.5. For τ -free labelled
DTMCs, time-lapse bisimulation, strong bisimulation and weak bisimulation all
coincide. Thus, we get p 6' q, because p′ 6' q′ 6' q′′. However, apparently
the probabilities of all the sequences of timed transitions, i.e. a, ab and ac,
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Figure 4.5: Stochastic equivalence does not necessarily imply the bisimula-
tions: p 6∼ q, p 6' q, p 6≈ q.

are the same. That’s Observation 1 holds, therefore p and q are stochastically
equivalent. 2

Theorem 4.18 Strong bisimulation is a sound but not complete characteri-
sation of stochastic equivalence.

Proof For soundness, Theorem 4.17 states that time-lapse bisimulation is a
sound characterisation of stochastic equivalence. Given Theorem 4.13 that
strong bisimulation is finer than time-lapse bisimulation, we have that strong
bisimilar states are time-lapse bisimilar, and are also stochastically equivalent.

For non-completeness, the τ -free example in Fig. 4.5 shows two stochastic equiv-
alent states are not strong bisimilar. 2

Theorem 4.19 Weak bisimulation is neither sound nor complete characteri-
sation of stochastic equivalence.

Proof For soundness, Theorem 4.17 states that time-lapse bisimulation is sound
to stochastic equivalence. Given Theorem 4.12 that weak bisimilar states are
not necessarily time-lapse bisimilar, we have weak bisimulation is not sound to
stochastic equivalence.

For non-competeness, the τ -free example in Fig. 4.5 shows two stochastic equiv-
alent states are not weak bisimilar. 2
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4.5 Summary

There have been many papers on the stochastic extension of labelled transition
systems for analysing quantitative properties, such as performance, reliability,
timeliness, and efficiency. Through stochastic models and measurements, quan-
titative properties are evaluated and verified for computer systems and networks.
Among them, equivalence relations are defined to capture when two systems
have the same behaviour. As a co-inductive characterisation of equivalence re-
lations, bisimulation relations allow one to reduce a system to an equivalent but
smaller system, which is obtained by replacing each state in a system by its
bisimulation equivalence class. Such a state aggregation technique is commonly
used as a preprocessing step for model checking.

In this work, we studied the stochastic equivalence for discrete phase–type distri-
butions and discrete–time marked Markovian arrival processes. Stochastically
equivalent systems have the same probability distributions of the interarrival
times and the arrival marks. Transforming discrete–time MMAPs to labelled
DTMCs, we defined the time-lapse bisimulation to characterise stochastic equiv-
alence. As a new bisimulation relation, time-lapse bisimilar states have the
same probabilistic behaviour of performing external actions after waiting the
same amount of time. We clarified that time-lapse bisimulation is coarser than
strong bisimulation, and is not comparable to weak bisimulation. A Hennessy-
Milner style logic was identified to characterise time-lapse bisimulation. As a
co-inductive characterisation of stochastic equivalence, we showed that time-
lapse bisimulation and strong bisimulation is a sound but not complete charac-
terisation of stochastic equivalence, and weak bisimulation is neither sound nor
complete to stochastic equivalence.

Based on the current development, we would like to see a practical case study,
where the advantages or drawbacks of the time-lapse bisimulation are discussed.
It would be very interesting to see how the time-lapse bisimulation improves the
verification of stochastic systems. For this, an implementation and experimen-
tal results would be necessary. On the other hand, naturally, we would like
to define time-lapse bisimulation characterisation of stochastic equivalence for
continuous–time MMAPs, where the corresponding transition systems are la-
belled continuous time Markov chains.
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Chapter 5

Stochastic Model Checking
without Markov Chains

In recent years, stochastic model checking on continuous–time Markov chains
has been widely studied and applied to analyse quantitative properties of stochas-
tic systems, such as performance and reliability. The main obstacle to stochastic
model checking in practice is the state space explosion problem. In this chapter,
we pursue the minimality of a stochastic system to attack the state space ex-
plosion problem, which, however, takes us outside the world of Markov chains.
We propose a process algebra MEME, which takes multi-exits matrix–exponential
distributions as primitives. In our language, all the components before and af-
ter compositions are secured to have a minimal state space representation, and
the overall system is still compatible with the standard Markov chain model
checking techniques.

5.1 Introduction

Many researchers have studied different ways of expressing continuous time
stochastic systems and how to argue that they fulfil certain properties often
expressed in logical form. Among the various approaches, stochastic process
algebras are widely studied and applied to characterise the systems. The promi-
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nent ones, such as IMC [Her02], PEPA [Hil96], TIPP [GHR92], EMPA [BG96],
and stochastic π-calculus [Pri95], all produce classic Markovian models in the
form of Continuous Time Markov Chains (CTMCs) with various considerations
of non-determinism. To express different properties, the logics for CTMCs are
Continuous Stochastic Logic (CSL) [ASSB96, BHHK03] with the possibility of
including rewards. The stochastic model checking against CSL formulae on
CTMCs follow standard techniques in [BHHK03, KNP07].

A key consideration of stochastic process algebras is that of compositionality.
Phase–type distributions were considered first in [Neu75, Neu81], and are de-
fined as the distributions of the absorption times in Markov chains with a finite
number of transient states and one absorbing state. While CPH distributions
go a long way in providing the framework for a compositional construction of
stochastic systems (cf. PHPA in Section 3.2), they lack the algorithmic support
of finding the minimal representation that would enable efficient model checking
against a suitable logic. At the same time even a closed system would have com-
ponents that would be construed to be open. This calls for extending considered
distributions along two directions: one is to allow for multiple exits correspond-
ing to different absorbing states, the other is to extend our considerations from
CPH distributions to the larger class of Matrix–Exponential (ME) distributions
exactly because one shall always find a ME representation of minimal size. We
name this generalised class of distributions as Multi-Exits Matrix–Exponential
(MEME) distributions. In this work, we introduce a stochastic process algebra
MEME to characterise the systems having MEME distributed durations, and we
study the corresponding model checking techniques.

We solve the problem in the following manner. In Section 5.2, we introduce
some interesting families of probability distributions to illustrate our idea be-
hind MEME distributions. In Section 5.3, we present the formal development
of MEME distributions and their compositionality results. A polynomial time
algorithm shall be presented and summarised in the MATLAB language to ob-
tain the minimality of a MEME representation. In Section 5.4, we introduce a
MEME calculus to model the stochastic systems having MEME distributions,
together with CSL formulae to express properties. In Section 5.5, we study tran-
sient and limiting probabilities through proper expansions and aggregations for
a Markov renewal process with matrix–exponential kernels, which is compati-
ble with standard CTMC solvers. We report our experimental results with a
numerical example using MATLAB. In Section 5.6, we discuss model check-
ing algorithms for the MEME system against CSL formulae. We also clarify
how to transform a Markov renewal process to a semi-Markov chain to adapt
model checking techniques of semi-Markov chains. We conclude our work in
Section 5.7.
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5.2 Background

Stochastic process algebras enrich process languages with random variables to
model action durations (or delays before instantaneous actions). The majority of
stochastic process algebras have random variables that are Exponentially (EXP)
distributed, which ensures that the underlying stochastic process is a CTMC.
However, this restriction to exponential durations is unrealistic when modelling
many phenomena in areas such as road traffic and system biology, where the
systems contain deterministic delays or highly variable distributed durations.

Continuous phase–type distributions can be used to approximate any kind of
probability distributions with support on [0, ∞) [JT88]. EXP, Erlang, Hypo-
EXP, Hyper-EXP and Coxian distributions are examples of CPH distributions.
Henceforth, some stochastic process algebras have gone one step further than
EXP durations and dealt with CPH distributions, including MRP [NNN10],
PTP [Wol08] and PEPA∞ph [ERKN99]. Multivariate PH distributions have been
applied to calculate multivariate state rewards over CTMCs [NNN10]. The class
of matrix–exponential distributions [AB99, BN03] includes and generalises CPH
distributions, with minimal dimensionality as a crucial merit. A ME represen-
tation of a CPH distribution will be of lower order, or the same order, than
the corresponding CPH representations [BN03]. An efficient algorithm exists to
reduce a ME representation into its minimal order [AB99]. There exist exam-
ples [Bot86] that a ME distribution does not have a CPH representation of the
same order, however it may be possible to embed the ME distribution into a
higher dimensional space such that a CPH representation is obtained. The point
processes as a natural extension of ME distributions are Rational Arrival Pro-
cesses (RAPs) [AB99]. Recently, the equivalence relations and compositionality
of marked RAPs have been studied in [BB12].

A Markov Renewal Process (MRP) is a continuous–time stochastic process such
that the exponentially distributed sojourn times in a CTMC are now generalised
to follow arbitrary probability distributions (cf. Section 2.2.5, Definition 2.9).
If we let the arbitrary distributions be ME distributions, we get an MRP with
matrix–exponential kernels. The stochastic process representing the states of
an MRP at an arbitrary time is called a Semi-Markov Process (SMP).

Alternatively one can view the kernel of an MRP as a sequence of distributions
with multiple exits, such that a distribution is extended from having one dimen-
sion to two dimensions: the first random variable expresses the delays that are
EXP/CPH/ME distributed, while the second random variable expresses a ran-
dom exit out of multiple candidates. With the second dimension, a stochastic
delay is now able to trigger different successive routines with different proba-
bilities. In terms of modelling power, this increases the flexibility of expressing
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different scenarios in which a system might continue after a random holding
time.

The relationships of our interesting distributions are summarised in the following
table. The distribution on the destination side of an arrow is a generalisation
of the originating side.

EXP Dist. → CPH Dist. → ME Dist.
↓ ↓ ↓

Multi-Ex. EXP Dist. → Multi-Ex. CPH Dist. → Multi-Ex. ME Dist.

Markov Chain Markov Chain Non Markov Chain

Table 5.1: Relationships of Probability Distributions.

A stochastic process having (Multi-Exits) exponentially distributed holding times
is clearly a Markov chain by definition. A stochastic process having (Multi-
Exits) continuous phase–type distributed holding times is an MRP with CPH
kernels, which could still be a Markov chain if one expands the CPH kernels
into Markov chains. However, a stochastic process having (Multi-Exits) matrix–
exponential distributed holding times is not a continuous–time Markov chain.
Henceforth, in this work we deal with stochastic systems that in general are
outside the world of Markov chains. We secure the minimality through com-
positional constructions, which shall be a nice feature for deploying stochastic
model checking in practice.

5.3 Multi-Exits Matrix–Exponential Distributions

In this section, we introduce the formal definition of multi-exits matrix exponen-
tial distributions and their properties. We show that it is possible to construct
a valid MEME distribution via mixing several independent matrix–exponential
distributions. Then, we clarify the compositionality by introducing a number of
operators that are closed within the class of MEME distributions. We propose
an extension of the minimisation approach of [AB99] for MEME distributions,
and summarise the minimality result in a polynomial time algorithm.
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5.3.1 Definitions

Definition 5.1 (Matrix–Exponential Distribution) A distribution on the
positive real axis is called a Matrix–Exponential (ME) distribution if it has a
possible atom at zero, and an absolutely continuous part represented by a den-
sity f(·) which can be written on the form

f(w) = αeSws0, for w > 0,

where α is a 1 × p row vector, S is a p × p matrix and s0 is a p × 1 vector
(complex entries are allowed).

For simplicity, throughout this chapter, we do not consider distributions with a
point mass at zero, i.e. α(−S)−1s0 = 1. As shown in [AB99], the α, S and s0

can always be chosen to have non-complex numbers, henceforth we shall only
deal with ME distributions with real entries. Let W be a ME distributed ran-
dom variable, the cumulative distribution function F (·), the moment generating
function MW (·) and n’th moment E(Wn) are given as: F (w) = 1+αeSwS−1s0,
MW (s) = α(−sI− S)−1s0, and E(Wn) = n!α(−S)−n−1s0.

From [AB99] we know that, for any ME distribution, one can always choose
a representation such that αe = 1 and s0 = −Se; we shall do so in this part
of the thesis to make s0 implicit. Henceforth, we refer to the representation of
ME distributions as MEp(α,S), such that p is called the order of the ME rep-
resentation. From ME distributions, we get the following observation, which is
identical to the definition of CPH distributions (cf. Section 2.2.2, Definition 2.8).

Observation 2 Let W ∼ MEp(α,S), such that α and S satisfy the following
properties:

• αi ≥ 0 and αe = 1,

• Sii < 0, Sij ≥ 0 for i 6= j, and Se ≤ 0,

• S is non-singular,

then W is continuous phase–type distributed with representation CPHp(α,S).

Both CPH distributions and ME distributions are probability distributions with
support on [0,∞). In general, ME distributions contain and are stochastic
equivalent (cf. Definition 4.1) with CPH distributions [AB99], therefore many
results valid for CPH distributions also hold for ME distributions. However, the
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probabilistic interpretation of CPH distributions on an absorbing CTMC is not
valid in the general ME case. Instead, Bladt and Neuts in [BN03] have provided
the interpretation as deterministic flows between containers. The advantage of
ME distributions over CPH distributions primarily comes from dimensionality:
in general, a ME representation of a CPH distribution will be of lower order than
the corresponding CPH representation. We shall highlight the dimensionality
advantage of ME distributions through an example.

Example 5.1 In stochastic modelling, Erlang distributions (an example of
CPH distributions) are commonly used to model the random delay having low
variation, e.g. approximating a deterministic delay. A family of ME distribu-
tions of order 3 governed by the parameters a and ε ≥ 0 can be made to have
smaller coefficient of variation than the Erlang-3 distribution. The representa-
tion ME3(α,S) is given as

α =
1

1 + 1+a
2 ε2 − ε

[
1 −ε 1+a

2 ε2
]
, and S =

−λ λ 0
0 −λ λ
0 0 −λ

 see e.g. [BN11].
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Figure 5.1: Density Plot: ME-9 versus Erlang-9.

Let ME-9 stand for the convolution of three ME3(α,S). From Fig. 5.1, we see
that the ME-9 has a lower coefficient of variation than Erlang-9.
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To model multiple exits, we extend the vector s0 to a matrix having multiple
columns, such that each column corresponds to an exit. In this manner, we
generalise ME distributions with an additional dimension to indicate a random
exit among several possible candidates.

Definition 5.2 (Multi–Exists Matrix–Exponential Distribution) Let
n be a positive integer, a discrete random variable G be distributed on [1, n], and
W ∼ MEp(α,S). A joint distribution of (W,G) is called a Multi-Exits Matrix–
Exponential (MEME) distribution if the joint probability density function is
defined by

f(w, g) = αeSwTg, for w > 0 and 1 ≤ g ≤ n, (5.1)

where Tg is the g-th column of a p×n matrix T. We term the matrix T a multi-
exits matrix and write (W,G) ∼ MEMEp,n(α,S,T) to express that (W,G) is
MEME distributed with representation MEMEp,n(α,S,T) such that p is the
order of the MEME representation (inherited from MEp(α,S)) and n is the
number of multiple exits.

The probabilistic interpretation of the joint density f(w, g) is given as the prob-
ability density of a process finishing at the g-th exit at the w time units. From
f(w, g), one can derive F (w, g), cumulative distribution function of the first
variable w, as

F (w, g) = P(W ≤ w,G = g) =

∫ w

0

f(x, g)dx = αS−1(eSw − I)Tg. (5.2)

The value of F (w, g) represents the cumulated probability of a process finishing
at the g-th exit after at most the w time units. From F (w, g), one can calculate
the marginal probability of a process eventually finishing at the g-th exit as

F (∞, g) = P(G = g) = lim
w→∞

F (w, g) = α(−S)−1Tg. (5.3)

Like phase–type distributions (cf. Section 3.2.2), it is known that the class of
ME distributions are closed under finite probabilistic mixture, minimum and
maximum. For simplicity, we only show how a MEME representation having two
exits is constructed from two independent ME representations. The construction
for a general number of ME distributions follows the same pattern. Let W1 ∼
MEp1(α1,S1) and W2 ∼ MEp2(α2,S2) be two independent ME variables, we
have the following results.

• Probabilistic mixture
The random variable W = I1W1 + I2W2, such that I1 + I2 = 1, π1 +π2 =
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1, P(I1 = 1) = π1 and P(I2 = 1) = π2, is itself ME distributed with
representation MEp1+p2(α,S) given by:

α = (π1α1, π2α2) and S =

[
S1 0
0 S2

]
.

A valid multi-exits matrix T associated with S is

T =

[
−S1e 0
0 −S2e

]
.

We have (W,G) ∼ MEMEp1+p2,2 (α,S,T), where g ∈ {1, 2}. That is the
probabilistic mixture of two ME representations is MEME distributed with
representation MEMEp1+p2,2 (α,S,T), such that the exit corresponds to
the chosen ME distribution of the mixture.

• Minimum
The random variable W = min(W1,W2) is itself ME distributed with
representation MEp1p2(α,S) given by:

α = α1 ⊗α2 and S = S1 ⊗ Ip2 + Ip1 ⊗ S2 = S1 ⊕ S2.

A valid multi-exits matrix T associated with S is

T =
[
(−S1e)⊗ Ip2 Ip1 ⊗ (−S2e)

]
.

We have (W,G) ∼ MEMEp1p2,2 (α,S,T), where g ∈ {1, 2}. That is the
minimum of two ME representations is MEME distributed with represen-
tation MEMEp1p2,2 (α,S,T), such that the exit corresponds to which of
the two variables that was the smallest. The event that both variables
attain the same value has probability 0, and does not need special consid-
eration.

• Maximum
The random variable W = max(W1,W2) is itself ME distributed with
representation MEp1p2+p1+p2 (α,S) given by:

α = (α1 ⊗α2,0,0) and S =

S1 ⊕ S2 Ip1 ⊗ (−S2e) (−S1e)⊗ Ip2
0 S1 0
0 0 S2

 .
A valid multi-exits matrix T associated with S is

T =

 0 0
−S1e 0
0 −S2e

 .
We have (W,G) ∼ MEMEp1p2+p1+p2,2 (α,S,T), where g ∈ {1, 2}. That is
the maximum of two ME representations is MEME distributed with rep-
resentation MEMEp1p2+p1+p2,2 (α,S,T), such that the exit corresponds
to which variable attained the maximum.
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5.3.2 Compositionality

Like CPH and ME distributions, MEME distributions are closed under a number
of compositional operations. Here, we study the compositionality considering
MEME distributions as basic building blocks. For simplicity, we show our de-
sired construction for each operator involving two MEME distributions, but the
extension to a general number is straightforward by associativity.

Minimum/Race The minimum of two MEME distributions with representa-
tions MEMEp1,n1

(α1,S1,T1) and MEMEp2,n2
(α2,S2,T2) respectively is given

by MEME p1p2,n1p2+p1n2
(ᾱ, S̄, T̄), such that ᾱ = (α1 ⊗α2),

S̄ = S1 ⊕ S2, T̄ =
[
T1 ⊗ Ip2 Ip1 ⊗T2

]
. (5.4)

The matrix block T1 ⊗ Ip2 corresponds to the case where the random variable
W1 given by the MEMEp1,n1(α1,S1,T1) is smaller than the random variableW2

given by the MEMEp2,n2
(α2,S2,T2). The matrix block Ip1 ⊗ T2 corresponds

to the case where the W2 is smaller than the W1.

Maximum/Synchronization The maximum of two MEME distributions
with representations MEMEp1,n1

(α1,S1,T1) and MEMEp2,n2
(α2,S2,T2) re-

spectively is given by MEMEp1p2+p1+p2,n1+n2(ᾱ, S̄, T̄), such that ᾱ = (α1⊗α2,
0,0),

S̄ =

S1 ⊕ S2 Ip1 ⊗ (T2e) (T1e)⊗ Ip2
0 S1 0
0 0 S2

 , T̄ =

 0 0
T1 0
0 T2

 . (5.5)

The first column of T̄ corresponds to the case where the random variable W1

given by the MEMEp1,n1
(α1,S1,T1) is bigger than the random variable W2

given by the MEMEp2,n2
(α2,S2,T2). The second column of T̄ corresponds to

the case where the W2 is bigger than the W1.

Probabilistic Mixture/Execution Let π = (π1, π2) be a valid probability
distribution, the probabilistic mixture of two MEME distributions with repre-
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sentations MEMEp1,n1(α1,S1,T1) and MEMEp2,n2(α2,S2,T2) respectively is
given by MEMEp1+p2,n1+n2

(ᾱ, S̄, T̄), such that ᾱ = (π1α1, π2α2),

S̄ =

[
S1 0
0 S2

]
, T̄ =

[
T1 0
0 T2

]
. (5.6)

The first column of T̄ corresponds the distribution MEMEp1,n1
(α1,S1,T1) is

chosen from the mixture, and the second column corresponds the distribution
MEMEp2,n2

(α2,S2,T2) is chosen from the mixture.

Formulae (5.4 - 5.6) serve mathematical constructions for each compositional
operator, such that one can compose a large and complicated distribution us-
ing simple MEME distributions as components. The proofs for the above re-
sults follow the same pattern as the compositionality results for PH distribu-
tions [Neu75], so we omit the details.

5.3.3 Order minimisation

Apart from compositionality, the most appealing feature of MEME distributions
is minimality, i.e. for any MEME distribution one shall always find a represen-
tation with a minimal order. This minimality reduces the state space explosion
problem. Using minimality, one can replace each MEME representation with its
smallest equivalent counterpart. In this manner, we ensure that the capacity of
handling huge system reaches the maximum.

Definition 5.3 (A Minimal MEME Representation) A representation
MEMEp,n(α,S,T) of a MEME distribution is called minimal if no representa-
tion MEMEp̄,n(ᾱ, S̄, T̄) of order p̄ < p exist.

For a MEMEp,n(α,S,T) representation, we define the initial vector space Lp
= span{α,αS, . . . ,αSp−1}. From the Cayley-Hamilton theorem [AM69], we
know that Sp can be expressed as a linear combination of the lower power terms
Si with i = {0, 1, . . . , p − 1}. Therefore, the initial vector space is sufficiently
defined by the terms αSi up to i = p− 1. The standard minimisation results of
ME distributions from [AB99] are partially compatible to MEME distributions,
as the analysis of the initial vector space Lp still applies for MEME distributions.

Theorem 5.4 For a MEMEp,n(α,S,T) representation, let dl = dim(Lp) <
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p and l1, . . . , ldl be a basis for Lp. Define a dl × p matrix A =

 l1...
ldl

 and a

p× dl matrix B such that liB = etri for i = 1, . . . , dl. Then, the representation
MEMEdl,n(αB,ASB,AT) is a smaller representation of the MEMEp,n(α,S,T)
distribution.

Proof. First, we prove that ∀i ∈ {0, . . . , p− 1}: αSiBA = αSi. Since αSi ∈
Lp, we have

αSiBA =

 dl∑
j=1

θjlj

BA =

 dl∑
j=1

θjetrj


 l1...
ldl

 =

dl∑
j=1

θjlj = αSi.

We now show that MEMEdl,n(αB,ASB,AT) and MEMEp,n(α,S,T) are rep-
resentations of the same distribution. For all Tg where g ∈ {1, . . . , n}, we have
the joint density function

f(w, g) = αBeASBwATg = αB

∞∑
i=0

wi

i!
(ASB)iATg =

∞∑
i=0

wi

i!
αBA︸ ︷︷ ︸
α

(SBA)iTg

=

∞∑
i=0

wi

i!
αSBA︸ ︷︷ ︸
αS

(SBA)i−1Tg = · · · =
∞∑
i=0

wi

i!
αSiTg = αeSwTg,

which is the joint density of the MEMEp,n(α,S,T) representation. 2

The standard treatments from [AB99] for the redundancy according to the clos-
ing (right) vector space is no longer valid for the multi-exits case. Instead, we
generalise their results to handle the multi-exits matrix. For a MEMEp,n(α,S,T),
the matrix exponential part of the joint density function can be expanded into
a power series, i.e. f(w, g) = αeSwTg = α

∑∞
i=0

wi

i! SiTg. For other MEME
representations to be the same distribution, we shall require that all elements of
{SiTg : ∀i ∈ [0, p-1], ∀g ∈ [1, n]} are the same (the Cayley-Hamilton theorem
ensures that the terms SiTg up to i = p − 1 are sufficient). Henceforth, we
define the closing (right) vector space Rp as

Rp = span{T1, . . . ,Tn︸ ︷︷ ︸
T

,ST1, . . . ,STn︸ ︷︷ ︸
ST

, . . . ,Sp−1T1, . . . ,S
p−1Tn︸ ︷︷ ︸

Sp−1T

}.

Now, we shall remove the redundancy from Rp using Singular Value Decom-
position (SVD) [Str88] inspired from [BT11a]. Since we only deal with real
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numbers, the conjugate transpose of a matrix in standard SVD becomes just
transpose in our case. Henceforth, an arbitrary matrix A of dimensions p × n
(assume p ≥ n, in the other case just apply Atr) and rank r can be factorized
in the form

A = UΣVtr =
[
u1 · · · up

]

ι1 0 · · · 0
0 ι2 · · · 0
...

...
. . . 0

0 0 · · · ιn
0 0 0 0


v

tr
1
...
vtrn

 ,

such that u1, . . . ,ur are all orthonormal basis vectors in the column space of
A, ur+1, . . . , up are all orthonormal basis vectors in the null column space
of Atr, v1, . . . ,vr are all orthonormal basis vectors in the row space of A,
and vr+1, . . . ,vn are all orthonormal basis vectors in the null row space of A.
Henceforth, U and V are orthogonal matrices, thus U−1 = Utr and V−1 =
Vtr. The diagonal matrix Σ has nonnegative decreasing real numbers on the
diagonal, such that ι1 ≥ · · · ≥ ιr > ιr+1 = · · · = ιn = 0. The computation time
complexity of SVD(A) is given as O(pn2) [TB97]. We shall use the SVD of a
matrix to complete the following theorem.

Theorem 5.5 For a MEMEp,n(α,S,T) representation, if dim(Rp) = dr <
p, then there exists a p× p non-singular transformation matrix B such that

αB =
[
α′ 0

]
, B−1SB =

[
S′ ?
? ?

]
,B−1T =

[
T′

0

]
, and B−1e =

[
e′
?

]
,

where a ? represents an irrelevant matrix block, α′ is a 1 × dr row vector, S′

is a dr × dr matrix, T′ is a dr × n matrix and e′ is a dr × 1 column vector of
ones. The MEMEdr,n(α′,S′,T′) representation is a smaller representation of
the MEMEp,n(α,S,T) distribution.

Proof. We first show that MEMEdr,n(α′,S′,T′) represents the same distri-
bution as MEMEp,n(α,S,T) assuming the matrix B exists, and we show how
to find B afterwards.

Notice that the B−1T =

[
T′

0

]
implies B−1Tg =

[
T′g
0

]
, ∀g ∈ [1, n]. Thus, we
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have the joint density function

f(w, g) = αeSwTg = α

∞∑
i=0

wi

i!
SiTg =

∞∑
i=0

wi

i!
αBB−1(SBB−1)iTg

=

∞∑
i=0

wi

i!
αB(B−1SB)iB−1Tg =

∞∑
i=0

wi

i!

[
α′ 0

] [S′ ?
? ?

]i [
T′g
0

]

=

∞∑
i=0

wi

i!
α′S′iT′g = α′eS

′wT′g = f ′(w, g),

such that f ′(w, g) is the joint density function of MEMEdr,n(α′,S′,T′).

Now we find the matrix B using SVD. Given dim(Rp) = dr < p, we represent
the closing vector space Rp with a matrix Rp. We then have Rp = UΣVtr.
Using U−1 = Utr, we have

UtrRp = ΣVtr =


ι1 0 · · · 0

0
. . . · · · 0

...
... ιdr 0

0 0 0 0


v

tr
1
...
vtrn

 =


ι1vtr1
...

ιdrvtrdr
0

 =

[
?
0

]
,

where the ? is of dimensions dr ×n representing potential non-zero entries. For

all matrices A ⊆ Rp, we have rank(A) ≤ rank(Rp) = dr, that is UtrA =

[
?
0

]
.

Therefore, we have UtrT︸ ︷︷ ︸ =

[
?
0

]
and UtrST =

[
?
0

]
because T ⊆ Rp and

ST ⊆ Rp.

To find a structure containing UtrSU from UtrST, we insert I = UUtr:

UtrST = UtrSU︸ ︷︷ ︸UtrT = UtrSU︸ ︷︷ ︸ [?0
]

=

[
?
0

]
.

We observe that UtrSU︸ ︷︷ ︸ has the structure
[
S′ ?
? ?

]
, where the S′ block has

dimensions of dr × dr. From the known structure UtrST, we find a structure
containing α as

αST = αU︸︷︷︸UtrST = αU︸︷︷︸ [?0
]

=
[
αU? 0

]
,

where the αU? is of dimension 1× dr.

Henceforth, the matrix U from SVD(Rp) can be used as our desired B ma-
trix in the theorem. However, to ensure the reduced representation having



88 Stochastic Model Checking without Markov Chains

α′e = 1 requires an extra condition. From αe = 1, we have that αBB−1e =[
α′ 0

]
B−1e = 1. A necessary and sufficient condition is B−1e =

[
e′
?

]
, such

that the condition is satisfied by normalising the U matrix.

Let (Utre)i denote the i-th element of the vector Utre, and diag{Utre} denote
the diagonal matrix having diagonal entries from the vector Utre, such that all
the 0 diagonal elements are substituted by 1 to allow later matrix inversion.
The normalised matrix B is defined as B = Udiag{Utre}, such that B−1e =

(diag{Utre})−1U−1e =

(Utre)−1
1 0 · · ·

0 (Utre)−1
2 · · ·

...
...

. . .


(Utre)1

(Utre)2

...

 =

[
e′
?

]
. Thus,

the normalised B matrix normalised ensure α′e = 1 in the reduced representa-
tion.

Henceforth, we have found the B matrix in the theorem. By Rp = UΣVtr,
B = Udiag{Utre}, and

αB =
[
α′ 0

]
, B−1SB =

[
S′ ?
? ?

]
, and B−1T =

[
T′

0

]
,

a smaller MEMEdr,n (α′,S′,T′) representation is obtained. 2

Theorem 5.6 A MEME representation MEMEp,n(α,S,T) is minimal if and
only if dim(Lp) = p and dim(Rp) = p.

Proof. We first prove that a minimal representation shall have dim(Lp) = p
and dim(Rp) = p. For an arbitrary representation, a smaller representation of
order dim(Lp) shall be found following Theorem 5.4, and a smaller representa-
tion of order dim(Rp) shall be found following Theorem 5.5. That’s the minimal
representation shall have its order equals dim(Lp) and dim(Rp).

Now we show that if dim(Lp) = dim(Rp) = p, then MEMEp,n(α,S,T) is
minimal by contradiction. Assume dim(Lp) = dim(Rp) = p and there exists
a smaller representation of the same distribution of dimension p′ < p, then
either dim(Lp) or dim(Rp) of MEMEp,n(α,S,T) shall be p′. The contradiction
appears as needed. 2

Corollary 5.7 Let pm be the order of a minimal representation of MEMEp,n
(α,S,T), then pm = min(dim(Lp), dim(Rp)) ≤ p.
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Proof. This corollary summarises the results from Theorem 5.4, Theorem 5.5
and Theorem 5.6, because only when pm = min(dim(Lp), dim(Rp)) it is not
possible to minimise by Theorem 5.4 and Theorem 5.5, and meanwhile the
minimality condition of Theorem 5.6 holds. 2

To sum up, let p be the order of a MEME representation, Theorem 5.6 states a
necessary and sufficient condition for the minimality of a MEME representation,
that’s both dim(Lp) and dim(Rp) are equal to p. If dim(Lp) < dim(Rp),
the representation has the minimal order of dim(Lp) and shall be minimised
according to Theorem 5.4. If dim(Rp) < dim(Lp), the representation has the
minimal order of dim(Rp) and shall be minimised according to Theorem 5.5.
We formulate the routine into an algorithm using the MATLAB language to
compute a minimal representation of MEME distributions.

In Algorithm 2, the function rref(Lp) in MATLAB produces a reduced row
Echelon form of matrix Lp, such that vector jb contains the indexes of linear
independent columns. For a MEMEp,n(α,S,T) representation, the matrix Lp
is of dimensions p× p, therefore the time complexity of rref(Lp) is O(p3). The
matrix Rp is of dimensions p× pn, therefore the time complexity of SVD(Rp) is
given as O(np3). Henceforth, the worst case complexity of Algorithm 2 is given
as O(np3).

Example 5.2 We consider a MEME5,2(α,S,T) representation, such that

α =
[
1 0 0 0 0

]
, T =


0.7500 1.0000
1.3333 1.3333
0.2000 0.2000
0.1667 0.1667
1.0000 1.0000

 ,

S =


−7.0000 5.2500 0 0 0

0 −6.0000 3.3333 0 0
0 0 −4.0000 3.6000 0
0 0 0 −3.0000 2.6667
0 0 0 0 −2.0000

 .

For this representation, we have rank(Rp) = 4, and rank(Lp) = 5 such that
Theorem 5.5 applies. By Algorithm 2, the B matrix is obtained as

B =


0.6644 0.2931 0.0407 0.0018 0.0000
−0.1517 1.1187 −0.0872 0.1202 −0.3235
−0.0633 0.3026 0.8420 −0.0813 0.5392
0.0216 −0.2683 0.5746 0.6721 −0.6470
−0.0022 0.0583 −0.2561 1.2000 0.4313

 .
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Algorithm 2 Minimise a MEME representation.

Require: MEMEp,n(α,S,T)

1: Lp =


α
αS
· · ·

αSp−1

, Rp =
[
T ST · · · Sp−1T

]
2: rank(Lp) = dl, rank(Rp) = dr
3: if dl = dr = p then
4: αm = α, Sm = S, Tm = T
5: return αm,Sm,Tm

6: end if
7: if dl ≤ dr then
8: [x, jb] = rref(Lp);
9: A = Lp(jb, :);

10: B = A\I;
11: αm = αB, Sm = ASB, Tm = AT
12: else
13: [U,Σ,V] = SVD(Rp)
14: N = diag(Utre)
15: for i = 1:p do
16: if N(i,i) equals 0 then
17: N(i,i) = 1
18: end if
19: end for
20: Bn = UN
21: αm = αBn(:, 1 : dr)
22: Sm = B−1

n SBn(1 : dr, 1 : dr)
23: Tm = B−1

n T(1 : dr, :)
24: end if
25: return αm,Sm,Tm

A minimal representation of order 4 is obtained as MEME4,2(αm,Sm,Tm),
where αm =

[
0.6644 0.2931 0.0407 0.0018

]
,

Sm =


−7.9921 7.5985 −2.0681 0.8927
−0.4620 −4.1103 2.5193 −0.3694
−0.0411 −0.5365 −2.6293 3.3373
0.0026 0.0021 −0.2605 −1.2682

 , Tm =


0.6074 0.9617
1.1869 1.2356
−0.0698 −0.0606
0.7619 0.7621

 .

Corollary 5.8 A MEME representation composed from minimal MEME
representations is not necessarily minimal.
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Proof. A simple counterexample shall be a probabilistic mixture (cf. For-
mula 5.6) for two of the same minimal MEME representation, where the result-
ing representation is always not minimal. 2

5.4 Languages for Models and Properties

In this section, we develop a stochastic process algebraMEME to express stochas-
tic systems having matrix–exponential distributed holding times and multiple
exits. We start by defining the syntax of our language, then describe some well-
formedness conditions to ensure that the defined processes have a semantics.
We then transform our language into a so-called explicit form in order to obtain
the Markov renewal process semantics, and such that the compositionality and
minimality are ensured during our transformation. To express a variety of prop-
erties of the system, we adapt continuous stochastic logic for Markov renewal
processes.

5.4.1 Syntax

To describe a Markov renewal process with labels and matrix–exponential dis-
tributed durations, we introduce a process algebra MEME.

Definition 5.9 (MEME Syntax) The language MEME of Markov renewal
processes of matrix–exponential kernels and labels consists of global systems
sys, defined using initial probability distributions ini , system definitions def ,
general processes Q, processes P , and annotations ann (where we assume that
m, t ∈ N, λ ∈ <>0 and ∀i: πi ∈ [0,1] ):

sys ::= ini 7→ def

ini ::= X1 : π1, · · · , Xm : πm

def ::= X1{ann1}[rew1 ] := Q1 ; · · · ;Xm{annm}[rewm ] := Qm

Q ::= 0 | P

P ::= [〈(α,S,T) 7→
−→
X〉] | [〈f(·) 7→

−→
X〉] |

∑min
i∈IPi |

∑max
i∈I Pi |

∑Pr
i∈I πiPi

| λ.X | let MEME (
−→
X)i = Pi in P | MEME (

−→
X)i

ann ::= a1, · · · , at
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A global system sys is defined by an initial probability distribution together
with system definitions, i.e. ini 7→ def . Here ini assigns initial probabilities to
indicate which process will start with what probability; we shall impose well-
formedness conditions to ensure that the listed probabilities add up to one.

A system definition def denotes a set of m recursively defined processes of
the form, X1{ann1}[rew1 ] := Q1 ; · · · ;Xm{annm}[rewm ] := Qm ; the well-
formedness conditions imposed below will ensure that all process names X1, . . . ,
Xm are pairwise distinct. For each process we shall use ann to describe a set
of atomic propositions taken from a finite and non-empty set AP of atomic
propositions; duplicates are allowed but have no effect. We leave the field blank
for the empty ann.

A general process Q denotes either a terminating process described by the ter-
minal symbol 0, or an normal process P . A process P consists of distribution
definitions and multiary compositional operators. We use [〈 〉] to express distri-
bution definitions in order to stress that a MEME distribution shall be treated
as an atomic action.

• The phrases [〈(α,S,T) 7→
−→
X〉] and [〈f(·) 7→

−→
X〉] are dedicated to specify

a multi-exits matrix–exponential distribution using matrix representation
(α,S,T) and density function f(·), respectively. The notation f(·) stands
for a collection of known MEME density functions perhaps taken from
a library; we shall focus on the matrix representation to illustrate fur-
ther results. In our well-formedness conditions we shall impose that the
matrix representation and density function need to be valid according to
Definition 5.2.

CPH distributions constitute a subclass of MEl distributions and are very
useful in stochastic model checking. The phrase [〈(α,S,T) 7→

−→
X〉] gives

rise to valid Multi-Exits CPH (MECPH) distributions if we impose some
extra conditions.

The multiple exits from a MEME distribution map to an ordered list of
continuation processes

−→
X, such that the i-th column of multi-exits ma-

trix T links to the i-th continuation process of
−→
X; we shall impose well-

formedness conditions to ensure that all the continuation processes of
−→
X

are defined, and the size of
−→
X equals the number of columns of matrix T.

• There are three multiary operators,
∑min
i∈I ,

∑max
i∈I , and

∑Pr
i∈I πi, that spec-

ify a composite process corresponding to the compositional operators men-
tioned in Section 5.3.2, such that each participating process can again be
specified using multiary operators. This allows us to nest multiary oper-
ators for expressing more complicated compositional constructions.
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A process
∑min
i∈IPi describes a race between all participating processes,

such that the fastest process wins the race and its multi-exits correspond to
the continuation. The race is defined as the minimum of MEME distribu-
tions following Rule (5.4). A process

∑max
i∈I Pi describes a synchronisation

between all participating processes such that the multi-exits of the slow-
est process correspond to the continuation. The synchronisation is defined
as the maximum of MEME distributions following Rule (5.5). A process∑Pr
i∈I πiPi presents a probabilistic execution of all participating processes,

such that one of candidate processes is chosen probabilistically and its
multi-exits correspond to the continuation. The probabilistic execution is
defined as the probabilistic mixture of MEME distributions following Rule
(5.6), where we require

∑Pr
i∈I πi = 1.

Without changing expressiveness, the phrase λ.X in a process definition can be
used as a shorthand for specifying a CTMC, such that the λ > 0 is the pa-
rameter of an EXP distribution. This is purely syntactic sugar, since λ.X =
[〈([1], [−λ], [λ]) 7→ X〉]. As another shorthand for writing MEME distributions,
the phrases let MEME (

−→
X)i : Pi in P and MEME (

−→
X)i allow us to express any

subprocess Pi as MEME (
−→
X)i , such that the corresponding distribution defini-

tion comes afterwards. E.g., we can write that P := MEME (X1 ,X3 ,X4 )1 +min

· · · and MEME (X1 ,X3 ,X4 )1 := [〈(α,S,T) 7→ (X1, X3, X4)〉].

5.4.2 Well-formedness conditions

In the following we shall write FN(· · · ) for the process names occurring in non-
defining positions in the construct, and DN(· · · ) for the defined process names
of the construct. The definitions are standard so we omit the details; as an
example we note that DN(X1{ann1}[rew1 ] := Q1 ; · · · ;Xm{annm}[rewm ] :=
Qm) = {X1 , · · · ,Xm}. For each syntactic category we have a well-formedness
judgement; the details are given in Table 5.2, and are explained below.

The clause for a global system, `sys ini 7→ def , ensures that all process vari-
ables used in ini and def are defined. The clause for an initial probabil-
ity distribution, `ini, ensures that all initial state names are pairwise distinct
and the listed probabilities add up to 1. The clause for system definitions,
`def · · · ;Xi{anni}[rewi] := Pi; · · · , ensures that all the process names are pair-
wise distinct, and all terminating processes shall have no rewards.

The clause for process definition of MEME distribution in matrix representa-
tion, X1 · · ·Xm `P [〈(α,S,T) 7→

−→
X〉], requires that the joint density function

f(w, g) from representation (α,S,T) is valid. That is all the elements of α
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`ini ini `def def

`sys ini 7→ def
if (FN(def ) ∪ FN(ini)) ⊆ DN(def );

`ini X1 : π1, · · ·Xm : πm if

{
Xi 6= Xj when i 6= j;

Σmi=1πi = 1.

X1 · · ·Xm `P Pi `rew rewi

`def · · · ;Xi{anni}[rewi] := Qi; · · ·
if Xi 6= Xj when i 6= j.

X1 · · ·Xm `P [〈(α,S,T) 7→
−→
X〉]

if



∑
i αi = 1;

let Tg be the g-th column of T,

∀w, g : f(w, g) = αeSwTg ≥ 0, and∫ ∞
0

∑
g

f(w, g)dw = 1;

∀X ∈
−→
X : X ∈ {X1, · · · , Xm};

|
−→
X| = the number of columns of T.

X1 · · ·Xm `P [〈f(·) 7→
−→
X〉]

if



f(·) ≥ 0 and
∫∞

0
f(·) = 1;

∀X ∈
−→
X : X ∈ {X1, · · · , Xm};

let n = the number of columns of T,

then |
−→
X| = n.

X1 · · ·Xm `P
∑Pr
i∈I πiPi

if
∑
i∈I πi = 1.

Table 5.2: Well-formedness rules for language MEME.

sum to one, and for all w, g that f(w, g) is non-negative and integrates to one.
For the continuation processes

−→
X, we ensure that all continuation processes

−→
X

are defined. Let |
−→
X| be the cardinality of

−→
X, we ensure that the number of

continuation processes equals the number of exits.

The clause X1 · · ·Xm `P [〈(α,S,T) 7→
−→
X〉] additionally specify a MECPH

distribution if some side conditions are satisfied. We shall require additionally
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all the elements of α, S and T are non-negative except the diagonal elements
of S, and the i-th row sum of S added to the i-th row sum of T equals 0 for all
i. The clause X1 · · ·Xm `P [〈f(·) 7→

−→
X〉] ensures a MEME density function f(·)

is valid, with the same requirements on continuation processes.

For the clause of multiary operator
∑Pr
i∈I πi, we ensure that all πis add up to

one.

Example 5.3 We shall consider a Fault-Tolerant Machine (FTM) consisting
of two independent components C1 and C2. The FTM starts with both compo-
nents in good conditions, i.e. ON, however as time elapses the components shall
eventually fail. For each component, the time until a failure corresponds to a
life time distribution followed by turning the FTM into two types of damages,
i.e. minor damage minD and major damage maxD. Once the FTM gets dam-
aged, its self-repair mechanism activates automatically, such that the time for
performing self-repair depends on the damage type and individual repair time
distribution of the components. The self-repair is not guaranteed to be always
successful, which instead is followed by several endings, e.g. ON, maxD or OFF.
The FTM breaks down completely, i.e. OFF, once the failure is unrepairable.

ON

minD

maxD

OFF

Figure 5.2: Graphical representation of a fault-tolerant machine.

Assume that, the component C1 has a life time distribution (α1,S1,T1), while
it has a repair time distribution (ᾱ1, S̄1, T̄1) with the possibilities of turning the
FTM to ON, maxD or OFF. The component C2 has a life time distribution
(α2,S2,T2), while it has a repair time distribution (ᾱ2, S̄2, T̄2) with possibili-
ties of turning the FTM to ON or OFF. The FTM is illustrated graphically in
Fig. 5.2; formally it consists of the definitions of Table 5.3 together with the
initial probability distribution ON : 1, minD : 0, maxD : 0, OFF : 0. We explain
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the details below.

ON{normal} := π1[〈(α1,S1,T1) 7→ (minD,maxD)〉]
+Prπ2[〈(α2,S2,T2) 7→ (minD,maxD)〉];

minD{repair} := [〈(ᾱ1, S̄1, T̄1) 7→ (ON,maxD,OFF)〉]
+min[〈(ᾱ2, S̄2, T̄2) 7→ (ON,OFF)〉];

maxD{repair} := [〈(ᾱ1, S̄1, T̄1) 7→ (ON,maxD,OFF)〉]
+max[〈(ᾱ2, S̄2, T̄2) 7→ (ON,OFF)〉];

OFF{break} := 0

Table 5.3: A fault-tolerant machine in the MEME language.

The FTM always starts under good conditions. Depending on the external en-
vironment, either C1 or C2 will eventually fail according to a given probability
distribution (π1, π2). Thus, the time for the FTM entering the damage states
minD or maxD is determined by a probabilistic mixture of the life time distribu-
tions of C1 and C2. When the FTM enters the state minD, the overall self-repair
time and continuations are determined by the component which repairs faster.
That corresponds the minimum of two repair time distributions. When the FTM
enters the state maxD, the overall self-repair time and continuations are deter-
mined by the component which repairs slower. That corresponds the maximum
of two repair time distributions. The unrepairable state OFF is simply a termi-
nation 0.

There are labels to identify if the FTM is under normal, repair or break, we shall
discuss the FTM in more detail in subsequent examples.

5.4.3 Aggregating Multi-exits

We have mentioned that a system may be composed using the multiary operators
of the MEME language, such that the composition of MEME distributions follow
the results of Section 5.3.2. In this subsection, we consider how to aggregate the
multi-exits according to duplicate continuation processes during composition.

To remove the duplication from multiple occurrence of the same continua-
tion processes in

−→
X, the exits having the same continuation processes shall be

merged, and the corresponding elements of multi-exit matrix T shall be added
up. As an example,

−→
X = (X1, X2, X1), X1 is duplicate and shall be merged.

Henceforth, the composite MEME distribution shall have pairwise distinct con-
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tinuation processes as desired, and the number of columns for the multi-exit
matrix T is reduced accordingly.

For each multiple continuation process, we shall use an Incidence Matrix M

to produce a reduced multi-exit matrix T′ and continuation process
−→
X′. The

elements of an incidence matrix M consist of only 0 and 1, which are commonly
used to indicate the relationships between two objects. Assume that a distribu-
tion [〈(α,S,T)p,n 7→

−→
X〉] has the same continuation process X̌ appearing at the

t1, . . . , tk-th position of
−→
X, where k ≤ n and t1 < · · · < tk. From a n× n iden-

tity matrix I =
[
e1 . . . en

]
, we define an incident matrix M by deleting the

t1, . . . , tk−1 columns of I and replacing the tk-th column of I with the column
vector et1,...,tk , such that the t1, . . . , tk-th elements are 1 and the remaining ones
are 0. The obtained incident matrix M is of dimensions n× (n− k + 1), which
shall look like

M =
[
e1 . . . et1−1 et1+1 . . . etk−1 et1,...,tk etk+1 . . . en

]
.

The MEME representation after merging the multiple occurrence X̌ is given
as [〈(α,S,T′)p,n−k+1 7→

−→
X′〉], such that T′ = TM and

−→
X′ are

−→
X with all X̌

deleted except for the last. In this manner, the multiple occurrence of X̌ are
merged into the last X̌ of

−→
X, and the reduced multi-exits T′ is produced.

Example 5.4 Let [〈(α,S,T) 7→ (X1, X2, X1)〉] be a valid distribution defini-
tion of the language MEME with multiple occurrence of X1. To aggregate the
multiple occurrence of X1, we construct an incidence matrix M as

M =

0 1
1 0
0 1

 .

That produces a distribution definition with multiple X1 merged as [〈(α,S,T′)
7→ (X2, X1)〉], where T′ = TM.

We shall follow the same pattern to construct incidence matrices M for each
duplicate element of

−→
X. To ensure that all multiple continuation processes are

eliminated, we shall aggregate all duplicate elements in
−→
X with the order for

example from left to right.
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5.4.4 Explicit form of the MEME calculus

We take a transformational approach to the semantics of the MEME calculus,
such that we enforce the compositionality and minimality of the primitives in
our language through the transformation towards the explicit form. The explicit
form shall later be related to the semantics of the language.

Definition 5.10 (MEME Explicit Form) The explicit form of the language
MEME is obtained by first removing all syntactic sugar (i.e. replacing shorthand
expressions with explicit distribution definitions), and then minimising and solv-
ing all sorts of compositions for multi-exits matrix–exponential distributions.

To remove syntactic sugar, we use the algorithm Tsys to collect a MEME system
sys embedded in the system definition def and associate initial probabilities ini .
Here, the system definitions def can be any process definitions, e.g. terminating
processes, compositional operators and distribution definitions. All terminat-
ing processes 0 shall remain unchanged during transformation. The shorthand
expressions λ.X, let MEME (

−→
X)i : Pi in P and MEME (

−→
X)i , are replaced by

their corresponding distribution definitions, i.e. [〈(α,S,T) 7→
−→
X〉]. The system

definitions without syntactic sugar should look like the MEME definitions in
Table 5.3 of Example 5.2.

Before we enforce compositionality, we first minimise all distribution defini-
tions [〈(α,S,T) 7→

−→
X〉] into their minimal size. We shall use algorithm Tmini

to replace each distribution definition with their corresponding minimal rep-
resentation following Algorithm 2. Thereafter, we deal with all occurrence
of race, synchronisation and probabilistic execution among MEME distribu-
tions via algorithms Tmin, Tmax and Tprob, respectively. The matrix opera-
tions for each algorithm have been explained in Section 5.3.2. The algorithm
Tmin replaces

∑min
i∈I [〈(αi,Si,Ti)pi,ni 7→

−→
Xi〉] with [〈(α,S,T)p,n 7→

−→
X〉], such

that the later is a composite MEME distribution for the minimum of all par-
ticipating distributions obtained by the Rule (5.4). The algorithm Tmax re-
places

∑max
i∈I [〈(αi,Si,Ti)pi,ni 7→

−→
Xi〉] with [〈(α,S,T)p,n 7→

−→
X〉], such that the

later is a composite MEME distribution for the maximum of all participat-
ing distributions obtained by the Rule (5.5). The algorithm Tprob replaces∑Pr
i∈I πi[〈(αi,Si,Ti)pi,ni 7→

−→
Xi〉] with [〈(α,S,T)p,n 7→

−→
X〉], such that the later is

a composite MEME distribution for the probabilistic mixture of all participating
distributions obtained by the Rule (5.6). Notice that the multiple occurrence
of continuation processes in

−→
X have also been merged using incidence matri-

ces as discussed in Section 5.4.3 using algorithms Tmini, Tmin, Tmax and Tprob.
Therefore, the continuation processes of composite MEME representations shall
always be pairwise distinct.
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From Corollary 5.8, we know that a composite MEME representation is not
necessarily minimal, even given each participating MEME distribution is min-
imal. To ensure that the composite MEME distribution is of minimal order,
we shall apply algorithm Tmini for all composite MEME representations. For
process definitions having nested compositional operators, we shall repeat the
algorithms Tmini, Tmin, Tmax and Tprob until we have one explicit and minimal
distribution definition.

Henceforth, we obtain a list of system definitions, such that each system process
is either a termination 0 or a minimal represented MEME distribution. The
explicit form of the MEME calculus shall look like

· · · ;Xi{anni} := 0 | [〈(α,S,T)p,n 7→
−→
X〉]; · · · .

5.4.5 Markov Renewal Process Semantics

From the explicit form of the MEME calculus, we define the semantics of the
language as a Markov renewal process of matrix–exponential kernels with labels.

A Markov renewal process (cf. Section 2.2.5, Definition 2.9) represents both the
transition epoch and the state of the process at that epoch. In our formalism,
we have a matrix–exponential distribution associated to each state as the kernel
of an MRP. That means, a random time, e.g. Wn+1 −Wn, is represented by a
random variable W ; and the next state, e.g. Hn+1, is represented by a random
variable G, such that the (W,G) is distributed according to a MEME repre-
sentation. Notice that, since we do not consider immediate transitions, i.e. a
transition cannot happen at the holding time equals 0, the transition epochs
shall not be equal to each other, i.e. 0 < W0 < W1 < W2 < · · · . Now we define
an MRP with ME kernels.

Definition 5.11 (Markov Renewal Process of ME Kernels) AMarkov
Renewal Process (MRP) of Matrix–Exponential (ME) kernels with Labels (ab-
breviated MRPLR

MEME) is given by a tuple (X,π,MEME(·),L) where:

• X = [xi]i≤m is a set of states, such that m is finite;

• π = [πi]i≤m is an initial probability distribution;

• MEME(·) = [meme(·)i,j ]i,j≤m is a density function matrix with an ar-
gument in <>0, where each meme(·)i,j is a probability density function
denoting the density of a state change from i to j when the holding time
is given by the argument;
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• L = [L(xi)]i≤m is a set of labelling vectors, such that L(xi) ⊆ AP is a
labelling vector for state xi.

Definition 5.12 (MEME Semantics) The semantics ini 7→ def of a well-
formed MEME system in the explicit form is the following MRPLR

MEME (X,π,
MEME(·),L):

• the set of states X consists of all process variables defined in def ;

• the initial probability distribution π is defined in ini ;

• let w be the argument, the i-th row of MEME(w) corresponds to the
Xi{anni} defined in def , such that when Xi{anni} := [〈(αi,Si,Ti)p,n 7→−→
X〉]:

meme(w)i,j =

 αie
SiwTig, with g’s element of

−→
X is xj ,

0, otherwise;

when Xi{anni} := 0: meme(w)i,j = 0 for all j (the probability densities
for a terminating process jumping to other states are always 0).

• the labelling vector L = [L(xi)]i≤m, where L(xi) = anni when def con-
tains Xi{anni} := · · · .

Example 5.5 Returning to Example 5.3, assume that we have transformed
the language MEME of Table 5.3 into the explicit form showed in Table 5.4.
Here, we write [〈(αON,SON,TON)pON

7→ (minD,maxD)〉] as the resulting mini-
mal representation of MEME distributions for state ON after transformation.
Similar notations have been used for states minD, maxD and OFF.

ON{{normal}} := [〈(αON,SON,TON) 7→ (minD,maxD)〉];
minD{repair} := [〈(αminD,SminD,TminD) 7→ (ON,maxD,OFF)〉];
maxD{repair} := [〈(αmaxD,SmaxD,TmaxD) 7→ (ON,maxD,OFF)〉];
OFF{break} := 0

Table 5.4: The fault tolerant machine in explicit form.

Using the ordering (ON,minD,maxD,OFF) on process names, we obtain the ini-
tial probability distribution π and the labelling vector L as

π =
[
1 0 0 0

]
, L = {{normal}, {repair}, {repair}, {break}},
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and we get the density fudnction matrix at time w, MEME(w), as


0 αONe

SONwTON1 αONe
SONwTON2 0

αminDe
SminDwTminD1 0 αminDe

SminDwTminD2 αminDe
SminDwTminD3

αmaxDe
SmaxDwTmaxD1 0 αmaxDe

SmaxDwTmaxD2 αmaxDe
SmaxDwTmaxD3

0 0 0 0

 .

5.4.6 Logics for MRPLR
MEME

Continuous Stochastic Logic (CSL) [ASSB96] allows to specify state as well as
path-based properties on CTMCs [BHHK03]. Previous work has extended CSL
on semi-Markov chains [LHK01] and semi–Markov Petri net [BDHK03]. In this
work, we extend CSL to Markov renewal processes with matrix–exponential ker-
nels. Before the formal syntax and semantics of CSL, we first introduce the basic
concepts of MRPLR

MEME. Consider an MRPLR
MEME M = (X,π,MEME(w),L).

Paths An infinite path σ of M is a sequence x0
w0→ x1

w1→ . . . with state
xi ∈ X and holding time wi ∈ <>0, such that meme(wi)xi,xi+1

> 0 for all
i. A finite path σ of M is a sequence x0

w0→ x1
w1→ · · ·xl−1

wl−1→ xl such that
meme(wi)xi,xi+1 > 0 for all i < l and xl is absorbing, i.e. ∀w ∈ <>0, ∀xl′ ∈ X:
meme(w)xl,xl′ = 0. For an infinite path σ and i ∈ N0, let σ(i) = xi be the
(i + 1)-st state of σ and δ(σ, i) = wi be the holding time spent in xi. For
t ∈ <≥0 and i the smallest index satisfying t ≤

∑i
j=0 wj , let σ@t = σ(i) be

the state in σ occupied at time t. Let Path denote the set of paths inM and
Path(x) denote the set of paths inM that start in x.

Borel space A probability measure PM on the set of paths, Path, of M is
defined using the standard cylinder construction. Let x0, . . . , xl ∈ X with ∃wi:
meme(wi)xi,xi+1 > 0 for 0 ≤ i < l, and let I0, . . . , Il−1 be non-empty intervals
in <≥0. Then, let C(x0, I0, . . . , Il−1, xl) denote the cylinder set consisting of all
paths σ ∈ Path(x0) such that σ(i) = xi for all i ≤ l and δ(σ, i) ∈ Ii for all
i < l. Let F(path) be the smallest σ-algebra on Path which contains all sets
C(x, I0, . . . , Il−1, xl), where x, . . . , xl range over all state sequences satisfying
x = x0, ∃wi: meme(wi)si,si+1 > 0 with 0 ≤ i < l, and I0, . . . , Il−1 range
over all sequences of nonempty intervals in <≥0. The probability measure PM
on F(path) is the unique measure defined by induction on l by the base case
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PM(C(x0)) = 1, and for l ≥ 0:

PM(C(x, I0, . . . , Il−1, xl, I
′, x′)) = PM(C(x, I0, . . . , Il−1, xl))PM(xl, I

′, x′),

such that PM(xl, I
′, x′) is the probability of a state jump from xl to x′ in the

interval I ′. Let meme(w)xl,x′ = αeSwTg be corresponding density function,
a = inf I ′ and b = sup I ′, PM(xl, cf(I ′), x′) is computed as

PM(xl, I
′, x′) =

∫ b

a

αeSwTgdw. (5.7)

For any state x0, the probability measure of the set of infinite path x0
w0→ x1

w1→
. . . is zero. Now, we are ready to introduce the syntax of CSL for MRPLR

MEME.

Definition 5.13 (CSL Syntax) Given probability p ∈ [0, 1], comparison
operator ./ ∈ {<,≤, >,≥}, I ⊆ <≥0, and a ∈ AP , the syntax of CSL consists
of state formulae Φ and path formulae Ψ, is defined by the following formulae:

Φ ::= true | a | ¬Φ | Φ1 ∧ Φ2 | S./p[Φ] | P./p[Ψ]

Ψ ::= XIΦ | Φ1U
IΦ2

Other boolean connectives can be derived as, e.g. false = ¬true, Φ1 ∨ Φ2 =
¬(¬Φ1 ∧ ¬Φ2) and Φ1 → Φ2 = ¬Φ1 ∨ Φ2. The state formula S./p[Φ] asserts
the limiting probability measure PSx for all Φ-states satisfying the condition ./ p
given the initial state x. We shall write PSx (x′) as the limiting probability
of state x′ starting from the state x. The state formula P./p[Ψ] asserts the
probabilistic path measure PCx of Ψ-Path(x) satisfying the condition ./ p. The
path formula XI Φ denote the paths where Φ holds in the next state at some time
point within the interval I. The path formula Φ1 U

I Φ2 denote the paths where,
∃t ∈ I, Φ1 continuously holds during the interval (inf I, t) and Φ2 eventually
holds from time t. The usual unbound until formula is coded when the interval
I has sup I =∞.

The meaning of CSL state formulae and path formulae are defined by means of
a satisfaction relation �. Now we introduce the formal semantics.

Definition 5.14 (CSL Semantics) The state formulae of CSL are inter-
preted over the states of an MRPLR

MEME. Let M = (X,π,MEME(w),L), the
satisfaction relation � is defined by

• x � true for all x ∈ X,
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• x � a iff a ∈ L(x),

• x � ¬Φ iff x 6� Φ,

• x � Φ1 ∧ Φ2 iff x � Φ1 and x � Φ2,

• x � S./p[Φ] iff
∑
x′�Φ PSx (x′) ./ p,

• x � P./p[Ψ] iff PCx (Ψ) ./ p,

such that PCx (Ψ) denotes the probability measure of all paths σ ∈ Path(x)
satisfying Ψ. The satisfaction relation for the path formulae is defined by:

• σ � XIΦ iff σ(1) is defined, σ(1) � Φ and δ(σ, 0) ∈ I,

• σ � Φ1U
IΦ2 iff ∃t ∈ I such that σ@t � Φ2 and ∀t′ ∈ [0, t) σ@t′ � Φ1.

Consider the FTM in Example 5.5, we shall write P<0.1[repair U[2,4]break] to
express a probabilistic timed reachability property that once the machine starts
repairing, the probability of the machine breaking down between 2 and 4 hours
is less than 0.1.

5.5 Transient and Limiting Probabilities

The semantics of a well-formed MEME system is a Markov renewal process with
matrix–exponential kernels and labels MRPLR

MEME. In this section, we discuss
transient and limiting probabilities on anMRPLR

MEME. We shall expand all MEME
representations of anMRPLR

MEME to express a stochastic process, which essentially
is not a CTMC. However, the equation systems for computing transient and
limiting probabilities are similar to those of CTMCs. Henceforth, we are able
to apply most numerical methods of CTMCs in the MEME setting.

Given an MRPLR
MEME (X,π,MEME(w),L), for each state xi ∈ X we shall find a

MEME representation MEMEpi,ni(αi,Si,Ti), such that we write the represen-
tation MEME1,1([1], [0], [0]) for all absorbing states. From that, we construct a
matrix Q as the expansions of all MEME representations, which looks like

Q =


S1 T12α2 · · · T1mαm

T21α1 S2 · · · T2mαm
...

...
. . .

...
Tm1α1 Tm2α2 · · · Sm


∑m
i=1 pi×

∑m
i=1 pi

,
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where Tij is the g-th column of matrix Ti, given the g-th element of
−→
Xi is Xj ;

otherwise Tij = 0. Notice that there is no proper probabilistic interpretation
of a single entry of the Q matrix. However, probabilistic interpretation in term
of an MRP remains valid on block matrices: the matrix Si corresponds to the
state i of the MRP, and the matrix Tijαj corresponds to the jump from state
i to state j of the MRP. Therefore, after a MEME system enters a state i, it
shall stay in the state for some time corresponding to Si, then jump to other
states, such that jumping to the state j corresponds to the block Tijαj .

We shall also expand the initial probability vector π = (π1, π2, . . . , πm) with
respect to the different row vectors α of the MEME representations. That
defines an initial vector πQ = (π1α1︸ ︷︷ ︸

p1

, π2α2︸ ︷︷ ︸
p2

, . . . , πmαm︸ ︷︷ ︸
pm

).

Definition 5.15 (Transient Vector) Let β(t) be an transient vector for
the time t having the same dimensions as πQ, and β(t)i ∈ < be the i-th element
of β(t), the vector β(t) satisfies that

∑m
i=1 pi∑
j=1

β(t)j = 1, β(0) = πQ, and β′(t) = β(t)Q, for t > 0. (5.8)

This entails that β(t) = πQe
Qt.

The equation system of (5.8) is standard for calculating transient probabilities
on CTMCs, such that we need to solve a system of linear differential equations
to compute the transient vector β(t), for instance using Runge-Kutta meth-
ods [Ste94]. To evaluate the transient probabilities of being in the states of
MRPLR

MEME, we shall aggregate β(t). Let (β̂(t)1, β̂(t)2, . . . , β̂(t)m) be a par-
tition of β(t), such that β̂(t)1 is a vector containing the first p1 elements,
β̂(t)2 is a vector containing the successive p2 elements after β̂(t)1, and so
on. The transient probability vector π(t) of an MRPLR

MEME is defined as π(t) =

(β̂(t)1e, β̂(t)2e, . . . , β̂(t)me), such that the probability of being in state i after t
time units is calculated by the sum of all its elements from the transient vector,
i.e. β̂(t)ie, with the condition that (β̂(0)1e, β̂(0)2e, . . . , β̂(0)me) = π.

The limiting probability distribution π(∞) is defined straightforwardly when
time t tends to ∞, i.e. π(∞) = (β̂(∞)1e, β̂(∞)2e, . . . , β̂(∞)me). For the limit-
ing of transient vector, the following equation holds

β(∞) = β(∞)eQt, for t ≥ 0.
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Like CTMCs, an MRPLR
MEME is called irreducible when each of its states can

reach every other state with some finite paths in the embedded Markov chain,
and reducible otherwise. For an irreducible MRPLR

MEME, the limiting probability
distribution is independent of the initial distribution, which always exists and
shall be calculated by solving the following linear equation systems

β(∞)Q = 0, and

∑m
i=1 pi∑
j=1

β(∞)j = 1. (5.9)

Observation 3 We have that β(∞) = β(∞)eQt for t ≥ 0 if and only if
β(∞)Q = 0.

Proof

β(∞)Q = 0⇔ β(∞)Qn = 0, for all n ≥ 1

⇔ β(∞)

∞∑
n=1

tn

n!
Qn = 0, for t ≥ 0

⇔ β(∞)

∞∑
n=0

tn

n!
Qn = 0, for t ≥ 0

⇔ β(∞)eQt = β(∞), for t ≥ 0

2

The equation system of (5.9) is standard for the steady-state probabilities on
CTMCs, such that well-known numerical methods, for instance Gaussian elim-
ination [Ste94], could be used.

Numerical Considerations We have mentioned that the equation systems
(5.8) and (5.9) of MRPLR

MEME are standard as CTMCs, however some numer-
ical methods for CTMCs may not be adaptable to our problem because of
the generalisation from ME distributions, e.g. non-diagonal negative elements
and row sum does not equal zero. For instance, the popular uniformisation
method [BHHK03, KNP07] is not directly applicable for transient probabilities,
as the discretised transition probability matrix might have negative entries. And
in general the equations (5.9) might exist multiple solutions. However, this is
outside the scope of this work and we put this as an open question, which needs
further investigations.

To test our approach, we have made experimental studies on the MATLAB
platform taking some numerical examples of the FTM. We report one of them
as Example 5.6.
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Example 5.6 Returning to Example 5.5, from the semantics of FTM, we
shall find the square matrix Q of dimension pON + pminD + pmaxD + 1 as

Q =


SON TON1αminD TON2αmaxD 0

TminD1αON SminD TminD2αmaxD TminD3

TmaxD1αON TmaxD2αminD SmaxD TmaxD3

0 0 0 0

 ,
initial probability vector πQ as

πQ = (αON︸︷︷︸
pON

, 0, . . . , 0︸ ︷︷ ︸
pminD

, 0, . . . , 0︸ ︷︷ ︸
pmaxD

, 0).

To compute transient probabilities, we compose three MEME representations
for the states ON, minD and maxD through probabilistic mixture, minimum and
maximum, respectively, using the ME-3 distribution of Example 5.1 and the
ME-3 distribution of [BN03]. The matrix Q after expansion is of dimensions
34 × 34 with pON = 15, pminD = 9, and pmaxD = 9. Since the expanded ma-
trix Q is rather huge, we omit the detailed entries. We compute the transient
vector β(8.34) = (0.0059, -0.0041, 0.0008, -0.1754, 0.0099, -0.0153, 0.2202,
-0.0012, 0.0213, -0.0002, -0.0178, 0.0252, 0.0477, 0.0595, 0.0712, 0.0049, -
0.0032, 0.0008, -0.1370, 0.0089, -0.0110, 0.1726, -0.0020, 0.0157, 0.0007, -
0.0508, 0.0686, 0.0395, 0.0313, 0.0407, 0.0018, -0.1270, 0.1714, 0.5268), and
then transient probability vector π(8.34) =

[
0.2477 0.0495 0.1760 0.5268

]
.

That interprets, after running the FTM 8.34 time units, the probabilities of
FTM being ON, minD, maxD and OFF are 0.2477, 0.0495, 0.1760 and 0.5268,
respectively. After running 44.4 time unites, the chance of the FTM getting
broken is more than 99%, i.e. β(44.4) = (0.0001, -0.0001, 0.0000, -0.0035,
0.0002, -0.0003, 0.0044, -0.0000, 0.0004, -0.0000, -0.0003, 0.0005, 0.0010,
0.0013, 0.0016, 0.0001, -0.0001, 0.0000, -0.0027, 0.0001, -0.0002, 0.0033, -
0.0000, 0.0003, 0.0000, -0.0011, 0.0015, 0.0009, 0.0006, 0.0008, 0.0000, -
0.0028, 0.0038, 0.9900) and π(44.4) =

[
0.0054 0.0010 0.0037 0.9900

]
.

Constructing and computing such an example in MATLAB executes instanta-
neously.

5.6 Model Checking MRPLR
MEME against CSL

In this section, we study model checking algorithms to ascertain stochastic prop-
erties on a well-formed MEME system. We first introduce how to transform
an MRPLR

MEME to a semi-Markov chain in order to adapt model checking algo-
rithms for SMCs [LHK01]. Afterwards, we illustrate the direct model checking
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algorithms for MRPLR
MEME, which are similar to the standard model checking

algorithms on CTMCs [BHHK03, KNP07].

5.6.1 Transform MRPLR
MEME to Semi-Markov Chains

Consider only the states of a Markov renewal process, one shall obtain a semi-
Markov process. Since an MRPLR

MEME has a discrete state space, its semi-Markov
processes are Semi-Markov Chains (SMCs). Model checking SMCs against CSL
formulae have been studied in [LHK01], we first show how to derive a SMC from
an MRPLR

MEME, and the model checking CSL formulae are similar to the MRP
case at the later section.

Consider an MRPLR
MEME M = (X,π,MEME(w),L), each meme(w)i,j relates to

a joint density function f(w, g) of MEME distributions. Integrating each density
functionmeme(w)i,j of MEME(w) on the non-negative real line, i.e. F (∞, g) =∫∞

0
f(x, g)dx (cf. Formula (5.3)), we shall obtain a transition matrix P of the

embedded Markov chain, denoted as emb(M). Let Pemb(M)(x, x̄) denote the
probability of reaching state x̄ from state x in the embedded Markov chain, and
let Px,x′ be the one step transition probability from state x to state x′, it is
known that Pemb(M)(x, x̄) can be computed as the least solution of the linear
equation system:

Pemb(M)(x, x̄) =

{
1, if x = x̄;∑
x′∈X Px,x′Pemb(M)(x′, x̄), otherwise.

Recall Definition 2.9 of an MRP, for some state i and j, the F (w, g) is the
probability P(Hn+1 = j,Wn+1 −Wn ≤ w | Hn = i), and the F (∞, g) is the
probability P(Hn+1 = j | Hn = i). Thus, we derive a conditional probability
Q(w)ij as the probability to jump from i to j within w time units given that a
transition from i to j will be taken, i.e.

P (Wn+1 −Wn ≤ w | (Hn+1 = j|Hn = i)) =
P(Hn+1 = j,Wn+1 −Wn ≤ w | Hn = i)

P(Hn+1 = j | Hn = i)
.

For some corresponding exit g, we compute Q(w)ij as

Q(w)ij =
F (w, g)

F (∞, g)
=
αS−1(eSw − I)Tg

α(−S)−1Tg
.

Let Q(w) be the matrix consisting of Q(w)ij for i, j = 1, . . . ,m, X and L remain
unchanged from MRPLR

MEME, the tuple (X,P,Q(w),L) defines a Semi-Markov
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chain. The model checking (X,P,Q(w),L) against CSL follows the methods
mentioned in [LHK01], which only consider the average amount of time spent
in some state as long run behaviour, i.e. taking the expected values of all the
distributions Q(w)i,j . However, since the limiting distributions of an MRPLR

MEME

always exist, we shall be able to perform more precise measurements directly on
MRPLR

MEME rather than the SMCs approach.

5.6.2 Model Checking Markov Renewal Processes

For an MRPLR
MEME M = (X,π,MEME(w), L), we could specify interesting

measurements by CSL formulae. The model checking algorithm takes a M
and a CSL formula Φ as inputs, and then produces a set of satisfied states,
i.e. Sat(Φ) = {x ∈ X | x � Φ}, as output. To know if a state x satisfies the
formula Φ, we only need to find if x ∈ Sat(Φ). The set Sat(Φ) is computed
recursively for the sub-formulas of Φ. The Sat(Φ) for each state formula is
defined as

• Sat(true) = X

• Sat(a) = {x ∈ X | a ∈ L(x)}

• Sat(¬Φ) = X \ Sat(Φ)

• Sat(Φ1 ∧ Φ2) = Sat(Φ1) ∩ Sat(Φ2)

• Sat(S./p[Φ]) = {x ∈ X |
∑
x′�Φ PSx (x′) ./ p}

• Sat(P./p[Ψ]) = {x ∈ X | PCx (Ψ) ./ p}

Model checking for the majority of state formulae is trivial to implement with
the exceptions of S./p[Φ] and P./p[Ψ]. We shall deal with them separately at
below.

S./p[Φ] formulae. From the semantics of CSL state formulae, a state x �
S./p[Φ] iff

∑
x′�Φ PSx (x′) ./ p. If M is irreducible, the steady-state probability

vector π(∞) is computed directly by solving Formulae (5.9) and then aggregated
accordingly. The case whenM is reducible needs extra care.

Like CTMCs, we define B, a Bottom Strongly Connected Component (BSCC) of
M, as a set of states ofM, such that once the process enters a BSCC, it cannot
leave any more. Computation of all BSCCs ofM, i.e. B(M), requires an analysis
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of the underlying graph structure and is known as for CTMCs [Tar71]. Each B ∈
B(M) shall be treated as an irreducible MRPLR

MEME to compute its steady-state
probabilities πB(∞), and we shall use πB(∞)x′ to denote the corresponding
steady-state probability of state x′ ∈ B. Afterwards, we compute the probability
of reaching each B from the state x according to the embedded DTMC emb(M),
which is given as the reachability probability

∑
x̄∈B Pemb(M)(x, x̄). Henceforth,

the limiting probability PSx (x′) for a reducibleM is computed as

PSx (x′) =

{ (∑
x̄∈B Pemb(M)(x, x̄)

)
πB(∞)x′ , if x′ ∈ B for some B ∈ B(M);

0 otherwise.

P./p[Ψ] formulae. From the CSL semantics, a state x � P./p[Ψ] iff PM(C(x, . . . ))
./ p, such that C(x, . . . ) is the cylinder set of all paths σ ∈ Path(x) and σ � Ψ.

When Ψ ::= XIΦ, we shall measure the set of paths satisfying XIΦ starting from
x, i.e. PCx (XIΦ). Assume x′ � Φ and meme(w)x,x′ = αeSwTg, the probability of
jumping from x to x′ during the closure of interval I is given as PM(x, cf(I), x′)
(cf. Formula (5.7) in the Borel space construction). Henceforth, x � P./p[X

IΦ]
iff
∑
x′�Φ PM(x, cf(I), x′) ./ p.

When Ψ ::= Φ1U
IΦ2, we shall measure the paths satisfying Φ1U

IΦ2 starting
from x, i.e. PCx (Φ1U

IΦ2), and then evaluate the condition ./ p. Depending on
the interval type, we consider three cases.

1. If I = [0, t], we shall determine the least solution of the following integral
equation system.

PCx (Φ1U
[0,t]Φ2) =


0, when x ∈ Sat(¬Φ1 ∧ ¬Φ2);

1, when x ∈ Sat(Φ2);∫ t
0
PM(x, cf([0, u]), x′)PCx′(Φ1U

[0,t−u]Φ2)du, otherwise.

The computation can be classified as a system of Volterra integral equa-
tions, such that one could solve it using Volterra-Runge-Kutta methods
with worst case complexity O(n4), where n is the number of states in
M [HB86]. The above numerical approach is generally slow and only
works for small systems. We shall adapt the alternative transformation
approach mentioned in [BHHK03, KNP07] to our problem.

Definition 5.16 (CSL Driven Transformation) For anyMRPLR
MEME

M = (X,π,MEME(w),L) and CSL formula Φ, let MRPLR
MEME M[Φ]

result from M by making all Φ states in M absorbing, i.e. M[Φ] =
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(X,π,MEME(w)′,L), such that meme(w)′i,j = meme(w)i,j if xi 6� Φ
and 0 otherwise.

For PCx (Φ1U
[0,t]Φ2), we are safe to make all ¬Φ1 states absorbing because

any path going through a ¬Φ1 state before reaching Φ2 violates Ψ. We
could also make Φ2 states absorbing, because once a Φ2 state is reached,
the future behaviour becomes irrelevant for the validity of Ψ. Henceforth,
we have PCx (Φ1U

[0,t]Φ2) =
∑
x′�Φ2

PM[¬Φ1∨Φ2](C({σ ∈ Path(x) | σ@t =

x′})), such that PM[¬Φ1∨Φ2](C({σ ∈ Path(x) | σ@t = x′})) is the tran-
sient probability of state x′ after t time units given the initial state is x.
The detailed computation has been explained in Section 5.5 (cf. equation
(5.8)).

2. If I = [t, t′], we have two parts of probabilities: the probability of staying
at Φ1 state up to time t (similar to the former) and the probability of
reaching Φ2 within t′ − t given Φ1 is satisfied with [0.t). That is

PCx (Φ1U
[t,t′]Φ2) =


0, when x 6∈ Sat(Φ1);∑
x′�Φ1

PM[¬Φ1](C({σ ∈ Path(x) | σ@t = x′}))

PCx′(Φ1U
[0,t′−t)Φ2).

3. If [t,∞], we have the similar situation as I = [t, t′] except the second part
is a unbound until formula. That is to use embedded DTMC in this case.
That is

PCx (Φ1U
[t,∞]Φ2) =


0, when x 6∈ Sat(Φ1);∑
x′�Φ1

PM[¬Φ1](C({σ ∈ Path(x) | σ@t = x′}))

Pemb(M)
x′ (Φ1U

[0,∞)Φ2),

such that we have

Pemb(M)
x′ (Φ1U

[0,∞)Φ2) =


1, if x′ ∈ Sat(Φ2);

0, if x′ ∈ Sat(¬Φ1 ∧ ¬Φ2);∑
x′′∈X Px′,x′′Pemb(M)

x′′ (Φ1U
[0,∞)Φ2), otherwise.

5.7 Summary

Stochastic model checking continuous–time Markov chains has been a hot re-
search topic in both theory and practice for many years, such that quantitative
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properties, such as performance, reliability, and efficiency, are evaluated and
verified. However, there has been increasing attention that the exponentially
distributed holding times in CTMCs are unrealistic in modelling many phenom-
ena. That calls for the extension of stochastic model checking to more general
distributed holding times, for instance continuous phase–type distributions. In
this work, we consider the stochastic systems having holding time distribu-
tions of matrix–exponential, which contains and is algebraically equivalent with
CPH distributions, however, without the probability interpretation in terms of
Markov chains. For any representation of ME distributions, one could always
find a representation of minimal order. This attractive property allows us to
model stochastic systems using a minimal state space representation.

Apart from general probability distributions, we present how to add a second
dimension to probability distributions in order to express the multiple exits fol-
lowed by a randomised holding time. We illustrate this by defining a multi-exits
matrix–exponential distribution, such that its joint density f(w, g) interprets
the probability density of a process finishing at g-th exit after w time units.
Inherited from ME distributions, we show the compositionality and minimality
results for MEME distributions. We then introduce a stochastic process algebra
MEME to support ME distributed holding time and multiple exits, which in-
cludes several composite operators. As a unique feature of the language MEME,
all the components before and after compositions are secured to a minimal state
space representation. That shall ease for deploying stochastic model checking
in practice.

The semantics of the language MEME is a Markov renewal process with matrix–
exponential kernels, MRPLR

MEME. We then explore the stochastic model checking
algorithms on MRPLR

MEME against CSL formulae. We show that the equations
systems to compute transient and limiting probabilities on MRPLR

MEME are as
standard as CTMCs, but require some extra care for choosing appropriate nu-
merical methods (e.g. uniformisation does not work for transient probabilities).
The model checking algorithms on MRPLR

MEME are similar to CTMC model check-
ing.
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Chapter 6

Conclusion and Outlook

This dissertation is an interdisciplinary study involving formal methods in the-
oretical computer science and stochastic processes in applied probability. The
aim is to develop advanced logics and models for stochastic analysis information
systems, which underlying processes are possibly beyond Markov chains. Our
contributions can be summaried in four important aspects:

• Stochastic abstraction and analysis. When analysing the performance of a
complex stochastic system, often we need to abstract the model to a level
that are small enough to handle. This dissertation demonstrates a high
level abstraction approach to model and analyse stochastic wireless sensor
networks using combinatorics. We also illustrate how discrete phase–type
distributions accelerate performance evaluation of the model.

• Compositional reasoning of purely stochastic systems. Compositionality
is an important property in system modelling, which allows a complex
system to be composed by simple subsystems followed by rules. This dis-
sertation develops new stochastic process calculus for stochastic systems
in the classes of phase–type distributions and matrix–exponential distri-
butions to reason their compositionality.

• Characterising stochastic equivalence relations. The study of stochastic
equivalence relations is crucial in understanding the behaviours and prop-
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erties for stochastic systems. This dissertation proposes time-lapse bisim-
ulation, a new state-based bisimulation relation on Markov chains and its
corresponding logical characterisation. A variety of bisimulation relations
comparing to stochastic equivalence are also clarified.

• Minimal state space representation for general distributed durations. The
state space explosion problem is a main obstacle against efficient stochas-
tic verification. To reduce the problem of state space explosion, this thesis
presents new techniques to obtain the minimal state space representation
for Markov renewal processes with matrix–exponential kernels. In order
to support formal verification, we illustrate stochastic model checking al-
gorithms using continuous stochastic logics.

This dissertation has shown several interesting theoretical results, which can
be naturally extended to a more general setting. The phase–type process al-
gebra (cf. Section 3.2) explores the compositionality and algebraic properties
for continuous phase–type distributions, which shall hold almost immediate to
the discrete case. The minimum operator and maximum operator in discrete–
time need special care, because they are a bit different from the continuous
case. Moreover, the newly identified time-lapse bisimulation on labelled DTMCs
(cf. Section 4.3) can be defined analogously on labelled continuous–time Markov
chains, which is then a bisimulation characterisation of stochastic equivalence
for continuous–time marked Markovian arrival processes.

This dissertation has discovered several modelling techniques and algorithms,
which can be implemented into tools. The phase–type process algebra (cf. Sec-
tion 3.2) can be implemented as a tool to parse the language into basic ma-
trix constructions, such that one could use it to produce large-scaled absorb-
ing continuous–time Markov chains. Even more, one could operate phase–type
representations backwardly to decompose a large system into several smaller
subsystems. The language MEME, the minimisation algorithm, together with
corresponding stochastic model checking algorithms introduced in Chapter 5
can be implemented into a completely new stochastic model checker to support
all nice features mentioned in the chapter.

This dissertation has proposed several new findings, which should be evaluated
in industrial case studies to weigh pros and cons. We have shown that time-
lapse bisimulation is a new contribution to the existing bisimulation family, thus
there must be cases that time-lapse bisimulation outperforms with other bisim-
ulations. It would be very interesting to see how time-lapse bisimulation can
assist verification in practice. The stochastic model checking Markov renewal
process with matrix–exponential kernels has the nice minimality property, it is
also very interesting to know how the minimality performs when it meets the
complicated models from real world.
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Appendix

A.1 Definition of Function pi(x) in LMAC

The number of ordered arrangements of n objects, in which there are k1 objects
of type 1, k2 objects of type 2, . . . , and km objects of type m, and where
k1 + k2 + · · ·+ km = n, is given by(

n

k1, k2, . . . , km

)
=

n!

k1!k2! · · · km!
.

This number is called a multinomial coefficient. For instance, suppose that we
have 16 sensors, and we want to put them into 6 slots, with 2, 2, 2, 3, 3, and 4
sensors respectively, then(

16

2, 2, 2, 3, 3, 4

)
=

16!

2!2!2!3!3!4!
,

is the number of ordered ways of doing so. If we do not distinguish the sensors,
we have to eliminate the ordering. That gives(

16
2,2,2,3,3,4

)
3!2!1!

=
16!

2!2!2!3!3!4!× 3!2!1!



116 Appendix

is the number of non-ordered arrangements. In order to use these arguments
and put them into our case, we define the following function

A(v, g, j) =
1∏x

s=1(v′[s])!
,

where v is an input vector with dimension x, v′ = v + ej + eg−j , where ej is a
unit vector with 1 in the j-th entry, and 0 otherwise. This function corresponds
to the term 1

3!2!1! in the previous example, and it is used to eliminate the ordering
of any arrangement. Having the definition of function A, we will give the general
form of pi(x), for i ≥ 1.

When the collision only happens in a single slot, we have that

p1(x) =
1

x!
.

According to the interpretation of the multinomial coefficient, we have only one
slot within all the x sensors. Now, define the function

q2(g,v, s) =

b g2 c∑
j=s

1

j!(g − j)!
A(v, g, j), s ≥ 2,

which indicates that collisions can happen in two slots. The parameter g stands
for the number of collided sensors. Note that in order to eliminate the ordering
we call the function A. Within the summation, j is the number of sensors in
the first slot, and g − j is the number of sensors in the second slot. Thus, we
get that p2(x) is a particular case of q2 given by p2(x) = q2(x,0, 2).

In general, the function qi(g,v, s) for i ≥ 3, indicates that there are i slots with
collisions. It is calculated using recursive calls as follows

qi(g,v, s) =

b gi c∑
j=s

1

j!
qi−1(g − j,v + ej , j), s ≥ 2.

We compute this function by putting j sensors into the first slot (corresponding
to the term 1

j! ), and putting the others (g − j) sensors into (i− 1) slots, which
we can get it from the previous qi−1.

Thus, the general form of pi(x) for i ≥ 3, is given by

pi(x) =

b xi c∑
j=2

1

j!
qi−1(x− j, ej , j), i ≥ 3.
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A.2 Kronecker Operations

Many operations with phase type distributions are conveniently expressed using

the Kronecker product ⊗. For two matrices A =


a11 a12 . . . a1k

a21 a22 . . . a2k

...
... . . .

...
al1 al2 . . . alk

 with

dimension l × k and B =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
... . . .

...
am1 am2 . . . amn

 with dimension m × n, the

Kronecker product ⊗ is defined by

A⊗B =


a11B a12B . . . a1kB
a21B a22B . . . a2kB
...

... . . .
...

al1B al2B . . . alkB


with dimension lm× kn.

There are some important properties of Kronecker product.

• Associativity:
A⊗ (B ⊗C) = (A⊗B)⊗C

• No Commutativity:
A⊗B 6= B ⊗A in general

• Distributivity over ordinary matrix addition:
(A1 +B1)⊗ (A2 +B2) = A1 ⊗A2 + A1 ⊗B2 + B1 ⊗A2 + B1 ⊗B2

• Compatibility with ordinary matrix multiplication I:
(A1 ⊗B1)× (A2 ⊗B2) = (A1 ×A2)⊗ (B1 ×B2)

• Compatibility with ordinary matrix multiplication II:
(A1A2A3)⊗ (B1B2B3) = (A1 ⊗B1)(A2 ⊗B2)(A3 ⊗B3)

• Compatibility with ordinary matrix inversion:
(A⊗B)−1 = B−1 ⊗A−1

The Kronecker sum ⊕ of two matrics A and B is defined by

A⊕B = A⊗ I + I ⊗B,
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where I is the identity matrix.

The Kronecker sum has one important rule

exp(A1)⊗ exp(A2) = exp(A1 ⊕A2).

A.3 Proof: Distributive Properties for CPH com-
posite operators

In this section, we proof for CPH closed operators (convolution
∑

, minimum
min and maximum max) that there is no distributivity holds outside Table 3.2
of operational rules.

For the binary convex mixture operator +. Since + always assign probability p
on the left side and q = 1− p on the right side. Each binary + operation adds
in one parameter p to the initial probability vector, i.e. (pα1, qα2). Therefore,
in general it is impossible to have any CPH closed operator, denoted by ·, which
is distributive over +. To see this, let us assume distributivity holds, then

(W1(α1,T1)·W2(α2,T2))+W3(α3,T3) = (W1(α1,T1)+W3(α3,T3))·(W2(α2,T2)+W3(α3,T3)).

It has one pair of p and q on the final initial probability vector according to
one appearance of + on the left side of above formula, however there are two
different pairs of p and q for the right side according to two appearances of
+ operators. Therefore, the resulted initial probability vectors cannot agree,
which implies that

∑
, min and max are not distributive over +.

The counterexamples we employed in our later proofs are instances of exponen-
tial distributions. With the counterexamples, we show no distributivity among∑

, min and max holds. Without losing generality, we have three CPH dis-
tributed random variables W1(1,[−λ]), W2(1,[−µ]), and W3(1,[−γ]).

Proposition A.1 The convolution
∑

is not distributive over minimum min
and maximum max.

Proof For
∑

is not distributive over min:
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(W1(1,[−λ])

∑
W2(1,[−µ])) minW3(1,[−γ]) = W ′(1,0),

−λ λ
0 −µ

minW3(1,[−γ])

= W̄(1,0),

−λ− γ λ
0 −µ− γ

,

such that LST of above CPH distributed random variable is

H(s) = 0 + [1, 0]

(
sI −

[
−λ− γ λ

0 −µ− γ

])−1 [
γ

µ+ γ

]
= [1, 0]

([
s+ λ+ γ −λ

0 s+ λ+ γ

])−1 [
γ

µ+ γ

]
= [1, 0]

[
1

s+λ+γ
λ

(s+λ+γ)(s+µ+γ)

0 1
s+µ+γ

] [
γ

µ+ γ

]
=
γ(s+ µ+ γ) + λ(µ+ γ)

(s+ λ+ γ)(s+ µ+ γ)
.

On the other side, we have

(W1(1,[−λ]) minW3(1,[−γ]))
∑

(W2(1,[−µ]) minW3(1,[−γ]))

= W ′(
1,
[
−λ− γ

])∑W ′′(
1,
[
−µ− γ

])
= W̄(1,0),

−λ− γ λ+ γ
0 −µ− γ

,

such that the LST of above CPH distributed random variable is

H(s) = 0 + [1, 0]

(
sI −

[
−λ− γ λ+ γ

0 −µ− γ

])−1 [
0

µ+ γ

]
= [1, 0]

([
s+ λ+ γ −λ− γ

0 s+ µ+ γ

])−1 [
0

µ+ γ

]
= [1, 0]

[
1

s+λ+γ
λ+γ

(s+λ+γ)(s+µ+γ)

0 1
s+µ+γ

] [
0

µ+ γ

]
=

(λ+ γ)(µ+ γ)

(s+ λ+ γ)(s+ µ+ γ)
.
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Two LSTs are not identical, thus we show
∑

is not distributive over min.

For
∑

is not distributive over max:

(W1(1,[−λ])

∑
W2(1,[−µ])) maxW3(1,[−γ])

= W ′(1,0),

−λ λ
0 −µ

maxW3(1,[−γ])

= W̄
(1,0,0,0,0),



−λ− γ λ γ 0 0
0 −µ− γ 0 γ µ
0 0 −λ λ 0
0 0 0 −µ 0
0 0 0 0 −γ





,

and

(W1(1,[−λ]) maxW3(1,[−γ]))
∑

(W2(1,[−µ]) maxW3(1,[−γ]))

= W ′(1,0,0),


−λ− γ γ λ

0 −λ 0
0 0 −γ



∑

W ′′(1,0,0),


−µ− γ γ µ

0 −µ 0
0 0 −γ




= W̄
(1,0,0,0,0,0),



−λ− γ γ λ 0 0 0
0 −λ 0 λ 0 0
0 0 −γ γ 0 0
0 0 0 −µ− γ γ µ
0 0 0 0 −µ 0
0 0 0 0 0 −γ





.

Comparing two above LSTs directly are computational heavy. Therefore, we
look into numerical case by comparing the first order moment (cf. Formula (2.13)).
The case we took is having that λ, µ, γ all equals 1. That gives the first random
variable is 2.25 and the second random variable is 3. That is the counterexample,
thus we conclude that

∑
is not distributive over max. 2

Proposition A.2 The minimum min is not distributive over convolution
∑

and maximum max.

Proof For min operator is not distributive over
∑

:

(W1(1,[−λ]) minW2(1,[−µ]))
∑

W3(1,[−γ]) = W ′(1,[−λ−µ])

∑
W3(1,[−γ])

= W̄(1,0),

−λ− µ λ+ µ
0 −γ

,
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such that the LST of above CPH distributed random variable is

H(s) = 0 + [1, 0]

(
sI −

[
−λ− µ λ+ µ

0 −γ

])−1 [
0
γ

]
= [1, 0]

([
s+ λ+ µ −λ− µ

0 s+ γ

])−1 [
0
γ

]
= [1, 0]

[
1

s+λ+µ
λ+µ

(s+λ+µ)(s+γ)

0 1
s+γ

] [
0
γ

]
=

γ(λ+ µ)

(s+ λ+ µ)(s+ γ)
.

On the other side, we have

(W1(1,[−λ])

∑
W3(1,[−γ])) min(W2(1,[−µ])

∑
W3(1,[−γ]))

= W ′(1,0),

−λ λ
0 −γ

minW ′′(1,0),

−µ µ
0 −γ


= W̄(1,0,0,0),


−λ− µ µ λ 0

0 −λ− γ 0 λ
0 0 −µ− γ µ
0 0 0 −2γ




,

such that the LST of above CPH distributed random variable is

H(s) = 0 + [1, 0, 0, 0]

sI −

−λ− µ µ λ 0

0 −λ− γ 0 λ
0 0 −µ− γ µ
0 0 0 −2γ



−1 

0
γ
γ
2γ



= [1, 0, 0, 0]



s+ λ+ µ −µ −λ 0

0 s+ λ+ γ 0 −λ
0 0 s+ µ+ γ −µ
0 0 0 s+ 2γ



−1 

0
γ
γ
2γ


=

µγ

(s+ λ+ γ)(s+ λ+ µ)
+

λγ

(s+ µ+ γ)(s+ λ+ µ)
+

2λµγ(2s+ µ+ 2γ + λ)

(s+ λ+ µ)(s+ λ+ γ)(s+ µ+ γ)(s+ 2γ)
.

Two LSTs are not equal, thus the distributivity does not hold.

For min operator is not distributive over max: we have
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(W1(1,[−λ]) minW2(1,[−µ])) maxW3(1,[−γ])

= W ′(1,[−λ−µ]) maxW3(1,[−γ])

= W̄(1,0,0),


−λ− µ− γ γ λ+ µ

0 −λ− µ 0
0 0 −γ



,

and

(W1(1,[−λ]) maxW3(1,[−γ])) min(W2(1,[−µ]) maxW3(1,[−γ]))

= W ′(1,0,0),


−λ− γ γ λ

0 −λ 0
0 0 −γ




minW ′′(1,0,0),


−µ− γ γ µ

0 −µ 0
0 0 −γ




= W̄((1,0,0,0,0,0,0,0,0),

−



λ+ µ+ 2γ −γ −µ −γ 0 0 −λ 0 0
0 λ+ µ+ γ 0 0 −γ 0 0 −λ 0
0 0 λ+ 2γ 0 0 −γ 0 0 −λ
0 0 0 λ+ µ+ γ −γ −µ 0 0 0
0 0 0 0 λ+ µ 0 0 0 0
0 0 0 0 0 λ+ γ 0 0 0
0 0 0 0 0 0 µ+ 2γ −γ −µ
0 0 0 0 0 0 0 µ+ γ 0
0 0 0 0 0 0 0 0 2γ


).

To obtain LSTs is too complicated, therefore we compute the mean of two CPH
representations for a special case such that λ, µ, γ all equals 1. In this case, we
have the first random variable has the mean equals to 1.1667 and the second
one is 0.9167. The counterexample is found, and these two CPH representations
must not agree. 2

Proposition A.3 The maximum max is not distributive over convolution∑
and minimum min.

Proof For max operator is not distributive over
∑

: we have
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(W1(1,[−λ]) maxW2(1,[−µ]))
∑

W3(1,[−γ])

= W ′(1,0,0),


−λ− µ µ λ

0 −λ 0
0 0 −µ



∑

W3(1,[−γ])

= W̄(1,0,0,0),


−λ− µ µ λ 0

0 −λ 0 λ
0 0 −µ µ
0 0 0 −γ




,

and

(W1(1,[−λ])

∑
W3(1,[−γ])) max(W2(1,[−µ])

∑
W3(1,[−γ]))

= W ′(1,0),

−λ λ
0 −γ

maxW ′′(1,0),

−µ µ
0 −γ


= W̄

(1,0,0,0,0,0,0,0),



−λ− µ µ λ 0 0 0 0 0
0 −λ− γ 0 λ γ 0 0 0
0 0 −µ− γ µ 0 0 γ 0
0 0 0 −2γ 0 γ 0 γ
0 0 0 0 −λ λ 0 0
0 0 0 0 0 −γ 0 0
0 0 0 0 0 0 −µ µ
0 0 0 0 0 0 0 −γ





.

Let λ, µ, γ all equal 1, we have the mean of first random variable is 2.5 and the
mean of the second is 2.75. Thus, these two CPH distributed random variable
must not agree.

For maximum is not distributive over the minimum: we have

(W1(1,[−λ]) maxW2(1,[−µ])) minW3(1,[−γ])

= W ′(1,0,0),


−λ− µ µ λ

0 −λ 0
0 0 −µ




minW3(1,[−γ])

= W̄(1,0,0),


−λ− µ− γ µ λ

0 −λ− γ 0
0 0 −µ− γ



,
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such that the LST of above CPH distributed random variable is

H(s) = 0 + [1, 0, 0]

sI −
−λ− µ− γ µ λ

0 −λ− γ 0
0 0 −µ− γ

−1  γ
λ+ γ
µ+ γ


= [1, 0]

s+ λ+ µ+ γ −µ −λ
0 s+ λ+ γ 0
0 0 s+ µ+ γ

−1  γ
λ+ γ
µ+ γ


= [1, 0]

 1
s+λ+µ+γ

µ
(s+λ+µ+γ)(s+λ+γ)

(λ+γ)2

(s+λ+µ+γ)(s+λ+γ)(s+µ+γ)

0 1
s+λ+γ 0

0 0 1
s+µ+γ


 γ
λ+ γ
µ+ γ


=
γ(s+ λ+ γ)(s+ µ+ γ) + µ(s+ µ+ γ)(λ+ γ) + (λ+ γ)2(µ+ γ)

(s+ λ+ µ+ γ)(s+ λ+ γ)(s+ µ+ γ)
.

On the other side, we have

(W1(1,[−λ]) minW3(1,[−γ])) max(W2(1,[−µ]) minW3(1,[−γ]))

= W ′(
1,
[
−λ− γ

])maxW ′′(
1,
[
−µ− γ

])
= W̄(1,0,0),


−λ− µ− 2γ µ+ γ λ+ γ

0 −λ− γ 0
0 0 −µ− γ



,

such that the LST of above CPH distributed random variable is

H(s) = 0 + [1, 0, 0]

sI −
−λ− µ− 2γ µ+ γ λ+ γ

0 −λ− γ 0
0 0 −µ− γ

−1  0
λ+ γ
µ+ γ


= [1, 0, 0]

s+ λ+ µ+ 2γ −µ− γ −λ− γ
0 s+ λ+ γ 0
0 0 s+ µ+ γ

−1  0
λ+ γ
µ+ γ


= [1, 0, 0]

 1
s+λ+µ+2γ

µ+γ
(s+λ+µ+2γ)(s+λ+γ)

(λ+γ)
(s+λ+µ+2γ)(s+µ+γ)

0 1
s+λ+γ 0

0 0 1
s+µ+γ


 0
λ+ γ
µ+ γ


=

(λ+ γ)(µ+ γ)(s+ µ+ γ) + (λ+ γ)(µ+ γ)(s+ λ+ γ)

(s+ λ+ µ+ 2γ)(s+ λ+ γ)(s+ µ+ γ)
.

By evaluating LSTs, we conclude the distributivity does not hold. 2
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